Commit f3344dc3 authored by Andrew Morton's avatar Andrew Morton Committed by Linus Torvalds

[PATCH] cpumask: rewrite cpumask.h - single bitmap based implementation

From: Paul Jackson <pj@sgi.com>

Major rewrite of cpumask to use a single implementation, as a struct-wrapped
bitmap.

This patch leaves some 26 include/asm-*/cpumask*.h header files orphaned - to
be removed next patch.

Some nine cpumask macros for const variants and to coerce and promote between
an unsigned long and a cpumask are obsolete.  Simple emulation wrappers are
provided in this patch for these obsolete macros, which can be removed once
each of the 3 archs (i386, ppc64, x86_64) using them are recoded in follow-on
patches to not need them.

The CPU_MASK_ALL macro now avoids leaving possible garbage one bits in any
unused portion of the high word.

An inproved comment lists all available operators, for convenient browsing.

From: Mikael Pettersson <mikpe@csd.uu.se>

  2.6.7-rc3-mm1 changed CPU_MASK_NONE into something that isn't a valid
  rvalue (it only works inside struct initializers).  This caused compile-time
  errors in perfctr in UP x86 builds.

From: Arnd Bergmann <arnd@arndb.de>

  cpumask-5-10-rewrite-cpumaskh-single-bitmap-based from 2.6.7-rc3-mm1
  causes include2/asm/smp.h:54:1: warning: "cpu_online" redefined
Signed-off-by: default avatarPaul Jackson <pj@sgi.com>
Signed-off-by: default avatarMikael Pettersson <mikpe@csd.uu.se>
Signed-off-by: default avatarArnd Bergmann <arnd@arndb.de>
Signed-off-by: default avatarAndrew Morton <akpm@osdl.org>
Signed-off-by: default avatarLinus Torvalds <torvalds@osdl.org>
parent d6cf71d3
......@@ -691,9 +691,10 @@ static inline void redirect_intr(int cpu, struct ino_bucket *bp)
* Just Do It.
*/
struct irqaction *ap = bp->irq_info;
cpumask_t cpu_mask = get_smpaff_in_irqaction(ap);
cpumask_t cpu_mask;
unsigned int buddy, ticks;
cpus_addr(cpu_mask)[0] = get_smpaff_in_irqaction(ap);
cpus_and(cpu_mask, cpu_mask, cpu_online_map);
if (cpus_empty(cpu_mask))
cpu_mask = cpu_online_map;
......@@ -1210,9 +1211,10 @@ static int irq_affinity_read_proc (char *page, char **start, off_t off,
{
struct ino_bucket *bp = ivector_table + (long)data;
struct irqaction *ap = bp->irq_info;
cpumask_t mask = get_smpaff_in_irqaction(ap);
cpumask_t mask;
int len;
cpus_addr(mask)[0] = get_smpaff_in_irqaction(ap);
if (cpus_empty(mask))
mask = cpu_online_map;
......
......@@ -31,10 +31,6 @@ typedef struct
extern int smp_call_function_on(void (*func) (void *info), void *info,
int nonatomic, int wait, int cpu);
extern cpumask_t cpu_online_map;
extern cpumask_t cpu_possible_map;
#define NO_PROC_ID 0xFF /* No processor magic marker */
/*
......@@ -51,8 +47,6 @@ extern cpumask_t cpu_possible_map;
#define smp_processor_id() (S390_lowcore.cpu_data.cpu_nr)
#define cpu_online(cpu) cpu_isset(cpu, cpu_online_map)
extern __inline__ __u16 hard_smp_processor_id(void)
{
__u16 cpu_address;
......
#ifndef __LINUX_CPUMASK_H
#define __LINUX_CPUMASK_H
/*
* Cpumasks provide a bitmap suitable for representing the
* set of CPU's in a system, one bit position per CPU number.
*
* See detailed comments in the file linux/bitmap.h describing the
* data type on which these cpumasks are based.
*
* For details of cpumask_scnprintf() and cpumask_parse(),
* see bitmap_scnprintf() and bitmap_parse() in lib/bitmap.c.
*
* The available cpumask operations are:
*
* void cpu_set(cpu, mask) turn on bit 'cpu' in mask
* void cpu_clear(cpu, mask) turn off bit 'cpu' in mask
* void cpus_setall(mask) set all bits
* void cpus_clear(mask) clear all bits
* int cpu_isset(cpu, mask) true iff bit 'cpu' set in mask
* int cpu_test_and_set(cpu, mask) test and set bit 'cpu' in mask
*
* void cpus_and(dst, src1, src2) dst = src1 & src2 [intersection]
* void cpus_or(dst, src1, src2) dst = src1 | src2 [union]
* void cpus_xor(dst, src1, src2) dst = src1 ^ src2
* void cpus_andnot(dst, src1, src2) dst = src1 & ~src2
* void cpus_complement(dst, src) dst = ~src
*
* int cpus_equal(mask1, mask2) Does mask1 == mask2?
* int cpus_intersects(mask1, mask2) Do mask1 and mask2 intersect?
* int cpus_subset(mask1, mask2) Is mask1 a subset of mask2?
* int cpus_empty(mask) Is mask empty (no bits sets)?
* int cpus_full(mask) Is mask full (all bits sets)?
* int cpus_weight(mask) Hamming weigh - number of set bits
*
* void cpus_shift_right(dst, src, n) Shift right
* void cpus_shift_left(dst, src, n) Shift left
*
* int first_cpu(mask) Number lowest set bit, or NR_CPUS
* int next_cpu(cpu, mask) Next cpu past 'cpu', or NR_CPUS
*
* cpumask_t cpumask_of_cpu(cpu) Return cpumask with bit 'cpu' set
* CPU_MASK_ALL Initializer - all bits set
* CPU_MASK_NONE Initializer - no bits set
* unsigned long *cpus_addr(mask) Array of unsigned long's in mask
*
* int cpumask_scnprintf(buf, len, mask) Format cpumask for printing
* int cpumask_parse(ubuf, ulen, mask) Parse ascii string as cpumask
*
* int num_online_cpus() Number of online CPUs
* int num_possible_cpus() Number of all possible CPUs
* int cpu_online(cpu) Is some cpu online?
* int cpu_possible(cpu) Is some cpu possible?
* void cpu_set_online(cpu) set cpu in cpu_online_map
* void cpu_set_offline(cpu) clear cpu in cpu_online_map
* int any_online_cpu(mask) First online cpu in mask
*
* for_each_cpu_mask(cpu, mask) for-loop cpu over mask
* for_each_cpu(cpu) for-loop cpu over cpu_possible_map
* for_each_online_cpu(cpu) for-loop cpu over cpu_online_map
*
* Subtlety:
* 1) The 'type-checked' form of cpu_isset() causes gcc (3.3.2, anyway)
* to generate slightly worse code. Note for example the additional
* 40 lines of assembly code compiling the "for each possible cpu"
* loops buried in the disk_stat_read() macros calls when compiling
* drivers/block/genhd.c (arch i386, CONFIG_SMP=y). So use a simple
* one-line #define for cpu_isset(), instead of wrapping an inline
* inside a macro, the way we do the other calls.
*/
#include <linux/threads.h>
#include <linux/bitmap.h>
#include <asm/cpumask.h>
#include <asm/bug.h>
#ifdef CONFIG_SMP
typedef struct { DECLARE_BITMAP(bits, NR_CPUS); } cpumask_t;
extern cpumask_t _unused_cpumask_arg_;
extern cpumask_t cpu_online_map;
extern cpumask_t cpu_possible_map;
#define cpu_set(cpu, dst) __cpu_set((cpu), &(dst))
static inline void __cpu_set(int cpu, volatile cpumask_t *dstp)
{
set_bit(cpu, dstp->bits);
}
#define num_online_cpus() cpus_weight(cpu_online_map)
#define num_possible_cpus() cpus_weight(cpu_possible_map)
#define cpu_clear(cpu, dst) __cpu_clear((cpu), &(dst))
static inline void __cpu_clear(int cpu, volatile cpumask_t *dstp)
{
clear_bit(cpu, dstp->bits);
}
#define cpu_online(cpu) cpu_isset(cpu, cpu_online_map)
#define cpu_possible(cpu) cpu_isset(cpu, cpu_possible_map)
#define cpus_setall(dst) __cpus_setall(&(dst), NR_CPUS)
static inline void __cpus_setall(cpumask_t *dstp, int nbits)
{
bitmap_fill(dstp->bits, nbits);
}
#define for_each_cpu_mask(cpu, mask) \
for (cpu = first_cpu_const(mk_cpumask_const(mask)); \
cpu < NR_CPUS; \
cpu = next_cpu_const(cpu, mk_cpumask_const(mask)))
#define cpus_clear(dst) __cpus_clear(&(dst), NR_CPUS)
static inline void __cpus_clear(cpumask_t *dstp, int nbits)
{
bitmap_zero(dstp->bits, nbits);
}
#define for_each_cpu(cpu) for_each_cpu_mask(cpu, cpu_possible_map)
#define for_each_online_cpu(cpu) for_each_cpu_mask(cpu, cpu_online_map)
#else
#define cpu_online_map cpumask_of_cpu(0)
#define cpu_possible_map cpumask_of_cpu(0)
/* No static inline type checking - see Subtlety (1) above. */
#define cpu_isset(cpu, cpumask) test_bit((cpu), (cpumask).bits)
#define num_online_cpus() 1
#define num_possible_cpus() 1
#define cpu_test_and_set(cpu, cpumask) __cpu_test_and_set((cpu), &(cpumask))
static inline int __cpu_test_and_set(int cpu, cpumask_t *addr)
{
return test_and_set_bit(cpu, addr->bits);
}
#define cpus_and(dst, src1, src2) __cpus_and(&(dst), &(src1), &(src2), NR_CPUS)
static inline void __cpus_and(cpumask_t *dstp, cpumask_t *src1p,
cpumask_t *src2p, int nbits)
{
bitmap_and(dstp->bits, src1p->bits, src2p->bits, nbits);
}
#define cpus_or(dst, src1, src2) __cpus_or(&(dst), &(src1), &(src2), NR_CPUS)
static inline void __cpus_or(cpumask_t *dstp, cpumask_t *src1p,
cpumask_t *src2p, int nbits)
{
bitmap_or(dstp->bits, src1p->bits, src2p->bits, nbits);
}
#define cpus_xor(dst, src1, src2) __cpus_xor(&(dst), &(src1), &(src2), NR_CPUS)
static inline void __cpus_xor(cpumask_t *dstp, cpumask_t *src1p,
cpumask_t *src2p, int nbits)
{
bitmap_xor(dstp->bits, src1p->bits, src2p->bits, nbits);
}
#define cpus_andnot(dst, src1, src2) \
__cpus_andnot(&(dst), &(src1), &(src2), NR_CPUS)
static inline void __cpus_andnot(cpumask_t *dstp, cpumask_t *src1p,
cpumask_t *src2p, int nbits)
{
bitmap_andnot(dstp->bits, src1p->bits, src2p->bits, nbits);
}
#define cpus_complement(dst, src) __cpus_complement(&(dst), &(src), NR_CPUS)
static inline void __cpus_complement(cpumask_t *dstp,
cpumask_t *srcp, int nbits)
{
bitmap_complement(dstp->bits, srcp->bits, nbits);
}
#define cpus_equal(src1, src2) __cpus_equal(&(src1), &(src2), NR_CPUS)
static inline int __cpus_equal(cpumask_t *src1p,
cpumask_t *src2p, int nbits)
{
return bitmap_equal(src1p->bits, src2p->bits, nbits);
}
#define cpus_intersects(src1, src2) __cpus_intersects(&(src1), &(src2), NR_CPUS)
static inline int __cpus_intersects(cpumask_t *src1p,
cpumask_t *src2p, int nbits)
{
return bitmap_intersects(src1p->bits, src2p->bits, nbits);
}
#define cpus_subset(src1, src2) __cpus_subset(&(src1), &(src2), NR_CPUS)
static inline int __cpus_subset(cpumask_t *src1p,
cpumask_t *src2p, int nbits)
{
return bitmap_subset(src1p->bits, src2p->bits, nbits);
}
#define cpus_empty(src) __cpus_empty(&(src), NR_CPUS)
static inline int __cpus_empty(cpumask_t *srcp, int nbits)
{
return bitmap_empty(srcp->bits, nbits);
}
#define cpus_full(cpumask) __cpus_full(&(cpumask), NR_CPUS)
static inline int __cpus_full(cpumask_t *srcp, int nbits)
{
return bitmap_full(srcp->bits, nbits);
}
#define cpus_weight(cpumask) __cpus_weight(&(cpumask), NR_CPUS)
static inline int __cpus_weight(cpumask_t *srcp, int nbits)
{
return bitmap_weight(srcp->bits, nbits);
}
#define cpus_shift_right(dst, src, n) \
__cpus_shift_right(&(dst), &(src), (n), NR_CPUS)
static inline void __cpus_shift_right(cpumask_t *dstp,
cpumask_t *srcp, int n, int nbits)
{
bitmap_shift_right(dstp->bits, srcp->bits, n, nbits);
}
#define cpus_shift_left(dst, src, n) \
__cpus_shift_left(&(dst), &(src), (n), NR_CPUS)
static inline void __cpus_shift_left(cpumask_t *dstp,
cpumask_t *srcp, int n, int nbits)
{
bitmap_shift_left(dstp->bits, srcp->bits, n, nbits);
}
#define first_cpu(src) __first_cpu(&(src), NR_CPUS)
static inline int __first_cpu(cpumask_t *srcp, int nbits)
{
return find_first_bit(srcp->bits, nbits);
}
#define next_cpu(n, src) __next_cpu((n), &(src), NR_CPUS)
static inline int __next_cpu(int n, cpumask_t *srcp, int nbits)
{
return find_next_bit(srcp->bits, nbits, n+1);
}
#define cpu_online(cpu) ({ BUG_ON((cpu) != 0); 1; })
#define cpu_possible(cpu) ({ BUG_ON((cpu) != 0); 1; })
#define cpumask_of_cpu(cpu) \
({ \
typeof(_unused_cpumask_arg_) m; \
if (sizeof(m) == sizeof(unsigned long)) { \
m.bits[0] = 1UL<<(cpu); \
} else { \
cpus_clear(m); \
cpu_set((cpu), m); \
} \
m; \
})
#define CPU_MASK_LAST_WORD BITMAP_LAST_WORD_MASK(NR_CPUS)
#if NR_CPUS <= BITS_PER_LONG
#define CPU_MASK_ALL \
((cpumask_t) { { \
[BITS_TO_LONGS(NR_CPUS)-1] = CPU_MASK_LAST_WORD \
} })
#else
#define CPU_MASK_ALL \
((cpumask_t) { { \
[0 ... BITS_TO_LONGS(NR_CPUS)-2] = ~0UL, \
[BITS_TO_LONGS(NR_CPUS)-1] = CPU_MASK_LAST_WORD \
} })
#define for_each_cpu_mask(cpu, mask) for (cpu = 0; cpu < 1; cpu++)
#define for_each_cpu(cpu) for (cpu = 0; cpu < 1; cpu++)
#define for_each_online_cpu(cpu) for (cpu = 0; cpu < 1; cpu++)
#endif
#define CPU_MASK_NONE \
((cpumask_t) { { \
[0 ... BITS_TO_LONGS(NR_CPUS)-1] = 0UL \
} })
#define cpus_addr(src) ((src).bits)
#define cpumask_scnprintf(buf, len, src) \
__cpumask_scnprintf((buf), (len), &(src), NR_CPUS)
static inline int __cpumask_scnprintf(char *buf, int len,
cpumask_t *srcp, int nbits)
{
return bitmap_scnprintf(buf, len, srcp->bits, nbits);
}
#define cpumask_parse(ubuf, ulen, src) \
__cpumask_parse((ubuf), (ulen), &(src), NR_CPUS)
static inline int __cpumask_parse(const char __user *buf, int len,
cpumask_t *srcp, int nbits)
{
return bitmap_parse(buf, len, srcp->bits, nbits);
}
#if NR_CPUS > 1
#define for_each_cpu_mask(cpu, mask) \
for ((cpu) = first_cpu(mask); \
(cpu) < NR_CPUS; \
(cpu) = next_cpu((cpu), (mask)))
#else /* NR_CPUS == 1 */
#define for_each_cpu_mask(cpu, mask) for ((cpu) = 0; (cpu) < 1; (cpu)++)
#endif /* NR_CPUS */
/*
* The following particular system cpumasks and operations manage
* possible, present and online cpus. Each of them is a fixed size
* bitmap of size NR_CPUS.
*
* #ifdef CONFIG_HOTPLUG_CPU
* cpu_possible_map - all NR_CPUS bits set
* cpu_present_map - has bit 'cpu' set iff cpu is populated
* cpu_online_map - has bit 'cpu' set iff cpu available to scheduler
* #else
* cpu_possible_map - has bit 'cpu' set iff cpu is populated
* cpu_present_map - copy of cpu_possible_map
* cpu_online_map - has bit 'cpu' set iff cpu available to scheduler
* #endif
*
* In either case, NR_CPUS is fixed at compile time, as the static
* size of these bitmaps. The cpu_possible_map is fixed at boot
* time, as the set of CPU id's that it is possible might ever
* be plugged in at anytime during the life of that system boot.
* The cpu_present_map is dynamic(*), representing which CPUs
* are currently plugged in. And cpu_online_map is the dynamic
* subset of cpu_present_map, indicating those CPUs available
* for scheduling.
*
* If HOTPLUG is enabled, then cpu_possible_map is forced to have
* all NR_CPUS bits set, otherwise it is just the set of CPUs that
* ACPI reports present at boot.
*
* If HOTPLUG is enabled, then cpu_present_map varies dynamically,
* depending on what ACPI reports as currently plugged in, otherwise
* cpu_present_map is just a copy of cpu_possible_map.
*
* (*) Well, cpu_present_map is dynamic in the hotplug case. If not
* hotplug, it's a copy of cpu_possible_map, hence fixed at boot.
*
* Subtleties:
* 1) UP arch's (NR_CPUS == 1, CONFIG_SMP not defined) hardcode
* assumption that their single CPU is online. The UP
* cpu_{online,possible,present}_maps are placebos. Changing them
* will have no useful affect on the following num_*_cpus()
* and cpu_*() macros in the UP case. This ugliness is a UP
* optimization - don't waste any instructions or memory references
* asking if you're online or how many CPUs there are if there is
* only one CPU.
* 2) Most SMP arch's #define some of these maps to be some
* other map specific to that arch. Therefore, the following
* must be #define macros, not inlines. To see why, examine
* the assembly code produced by the following. Note that
* set1() writes phys_x_map, but set2() writes x_map:
* int x_map, phys_x_map;
* #define set1(a) x_map = a
* inline void set2(int a) { x_map = a; }
* #define x_map phys_x_map
* main(){ set1(3); set2(5); }
*/
extern cpumask_t cpu_possible_map;
extern cpumask_t cpu_online_map;
extern cpumask_t cpu_present_map;
#if NR_CPUS > 1
#define num_online_cpus() cpus_weight(cpu_online_map)
#define num_possible_cpus() cpus_weight(cpu_possible_map)
#define num_present_cpus() cpus_weight(cpu_present_map)
#define cpu_present(cpu) cpu_isset(cpu, cpu_present_map)
#define for_each_present_cpu(cpu) for_each_cpu_mask(cpu, cpu_present_map)
#define cpu_online(cpu) cpu_isset((cpu), cpu_online_map)
#define cpu_possible(cpu) cpu_isset((cpu), cpu_possible_map)
#define cpu_present(cpu) cpu_isset((cpu), cpu_present_map)
#else
#define num_online_cpus() 1
#define num_possible_cpus() 1
#define num_present_cpus() 1
#define cpu_online(cpu) ((cpu) == 0)
#define cpu_possible(cpu) ((cpu) == 0)
#define cpu_present(cpu) ((cpu) == 0)
#endif
#define any_online_cpu(mask) \
({ \
int cpu; \
for_each_cpu_mask(cpu, (mask)) \
if (cpu_online(cpu)) \
break; \
cpu; \
})
#define cpumask_scnprintf(buf, buflen, map) \
bitmap_scnprintf(buf, buflen, cpus_addr(map), NR_CPUS)
#define for_each_cpu(cpu) for_each_cpu_mask((cpu), cpu_possible_map)
#define for_each_online_cpu(cpu) for_each_cpu_mask((cpu), cpu_online_map)
#define for_each_present_cpu(cpu) for_each_cpu_mask((cpu), cpu_present_map)
#define cpumask_parse(buf, buflen, map) \
bitmap_parse(buf, buflen, cpus_addr(map), NR_CPUS)
/* Begin obsolete cpumask operator emulation */
#define cpu_isset_const(a,b) cpu_isset(a,b)
#define cpumask_const_t cpumask_t
#define cpus_coerce(m) (cpus_addr(m)[0])
#define cpus_coerce_const cpus_coerce
#define cpus_promote(x) ({ cpumask_t m; m.bits[0] = x; m; })
#define cpus_weight_const cpus_weight
#define first_cpu_const first_cpu
#define mk_cpumask_const(x) x
#define next_cpu_const next_cpu
/* End of obsolete cpumask operator emulation */
#endif /* __LINUX_CPUMASK_H */
......@@ -129,17 +129,14 @@ static void rcu_do_batch(struct rcu_head *list)
*/
static void rcu_start_batch(int next_pending)
{
cpumask_t active;
if (next_pending)
rcu_ctrlblk.next_pending = 1;
if (rcu_ctrlblk.next_pending &&
rcu_ctrlblk.completed == rcu_ctrlblk.cur) {
/* Can't change, since spin lock held. */
active = nohz_cpu_mask;
cpus_complement(active);
cpus_and(rcu_state.rcu_cpu_mask, cpu_online_map, active);
cpus_andnot(rcu_state.rcu_cpu_mask, cpu_online_map,
nohz_cpu_mask);
write_seqcount_begin(&rcu_ctrlblk.lock);
rcu_ctrlblk.next_pending = 0;
rcu_ctrlblk.cur++;
......
......@@ -2951,6 +2951,11 @@ asmlinkage long sys_sched_setaffinity(pid_t pid, unsigned int len,
cpumask_t cpu_present_map;
EXPORT_SYMBOL(cpu_present_map);
#ifndef CONFIG_SMP
cpumask_t cpu_online_map = CPU_MASK_ALL;
cpumask_t cpu_possible_map = CPU_MASK_ALL;
#endif
/**
* sys_sched_getaffinity - get the cpu affinity of a process
* @pid: pid of the process
......
Markdown is supported
0%
or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment