Commit f5df2696 authored by James Morse's avatar James Morse Committed by Catalin Marinas

arm64: kernel: Add arch-specific SDEI entry code and CPU masking

The Software Delegated Exception Interface (SDEI) is an ARM standard
for registering callbacks from the platform firmware into the OS.
This is typically used to implement RAS notifications.

Such notifications enter the kernel at the registered entry-point
with the register values of the interrupted CPU context. Because this
is not a CPU exception, it cannot reuse the existing entry code.
(crucially we don't implicitly know which exception level we interrupted),

Add the entry point to entry.S to set us up for calling into C code. If
the event interrupted code that had interrupts masked, we always return
to that location. Otherwise we pretend this was an IRQ, and use SDEI's
complete_and_resume call to return to vbar_el1 + offset.

This allows the kernel to deliver signals to user space processes. For
KVM this triggers the world switch, a quick spin round vcpu_run, then
back into the guest, unless there are pending signals.

Add sdei_mask_local_cpu() calls to the smp_send_stop() code, this covers
the panic() code-path, which doesn't invoke cpuhotplug notifiers.

Because we can interrupt entry-from/exit-to another EL, we can't trust the
value in sp_el0 or x29, even if we interrupted the kernel, in this case
the code in entry.S will save/restore sp_el0 and use the value in
__entry_task.

When we have VMAP stacks we can interrupt the stack-overflow test, which
stirs x0 into sp, meaning we have to have our own VMAP stacks. For now
these are allocated when we probe the interface. Future patches will add
refcounting hooks to allow the arch code to allocate them lazily.
Signed-off-by: default avatarJames Morse <james.morse@arm.com>
Reviewed-by: default avatarCatalin Marinas <catalin.marinas@arm.com>
Signed-off-by: default avatarCatalin Marinas <catalin.marinas@arm.com>
parent e1281f56
...@@ -3,6 +3,49 @@ ...@@ -3,6 +3,49 @@
#ifndef __ASM_SDEI_H #ifndef __ASM_SDEI_H
#define __ASM_SDEI_H #define __ASM_SDEI_H
/* Later patches add the arch specific bits */ /* Values for sdei_exit_mode */
#define SDEI_EXIT_HVC 0
#define SDEI_EXIT_SMC 1
#endif /* __ASM_SDEI_H */ #define SDEI_STACK_SIZE IRQ_STACK_SIZE
#ifndef __ASSEMBLY__
#include <linux/linkage.h>
#include <linux/preempt.h>
#include <linux/types.h>
#include <asm/virt.h>
extern unsigned long sdei_exit_mode;
/* Software Delegated Exception entry point from firmware*/
asmlinkage void __sdei_asm_handler(unsigned long event_num, unsigned long arg,
unsigned long pc, unsigned long pstate);
/*
* The above entry point does the minimum to call C code. This function does
* anything else, before calling the driver.
*/
struct sdei_registered_event;
asmlinkage unsigned long __sdei_handler(struct pt_regs *regs,
struct sdei_registered_event *arg);
unsigned long sdei_arch_get_entry_point(int conduit);
#define sdei_arch_get_entry_point(x) sdei_arch_get_entry_point(x)
bool _on_sdei_stack(unsigned long sp);
static inline bool on_sdei_stack(unsigned long sp)
{
if (!IS_ENABLED(CONFIG_VMAP_STACK))
return false;
if (!IS_ENABLED(CONFIG_ARM_SDE_INTERFACE))
return false;
if (in_nmi())
return _on_sdei_stack(sp);
return false;
}
#endif /* __ASSEMBLY__ */
#endif /* __ASM_SDEI_H */
...@@ -22,6 +22,7 @@ ...@@ -22,6 +22,7 @@
#include <asm/memory.h> #include <asm/memory.h>
#include <asm/ptrace.h> #include <asm/ptrace.h>
#include <asm/sdei.h>
struct stackframe { struct stackframe {
unsigned long fp; unsigned long fp;
...@@ -85,6 +86,8 @@ static inline bool on_accessible_stack(struct task_struct *tsk, unsigned long sp ...@@ -85,6 +86,8 @@ static inline bool on_accessible_stack(struct task_struct *tsk, unsigned long sp
return true; return true;
if (on_overflow_stack(sp)) if (on_overflow_stack(sp))
return true; return true;
if (on_sdei_stack(sp))
return true;
return false; return false;
} }
......
...@@ -52,6 +52,7 @@ arm64-obj-$(CONFIG_KEXEC) += machine_kexec.o relocate_kernel.o \ ...@@ -52,6 +52,7 @@ arm64-obj-$(CONFIG_KEXEC) += machine_kexec.o relocate_kernel.o \
arm64-obj-$(CONFIG_ARM64_RELOC_TEST) += arm64-reloc-test.o arm64-obj-$(CONFIG_ARM64_RELOC_TEST) += arm64-reloc-test.o
arm64-reloc-test-y := reloc_test_core.o reloc_test_syms.o arm64-reloc-test-y := reloc_test_core.o reloc_test_syms.o
arm64-obj-$(CONFIG_CRASH_DUMP) += crash_dump.o arm64-obj-$(CONFIG_CRASH_DUMP) += crash_dump.o
arm64-obj-$(CONFIG_ARM_SDE_INTERFACE) += sdei.o
ifeq ($(CONFIG_KVM),y) ifeq ($(CONFIG_KVM),y)
arm64-obj-$(CONFIG_HARDEN_BRANCH_PREDICTOR) += bpi.o arm64-obj-$(CONFIG_HARDEN_BRANCH_PREDICTOR) += bpi.o
......
...@@ -18,6 +18,7 @@ ...@@ -18,6 +18,7 @@
* along with this program. If not, see <http://www.gnu.org/licenses/>. * along with this program. If not, see <http://www.gnu.org/licenses/>.
*/ */
#include <linux/arm_sdei.h>
#include <linux/sched.h> #include <linux/sched.h>
#include <linux/mm.h> #include <linux/mm.h>
#include <linux/dma-mapping.h> #include <linux/dma-mapping.h>
...@@ -157,6 +158,10 @@ int main(void) ...@@ -157,6 +158,10 @@ int main(void)
BLANK(); BLANK();
#ifdef CONFIG_UNMAP_KERNEL_AT_EL0 #ifdef CONFIG_UNMAP_KERNEL_AT_EL0
DEFINE(TRAMP_VALIAS, TRAMP_VALIAS); DEFINE(TRAMP_VALIAS, TRAMP_VALIAS);
#endif
#ifdef CONFIG_ARM_SDE_INTERFACE
DEFINE(SDEI_EVENT_INTREGS, offsetof(struct sdei_registered_event, interrupted_regs));
DEFINE(SDEI_EVENT_PRIORITY, offsetof(struct sdei_registered_event, priority));
#endif #endif
return 0; return 0;
} }
...@@ -1153,3 +1153,104 @@ ENTRY(ret_from_fork) ...@@ -1153,3 +1153,104 @@ ENTRY(ret_from_fork)
b ret_to_user b ret_to_user
ENDPROC(ret_from_fork) ENDPROC(ret_from_fork)
NOKPROBE(ret_from_fork) NOKPROBE(ret_from_fork)
#ifdef CONFIG_ARM_SDE_INTERFACE
#include <asm/sdei.h>
#include <uapi/linux/arm_sdei.h>
/*
* Software Delegated Exception entry point.
*
* x0: Event number
* x1: struct sdei_registered_event argument from registration time.
* x2: interrupted PC
* x3: interrupted PSTATE
*
* Firmware has preserved x0->x17 for us, we must save/restore the rest to
* follow SMC-CC. We save (or retrieve) all the registers as the handler may
* want them.
*/
ENTRY(__sdei_asm_handler)
stp x2, x3, [x1, #SDEI_EVENT_INTREGS + S_PC]
stp x4, x5, [x1, #SDEI_EVENT_INTREGS + 16 * 2]
stp x6, x7, [x1, #SDEI_EVENT_INTREGS + 16 * 3]
stp x8, x9, [x1, #SDEI_EVENT_INTREGS + 16 * 4]
stp x10, x11, [x1, #SDEI_EVENT_INTREGS + 16 * 5]
stp x12, x13, [x1, #SDEI_EVENT_INTREGS + 16 * 6]
stp x14, x15, [x1, #SDEI_EVENT_INTREGS + 16 * 7]
stp x16, x17, [x1, #SDEI_EVENT_INTREGS + 16 * 8]
stp x18, x19, [x1, #SDEI_EVENT_INTREGS + 16 * 9]
stp x20, x21, [x1, #SDEI_EVENT_INTREGS + 16 * 10]
stp x22, x23, [x1, #SDEI_EVENT_INTREGS + 16 * 11]
stp x24, x25, [x1, #SDEI_EVENT_INTREGS + 16 * 12]
stp x26, x27, [x1, #SDEI_EVENT_INTREGS + 16 * 13]
stp x28, x29, [x1, #SDEI_EVENT_INTREGS + 16 * 14]
mov x4, sp
stp lr, x4, [x1, #SDEI_EVENT_INTREGS + S_LR]
mov x19, x1
#ifdef CONFIG_VMAP_STACK
/*
* entry.S may have been using sp as a scratch register, find whether
* this is a normal or critical event and switch to the appropriate
* stack for this CPU.
*/
ldrb w4, [x19, #SDEI_EVENT_PRIORITY]
cbnz w4, 1f
ldr_this_cpu dst=x5, sym=sdei_stack_normal_ptr, tmp=x6
b 2f
1: ldr_this_cpu dst=x5, sym=sdei_stack_critical_ptr, tmp=x6
2: mov x6, #SDEI_STACK_SIZE
add x5, x5, x6
mov sp, x5
#endif
/*
* We may have interrupted userspace, or a guest, or exit-from or
* return-to either of these. We can't trust sp_el0, restore it.
*/
mrs x28, sp_el0
ldr_this_cpu dst=x0, sym=__entry_task, tmp=x1
msr sp_el0, x0
/* If we interrupted the kernel point to the previous stack/frame. */
and x0, x3, #0xc
mrs x1, CurrentEL
cmp x0, x1
csel x29, x29, xzr, eq // fp, or zero
csel x4, x2, xzr, eq // elr, or zero
stp x29, x4, [sp, #-16]!
mov x29, sp
add x0, x19, #SDEI_EVENT_INTREGS
mov x1, x19
bl __sdei_handler
msr sp_el0, x28
/* restore regs >x17 that we clobbered */
ldp x28, x29, [x19, #SDEI_EVENT_INTREGS + 16 * 14]
ldp lr, x4, [x19, #SDEI_EVENT_INTREGS + S_LR]
mov sp, x4
ldp x18, x19, [x19, #SDEI_EVENT_INTREGS + 16 * 9]
mov x1, x0 // address to complete_and_resume
/* x0 = (x0 <= 1) ? EVENT_COMPLETE:EVENT_COMPLETE_AND_RESUME */
cmp x0, #1
mov_q x2, SDEI_1_0_FN_SDEI_EVENT_COMPLETE
mov_q x3, SDEI_1_0_FN_SDEI_EVENT_COMPLETE_AND_RESUME
csel x0, x2, x3, ls
/* On success, this call never returns... */
ldr_l x2, sdei_exit_mode
cmp x2, #SDEI_EXIT_SMC
b.ne 1f
smc #0
b .
1: hvc #0
b .
ENDPROC(__sdei_asm_handler)
NOKPROBE(__sdei_asm_handler)
#endif /* CONFIG_ARM_SDE_INTERFACE */
// SPDX-License-Identifier: GPL-2.0
// Copyright (C) 2017 Arm Ltd.
#define pr_fmt(fmt) "sdei: " fmt
#include <linux/arm_sdei.h>
#include <linux/hardirq.h>
#include <linux/irqflags.h>
#include <linux/sched/task_stack.h>
#include <linux/uaccess.h>
#include <asm/alternative.h>
#include <asm/kprobes.h>
#include <asm/ptrace.h>
#include <asm/sysreg.h>
#include <asm/vmap_stack.h>
unsigned long sdei_exit_mode;
/*
* VMAP'd stacks checking for stack overflow on exception using sp as a scratch
* register, meaning SDEI has to switch to its own stack. We need two stacks as
* a critical event may interrupt a normal event that has just taken a
* synchronous exception, and is using sp as scratch register. For a critical
* event interrupting a normal event, we can't reliably tell if we were on the
* sdei stack.
* For now, we allocate stacks when the driver is probed.
*/
DECLARE_PER_CPU(unsigned long *, sdei_stack_normal_ptr);
DECLARE_PER_CPU(unsigned long *, sdei_stack_critical_ptr);
#ifdef CONFIG_VMAP_STACK
DEFINE_PER_CPU(unsigned long *, sdei_stack_normal_ptr);
DEFINE_PER_CPU(unsigned long *, sdei_stack_critical_ptr);
#endif
static void _free_sdei_stack(unsigned long * __percpu *ptr, int cpu)
{
unsigned long *p;
p = per_cpu(*ptr, cpu);
if (p) {
per_cpu(*ptr, cpu) = NULL;
vfree(p);
}
}
static void free_sdei_stacks(void)
{
int cpu;
for_each_possible_cpu(cpu) {
_free_sdei_stack(&sdei_stack_normal_ptr, cpu);
_free_sdei_stack(&sdei_stack_critical_ptr, cpu);
}
}
static int _init_sdei_stack(unsigned long * __percpu *ptr, int cpu)
{
unsigned long *p;
p = arch_alloc_vmap_stack(SDEI_STACK_SIZE, cpu_to_node(cpu));
if (!p)
return -ENOMEM;
per_cpu(*ptr, cpu) = p;
return 0;
}
static int init_sdei_stacks(void)
{
int cpu;
int err = 0;
for_each_possible_cpu(cpu) {
err = _init_sdei_stack(&sdei_stack_normal_ptr, cpu);
if (err)
break;
err = _init_sdei_stack(&sdei_stack_critical_ptr, cpu);
if (err)
break;
}
if (err)
free_sdei_stacks();
return err;
}
bool _on_sdei_stack(unsigned long sp)
{
unsigned long low, high;
if (!IS_ENABLED(CONFIG_VMAP_STACK))
return false;
low = (unsigned long)raw_cpu_read(sdei_stack_critical_ptr);
high = low + SDEI_STACK_SIZE;
if (low <= sp && sp < high)
return true;
low = (unsigned long)raw_cpu_read(sdei_stack_normal_ptr);
high = low + SDEI_STACK_SIZE;
return (low <= sp && sp < high);
}
unsigned long sdei_arch_get_entry_point(int conduit)
{
/*
* SDEI works between adjacent exception levels. If we booted at EL1 we
* assume a hypervisor is marshalling events. If we booted at EL2 and
* dropped to EL1 because we don't support VHE, then we can't support
* SDEI.
*/
if (is_hyp_mode_available() && !is_kernel_in_hyp_mode()) {
pr_err("Not supported on this hardware/boot configuration\n");
return 0;
}
if (IS_ENABLED(CONFIG_VMAP_STACK)) {
if (init_sdei_stacks())
return 0;
}
sdei_exit_mode = (conduit == CONDUIT_HVC) ? SDEI_EXIT_HVC : SDEI_EXIT_SMC;
return (unsigned long)__sdei_asm_handler;
}
/*
* __sdei_handler() returns one of:
* SDEI_EV_HANDLED - success, return to the interrupted context.
* SDEI_EV_FAILED - failure, return this error code to firmare.
* virtual-address - success, return to this address.
*/
static __kprobes unsigned long _sdei_handler(struct pt_regs *regs,
struct sdei_registered_event *arg)
{
u32 mode;
int i, err = 0;
const int clobbered_registers = 4;
u64 elr = read_sysreg(elr_el1);
u32 kernel_mode = read_sysreg(CurrentEL) | 1; /* +SPSel */
unsigned long vbar = read_sysreg(vbar_el1);
/* Retrieve the missing registers values */
for (i = 0; i < clobbered_registers; i++) {
/* from within the handler, this call always succeeds */
sdei_api_event_context(i, &regs->regs[i]);
}
/*
* We didn't take an exception to get here, set PAN. UAO will be cleared
* by sdei_event_handler()s set_fs(USER_DS) call.
*/
__uaccess_enable_hw_pan();
err = sdei_event_handler(regs, arg);
if (err)
return SDEI_EV_FAILED;
if (elr != read_sysreg(elr_el1)) {
/*
* We took a synchronous exception from the SDEI handler.
* This could deadlock, and if you interrupt KVM it will
* hyp-panic instead.
*/
pr_warn("unsafe: exception during handler\n");
}
mode = regs->pstate & (PSR_MODE32_BIT | PSR_MODE_MASK);
/*
* If we interrupted the kernel with interrupts masked, we always go
* back to wherever we came from.
*/
if (mode == kernel_mode && !interrupts_enabled(regs))
return SDEI_EV_HANDLED;
/*
* Otherwise, we pretend this was an IRQ. This lets user space tasks
* receive signals before we return to them, and KVM to invoke it's
* world switch to do the same.
*
* See DDI0487B.a Table D1-7 'Vector offsets from vector table base
* address'.
*/
if (mode == kernel_mode)
return vbar + 0x280;
else if (mode & PSR_MODE32_BIT)
return vbar + 0x680;
return vbar + 0x480;
}
asmlinkage __kprobes notrace unsigned long
__sdei_handler(struct pt_regs *regs, struct sdei_registered_event *arg)
{
unsigned long ret;
bool do_nmi_exit = false;
/*
* nmi_enter() deals with printk() re-entrance and use of RCU when
* RCU believed this CPU was idle. Because critical events can
* interrupt normal events, we may already be in_nmi().
*/
if (!in_nmi()) {
nmi_enter();
do_nmi_exit = true;
}
ret = _sdei_handler(regs, arg);
if (do_nmi_exit)
nmi_exit();
return ret;
}
...@@ -18,6 +18,7 @@ ...@@ -18,6 +18,7 @@
*/ */
#include <linux/acpi.h> #include <linux/acpi.h>
#include <linux/arm_sdei.h>
#include <linux/delay.h> #include <linux/delay.h>
#include <linux/init.h> #include <linux/init.h>
#include <linux/spinlock.h> #include <linux/spinlock.h>
...@@ -836,6 +837,7 @@ static void ipi_cpu_stop(unsigned int cpu) ...@@ -836,6 +837,7 @@ static void ipi_cpu_stop(unsigned int cpu)
set_cpu_online(cpu, false); set_cpu_online(cpu, false);
local_daif_mask(); local_daif_mask();
sdei_mask_local_cpu();
while (1) while (1)
cpu_relax(); cpu_relax();
...@@ -853,6 +855,7 @@ static void ipi_cpu_crash_stop(unsigned int cpu, struct pt_regs *regs) ...@@ -853,6 +855,7 @@ static void ipi_cpu_crash_stop(unsigned int cpu, struct pt_regs *regs)
atomic_dec(&waiting_for_crash_ipi); atomic_dec(&waiting_for_crash_ipi);
local_irq_disable(); local_irq_disable();
sdei_mask_local_cpu();
#ifdef CONFIG_HOTPLUG_CPU #ifdef CONFIG_HOTPLUG_CPU
if (cpu_ops[cpu]->cpu_die) if (cpu_ops[cpu]->cpu_die)
...@@ -972,6 +975,8 @@ void smp_send_stop(void) ...@@ -972,6 +975,8 @@ void smp_send_stop(void)
if (num_online_cpus() > 1) if (num_online_cpus() > 1)
pr_warning("SMP: failed to stop secondary CPUs %*pbl\n", pr_warning("SMP: failed to stop secondary CPUs %*pbl\n",
cpumask_pr_args(cpu_online_mask)); cpumask_pr_args(cpu_online_mask));
sdei_mask_local_cpu();
} }
#ifdef CONFIG_KEXEC_CORE #ifdef CONFIG_KEXEC_CORE
...@@ -990,8 +995,10 @@ void crash_smp_send_stop(void) ...@@ -990,8 +995,10 @@ void crash_smp_send_stop(void)
cpus_stopped = 1; cpus_stopped = 1;
if (num_online_cpus() == 1) if (num_online_cpus() == 1) {
sdei_mask_local_cpu();
return; return;
}
cpumask_copy(&mask, cpu_online_mask); cpumask_copy(&mask, cpu_online_mask);
cpumask_clear_cpu(smp_processor_id(), &mask); cpumask_clear_cpu(smp_processor_id(), &mask);
...@@ -1009,6 +1016,8 @@ void crash_smp_send_stop(void) ...@@ -1009,6 +1016,8 @@ void crash_smp_send_stop(void)
if (atomic_read(&waiting_for_crash_ipi) > 0) if (atomic_read(&waiting_for_crash_ipi) > 0)
pr_warning("SMP: failed to stop secondary CPUs %*pbl\n", pr_warning("SMP: failed to stop secondary CPUs %*pbl\n",
cpumask_pr_args(&mask)); cpumask_pr_args(&mask));
sdei_mask_local_cpu();
} }
bool smp_crash_stop_failed(void) bool smp_crash_stop_failed(void)
......
Markdown is supported
0%
or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment