Commit e56e03b0 authored by Mike Frysinger's avatar Mike Frysinger

Blackfin: unify memory region checks between kgdb and traps

The kgdb (in multiple places) and traps code developed pretty much
identical checks for how to access different regions of the Blackfin
memory map, but each wasn't 100%, so unify them to avoid duplication,
bitrot, and bugs with edge cases.
Signed-off-by: default avatarMike Frysinger <vapier@gentoo.org>
parent ac1b7c37
...@@ -265,4 +265,26 @@ __clear_user(void *to, unsigned long n) ...@@ -265,4 +265,26 @@ __clear_user(void *to, unsigned long n)
#define clear_user(to, n) __clear_user(to, n) #define clear_user(to, n) __clear_user(to, n)
/* How to interpret these return values:
* CORE: can be accessed by core load or dma memcpy
* CORE_ONLY: can only be accessed by core load
* DMA: can only be accessed by dma memcpy
* IDMA: can only be accessed by interprocessor dma memcpy (BF561)
* ITEST: can be accessed by isram memcpy or dma memcpy
*/
enum {
BFIN_MEM_ACCESS_CORE = 0,
BFIN_MEM_ACCESS_CORE_ONLY,
BFIN_MEM_ACCESS_DMA,
BFIN_MEM_ACCESS_IDMA,
BFIN_MEM_ACCESS_ITEST,
};
/**
* bfin_mem_access_type() - what kind of memory access is required
* @addr: the address to check
* @size: number of bytes needed
* @return: <0 is error, >=0 is BFIN_MEM_ACCESS_xxx enum (see above)
*/
int bfin_mem_access_type(unsigned long addr, unsigned long size);
#endif /* _BLACKFIN_UACCESS_H */ #endif /* _BLACKFIN_UACCESS_H */
...@@ -34,15 +34,6 @@ int gdb_bfin_vector = -1; ...@@ -34,15 +34,6 @@ int gdb_bfin_vector = -1;
#error change the definition of slavecpulocks #error change the definition of slavecpulocks
#endif #endif
#define IN_MEM(addr, size, l1_addr, l1_size) \
({ \
unsigned long __addr = (unsigned long)(addr); \
(l1_size && __addr >= l1_addr && __addr + (size) <= l1_addr + l1_size); \
})
#define ASYNC_BANK_SIZE \
(ASYNC_BANK0_SIZE + ASYNC_BANK1_SIZE + \
ASYNC_BANK2_SIZE + ASYNC_BANK3_SIZE)
void pt_regs_to_gdb_regs(unsigned long *gdb_regs, struct pt_regs *regs) void pt_regs_to_gdb_regs(unsigned long *gdb_regs, struct pt_regs *regs)
{ {
gdb_regs[BFIN_R0] = regs->r0; gdb_regs[BFIN_R0] = regs->r0;
...@@ -463,40 +454,87 @@ static int hex(char ch) ...@@ -463,40 +454,87 @@ static int hex(char ch)
static int validate_memory_access_address(unsigned long addr, int size) static int validate_memory_access_address(unsigned long addr, int size)
{ {
int cpu = raw_smp_processor_id(); if (size < 0 || addr == 0)
if (size < 0)
return -EFAULT; return -EFAULT;
if (addr >= 0x1000 && (addr + size) <= physical_mem_end) return bfin_mem_access_type(addr, size);
return 0; }
if (addr >= SYSMMR_BASE)
return 0; static int bfin_probe_kernel_read(char *dst, char *src, int size)
if (IN_MEM(addr, size, ASYNC_BANK0_BASE, ASYNC_BANK_SIZE)) {
return 0; unsigned long lsrc = (unsigned long)src;
if (cpu == 0) { int mem_type;
if (IN_MEM(addr, size, L1_SCRATCH_START, L1_SCRATCH_LENGTH))
mem_type = validate_memory_access_address(lsrc, size);
if (mem_type < 0)
return mem_type;
if (lsrc >= SYSMMR_BASE) {
if (size == 2 && lsrc % 2 == 0) {
u16 mmr = bfin_read16(src);
memcpy(dst, &mmr, sizeof(mmr));
return 0; return 0;
if (IN_MEM(addr, size, L1_CODE_START, L1_CODE_LENGTH)) } else if (size == 4 && lsrc % 4 == 0) {
u32 mmr = bfin_read32(src);
memcpy(dst, &mmr, sizeof(mmr));
return 0; return 0;
if (IN_MEM(addr, size, L1_DATA_A_START, L1_DATA_A_LENGTH)) }
} else {
switch (mem_type) {
case BFIN_MEM_ACCESS_CORE:
case BFIN_MEM_ACCESS_CORE_ONLY:
return probe_kernel_read(dst, src, size);
/* XXX: should support IDMA here with SMP */
case BFIN_MEM_ACCESS_DMA:
if (dma_memcpy(dst, src, size))
return 0; return 0;
if (IN_MEM(addr, size, L1_DATA_B_START, L1_DATA_B_LENGTH)) break;
case BFIN_MEM_ACCESS_ITEST:
if (isram_memcpy(dst, src, size))
return 0; return 0;
#ifdef CONFIG_SMP break;
} else if (cpu == 1) { }
if (IN_MEM(addr, size, COREB_L1_SCRATCH_START, L1_SCRATCH_LENGTH)) }
return -EFAULT;
}
static int bfin_probe_kernel_write(char *dst, char *src, int size)
{
unsigned long ldst = (unsigned long)dst;
int mem_type;
mem_type = validate_memory_access_address(ldst, size);
if (mem_type < 0)
return mem_type;
if (ldst >= SYSMMR_BASE) {
if (size == 2 && ldst % 2 == 0) {
u16 mmr;
memcpy(&mmr, src, sizeof(mmr));
bfin_write16(dst, mmr);
return 0; return 0;
if (IN_MEM(addr, size, COREB_L1_CODE_START, L1_CODE_LENGTH)) } else if (size == 4 && ldst % 4 == 0) {
u32 mmr;
memcpy(&mmr, src, sizeof(mmr));
bfin_write32(dst, mmr);
return 0; return 0;
if (IN_MEM(addr, size, COREB_L1_DATA_A_START, L1_DATA_A_LENGTH)) }
} else {
switch (mem_type) {
case BFIN_MEM_ACCESS_CORE:
case BFIN_MEM_ACCESS_CORE_ONLY:
return probe_kernel_write(dst, src, size);
/* XXX: should support IDMA here with SMP */
case BFIN_MEM_ACCESS_DMA:
if (dma_memcpy(dst, src, size))
return 0; return 0;
if (IN_MEM(addr, size, COREB_L1_DATA_B_START, L1_DATA_B_LENGTH)) break;
case BFIN_MEM_ACCESS_ITEST:
if (isram_memcpy(dst, src, size))
return 0; return 0;
#endif break;
}
} }
if (IN_MEM(addr, size, L2_START, L2_LENGTH))
return 0;
return -EFAULT; return -EFAULT;
} }
...@@ -509,14 +547,6 @@ int kgdb_mem2hex(char *mem, char *buf, int count) ...@@ -509,14 +547,6 @@ int kgdb_mem2hex(char *mem, char *buf, int count)
{ {
char *tmp; char *tmp;
int err; int err;
unsigned char *pch;
unsigned short mmr16;
unsigned long mmr32;
int cpu = raw_smp_processor_id();
err = validate_memory_access_address((unsigned long)mem, count);
if (err)
return err;
/* /*
* We use the upper half of buf as an intermediate buffer for the * We use the upper half of buf as an intermediate buffer for the
...@@ -524,44 +554,7 @@ int kgdb_mem2hex(char *mem, char *buf, int count) ...@@ -524,44 +554,7 @@ int kgdb_mem2hex(char *mem, char *buf, int count)
*/ */
tmp = buf + count; tmp = buf + count;
if ((unsigned int)mem >= SYSMMR_BASE) { /*access MMR registers*/ err = bfin_probe_kernel_read(tmp, mem, count);
switch (count) {
case 2:
if ((unsigned int)mem % 2 == 0) {
mmr16 = *(unsigned short *)mem;
pch = (unsigned char *)&mmr16;
*tmp++ = *pch++;
*tmp++ = *pch++;
tmp -= 2;
} else
err = -EFAULT;
break;
case 4:
if ((unsigned int)mem % 4 == 0) {
mmr32 = *(unsigned long *)mem;
pch = (unsigned char *)&mmr32;
*tmp++ = *pch++;
*tmp++ = *pch++;
*tmp++ = *pch++;
*tmp++ = *pch++;
tmp -= 4;
} else
err = -EFAULT;
break;
default:
err = -EFAULT;
}
} else if ((cpu == 0 && IN_MEM(mem, count, L1_CODE_START, L1_CODE_LENGTH))
#ifdef CONFIG_SMP
|| (cpu == 1 && IN_MEM(mem, count, COREB_L1_CODE_START, L1_CODE_LENGTH))
#endif
) {
/* access L1 instruction SRAM*/
if (dma_memcpy(tmp, mem, count) == NULL)
err = -EFAULT;
} else
err = probe_kernel_read(tmp, mem, count);
if (!err) { if (!err) {
while (count > 0) { while (count > 0) {
buf = pack_hex_byte(buf, *tmp); buf = pack_hex_byte(buf, *tmp);
...@@ -582,13 +575,8 @@ int kgdb_mem2hex(char *mem, char *buf, int count) ...@@ -582,13 +575,8 @@ int kgdb_mem2hex(char *mem, char *buf, int count)
*/ */
int kgdb_ebin2mem(char *buf, char *mem, int count) int kgdb_ebin2mem(char *buf, char *mem, int count)
{ {
char *tmp_old; char *tmp_old, *tmp_new;
char *tmp_new;
unsigned short *mmr16;
unsigned long *mmr32;
int err;
int size; int size;
int cpu = raw_smp_processor_id();
tmp_old = tmp_new = buf; tmp_old = tmp_new = buf;
...@@ -601,41 +589,7 @@ int kgdb_ebin2mem(char *buf, char *mem, int count) ...@@ -601,41 +589,7 @@ int kgdb_ebin2mem(char *buf, char *mem, int count)
tmp_old++; tmp_old++;
} }
err = validate_memory_access_address((unsigned long)mem, size); return bfin_probe_kernel_write(mem, buf, count);
if (err)
return err;
if ((unsigned int)mem >= SYSMMR_BASE) { /*access MMR registers*/
switch (size) {
case 2:
if ((unsigned int)mem % 2 == 0) {
mmr16 = (unsigned short *)buf;
*(unsigned short *)mem = *mmr16;
} else
err = -EFAULT;
break;
case 4:
if ((unsigned int)mem % 4 == 0) {
mmr32 = (unsigned long *)buf;
*(unsigned long *)mem = *mmr32;
} else
err = -EFAULT;
break;
default:
err = -EFAULT;
}
} else if ((cpu == 0 && IN_MEM(mem, count, L1_CODE_START, L1_CODE_LENGTH))
#ifdef CONFIG_SMP
|| (cpu == 1 && IN_MEM(mem, count, COREB_L1_CODE_START, L1_CODE_LENGTH))
#endif
) {
/* access L1 instruction SRAM */
if (dma_memcpy(mem, buf, size) == NULL)
err = -EFAULT;
} else
err = probe_kernel_write(mem, buf, size);
return err;
} }
/* /*
...@@ -645,16 +599,7 @@ int kgdb_ebin2mem(char *buf, char *mem, int count) ...@@ -645,16 +599,7 @@ int kgdb_ebin2mem(char *buf, char *mem, int count)
*/ */
int kgdb_hex2mem(char *buf, char *mem, int count) int kgdb_hex2mem(char *buf, char *mem, int count)
{ {
char *tmp_raw; char *tmp_raw, *tmp_hex;
char *tmp_hex;
unsigned short *mmr16;
unsigned long *mmr32;
int err;
int cpu = raw_smp_processor_id();
err = validate_memory_access_address((unsigned long)mem, count);
if (err)
return err;
/* /*
* We use the upper half of buf as an intermediate buffer for the * We use the upper half of buf as an intermediate buffer for the
...@@ -669,39 +614,18 @@ int kgdb_hex2mem(char *buf, char *mem, int count) ...@@ -669,39 +614,18 @@ int kgdb_hex2mem(char *buf, char *mem, int count)
*tmp_raw |= hex(*tmp_hex--) << 4; *tmp_raw |= hex(*tmp_hex--) << 4;
} }
if ((unsigned int)mem >= SYSMMR_BASE) { /*access MMR registers*/ return bfin_probe_kernel_write(mem, tmp_raw, count);
switch (count) {
case 2:
if ((unsigned int)mem % 2 == 0) {
mmr16 = (unsigned short *)tmp_raw;
*(unsigned short *)mem = *mmr16;
} else
err = -EFAULT;
break;
case 4:
if ((unsigned int)mem % 4 == 0) {
mmr32 = (unsigned long *)tmp_raw;
*(unsigned long *)mem = *mmr32;
} else
err = -EFAULT;
break;
default:
err = -EFAULT;
}
} else if ((cpu == 0 && IN_MEM(mem, count, L1_CODE_START, L1_CODE_LENGTH))
#ifdef CONFIG_SMP
|| (cpu == 1 && IN_MEM(mem, count, COREB_L1_CODE_START, L1_CODE_LENGTH))
#endif
) {
/* access L1 instruction SRAM */
if (dma_memcpy(mem, tmp_raw, count) == NULL)
err = -EFAULT;
} else
err = probe_kernel_write(mem, tmp_raw, count);
return err;
} }
#define IN_MEM(addr, size, l1_addr, l1_size) \
({ \
unsigned long __addr = (unsigned long)(addr); \
(l1_size && __addr >= l1_addr && __addr + (size) <= l1_addr + l1_size); \
})
#define ASYNC_BANK_SIZE \
(ASYNC_BANK0_SIZE + ASYNC_BANK1_SIZE + \
ASYNC_BANK2_SIZE + ASYNC_BANK3_SIZE)
int kgdb_validate_break_address(unsigned long addr) int kgdb_validate_break_address(unsigned long addr)
{ {
int cpu = raw_smp_processor_id(); int cpu = raw_smp_processor_id();
...@@ -724,46 +648,17 @@ int kgdb_validate_break_address(unsigned long addr) ...@@ -724,46 +648,17 @@ int kgdb_validate_break_address(unsigned long addr)
int kgdb_arch_set_breakpoint(unsigned long addr, char *saved_instr) int kgdb_arch_set_breakpoint(unsigned long addr, char *saved_instr)
{ {
int err; int err = bfin_probe_kernel_read(saved_instr, (char *)addr,
int cpu = raw_smp_processor_id();
if ((cpu == 0 && IN_MEM(addr, BREAK_INSTR_SIZE, L1_CODE_START, L1_CODE_LENGTH))
#ifdef CONFIG_SMP
|| (cpu == 1 && IN_MEM(addr, BREAK_INSTR_SIZE, COREB_L1_CODE_START, L1_CODE_LENGTH))
#endif
) {
/* access L1 instruction SRAM */
if (dma_memcpy(saved_instr, (void *)addr, BREAK_INSTR_SIZE)
== NULL)
return -EFAULT;
if (dma_memcpy((void *)addr, arch_kgdb_ops.gdb_bpt_instr,
BREAK_INSTR_SIZE) == NULL)
return -EFAULT;
return 0;
} else {
err = probe_kernel_read(saved_instr, (char *)addr,
BREAK_INSTR_SIZE); BREAK_INSTR_SIZE);
if (err) if (err)
return err; return err;
return bfin_probe_kernel_write((char *)addr, arch_kgdb_ops.gdb_bpt_instr,
return probe_kernel_write((char *)addr, BREAK_INSTR_SIZE);
arch_kgdb_ops.gdb_bpt_instr, BREAK_INSTR_SIZE);
}
} }
int kgdb_arch_remove_breakpoint(unsigned long addr, char *bundle) int kgdb_arch_remove_breakpoint(unsigned long addr, char *bundle)
{ {
if (IN_MEM(addr, BREAK_INSTR_SIZE, L1_CODE_START, L1_CODE_LENGTH)) { return bfin_probe_kernel_write((char *)addr, bundle, BREAK_INSTR_SIZE);
/* access L1 instruction SRAM */
if (dma_memcpy((void *)addr, bundle, BREAK_INSTR_SIZE) == NULL)
return -EFAULT;
return 0;
} else
return probe_kernel_write((char *)addr,
(char *)bundle, BREAK_INSTR_SIZE);
} }
int kgdb_arch_init(void) int kgdb_arch_init(void)
......
...@@ -344,6 +344,87 @@ void finish_atomic_sections (struct pt_regs *regs) ...@@ -344,6 +344,87 @@ void finish_atomic_sections (struct pt_regs *regs)
} }
} }
static inline
int in_mem(unsigned long addr, unsigned long size,
unsigned long start, unsigned long end)
{
return addr >= start && addr + size <= end;
}
static inline
int in_mem_const_off(unsigned long addr, unsigned long size, unsigned long off,
unsigned long const_addr, unsigned long const_size)
{
return const_size &&
in_mem(addr, size, const_addr + off, const_addr + const_size);
}
static inline
int in_mem_const(unsigned long addr, unsigned long size,
unsigned long const_addr, unsigned long const_size)
{
return in_mem_const_off(addr, 0, size, const_addr, const_size);
}
#define IN_ASYNC(bnum, bctlnum) \
({ \
(bfin_read_EBIU_AMGCTL() & 0xe) < ((bnum + 1) << 1) ? -EFAULT : \
bfin_read_EBIU_AMBCTL##bctlnum() & B##bnum##RDYEN ? -EFAULT : \
BFIN_MEM_ACCESS_CORE; \
})
int bfin_mem_access_type(unsigned long addr, unsigned long size)
{
int cpu = raw_smp_processor_id();
/* Check that things do not wrap around */
if (addr > ULONG_MAX - size)
return -EFAULT;
if (in_mem(addr, size, FIXED_CODE_START, physical_mem_end))
return BFIN_MEM_ACCESS_CORE;
if (in_mem_const(addr, size, L1_CODE_START, L1_CODE_LENGTH))
return cpu == 0 ? BFIN_MEM_ACCESS_ITEST : BFIN_MEM_ACCESS_IDMA;
if (in_mem_const(addr, size, L1_SCRATCH_START, L1_SCRATCH_LENGTH))
return cpu == 0 ? BFIN_MEM_ACCESS_CORE_ONLY : -EFAULT;
if (in_mem_const(addr, size, L1_DATA_A_START, L1_DATA_A_LENGTH))
return cpu == 0 ? BFIN_MEM_ACCESS_CORE : BFIN_MEM_ACCESS_IDMA;
if (in_mem_const(addr, size, L1_DATA_B_START, L1_DATA_B_LENGTH))
return cpu == 0 ? BFIN_MEM_ACCESS_CORE : BFIN_MEM_ACCESS_IDMA;
#ifdef COREB_L1_CODE_START
if (in_mem_const(addr, size, COREB_L1_CODE_START, L1_CODE_LENGTH))
return cpu == 1 ? BFIN_MEM_ACCESS_ITEST : BFIN_MEM_ACCESS_IDMA;
if (in_mem_const(addr, size, COREB_L1_SCRATCH_START, L1_SCRATCH_LENGTH))
return cpu == 1 ? BFIN_MEM_ACCESS_CORE_ONLY : -EFAULT;
if (in_mem_const(addr, size, COREB_L1_DATA_A_START, L1_DATA_A_LENGTH))
return cpu == 1 ? BFIN_MEM_ACCESS_CORE : BFIN_MEM_ACCESS_IDMA;
if (in_mem_const(addr, size, COREB_L1_DATA_B_START, L1_DATA_B_LENGTH))
return cpu == 1 ? BFIN_MEM_ACCESS_CORE : BFIN_MEM_ACCESS_IDMA;
#endif
if (in_mem_const(addr, size, L2_START, L2_LENGTH))
return BFIN_MEM_ACCESS_CORE;
if (addr >= SYSMMR_BASE)
return BFIN_MEM_ACCESS_CORE_ONLY;
/* We can't read EBIU banks that aren't enabled or we end up hanging
* on the access to the async space.
*/
if (in_mem_const(addr, size, ASYNC_BANK0_BASE, ASYNC_BANK0_SIZE))
return IN_ASYNC(0, 0);
if (in_mem_const(addr, size, ASYNC_BANK1_BASE, ASYNC_BANK1_SIZE))
return IN_ASYNC(1, 0);
if (in_mem_const(addr, size, ASYNC_BANK2_BASE, ASYNC_BANK2_SIZE))
return IN_ASYNC(2, 1);
if (in_mem_const(addr, size, ASYNC_BANK3_BASE, ASYNC_BANK3_SIZE))
return IN_ASYNC(3, 1);
if (in_mem_const(addr, size, BOOT_ROM_START, BOOT_ROM_LENGTH))
return BFIN_MEM_ACCESS_CORE;
if (in_mem_const(addr, size, L1_ROM_START, L1_ROM_LENGTH))
return BFIN_MEM_ACCESS_DMA;
return -EFAULT;
}
#if defined(CONFIG_ACCESS_CHECK) #if defined(CONFIG_ACCESS_CHECK)
#ifdef CONFIG_ACCESS_OK_L1 #ifdef CONFIG_ACCESS_OK_L1
__attribute__((l1_text)) __attribute__((l1_text))
...@@ -353,51 +434,61 @@ int _access_ok(unsigned long addr, unsigned long size) ...@@ -353,51 +434,61 @@ int _access_ok(unsigned long addr, unsigned long size)
{ {
if (size == 0) if (size == 0)
return 1; return 1;
if (addr > (addr + size)) /* Check that things do not wrap around */
if (addr > ULONG_MAX - size)
return 0; return 0;
if (segment_eq(get_fs(), KERNEL_DS)) if (segment_eq(get_fs(), KERNEL_DS))
return 1; return 1;
#ifdef CONFIG_MTD_UCLINUX #ifdef CONFIG_MTD_UCLINUX
if (addr >= memory_start && (addr + size) <= memory_end) if (1)
#else
if (0)
#endif
{
if (in_mem(addr, size, memory_start, memory_end))
return 1; return 1;
if (addr >= memory_mtd_end && (addr + size) <= physical_mem_end) if (in_mem(addr, size, memory_mtd_end, physical_mem_end))
return 1; return 1;
# ifndef CONFIG_ROMFS_ON_MTD
#ifdef CONFIG_ROMFS_ON_MTD if (0)
# endif
/* For XIP, allow user space to use pointers within the ROMFS. */ /* For XIP, allow user space to use pointers within the ROMFS. */
if (addr >= memory_mtd_start && (addr + size) <= memory_mtd_end) if (in_mem(addr, size, memory_mtd_start, memory_mtd_end))
return 1; return 1;
#endif } else {
#else if (in_mem(addr, size, memory_start, physical_mem_end))
if (addr >= memory_start && (addr + size) <= physical_mem_end)
return 1; return 1;
#endif }
if (addr >= (unsigned long)__init_begin &&
addr + size <= (unsigned long)__init_end) if (in_mem(addr, size, (unsigned long)__init_begin, (unsigned long)__init_end))
return 1; return 1;
if (addr >= get_l1_scratch_start()
&& addr + size <= get_l1_scratch_start() + L1_SCRATCH_LENGTH) if (in_mem_const(addr, size, L1_CODE_START, L1_CODE_LENGTH))
return 1; return 1;
#if L1_CODE_LENGTH != 0 if (in_mem_const_off(addr, size, _etext_l1 - _stext_l1, L1_CODE_START, L1_CODE_LENGTH))
if (addr >= get_l1_code_start() + (_etext_l1 - _stext_l1)
&& addr + size <= get_l1_code_start() + L1_CODE_LENGTH)
return 1; return 1;
#endif if (in_mem_const_off(addr, size, _ebss_l1 - _sdata_l1, L1_DATA_A_START, L1_DATA_A_LENGTH))
#if L1_DATA_A_LENGTH != 0
if (addr >= get_l1_data_a_start() + (_ebss_l1 - _sdata_l1)
&& addr + size <= get_l1_data_a_start() + L1_DATA_A_LENGTH)
return 1; return 1;
#endif if (in_mem_const_off(addr, size, _ebss_b_l1 - _sdata_b_l1, L1_DATA_B_START, L1_DATA_B_LENGTH))
#if L1_DATA_B_LENGTH != 0
if (addr >= get_l1_data_b_start() + (_ebss_b_l1 - _sdata_b_l1)
&& addr + size <= get_l1_data_b_start() + L1_DATA_B_LENGTH)
return 1; return 1;
#endif #ifdef COREB_L1_CODE_START
#if L2_LENGTH != 0 if (in_mem_const(addr, size, COREB_L1_CODE_START, L1_CODE_LENGTH))
if (addr >= L2_START + (_ebss_l2 - _stext_l2) return 1;
&& addr + size <= L2_START + L2_LENGTH) if (in_mem_const(addr, size, COREB_L1_SCRATCH_START, L1_SCRATCH_LENGTH))
return 1;
if (in_mem_const(addr, size, COREB_L1_DATA_A_START, L1_DATA_A_LENGTH))
return 1;
if (in_mem_const(addr, size, COREB_L1_DATA_B_START, L1_DATA_B_LENGTH))
return 1; return 1;
#endif #endif
if (in_mem_const_off(addr, size, _ebss_l2 - _stext_l2, L2_START, L2_LENGTH))
return 1;
if (in_mem_const(addr, size, BOOT_ROM_START, BOOT_ROM_LENGTH))
return 1;
if (in_mem_const(addr, size, L1_ROM_START, L1_ROM_LENGTH))
return 1;
return 0; return 0;
} }
EXPORT_SYMBOL(_access_ok); EXPORT_SYMBOL(_access_ok);
......
...@@ -37,6 +37,7 @@ ...@@ -37,6 +37,7 @@
#include <asm/traps.h> #include <asm/traps.h>
#include <asm/cacheflush.h> #include <asm/cacheflush.h>
#include <asm/cplb.h> #include <asm/cplb.h>
#include <asm/dma.h>
#include <asm/blackfin.h> #include <asm/blackfin.h>
#include <asm/irq_handler.h> #include <asm/irq_handler.h>
#include <linux/irq.h> #include <linux/irq.h>
...@@ -636,57 +637,30 @@ asmlinkage void trap_c(struct pt_regs *fp) ...@@ -636,57 +637,30 @@ asmlinkage void trap_c(struct pt_regs *fp)
*/ */
static bool get_instruction(unsigned short *val, unsigned short *address) static bool get_instruction(unsigned short *val, unsigned short *address)
{ {
unsigned long addr = (unsigned long)address;
unsigned long addr;
addr = (unsigned long)address;
/* Check for odd addresses */ /* Check for odd addresses */
if (addr & 0x1) if (addr & 0x1)
return false; return false;
/* Check that things do not wrap around */ /* MMR region will never have instructions */
if (addr > (addr + 2)) if (addr >= SYSMMR_BASE)
return false; return false;
/* switch (bfin_mem_access_type(addr, 2)) {
* Since we are in exception context, we need to do a little address checking case BFIN_MEM_ACCESS_CORE:
* We need to make sure we are only accessing valid memory, and case BFIN_MEM_ACCESS_CORE_ONLY:
* we don't read something in the async space that can hang forever
*/
if ((addr >= FIXED_CODE_START && (addr + 2) <= physical_mem_end) ||
#if L2_LENGTH != 0
(addr >= L2_START && (addr + 2) <= (L2_START + L2_LENGTH)) ||
#endif
(addr >= BOOT_ROM_START && (addr + 2) <= (BOOT_ROM_START + BOOT_ROM_LENGTH)) ||
#if L1_DATA_A_LENGTH != 0
(addr >= L1_DATA_A_START && (addr + 2) <= (L1_DATA_A_START + L1_DATA_A_LENGTH)) ||
#endif
#if L1_DATA_B_LENGTH != 0
(addr >= L1_DATA_B_START && (addr + 2) <= (L1_DATA_B_START + L1_DATA_B_LENGTH)) ||
#endif
(addr >= L1_SCRATCH_START && (addr + 2) <= (L1_SCRATCH_START + L1_SCRATCH_LENGTH)) ||
(!(bfin_read_EBIU_AMBCTL0() & B0RDYEN) &&
addr >= ASYNC_BANK0_BASE && (addr + 2) <= (ASYNC_BANK0_BASE + ASYNC_BANK0_SIZE)) ||
(!(bfin_read_EBIU_AMBCTL0() & B1RDYEN) &&
addr >= ASYNC_BANK1_BASE && (addr + 2) <= (ASYNC_BANK1_BASE + ASYNC_BANK1_SIZE)) ||
(!(bfin_read_EBIU_AMBCTL1() & B2RDYEN) &&
addr >= ASYNC_BANK2_BASE && (addr + 2) <= (ASYNC_BANK2_BASE + ASYNC_BANK1_SIZE)) ||
(!(bfin_read_EBIU_AMBCTL1() & B3RDYEN) &&
addr >= ASYNC_BANK3_BASE && (addr + 2) <= (ASYNC_BANK3_BASE + ASYNC_BANK1_SIZE))) {
*val = *address; *val = *address;
return true; return true;
} case BFIN_MEM_ACCESS_DMA:
dma_memcpy(val, address, 2);
#if L1_CODE_LENGTH != 0 return true;
if (addr >= L1_CODE_START && (addr + 2) <= (L1_CODE_START + L1_CODE_LENGTH)) { case BFIN_MEM_ACCESS_ITEST:
isram_memcpy(val, address, 2); isram_memcpy(val, address, 2);
return true; return true;
} default: /* invalid access */
#endif
return false; return false;
}
} }
/* /*
......
Markdown is supported
0%
or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment