Commit f84932d8 authored by Paul Gortmaker's avatar Paul Gortmaker

drivers/net: delete ISA intel eexpress and eepro i825xx drivers

These old drivers should not be confused with the very common PCI
cards that are supported by e100.c -- these older 10Mbit ISA only
drivers were not as commonly used as some of the other ISA drivers,
simply due to hardware availability and pricing.

Given the rarity of the hardware, and the subsequent less extensive
use of the drivers, it makes sense to obsolete them at this point
in time, along with other rare/experimental ISA drivers.
Signed-off-by: default avatarPaul Gortmaker <paul.gortmaker@windriver.com>
parent 0e245dba
......@@ -44,8 +44,6 @@ extern struct net_device *el2_probe(int unit);
extern struct net_device *ne_probe(int unit);
extern struct net_device *hp_probe(int unit);
extern struct net_device *hp_plus_probe(int unit);
extern struct net_device *express_probe(int unit);
extern struct net_device *eepro_probe(int unit);
extern struct net_device *at1700_probe(int unit);
extern struct net_device *fmv18x_probe(int unit);
extern struct net_device *eth16i_probe(int unit);
......@@ -150,12 +148,6 @@ static struct devprobe2 isa_probes[] __initdata = {
#ifdef CONFIG_ETH16I
{eth16i_probe, 0}, /* ICL EtherTeam 16i/32 */
#endif
#ifdef CONFIG_EEXPRESS /* Intel EtherExpress */
{express_probe, 0},
#endif
#ifdef CONFIG_EEXPRESS_PRO /* Intel EtherExpress Pro/10 */
{eepro_probe, 0},
#endif
#ifdef CONFIG_EWRK3 /* DEC EtherWORKS 3 */
{ewrk3_probe, 0},
#endif
......
......@@ -36,33 +36,6 @@ config BVME6000_NET
in your kernel.
To compile this driver as a module, choose M here.
config EEXPRESS
tristate "EtherExpress 16 support"
depends on ISA
---help---
If you have an EtherExpress16 network (Ethernet) card, say Y and
read the Ethernet-HOWTO, available from
<http://www.tldp.org/docs.html#howto>. Note that the Intel
EtherExpress16 card used to be regarded as a very poor choice
because the driver was very unreliable. We now have a new driver
that should do better.
To compile this driver as a module, choose M here. The module
will be called eexpress.
config EEXPRESS_PRO
tristate "EtherExpressPro support/EtherExpress 10 (i82595) support"
depends on ISA
---help---
If you have a network (Ethernet) card of this type, say Y. This
driver supports Intel i82595{FX,TX} based boards. Note however
that the EtherExpress PRO/100 Ethernet card has its own separate
driver. Please read the Ethernet-HOWTO, available from
<http://www.tldp.org/docs.html#howto>.
To compile this driver as a module, choose M here. The module
will be called eepro.
config LASI_82596
tristate "Lasi ethernet"
depends on GSC
......
......@@ -3,8 +3,6 @@
#
obj-$(CONFIG_ARM_ETHER1) += ether1.o
obj-$(CONFIG_EEXPRESS) += eexpress.o
obj-$(CONFIG_EEXPRESS_PRO) += eepro.o
obj-$(CONFIG_NI52) += ni52.o
obj-$(CONFIG_SUN3_82586) += sun3_82586.o
obj-$(CONFIG_ZNET) += znet.o
......
/* eepro.c: Intel EtherExpress Pro/10 device driver for Linux. */
/*
Written 1994, 1995,1996 by Bao C. Ha.
Copyright (C) 1994, 1995,1996 by Bao C. Ha.
This software may be used and distributed
according to the terms of the GNU General Public License,
incorporated herein by reference.
The author may be reached at bao.ha@srs.gov
or 418 Hastings Place, Martinez, GA 30907.
Things remaining to do:
Better record keeping of errors.
Eliminate transmit interrupt to reduce overhead.
Implement "concurrent processing". I won't be doing it!
Bugs:
If you have a problem of not detecting the 82595 during a
reboot (warm reset), disable the FLASH memory should fix it.
This is a compatibility hardware problem.
Versions:
0.13b basic ethtool support (aris, 09/13/2004)
0.13a in memory shortage, drop packets also in board
(Michael Westermann <mw@microdata-pos.de>, 07/30/2002)
0.13 irq sharing, rewrote probe function, fixed a nasty bug in
hardware_send_packet and a major cleanup (aris, 11/08/2001)
0.12d fixing a problem with single card detected as eight eth devices
fixing a problem with sudden drop in card performance
(chris (asdn@go2.pl), 10/29/2001)
0.12c fixing some problems with old cards (aris, 01/08/2001)
0.12b misc fixes (aris, 06/26/2000)
0.12a port of version 0.12a of 2.2.x kernels to 2.3.x
(aris (aris@conectiva.com.br), 05/19/2000)
0.11e some tweaks about multiple cards support (PdP, jul/aug 1999)
0.11d added __initdata, __init stuff; call spin_lock_init
in eepro_probe1. Replaced "eepro" by dev->name. Augmented
the code protected by spin_lock in interrupt routine
(PdP, 12/12/1998)
0.11c minor cleanup (PdP, RMC, 09/12/1998)
0.11b Pascal Dupuis (dupuis@lei.ucl.ac.be): works as a module
under 2.1.xx. Debug messages are flagged as KERN_DEBUG to
avoid console flooding. Added locking at critical parts. Now
the dawn thing is SMP safe.
0.11a Attempt to get 2.1.xx support up (RMC)
0.11 Brian Candler added support for multiple cards. Tested as
a module, no idea if it works when compiled into kernel.
0.10e Rick Bressler notified me that ifconfig up;ifconfig down fails
because the irq is lost somewhere. Fixed that by moving
request_irq and free_irq to eepro_open and eepro_close respectively.
0.10d Ugh! Now Wakeup works. Was seriously broken in my first attempt.
I'll need to find a way to specify an ioport other than
the default one in the PnP case. PnP definitively sucks.
And, yes, this is not the only reason.
0.10c PnP Wakeup Test for 595FX. uncomment #define PnPWakeup;
to use.
0.10b Should work now with (some) Pro/10+. At least for
me (and my two cards) it does. _No_ guarantee for
function with non-Pro/10+ cards! (don't have any)
(RMC, 9/11/96)
0.10 Added support for the Etherexpress Pro/10+. The
IRQ map was changed significantly from the old
pro/10. The new interrupt map was provided by
Rainer M. Canavan (Canavan@Zeus.cs.bonn.edu).
(BCH, 9/3/96)
0.09 Fixed a race condition in the transmit algorithm,
which causes crashes under heavy load with fast
pentium computers. The performance should also
improve a bit. The size of RX buffer, and hence
TX buffer, can also be changed via lilo or insmod.
(BCH, 7/31/96)
0.08 Implement 32-bit I/O for the 82595TX and 82595FX
based lan cards. Disable full-duplex mode if TPE
is not used. (BCH, 4/8/96)
0.07a Fix a stat report which counts every packet as a
heart-beat failure. (BCH, 6/3/95)
0.07 Modified to support all other 82595-based lan cards.
The IRQ vector of the EtherExpress Pro will be set
according to the value saved in the EEPROM. For other
cards, I will do autoirq_request() to grab the next
available interrupt vector. (BCH, 3/17/95)
0.06a,b Interim released. Minor changes in the comments and
print out format. (BCH, 3/9/95 and 3/14/95)
0.06 First stable release that I am comfortable with. (BCH,
3/2/95)
0.05 Complete testing of multicast. (BCH, 2/23/95)
0.04 Adding multicast support. (BCH, 2/14/95)
0.03 First widely alpha release for public testing.
(BCH, 2/14/95)
*/
static const char version[] =
"eepro.c: v0.13b 09/13/2004 aris@cathedrallabs.org\n";
#include <linux/module.h>
/*
Sources:
This driver wouldn't have been written without the availability
of the Crynwr's Lan595 driver source code. It helps me to
familiarize with the 82595 chipset while waiting for the Intel
documentation. I also learned how to detect the 82595 using
the packet driver's technique.
This driver is written by cutting and pasting the skeleton.c driver
provided by Donald Becker. I also borrowed the EEPROM routine from
Donald Becker's 82586 driver.
Datasheet for the Intel 82595 (including the TX and FX version). It
provides just enough info that the casual reader might think that it
documents the i82595.
The User Manual for the 82595. It provides a lot of the missing
information.
*/
#include <linux/kernel.h>
#include <linux/types.h>
#include <linux/fcntl.h>
#include <linux/interrupt.h>
#include <linux/ioport.h>
#include <linux/in.h>
#include <linux/string.h>
#include <linux/errno.h>
#include <linux/netdevice.h>
#include <linux/etherdevice.h>
#include <linux/skbuff.h>
#include <linux/spinlock.h>
#include <linux/init.h>
#include <linux/delay.h>
#include <linux/bitops.h>
#include <linux/ethtool.h>
#include <asm/io.h>
#include <asm/dma.h>
#define DRV_NAME "eepro"
#define DRV_VERSION "0.13c"
#define compat_dev_kfree_skb( skb, mode ) dev_kfree_skb( (skb) )
/* I had reports of looong delays with SLOW_DOWN defined as udelay(2) */
#define SLOW_DOWN inb(0x80)
/* udelay(2) */
#define compat_init_data __initdata
enum iftype { AUI=0, BNC=1, TPE=2 };
/* First, a few definitions that the brave might change. */
/* A zero-terminated list of I/O addresses to be probed. */
static unsigned int eepro_portlist[] compat_init_data =
{ 0x300, 0x210, 0x240, 0x280, 0x2C0, 0x200, 0x320, 0x340, 0x360, 0};
/* note: 0x300 is default, the 595FX supports ALL IO Ports
from 0x000 to 0x3F0, some of which are reserved in PCs */
/* To try the (not-really PnP Wakeup: */
/*
#define PnPWakeup
*/
/* use 0 for production, 1 for verification, >2 for debug */
#ifndef NET_DEBUG
#define NET_DEBUG 0
#endif
static unsigned int net_debug = NET_DEBUG;
/* The number of low I/O ports used by the ethercard. */
#define EEPRO_IO_EXTENT 16
/* Different 82595 chips */
#define LAN595 0
#define LAN595TX 1
#define LAN595FX 2
#define LAN595FX_10ISA 3
/* Information that need to be kept for each board. */
struct eepro_local {
unsigned rx_start;
unsigned tx_start; /* start of the transmit chain */
int tx_last; /* pointer to last packet in the transmit chain */
unsigned tx_end; /* end of the transmit chain (plus 1) */
int eepro; /* 1 for the EtherExpress Pro/10,
2 for the EtherExpress Pro/10+,
3 for the EtherExpress 10 (blue cards),
0 for other 82595-based lan cards. */
int version; /* a flag to indicate if this is a TX or FX
version of the 82595 chip. */
int stepping;
spinlock_t lock; /* Serializing lock */
unsigned rcv_ram; /* pre-calculated space for rx */
unsigned xmt_ram; /* pre-calculated space for tx */
unsigned char xmt_bar;
unsigned char xmt_lower_limit_reg;
unsigned char xmt_upper_limit_reg;
short xmt_lower_limit;
short xmt_upper_limit;
short rcv_lower_limit;
short rcv_upper_limit;
unsigned char eeprom_reg;
unsigned short word[8];
};
/* The station (ethernet) address prefix, used for IDing the board. */
#define SA_ADDR0 0x00 /* Etherexpress Pro/10 */
#define SA_ADDR1 0xaa
#define SA_ADDR2 0x00
#define GetBit(x,y) ((x & (1<<y))>>y)
/* EEPROM Word 0: */
#define ee_PnP 0 /* Plug 'n Play enable bit */
#define ee_Word1 1 /* Word 1? */
#define ee_BusWidth 2 /* 8/16 bit */
#define ee_FlashAddr 3 /* Flash Address */
#define ee_FlashMask 0x7 /* Mask */
#define ee_AutoIO 6 /* */
#define ee_reserved0 7 /* =0! */
#define ee_Flash 8 /* Flash there? */
#define ee_AutoNeg 9 /* Auto Negotiation enabled? */
#define ee_IO0 10 /* IO Address LSB */
#define ee_IO0Mask 0x /*...*/
#define ee_IO1 15 /* IO MSB */
/* EEPROM Word 1: */
#define ee_IntSel 0 /* Interrupt */
#define ee_IntMask 0x7
#define ee_LI 3 /* Link Integrity 0= enabled */
#define ee_PC 4 /* Polarity Correction 0= enabled */
#define ee_TPE_AUI 5 /* PortSelection 1=TPE */
#define ee_Jabber 6 /* Jabber prevention 0= enabled */
#define ee_AutoPort 7 /* Auto Port Selection 1= Disabled */
#define ee_SMOUT 8 /* SMout Pin Control 0= Input */
#define ee_PROM 9 /* Flash EPROM / PROM 0=Flash */
#define ee_reserved1 10 /* .. 12 =0! */
#define ee_AltReady 13 /* Alternate Ready, 0=normal */
#define ee_reserved2 14 /* =0! */
#define ee_Duplex 15
/* Word2,3,4: */
#define ee_IA5 0 /*bit start for individual Addr Byte 5 */
#define ee_IA4 8 /*bit start for individual Addr Byte 5 */
#define ee_IA3 0 /*bit start for individual Addr Byte 5 */
#define ee_IA2 8 /*bit start for individual Addr Byte 5 */
#define ee_IA1 0 /*bit start for individual Addr Byte 5 */
#define ee_IA0 8 /*bit start for individual Addr Byte 5 */
/* Word 5: */
#define ee_BNC_TPE 0 /* 0=TPE */
#define ee_BootType 1 /* 00=None, 01=IPX, 10=ODI, 11=NDIS */
#define ee_BootTypeMask 0x3
#define ee_NumConn 3 /* Number of Connections 0= One or Two */
#define ee_FlashSock 4 /* Presence of Flash Socket 0= Present */
#define ee_PortTPE 5
#define ee_PortBNC 6
#define ee_PortAUI 7
#define ee_PowerMgt 10 /* 0= disabled */
#define ee_CP 13 /* Concurrent Processing */
#define ee_CPMask 0x7
/* Word 6: */
#define ee_Stepping 0 /* Stepping info */
#define ee_StepMask 0x0F
#define ee_BoardID 4 /* Manucaturer Board ID, reserved */
#define ee_BoardMask 0x0FFF
/* Word 7: */
#define ee_INT_TO_IRQ 0 /* int to IRQ Mapping = 0x1EB8 for Pro/10+ */
#define ee_FX_INT2IRQ 0x1EB8 /* the _only_ mapping allowed for FX chips */
/*..*/
#define ee_SIZE 0x40 /* total EEprom Size */
#define ee_Checksum 0xBABA /* initial and final value for adding checksum */
/* Card identification via EEprom: */
#define ee_addr_vendor 0x10 /* Word offset for EISA Vendor ID */
#define ee_addr_id 0x11 /* Word offset for Card ID */
#define ee_addr_SN 0x12 /* Serial Number */
#define ee_addr_CRC_8 0x14 /* CRC over last thee Bytes */
#define ee_vendor_intel0 0x25 /* Vendor ID Intel */
#define ee_vendor_intel1 0xD4
#define ee_id_eepro10p0 0x10 /* ID for eepro/10+ */
#define ee_id_eepro10p1 0x31
#define TX_TIMEOUT ((4*HZ)/10)
/* Index to functions, as function prototypes. */
static int eepro_probe1(struct net_device *dev, int autoprobe);
static int eepro_open(struct net_device *dev);
static netdev_tx_t eepro_send_packet(struct sk_buff *skb,
struct net_device *dev);
static irqreturn_t eepro_interrupt(int irq, void *dev_id);
static void eepro_rx(struct net_device *dev);
static void eepro_transmit_interrupt(struct net_device *dev);
static int eepro_close(struct net_device *dev);
static void set_multicast_list(struct net_device *dev);
static void eepro_tx_timeout (struct net_device *dev);
static int read_eeprom(int ioaddr, int location, struct net_device *dev);
static int hardware_send_packet(struct net_device *dev, void *buf, short length);
static int eepro_grab_irq(struct net_device *dev);
/*
Details of the i82595.
You will need either the datasheet or the user manual to understand what
is going on here. The 82595 is very different from the 82586, 82593.
The receive algorithm in eepro_rx() is just an implementation of the
RCV ring structure that the Intel 82595 imposes at the hardware level.
The receive buffer is set at 24K, and the transmit buffer is 8K. I
am assuming that the total buffer memory is 32K, which is true for the
Intel EtherExpress Pro/10. If it is less than that on a generic card,
the driver will be broken.
The transmit algorithm in the hardware_send_packet() is similar to the
one in the eepro_rx(). The transmit buffer is a ring linked list.
I just queue the next available packet to the end of the list. In my
system, the 82595 is so fast that the list seems to always contain a
single packet. In other systems with faster computers and more congested
network traffics, the ring linked list should improve performance by
allowing up to 8K worth of packets to be queued.
The sizes of the receive and transmit buffers can now be changed via lilo
or insmod. Lilo uses the appended line "ether=io,irq,debug,rx-buffer,eth0"
where rx-buffer is in KB unit. Modules uses the parameter mem which is
also in KB unit, for example "insmod io=io-address irq=0 mem=rx-buffer."
The receive buffer has to be more than 3K or less than 29K. Otherwise,
it is reset to the default of 24K, and, hence, 8K for the trasnmit
buffer (transmit-buffer = 32K - receive-buffer).
*/
#define RAM_SIZE 0x8000
#define RCV_HEADER 8
#define RCV_DEFAULT_RAM 0x6000
#define XMT_HEADER 8
#define XMT_DEFAULT_RAM (RAM_SIZE - RCV_DEFAULT_RAM)
#define XMT_START_PRO RCV_DEFAULT_RAM
#define XMT_START_10 0x0000
#define RCV_START_PRO 0x0000
#define RCV_START_10 XMT_DEFAULT_RAM
#define RCV_DONE 0x0008
#define RX_OK 0x2000
#define RX_ERROR 0x0d81
#define TX_DONE_BIT 0x0080
#define TX_OK 0x2000
#define CHAIN_BIT 0x8000
#define XMT_STATUS 0x02
#define XMT_CHAIN 0x04
#define XMT_COUNT 0x06
#define BANK0_SELECT 0x00
#define BANK1_SELECT 0x40
#define BANK2_SELECT 0x80
/* Bank 0 registers */
#define COMMAND_REG 0x00 /* Register 0 */
#define MC_SETUP 0x03
#define XMT_CMD 0x04
#define DIAGNOSE_CMD 0x07
#define RCV_ENABLE_CMD 0x08
#define RCV_DISABLE_CMD 0x0a
#define STOP_RCV_CMD 0x0b
#define RESET_CMD 0x0e
#define POWER_DOWN_CMD 0x18
#define RESUME_XMT_CMD 0x1c
#define SEL_RESET_CMD 0x1e
#define STATUS_REG 0x01 /* Register 1 */
#define RX_INT 0x02
#define TX_INT 0x04
#define EXEC_STATUS 0x30
#define ID_REG 0x02 /* Register 2 */
#define R_ROBIN_BITS 0xc0 /* round robin counter */
#define ID_REG_MASK 0x2c
#define ID_REG_SIG 0x24
#define AUTO_ENABLE 0x10
#define INT_MASK_REG 0x03 /* Register 3 */
#define RX_STOP_MASK 0x01
#define RX_MASK 0x02
#define TX_MASK 0x04
#define EXEC_MASK 0x08
#define ALL_MASK 0x0f
#define IO_32_BIT 0x10
#define RCV_BAR 0x04 /* The following are word (16-bit) registers */
#define RCV_STOP 0x06
#define XMT_BAR_PRO 0x0a
#define XMT_BAR_10 0x0b
#define HOST_ADDRESS_REG 0x0c
#define IO_PORT 0x0e
#define IO_PORT_32_BIT 0x0c
/* Bank 1 registers */
#define REG1 0x01
#define WORD_WIDTH 0x02
#define INT_ENABLE 0x80
#define INT_NO_REG 0x02
#define RCV_LOWER_LIMIT_REG 0x08
#define RCV_UPPER_LIMIT_REG 0x09
#define XMT_LOWER_LIMIT_REG_PRO 0x0a
#define XMT_UPPER_LIMIT_REG_PRO 0x0b
#define XMT_LOWER_LIMIT_REG_10 0x0b
#define XMT_UPPER_LIMIT_REG_10 0x0a
/* Bank 2 registers */
#define XMT_Chain_Int 0x20 /* Interrupt at the end of the transmit chain */
#define XMT_Chain_ErrStop 0x40 /* Interrupt at the end of the chain even if there are errors */
#define RCV_Discard_BadFrame 0x80 /* Throw bad frames away, and continue to receive others */
#define REG2 0x02
#define PRMSC_Mode 0x01
#define Multi_IA 0x20
#define REG3 0x03
#define TPE_BIT 0x04
#define BNC_BIT 0x20
#define REG13 0x0d
#define FDX 0x00
#define A_N_ENABLE 0x02
#define I_ADD_REG0 0x04
#define I_ADD_REG1 0x05
#define I_ADD_REG2 0x06
#define I_ADD_REG3 0x07
#define I_ADD_REG4 0x08
#define I_ADD_REG5 0x09
#define EEPROM_REG_PRO 0x0a
#define EEPROM_REG_10 0x0b
#define EESK 0x01
#define EECS 0x02
#define EEDI 0x04
#define EEDO 0x08
/* do a full reset */
#define eepro_reset(ioaddr) outb(RESET_CMD, ioaddr)
/* do a nice reset */
#define eepro_sel_reset(ioaddr) { \
outb(SEL_RESET_CMD, ioaddr); \
SLOW_DOWN; \
SLOW_DOWN; \
}
/* disable all interrupts */
#define eepro_dis_int(ioaddr) outb(ALL_MASK, ioaddr + INT_MASK_REG)
/* clear all interrupts */
#define eepro_clear_int(ioaddr) outb(ALL_MASK, ioaddr + STATUS_REG)
/* enable tx/rx */
#define eepro_en_int(ioaddr) outb(ALL_MASK & ~(RX_MASK | TX_MASK), \
ioaddr + INT_MASK_REG)
/* enable exec event interrupt */
#define eepro_en_intexec(ioaddr) outb(ALL_MASK & ~(EXEC_MASK), ioaddr + INT_MASK_REG)
/* enable rx */
#define eepro_en_rx(ioaddr) outb(RCV_ENABLE_CMD, ioaddr)
/* disable rx */
#define eepro_dis_rx(ioaddr) outb(RCV_DISABLE_CMD, ioaddr)
/* switch bank */
#define eepro_sw2bank0(ioaddr) outb(BANK0_SELECT, ioaddr)
#define eepro_sw2bank1(ioaddr) outb(BANK1_SELECT, ioaddr)
#define eepro_sw2bank2(ioaddr) outb(BANK2_SELECT, ioaddr)
/* enable interrupt line */
#define eepro_en_intline(ioaddr) outb(inb(ioaddr + REG1) | INT_ENABLE,\
ioaddr + REG1)
/* disable interrupt line */
#define eepro_dis_intline(ioaddr) outb(inb(ioaddr + REG1) & 0x7f, \
ioaddr + REG1);
/* set diagnose flag */
#define eepro_diag(ioaddr) outb(DIAGNOSE_CMD, ioaddr)
/* ack for rx int */
#define eepro_ack_rx(ioaddr) outb (RX_INT, ioaddr + STATUS_REG)
/* ack for tx int */
#define eepro_ack_tx(ioaddr) outb (TX_INT, ioaddr + STATUS_REG)
/* a complete sel reset */
#define eepro_complete_selreset(ioaddr) { \
dev->stats.tx_errors++;\
eepro_sel_reset(ioaddr);\
lp->tx_end = \
lp->xmt_lower_limit;\
lp->tx_start = lp->tx_end;\
lp->tx_last = 0;\
dev->trans_start = jiffies;\
netif_wake_queue(dev);\
eepro_en_rx(ioaddr);\
}
/* Check for a network adaptor of this type, and return '0' if one exists.
If dev->base_addr == 0, probe all likely locations.
If dev->base_addr == 1, always return failure.
If dev->base_addr == 2, allocate space for the device and return success
(detachable devices only).
*/
static int __init do_eepro_probe(struct net_device *dev)
{
int i;
int base_addr = dev->base_addr;
int irq = dev->irq;
#ifdef PnPWakeup
/* XXXX for multiple cards should this only be run once? */
/* Wakeup: */
#define WakeupPort 0x279
#define WakeupSeq {0x6A, 0xB5, 0xDA, 0xED, 0xF6, 0xFB, 0x7D, 0xBE,\
0xDF, 0x6F, 0x37, 0x1B, 0x0D, 0x86, 0xC3, 0x61,\
0xB0, 0x58, 0x2C, 0x16, 0x8B, 0x45, 0xA2, 0xD1,\
0xE8, 0x74, 0x3A, 0x9D, 0xCE, 0xE7, 0x73, 0x43}
{
unsigned short int WS[32]=WakeupSeq;
if (request_region(WakeupPort, 2, "eepro wakeup")) {
if (net_debug>5)
printk(KERN_DEBUG "Waking UP\n");
outb_p(0,WakeupPort);
outb_p(0,WakeupPort);
for (i=0; i<32; i++) {
outb_p(WS[i],WakeupPort);
if (net_debug>5) printk(KERN_DEBUG ": %#x ",WS[i]);
}
release_region(WakeupPort, 2);
} else
printk(KERN_WARNING "PnP wakeup region busy!\n");
}
#endif
if (base_addr > 0x1ff) /* Check a single specified location. */
return eepro_probe1(dev, 0);
else if (base_addr != 0) /* Don't probe at all. */
return -ENXIO;
for (i = 0; eepro_portlist[i]; i++) {
dev->base_addr = eepro_portlist[i];
dev->irq = irq;
if (eepro_probe1(dev, 1) == 0)
return 0;
}
return -ENODEV;
}
#ifndef MODULE
struct net_device * __init eepro_probe(int unit)
{
struct net_device *dev = alloc_etherdev(sizeof(struct eepro_local));
int err;
if (!dev)
return ERR_PTR(-ENODEV);
sprintf(dev->name, "eth%d", unit);
netdev_boot_setup_check(dev);
err = do_eepro_probe(dev);
if (err)
goto out;
return dev;
out:
free_netdev(dev);
return ERR_PTR(err);
}
#endif
static void __init printEEPROMInfo(struct net_device *dev)
{
struct eepro_local *lp = netdev_priv(dev);
int ioaddr = dev->base_addr;
unsigned short Word;
int i,j;
j = ee_Checksum;
for (i = 0; i < 8; i++)
j += lp->word[i];
for ( ; i < ee_SIZE; i++)
j += read_eeprom(ioaddr, i, dev);
printk(KERN_DEBUG "Checksum: %#x\n",j&0xffff);
Word = lp->word[0];
printk(KERN_DEBUG "Word0:\n");
printk(KERN_DEBUG " Plug 'n Pray: %d\n",GetBit(Word,ee_PnP));
printk(KERN_DEBUG " Buswidth: %d\n",(GetBit(Word,ee_BusWidth)+1)*8 );
printk(KERN_DEBUG " AutoNegotiation: %d\n",GetBit(Word,ee_AutoNeg));
printk(KERN_DEBUG " IO Address: %#x\n", (Word>>ee_IO0)<<4);
if (net_debug>4) {
Word = lp->word[1];
printk(KERN_DEBUG "Word1:\n");
printk(KERN_DEBUG " INT: %d\n", Word & ee_IntMask);
printk(KERN_DEBUG " LI: %d\n", GetBit(Word,ee_LI));
printk(KERN_DEBUG " PC: %d\n", GetBit(Word,ee_PC));
printk(KERN_DEBUG " TPE/AUI: %d\n", GetBit(Word,ee_TPE_AUI));
printk(KERN_DEBUG " Jabber: %d\n", GetBit(Word,ee_Jabber));
printk(KERN_DEBUG " AutoPort: %d\n", !GetBit(Word,ee_AutoPort));
printk(KERN_DEBUG " Duplex: %d\n", GetBit(Word,ee_Duplex));
}
Word = lp->word[5];
printk(KERN_DEBUG "Word5:\n");
printk(KERN_DEBUG " BNC: %d\n",GetBit(Word,ee_BNC_TPE));
printk(KERN_DEBUG " NumConnectors: %d\n",GetBit(Word,ee_NumConn));
printk(KERN_DEBUG " Has ");
if (GetBit(Word,ee_PortTPE)) printk(KERN_DEBUG "TPE ");
if (GetBit(Word,ee_PortBNC)) printk(KERN_DEBUG "BNC ");
if (GetBit(Word,ee_PortAUI)) printk(KERN_DEBUG "AUI ");
printk(KERN_DEBUG "port(s)\n");
Word = lp->word[6];
printk(KERN_DEBUG "Word6:\n");
printk(KERN_DEBUG " Stepping: %d\n",Word & ee_StepMask);
printk(KERN_DEBUG " BoardID: %d\n",Word>>ee_BoardID);
Word = lp->word[7];
printk(KERN_DEBUG "Word7:\n");
printk(KERN_DEBUG " INT to IRQ:\n");
for (i=0, j=0; i<15; i++)
if (GetBit(Word,i)) printk(KERN_DEBUG " INT%d -> IRQ %d;",j++,i);
printk(KERN_DEBUG "\n");
}
/* function to recalculate the limits of buffer based on rcv_ram */
static void eepro_recalc (struct net_device *dev)
{
struct eepro_local * lp;
lp = netdev_priv(dev);
lp->xmt_ram = RAM_SIZE - lp->rcv_ram;
if (lp->eepro == LAN595FX_10ISA) {
lp->xmt_lower_limit = XMT_START_10;
lp->xmt_upper_limit = (lp->xmt_ram - 2);
lp->rcv_lower_limit = lp->xmt_ram;
lp->rcv_upper_limit = (RAM_SIZE - 2);
}
else {
lp->rcv_lower_limit = RCV_START_PRO;
lp->rcv_upper_limit = (lp->rcv_ram - 2);
lp->xmt_lower_limit = lp->rcv_ram;
lp->xmt_upper_limit = (RAM_SIZE - 2);
}
}
/* prints boot-time info */
static void __init eepro_print_info (struct net_device *dev)
{
struct eepro_local * lp = netdev_priv(dev);
int i;
const char * ifmap[] = {"AUI", "10Base2", "10BaseT"};
i = inb(dev->base_addr + ID_REG);
printk(KERN_DEBUG " id: %#x ",i);
printk(" io: %#x ", (unsigned)dev->base_addr);
switch (lp->eepro) {
case LAN595FX_10ISA:
printk("%s: Intel EtherExpress 10 ISA\n at %#x,",
dev->name, (unsigned)dev->base_addr);
break;
case LAN595FX:
printk("%s: Intel EtherExpress Pro/10+ ISA\n at %#x,",
dev->name, (unsigned)dev->base_addr);
break;
case LAN595TX:
printk("%s: Intel EtherExpress Pro/10 ISA at %#x,",
dev->name, (unsigned)dev->base_addr);
break;
case LAN595:
printk("%s: Intel 82595-based lan card at %#x,",
dev->name, (unsigned)dev->base_addr);
break;
}
printk(" %pM", dev->dev_addr);
if (net_debug > 3)
printk(KERN_DEBUG ", %dK RCV buffer",
(int)(lp->rcv_ram)/1024);
if (dev->irq > 2)
printk(", IRQ %d, %s.\n", dev->irq, ifmap[dev->if_port]);
else
printk(", %s.\n", ifmap[dev->if_port]);
if (net_debug > 3) {
i = lp->word[5];
if (i & 0x2000) /* bit 13 of EEPROM word 5 */
printk(KERN_DEBUG "%s: Concurrent Processing is "
"enabled but not used!\n", dev->name);
}
/* Check the station address for the manufacturer's code */
if (net_debug>3)
printEEPROMInfo(dev);
}
static const struct ethtool_ops eepro_ethtool_ops;
static const struct net_device_ops eepro_netdev_ops = {
.ndo_open = eepro_open,
.ndo_stop = eepro_close,
.ndo_start_xmit = eepro_send_packet,
.ndo_set_rx_mode = set_multicast_list,
.ndo_tx_timeout = eepro_tx_timeout,
.ndo_change_mtu = eth_change_mtu,
.ndo_set_mac_address = eth_mac_addr,
.ndo_validate_addr = eth_validate_addr,
};
/* This is the real probe routine. Linux has a history of friendly device
probes on the ISA bus. A good device probe avoids doing writes, and
verifies that the correct device exists and functions. */
static int __init eepro_probe1(struct net_device *dev, int autoprobe)
{
unsigned short station_addr[3], id, counter;
int i;
struct eepro_local *lp;
int ioaddr = dev->base_addr;
int err;
/* Grab the region so we can find another board if autoIRQ fails. */
if (!request_region(ioaddr, EEPRO_IO_EXTENT, DRV_NAME)) {
if (!autoprobe)
printk(KERN_WARNING "EEPRO: io-port 0x%04x in use\n",
ioaddr);
return -EBUSY;
}
/* Now, we are going to check for the signature of the
ID_REG (register 2 of bank 0) */
id = inb(ioaddr + ID_REG);
if ((id & ID_REG_MASK) != ID_REG_SIG)
goto exit;
/* We seem to have the 82595 signature, let's
play with its counter (last 2 bits of
register 2 of bank 0) to be sure. */
counter = id & R_ROBIN_BITS;
if ((inb(ioaddr + ID_REG) & R_ROBIN_BITS) != (counter + 0x40))
goto exit;
lp = netdev_priv(dev);
memset(lp, 0, sizeof(struct eepro_local));
lp->xmt_bar = XMT_BAR_PRO;
lp->xmt_lower_limit_reg = XMT_LOWER_LIMIT_REG_PRO;
lp->xmt_upper_limit_reg = XMT_UPPER_LIMIT_REG_PRO;
lp->eeprom_reg = EEPROM_REG_PRO;
spin_lock_init(&lp->lock);
/* Now, get the ethernet hardware address from
the EEPROM */
station_addr[0] = read_eeprom(ioaddr, 2, dev);
/* FIXME - find another way to know that we've found
* an Etherexpress 10
*/
if (station_addr[0] == 0x0000 || station_addr[0] == 0xffff) {
lp->eepro = LAN595FX_10ISA;
lp->eeprom_reg = EEPROM_REG_10;
lp->xmt_lower_limit_reg = XMT_LOWER_LIMIT_REG_10;
lp->xmt_upper_limit_reg = XMT_UPPER_LIMIT_REG_10;
lp->xmt_bar = XMT_BAR_10;
station_addr[0] = read_eeprom(ioaddr, 2, dev);
}
/* get all words at once. will be used here and for ethtool */
for (i = 0; i < 8; i++) {
lp->word[i] = read_eeprom(ioaddr, i, dev);
}
station_addr[1] = lp->word[3];
station_addr[2] = lp->word[4];
if (!lp->eepro) {
if (lp->word[7] == ee_FX_INT2IRQ)
lp->eepro = 2;
else if (station_addr[2] == SA_ADDR1)
lp->eepro = 1;
}
/* Fill in the 'dev' fields. */
for (i=0; i < 6; i++)
dev->dev_addr[i] = ((unsigned char *) station_addr)[5-i];
/* RX buffer must be more than 3K and less than 29K */
if (dev->mem_end < 3072 || dev->mem_end > 29696)
lp->rcv_ram = RCV_DEFAULT_RAM;
/* calculate {xmt,rcv}_{lower,upper}_limit */
eepro_recalc(dev);
if (GetBit(lp->word[5], ee_BNC_TPE))
dev->if_port = BNC;
else
dev->if_port = TPE;
if (dev->irq < 2 && lp->eepro != 0) {
/* Mask off INT number */
int count = lp->word[1] & 7;
unsigned irqMask = lp->word[7];
while (count--)
irqMask &= irqMask - 1;
count = ffs(irqMask);
if (count)
dev->irq = count - 1;
if (dev->irq < 2) {
printk(KERN_ERR " Duh! illegal interrupt vector stored in EEPROM.\n");
goto exit;
} else if (dev->irq == 2) {
dev->irq = 9;
}
}
dev->netdev_ops = &eepro_netdev_ops;
dev->watchdog_timeo = TX_TIMEOUT;
dev->ethtool_ops = &eepro_ethtool_ops;
/* print boot time info */
eepro_print_info(dev);
/* reset 82595 */
eepro_reset(ioaddr);
err = register_netdev(dev);
if (err)
goto err;
return 0;
exit:
err = -ENODEV;
err:
release_region(dev->base_addr, EEPRO_IO_EXTENT);
return err;
}
/* Open/initialize the board. This is called (in the current kernel)
sometime after booting when the 'ifconfig' program is run.
This routine should set everything up anew at each open, even
registers that "should" only need to be set once at boot, so that
there is non-reboot way to recover if something goes wrong.
*/
static const char irqrmap[] = {-1,-1,0,1,-1,2,-1,-1,-1,0,3,4,-1,-1,-1,-1};
static const char irqrmap2[] = {-1,-1,4,0,1,2,-1,3,-1,4,5,6,7,-1,-1,-1};
static int eepro_grab_irq(struct net_device *dev)
{
static const int irqlist[] = { 3, 4, 5, 7, 9, 10, 11, 12, 0 };
const int *irqp = irqlist;
int temp_reg, ioaddr = dev->base_addr;
eepro_sw2bank1(ioaddr); /* be CAREFUL, BANK 1 now */
/* Enable the interrupt line. */
eepro_en_intline(ioaddr);
/* be CAREFUL, BANK 0 now */
eepro_sw2bank0(ioaddr);
/* clear all interrupts */
eepro_clear_int(ioaddr);
/* Let EXEC event to interrupt */
eepro_en_intexec(ioaddr);
do {
eepro_sw2bank1(ioaddr); /* be CAREFUL, BANK 1 now */
temp_reg = inb(ioaddr + INT_NO_REG);
outb((temp_reg & 0xf8) | irqrmap[*irqp], ioaddr + INT_NO_REG);
eepro_sw2bank0(ioaddr); /* Switch back to Bank 0 */
if (request_irq (*irqp, NULL, IRQF_SHARED, "bogus", dev) != EBUSY) {
unsigned long irq_mask;
/* Twinkle the interrupt, and check if it's seen */
irq_mask = probe_irq_on();
eepro_diag(ioaddr); /* RESET the 82595 */
mdelay(20);
if (*irqp == probe_irq_off(irq_mask)) /* It's a good IRQ line */
break;
/* clear all interrupts */
eepro_clear_int(ioaddr);
}
} while (*++irqp);
eepro_sw2bank1(ioaddr); /* Switch back to Bank 1 */
/* Disable the physical interrupt line. */
eepro_dis_intline(ioaddr);
eepro_sw2bank0(ioaddr); /* Switch back to Bank 0 */
/* Mask all the interrupts. */
eepro_dis_int(ioaddr);
/* clear all interrupts */
eepro_clear_int(ioaddr);
return dev->irq;
}
static int eepro_open(struct net_device *dev)
{
unsigned short temp_reg, old8, old9;
int irqMask;
int i, ioaddr = dev->base_addr;
struct eepro_local *lp = netdev_priv(dev);
if (net_debug > 3)
printk(KERN_DEBUG "%s: entering eepro_open routine.\n", dev->name);
irqMask = lp->word[7];
if (lp->eepro == LAN595FX_10ISA) {
if (net_debug > 3) printk(KERN_DEBUG "p->eepro = 3;\n");
}
else if (irqMask == ee_FX_INT2IRQ) /* INT to IRQ Mask */
{
lp->eepro = 2; /* Yes, an Intel EtherExpress Pro/10+ */
if (net_debug > 3) printk(KERN_DEBUG "p->eepro = 2;\n");
}
else if ((dev->dev_addr[0] == SA_ADDR0 &&
dev->dev_addr[1] == SA_ADDR1 &&
dev->dev_addr[2] == SA_ADDR2))
{
lp->eepro = 1;
if (net_debug > 3) printk(KERN_DEBUG "p->eepro = 1;\n");
} /* Yes, an Intel EtherExpress Pro/10 */
else lp->eepro = 0; /* No, it is a generic 82585 lan card */
/* Get the interrupt vector for the 82595 */
if (dev->irq < 2 && eepro_grab_irq(dev) == 0) {
printk(KERN_ERR "%s: unable to get IRQ %d.\n", dev->name, dev->irq);
return -EAGAIN;
}
if (request_irq(dev->irq , eepro_interrupt, 0, dev->name, dev)) {
printk(KERN_ERR "%s: unable to get IRQ %d.\n", dev->name, dev->irq);
return -EAGAIN;
}
/* Initialize the 82595. */
eepro_sw2bank2(ioaddr); /* be CAREFUL, BANK 2 now */
temp_reg = inb(ioaddr + lp->eeprom_reg);
lp->stepping = temp_reg >> 5; /* Get the stepping number of the 595 */
if (net_debug > 3)
printk(KERN_DEBUG "The stepping of the 82595 is %d\n", lp->stepping);
if (temp_reg & 0x10) /* Check the TurnOff Enable bit */
outb(temp_reg & 0xef, ioaddr + lp->eeprom_reg);
for (i=0; i < 6; i++)
outb(dev->dev_addr[i] , ioaddr + I_ADD_REG0 + i);
temp_reg = inb(ioaddr + REG1); /* Setup Transmit Chaining */
outb(temp_reg | XMT_Chain_Int | XMT_Chain_ErrStop /* and discard bad RCV frames */
| RCV_Discard_BadFrame, ioaddr + REG1);
temp_reg = inb(ioaddr + REG2); /* Match broadcast */
outb(temp_reg | 0x14, ioaddr + REG2);
temp_reg = inb(ioaddr + REG3);
outb(temp_reg & 0x3f, ioaddr + REG3); /* clear test mode */
/* Set the receiving mode */
eepro_sw2bank1(ioaddr); /* be CAREFUL, BANK 1 now */
/* Set the interrupt vector */
temp_reg = inb(ioaddr + INT_NO_REG);
if (lp->eepro == LAN595FX || lp->eepro == LAN595FX_10ISA)
outb((temp_reg & 0xf8) | irqrmap2[dev->irq], ioaddr + INT_NO_REG);
else outb((temp_reg & 0xf8) | irqrmap[dev->irq], ioaddr + INT_NO_REG);
temp_reg = inb(ioaddr + INT_NO_REG);
if (lp->eepro == LAN595FX || lp->eepro == LAN595FX_10ISA)
outb((temp_reg & 0xf0) | irqrmap2[dev->irq] | 0x08,ioaddr+INT_NO_REG);
else outb((temp_reg & 0xf8) | irqrmap[dev->irq], ioaddr + INT_NO_REG);
if (net_debug > 3)
printk(KERN_DEBUG "eepro_open: content of INT Reg is %x\n", temp_reg);
/* Initialize the RCV and XMT upper and lower limits */
outb(lp->rcv_lower_limit >> 8, ioaddr + RCV_LOWER_LIMIT_REG);
outb(lp->rcv_upper_limit >> 8, ioaddr + RCV_UPPER_LIMIT_REG);
outb(lp->xmt_lower_limit >> 8, ioaddr + lp->xmt_lower_limit_reg);
outb(lp->xmt_upper_limit >> 8, ioaddr + lp->xmt_upper_limit_reg);
/* Enable the interrupt line. */
eepro_en_intline(ioaddr);
/* Switch back to Bank 0 */
eepro_sw2bank0(ioaddr);
/* Let RX and TX events to interrupt */
eepro_en_int(ioaddr);
/* clear all interrupts */
eepro_clear_int(ioaddr);
/* Initialize RCV */
outw(lp->rcv_lower_limit, ioaddr + RCV_BAR);
lp->rx_start = lp->rcv_lower_limit;
outw(lp->rcv_upper_limit | 0xfe, ioaddr + RCV_STOP);
/* Initialize XMT */
outw(lp->xmt_lower_limit, ioaddr + lp->xmt_bar);
lp->tx_start = lp->tx_end = lp->xmt_lower_limit;
lp->tx_last = 0;
/* Check for the i82595TX and i82595FX */
old8 = inb(ioaddr + 8);
outb(~old8, ioaddr + 8);
if ((temp_reg = inb(ioaddr + 8)) == old8) {
if (net_debug > 3)
printk(KERN_DEBUG "i82595 detected!\n");
lp->version = LAN595;
}
else {
lp->version = LAN595TX;
outb(old8, ioaddr + 8);
old9 = inb(ioaddr + 9);
if (irqMask==ee_FX_INT2IRQ) {
if (net_debug > 3) {
printk(KERN_DEBUG "IrqMask: %#x\n",irqMask);
printk(KERN_DEBUG "i82595FX detected!\n");
}
lp->version = LAN595FX;
outb(old9, ioaddr + 9);
if (dev->if_port != TPE) { /* Hopefully, this will fix the
problem of using Pentiums and
pro/10 w/ BNC. */
eepro_sw2bank2(ioaddr); /* be CAREFUL, BANK 2 now */
temp_reg = inb(ioaddr + REG13);
/* disable the full duplex mode since it is not
applicable with the 10Base2 cable. */
outb(temp_reg & ~(FDX | A_N_ENABLE), REG13);
eepro_sw2bank0(ioaddr); /* be CAREFUL, BANK 0 now */
}
}
else if (net_debug > 3) {
printk(KERN_DEBUG "temp_reg: %#x ~old9: %#x\n",temp_reg,((~old9)&0xff));
printk(KERN_DEBUG "i82595TX detected!\n");
}
}
eepro_sel_reset(ioaddr);
netif_start_queue(dev);
if (net_debug > 3)
printk(KERN_DEBUG "%s: exiting eepro_open routine.\n", dev->name);
/* enabling rx */
eepro_en_rx(ioaddr);
return 0;
}
static void eepro_tx_timeout (struct net_device *dev)
{
struct eepro_local *lp = netdev_priv(dev);
int ioaddr = dev->base_addr;
/* if (net_debug > 1) */
printk (KERN_ERR "%s: transmit timed out, %s?\n", dev->name,
"network cable problem");
/* This is not a duplicate. One message for the console,
one for the log file */
printk (KERN_DEBUG "%s: transmit timed out, %s?\n", dev->name,
"network cable problem");
eepro_complete_selreset(ioaddr);
}
static netdev_tx_t eepro_send_packet(struct sk_buff *skb,
struct net_device *dev)
{
struct eepro_local *lp = netdev_priv(dev);
unsigned long flags;
int ioaddr = dev->base_addr;
short length = skb->len;
if (net_debug > 5)
printk(KERN_DEBUG "%s: entering eepro_send_packet routine.\n", dev->name);
if (length < ETH_ZLEN) {
if (skb_padto(skb, ETH_ZLEN))
return NETDEV_TX_OK;
length = ETH_ZLEN;
}
netif_stop_queue (dev);
eepro_dis_int(ioaddr);
spin_lock_irqsave(&lp->lock, flags);
{
unsigned char *buf = skb->data;
if (hardware_send_packet(dev, buf, length))
/* we won't wake queue here because we're out of space */
dev->stats.tx_dropped++;
else {
dev->stats.tx_bytes+=skb->len;
netif_wake_queue(dev);
}
}
dev_kfree_skb (skb);
/* You might need to clean up and record Tx statistics here. */
/* dev->stats.tx_aborted_errors++; */
if (net_debug > 5)
printk(KERN_DEBUG "%s: exiting eepro_send_packet routine.\n", dev->name);
eepro_en_int(ioaddr);
spin_unlock_irqrestore(&lp->lock, flags);
return NETDEV_TX_OK;
}
/* The typical workload of the driver:
Handle the network interface interrupts. */
static irqreturn_t
eepro_interrupt(int irq, void *dev_id)
{
struct net_device *dev = dev_id;
struct eepro_local *lp;
int ioaddr, status, boguscount = 20;
int handled = 0;
lp = netdev_priv(dev);
spin_lock(&lp->lock);
if (net_debug > 5)
printk(KERN_DEBUG "%s: entering eepro_interrupt routine.\n", dev->name);
ioaddr = dev->base_addr;
while (((status = inb(ioaddr + STATUS_REG)) & (RX_INT|TX_INT)) && (boguscount--))
{
handled = 1;
if (status & RX_INT) {
if (net_debug > 4)
printk(KERN_DEBUG "%s: packet received interrupt.\n", dev->name);
eepro_dis_int(ioaddr);
/* Get the received packets */
eepro_ack_rx(ioaddr);
eepro_rx(dev);
eepro_en_int(ioaddr);
}
if (status & TX_INT) {
if (net_debug > 4)
printk(KERN_DEBUG "%s: packet transmit interrupt.\n", dev->name);
eepro_dis_int(ioaddr);
/* Process the status of transmitted packets */
eepro_ack_tx(ioaddr);
eepro_transmit_interrupt(dev);
eepro_en_int(ioaddr);
}
}
if (net_debug > 5)
printk(KERN_DEBUG "%s: exiting eepro_interrupt routine.\n", dev->name);
spin_unlock(&lp->lock);
return IRQ_RETVAL(handled);
}
static int eepro_close(struct net_device *dev)
{
struct eepro_local *lp = netdev_priv(dev);
int ioaddr = dev->base_addr;
short temp_reg;
netif_stop_queue(dev);
eepro_sw2bank1(ioaddr); /* Switch back to Bank 1 */
/* Disable the physical interrupt line. */
temp_reg = inb(ioaddr + REG1);
outb(temp_reg & 0x7f, ioaddr + REG1);
eepro_sw2bank0(ioaddr); /* Switch back to Bank 0 */
/* Flush the Tx and disable Rx. */
outb(STOP_RCV_CMD, ioaddr);
lp->tx_start = lp->tx_end = lp->xmt_lower_limit;
lp->tx_last = 0;
/* Mask all the interrupts. */
eepro_dis_int(ioaddr);
/* clear all interrupts */
eepro_clear_int(ioaddr);
/* Reset the 82595 */
eepro_reset(ioaddr);
/* release the interrupt */
free_irq(dev->irq, dev);
/* Update the statistics here. What statistics? */
return 0;
}
/* Set or clear the multicast filter for this adaptor.
*/
static void
set_multicast_list(struct net_device *dev)
{
struct eepro_local *lp = netdev_priv(dev);
short ioaddr = dev->base_addr;
unsigned short mode;
struct netdev_hw_addr *ha;
int mc_count = netdev_mc_count(dev);
if (dev->flags&(IFF_ALLMULTI|IFF_PROMISC) || mc_count > 63)
{
eepro_sw2bank2(ioaddr); /* be CAREFUL, BANK 2 now */
mode = inb(ioaddr + REG2);
outb(mode | PRMSC_Mode, ioaddr + REG2);
mode = inb(ioaddr + REG3);
outb(mode, ioaddr + REG3); /* writing reg. 3 to complete the update */
eepro_sw2bank0(ioaddr); /* Return to BANK 0 now */
}
else if (mc_count == 0)
{
eepro_sw2bank2(ioaddr); /* be CAREFUL, BANK 2 now */
mode = inb(ioaddr + REG2);
outb(mode & 0xd6, ioaddr + REG2); /* Turn off Multi-IA and PRMSC_Mode bits */
mode = inb(ioaddr + REG3);
outb(mode, ioaddr + REG3); /* writing reg. 3 to complete the update */
eepro_sw2bank0(ioaddr); /* Return to BANK 0 now */
}
else
{
unsigned short status, *eaddrs;
int i, boguscount = 0;
/* Disable RX and TX interrupts. Necessary to avoid
corruption of the HOST_ADDRESS_REG by interrupt
service routines. */
eepro_dis_int(ioaddr);
eepro_sw2bank2(ioaddr); /* be CAREFUL, BANK 2 now */
mode = inb(ioaddr + REG2);
outb(mode | Multi_IA, ioaddr + REG2);
mode = inb(ioaddr + REG3);
outb(mode, ioaddr + REG3); /* writing reg. 3 to complete the update */
eepro_sw2bank0(ioaddr); /* Return to BANK 0 now */
outw(lp->tx_end, ioaddr + HOST_ADDRESS_REG);
outw(MC_SETUP, ioaddr + IO_PORT);
outw(0, ioaddr + IO_PORT);
outw(0, ioaddr + IO_PORT);
outw(6 * (mc_count + 1), ioaddr + IO_PORT);
netdev_for_each_mc_addr(ha, dev) {
eaddrs = (unsigned short *) ha->addr;
outw(*eaddrs++, ioaddr + IO_PORT);
outw(*eaddrs++, ioaddr + IO_PORT);
outw(*eaddrs++, ioaddr + IO_PORT);
}
eaddrs = (unsigned short *) dev->dev_addr;
outw(eaddrs[0], ioaddr + IO_PORT);
outw(eaddrs[1], ioaddr + IO_PORT);
outw(eaddrs[2], ioaddr + IO_PORT);
outw(lp->tx_end, ioaddr + lp->xmt_bar);
outb(MC_SETUP, ioaddr);
/* Update the transmit queue */
i = lp->tx_end + XMT_HEADER + 6 * (mc_count + 1);
if (lp->tx_start != lp->tx_end)
{
/* update the next address and the chain bit in the
last packet */
outw(lp->tx_last + XMT_CHAIN, ioaddr + HOST_ADDRESS_REG);
outw(i, ioaddr + IO_PORT);
outw(lp->tx_last + XMT_COUNT, ioaddr + HOST_ADDRESS_REG);
status = inw(ioaddr + IO_PORT);
outw(status | CHAIN_BIT, ioaddr + IO_PORT);
lp->tx_end = i ;
}
else {
lp->tx_start = lp->tx_end = i ;
}
/* Acknowledge that the MC setup is done */
do { /* We should be doing this in the eepro_interrupt()! */
SLOW_DOWN;
SLOW_DOWN;
if (inb(ioaddr + STATUS_REG) & 0x08)
{
i = inb(ioaddr);
outb(0x08, ioaddr + STATUS_REG);
if (i & 0x20) { /* command ABORTed */
printk(KERN_NOTICE "%s: multicast setup failed.\n",
dev->name);
break;
} else if ((i & 0x0f) == 0x03) { /* MC-Done */
printk(KERN_DEBUG "%s: set Rx mode to %d address%s.\n",
dev->name, mc_count,
mc_count > 1 ? "es":"");
break;
}
}
} while (++boguscount < 100);
/* Re-enable RX and TX interrupts */
eepro_en_int(ioaddr);
}
if (lp->eepro == LAN595FX_10ISA) {
eepro_complete_selreset(ioaddr);
}
else
eepro_en_rx(ioaddr);
}
/* The horrible routine to read a word from the serial EEPROM. */
/* IMPORTANT - the 82595 will be set to Bank 0 after the eeprom is read */
/* The delay between EEPROM clock transitions. */
#define eeprom_delay() { udelay(40); }
#define EE_READ_CMD (6 << 6)
static int
read_eeprom(int ioaddr, int location, struct net_device *dev)
{
int i;
unsigned short retval = 0;
struct eepro_local *lp = netdev_priv(dev);
short ee_addr = ioaddr + lp->eeprom_reg;
int read_cmd = location | EE_READ_CMD;
short ctrl_val = EECS ;
/* XXXX - black magic */
eepro_sw2bank1(ioaddr);
outb(0x00, ioaddr + STATUS_REG);
/* XXXX - black magic */
eepro_sw2bank2(ioaddr);
outb(ctrl_val, ee_addr);
/* Shift the read command bits out. */
for (i = 8; i >= 0; i--) {
short outval = (read_cmd & (1 << i)) ? ctrl_val | EEDI
: ctrl_val;
outb(outval, ee_addr);
outb(outval | EESK, ee_addr); /* EEPROM clock tick. */
eeprom_delay();
outb(outval, ee_addr); /* Finish EEPROM a clock tick. */
eeprom_delay();
}
outb(ctrl_val, ee_addr);
for (i = 16; i > 0; i--) {
outb(ctrl_val | EESK, ee_addr); eeprom_delay();
retval = (retval << 1) | ((inb(ee_addr) & EEDO) ? 1 : 0);
outb(ctrl_val, ee_addr); eeprom_delay();
}
/* Terminate the EEPROM access. */
ctrl_val &= ~EECS;
outb(ctrl_val | EESK, ee_addr);
eeprom_delay();
outb(ctrl_val, ee_addr);
eeprom_delay();
eepro_sw2bank0(ioaddr);
return retval;
}
static int
hardware_send_packet(struct net_device *dev, void *buf, short length)
{
struct eepro_local *lp = netdev_priv(dev);
short ioaddr = dev->base_addr;
unsigned status, tx_available, last, end;
if (net_debug > 5)
printk(KERN_DEBUG "%s: entering hardware_send_packet routine.\n", dev->name);
/* determine how much of the transmit buffer space is available */
if (lp->tx_end > lp->tx_start)
tx_available = lp->xmt_ram - (lp->tx_end - lp->tx_start);
else if (lp->tx_end < lp->tx_start)
tx_available = lp->tx_start - lp->tx_end;
else tx_available = lp->xmt_ram;
if (((((length + 3) >> 1) << 1) + 2*XMT_HEADER) >= tx_available) {
/* No space available ??? */
return 1;
}
last = lp->tx_end;
end = last + (((length + 3) >> 1) << 1) + XMT_HEADER;
if (end >= lp->xmt_upper_limit + 2) { /* the transmit buffer is wrapped around */
if ((lp->xmt_upper_limit + 2 - last) <= XMT_HEADER) {
/* Arrrr!!!, must keep the xmt header together,
several days were lost to chase this one down. */
last = lp->xmt_lower_limit;
end = last + (((length + 3) >> 1) << 1) + XMT_HEADER;
}
else end = lp->xmt_lower_limit + (end -
lp->xmt_upper_limit + 2);
}
outw(last, ioaddr + HOST_ADDRESS_REG);
outw(XMT_CMD, ioaddr + IO_PORT);
outw(0, ioaddr + IO_PORT);
outw(end, ioaddr + IO_PORT);
outw(length, ioaddr + IO_PORT);
if (lp->version == LAN595)
outsw(ioaddr + IO_PORT, buf, (length + 3) >> 1);
else { /* LAN595TX or LAN595FX, capable of 32-bit I/O processing */
unsigned short temp = inb(ioaddr + INT_MASK_REG);
outb(temp | IO_32_BIT, ioaddr + INT_MASK_REG);
outsl(ioaddr + IO_PORT_32_BIT, buf, (length + 3) >> 2);
outb(temp & ~(IO_32_BIT), ioaddr + INT_MASK_REG);
}
/* A dummy read to flush the DRAM write pipeline */
status = inw(ioaddr + IO_PORT);
if (lp->tx_start == lp->tx_end) {
outw(last, ioaddr + lp->xmt_bar);
outb(XMT_CMD, ioaddr);
lp->tx_start = last; /* I don't like to change tx_start here */
}
else {
/* update the next address and the chain bit in the
last packet */
if (lp->tx_end != last) {
outw(lp->tx_last + XMT_CHAIN, ioaddr + HOST_ADDRESS_REG);
outw(last, ioaddr + IO_PORT);
}
outw(lp->tx_last + XMT_COUNT, ioaddr + HOST_ADDRESS_REG);
status = inw(ioaddr + IO_PORT);
outw(status | CHAIN_BIT, ioaddr + IO_PORT);
/* Continue the transmit command */
outb(RESUME_XMT_CMD, ioaddr);
}
lp->tx_last = last;
lp->tx_end = end;
if (net_debug > 5)
printk(KERN_DEBUG "%s: exiting hardware_send_packet routine.\n", dev->name);
return 0;
}
static void
eepro_rx(struct net_device *dev)
{
struct eepro_local *lp = netdev_priv(dev);
short ioaddr = dev->base_addr;
short boguscount = 20;
short rcv_car = lp->rx_start;
unsigned rcv_event, rcv_status, rcv_next_frame, rcv_size;
if (net_debug > 5)
printk(KERN_DEBUG "%s: entering eepro_rx routine.\n", dev->name);
/* Set the read pointer to the start of the RCV */
outw(rcv_car, ioaddr + HOST_ADDRESS_REG);
rcv_event = inw(ioaddr + IO_PORT);
while (rcv_event == RCV_DONE) {
rcv_status = inw(ioaddr + IO_PORT);
rcv_next_frame = inw(ioaddr + IO_PORT);
rcv_size = inw(ioaddr + IO_PORT);
if ((rcv_status & (RX_OK | RX_ERROR)) == RX_OK) {
/* Malloc up new buffer. */
struct sk_buff *skb;
dev->stats.rx_bytes+=rcv_size;
rcv_size &= 0x3fff;
skb = netdev_alloc_skb(dev, rcv_size + 5);
if (skb == NULL) {
printk(KERN_NOTICE "%s: Memory squeeze, dropping packet.\n", dev->name);
dev->stats.rx_dropped++;
rcv_car = lp->rx_start + RCV_HEADER + rcv_size;
lp->rx_start = rcv_next_frame;
outw(rcv_next_frame, ioaddr + HOST_ADDRESS_REG);
break;
}
skb_reserve(skb,2);
if (lp->version == LAN595)
insw(ioaddr+IO_PORT, skb_put(skb,rcv_size), (rcv_size + 3) >> 1);
else { /* LAN595TX or LAN595FX, capable of 32-bit I/O processing */
unsigned short temp = inb(ioaddr + INT_MASK_REG);
outb(temp | IO_32_BIT, ioaddr + INT_MASK_REG);
insl(ioaddr+IO_PORT_32_BIT, skb_put(skb,rcv_size),
(rcv_size + 3) >> 2);
outb(temp & ~(IO_32_BIT), ioaddr + INT_MASK_REG);
}
skb->protocol = eth_type_trans(skb,dev);
netif_rx(skb);
dev->stats.rx_packets++;
}
else { /* Not sure will ever reach here,
I set the 595 to discard bad received frames */
dev->stats.rx_errors++;
if (rcv_status & 0x0100)
dev->stats.rx_over_errors++;
else if (rcv_status & 0x0400)
dev->stats.rx_frame_errors++;
else if (rcv_status & 0x0800)
dev->stats.rx_crc_errors++;
printk(KERN_DEBUG "%s: event = %#x, status = %#x, next = %#x, size = %#x\n",
dev->name, rcv_event, rcv_status, rcv_next_frame, rcv_size);
}
if (rcv_status & 0x1000)
dev->stats.rx_length_errors++;
rcv_car = lp->rx_start + RCV_HEADER + rcv_size;
lp->rx_start = rcv_next_frame;
if (--boguscount == 0)
break;
outw(rcv_next_frame, ioaddr + HOST_ADDRESS_REG);
rcv_event = inw(ioaddr + IO_PORT);
}
if (rcv_car == 0)
rcv_car = lp->rcv_upper_limit | 0xff;
outw(rcv_car - 1, ioaddr + RCV_STOP);
if (net_debug > 5)
printk(KERN_DEBUG "%s: exiting eepro_rx routine.\n", dev->name);
}
static void
eepro_transmit_interrupt(struct net_device *dev)
{
struct eepro_local *lp = netdev_priv(dev);
short ioaddr = dev->base_addr;
short boguscount = 25;
short xmt_status;
while ((lp->tx_start != lp->tx_end) && boguscount--) {
outw(lp->tx_start, ioaddr + HOST_ADDRESS_REG);
xmt_status = inw(ioaddr+IO_PORT);
if (!(xmt_status & TX_DONE_BIT))
break;
xmt_status = inw(ioaddr+IO_PORT);
lp->tx_start = inw(ioaddr+IO_PORT);
netif_wake_queue (dev);
if (xmt_status & TX_OK)
dev->stats.tx_packets++;
else {
dev->stats.tx_errors++;
if (xmt_status & 0x0400) {
dev->stats.tx_carrier_errors++;
printk(KERN_DEBUG "%s: carrier error\n",
dev->name);
printk(KERN_DEBUG "%s: XMT status = %#x\n",
dev->name, xmt_status);
}
else {
printk(KERN_DEBUG "%s: XMT status = %#x\n",
dev->name, xmt_status);
printk(KERN_DEBUG "%s: XMT status = %#x\n",
dev->name, xmt_status);
}
}
if (xmt_status & 0x000f) {
dev->stats.collisions += (xmt_status & 0x000f);
}
if ((xmt_status & 0x0040) == 0x0) {
dev->stats.tx_heartbeat_errors++;
}
}
}
static int eepro_ethtool_get_settings(struct net_device *dev,
struct ethtool_cmd *cmd)
{
struct eepro_local *lp = netdev_priv(dev);
cmd->supported = SUPPORTED_10baseT_Half |
SUPPORTED_10baseT_Full |
SUPPORTED_Autoneg;
cmd->advertising = ADVERTISED_10baseT_Half |
ADVERTISED_10baseT_Full |
ADVERTISED_Autoneg;
if (GetBit(lp->word[5], ee_PortTPE)) {
cmd->supported |= SUPPORTED_TP;
cmd->advertising |= ADVERTISED_TP;
}
if (GetBit(lp->word[5], ee_PortBNC)) {
cmd->supported |= SUPPORTED_BNC;
cmd->advertising |= ADVERTISED_BNC;
}
if (GetBit(lp->word[5], ee_PortAUI)) {
cmd->supported |= SUPPORTED_AUI;
cmd->advertising |= ADVERTISED_AUI;
}
ethtool_cmd_speed_set(cmd, SPEED_10);
if (dev->if_port == TPE && lp->word[1] & ee_Duplex) {
cmd->duplex = DUPLEX_FULL;
}
else {
cmd->duplex = DUPLEX_HALF;
}
cmd->port = dev->if_port;
cmd->phy_address = dev->base_addr;
cmd->transceiver = XCVR_INTERNAL;
if (lp->word[0] & ee_AutoNeg) {
cmd->autoneg = 1;
}
return 0;
}
static void eepro_ethtool_get_drvinfo(struct net_device *dev,
struct ethtool_drvinfo *drvinfo)
{
strlcpy(drvinfo->driver, DRV_NAME, sizeof(drvinfo->driver));
strlcpy(drvinfo->version, DRV_VERSION, sizeof(drvinfo->version));
snprintf(drvinfo->bus_info, sizeof(drvinfo->bus_info),
"ISA 0x%lx", dev->base_addr);
}
static const struct ethtool_ops eepro_ethtool_ops = {
.get_settings = eepro_ethtool_get_settings,
.get_drvinfo = eepro_ethtool_get_drvinfo,
};
#ifdef MODULE
#define MAX_EEPRO 8
static struct net_device *dev_eepro[MAX_EEPRO];
static int io[MAX_EEPRO] = {
[0 ... MAX_EEPRO-1] = -1
};
static int irq[MAX_EEPRO];
static int mem[MAX_EEPRO] = { /* Size of the rx buffer in KB */
[0 ... MAX_EEPRO-1] = RCV_DEFAULT_RAM/1024
};
static int autodetect;
static int n_eepro;
/* For linux 2.1.xx */
MODULE_AUTHOR("Pascal Dupuis and others");
MODULE_DESCRIPTION("Intel i82595 ISA EtherExpressPro10/10+ driver");
MODULE_LICENSE("GPL");
module_param_array(io, int, NULL, 0);
module_param_array(irq, int, NULL, 0);
module_param_array(mem, int, NULL, 0);
module_param(autodetect, int, 0);
MODULE_PARM_DESC(io, "EtherExpress Pro/10 I/O base address(es)");
MODULE_PARM_DESC(irq, "EtherExpress Pro/10 IRQ number(s)");
MODULE_PARM_DESC(mem, "EtherExpress Pro/10 Rx buffer size(es) in kB (3-29)");
MODULE_PARM_DESC(autodetect, "EtherExpress Pro/10 force board(s) detection (0-1)");
int __init init_module(void)
{
struct net_device *dev;
int i;
if (io[0] == -1 && autodetect == 0) {
printk(KERN_WARNING "eepro_init_module: Probe is very dangerous in ISA boards!\n");
printk(KERN_WARNING "eepro_init_module: Please add \"autodetect=1\" to force probe\n");
return -ENODEV;
}
else if (autodetect) {
/* if autodetect is set then we must force detection */
for (i = 0; i < MAX_EEPRO; i++) {
io[i] = 0;
}
printk(KERN_INFO "eepro_init_module: Auto-detecting boards (May God protect us...)\n");
}
for (i = 0; i < MAX_EEPRO && io[i] != -1; i++) {
dev = alloc_etherdev(sizeof(struct eepro_local));
if (!dev)
break;
dev->mem_end = mem[i];
dev->base_addr = io[i];
dev->irq = irq[i];
if (do_eepro_probe(dev) == 0) {
dev_eepro[n_eepro++] = dev;
continue;
}
free_netdev(dev);
break;
}
if (n_eepro)
printk(KERN_INFO "%s", version);
return n_eepro ? 0 : -ENODEV;
}
void __exit
cleanup_module(void)
{
int i;
for (i=0; i<n_eepro; i++) {
struct net_device *dev = dev_eepro[i];
unregister_netdev(dev);
release_region(dev->base_addr, EEPRO_IO_EXTENT);
free_netdev(dev);
}
}
#endif /* MODULE */
/* Intel EtherExpress 16 device driver for Linux
*
* Written by John Sullivan, 1995
* based on original code by Donald Becker, with changes by
* Alan Cox and Pauline Middelink.
*
* Support for 8-bit mode by Zoltan Szilagyi <zoltans@cs.arizona.edu>
*
* Many modifications, and currently maintained, by
* Philip Blundell <philb@gnu.org>
* Added the Compaq LTE Alan Cox <alan@lxorguk.ukuu.org.uk>
* Added MCA support Adam Fritzler (now deleted)
*
* Note - this driver is experimental still - it has problems on faster
* machines. Someone needs to sit down and go through it line by line with
* a databook...
*/
/* The EtherExpress 16 is a fairly simple card, based on a shared-memory
* design using the i82586 Ethernet coprocessor. It bears no relationship,
* as far as I know, to the similarly-named "EtherExpress Pro" range.
*
* Historically, Linux support for these cards has been very bad. However,
* things seem to be getting better slowly.
*/
/* If your card is confused about what sort of interface it has (eg it
* persistently reports "10baseT" when none is fitted), running 'SOFTSET /BART'
* or 'SOFTSET /LISA' from DOS seems to help.
*/
/* Here's the scoop on memory mapping.
*
* There are three ways to access EtherExpress card memory: either using the
* shared-memory mapping, or using PIO through the dataport, or using PIO
* through the "shadow memory" ports.
*
* The shadow memory system works by having the card map some of its memory
* as follows:
*
* (the low five bits of the SMPTR are ignored)
*
* base+0x4000..400f memory at SMPTR+0..15
* base+0x8000..800f memory at SMPTR+16..31
* base+0xc000..c007 dubious stuff (memory at SMPTR+16..23 apparently)
* base+0xc008..c00f memory at 0x0008..0x000f
*
* This last set (the one at c008) is particularly handy because the SCB
* lives at 0x0008. So that set of ports gives us easy random access to data
* in the SCB without having to mess around setting up pointers and the like.
* We always use this method to access the SCB (via the scb_xx() functions).
*
* Dataport access works by aiming the appropriate (read or write) pointer
* at the first address you're interested in, and then reading or writing from
* the dataport. The pointers auto-increment after each transfer. We use
* this for data transfer.
*
* We don't use the shared-memory system because it allegedly doesn't work on
* all cards, and because it's a bit more prone to go wrong (it's one more
* thing to configure...).
*/
/* Known bugs:
*
* - The card seems to want to give us two interrupts every time something
* happens, where just one would be better.
*/
/*
*
* Note by Zoltan Szilagyi 10-12-96:
*
* I've succeeded in eliminating the "CU wedged" messages, and hence the
* lockups, which were only occurring with cards running in 8-bit mode ("force
* 8-bit operation" in Intel's SoftSet utility). This version of the driver
* sets the 82586 and the ASIC to 8-bit mode at startup; it also stops the
* CU before submitting a packet for transmission, and then restarts it as soon
* as the process of handing the packet is complete. This is definitely an
* unnecessary slowdown if the card is running in 16-bit mode; therefore one
* should detect 16-bit vs 8-bit mode from the EEPROM settings and act
* accordingly. In 8-bit mode with this bugfix I'm getting about 150 K/s for
* ftp's, which is significantly better than I get in DOS, so the overhead of
* stopping and restarting the CU with each transmit is not prohibitive in
* practice.
*
* Update by David Woodhouse 11/5/99:
*
* I've seen "CU wedged" messages in 16-bit mode, on the Alpha architecture.
* I assume that this is because 16-bit accesses are actually handled as two
* 8-bit accesses.
*/
#ifdef __alpha__
#define LOCKUP16 1
#endif
#ifndef LOCKUP16
#define LOCKUP16 0
#endif
#include <linux/module.h>
#include <linux/kernel.h>
#include <linux/types.h>
#include <linux/fcntl.h>
#include <linux/interrupt.h>
#include <linux/ioport.h>
#include <linux/string.h>
#include <linux/in.h>
#include <linux/delay.h>
#include <linux/errno.h>
#include <linux/init.h>
#include <linux/netdevice.h>
#include <linux/etherdevice.h>
#include <linux/skbuff.h>
#include <linux/spinlock.h>
#include <linux/bitops.h>
#include <linux/jiffies.h>
#include <asm/io.h>
#include <asm/irq.h>
#ifndef NET_DEBUG
#define NET_DEBUG 4
#endif
#include "eexpress.h"
#define EEXP_IO_EXTENT 16
/*
* Private data declarations
*/
struct net_local
{
unsigned long last_tx; /* jiffies when last transmit started */
unsigned long init_time; /* jiffies when eexp_hw_init586 called */
unsigned short rx_first; /* first rx buf, same as RX_BUF_START */
unsigned short rx_last; /* last rx buf */
unsigned short rx_ptr; /* first rx buf to look at */
unsigned short tx_head; /* next free tx buf */
unsigned short tx_reap; /* first in-use tx buf */
unsigned short tx_tail; /* previous tx buf to tx_head */
unsigned short tx_link; /* last known-executing tx buf */
unsigned short last_tx_restart; /* set to tx_link when we
restart the CU */
unsigned char started;
unsigned short rx_buf_start;
unsigned short rx_buf_end;
unsigned short num_tx_bufs;
unsigned short num_rx_bufs;
unsigned char width; /* 0 for 16bit, 1 for 8bit */
unsigned char was_promisc;
unsigned char old_mc_count;
spinlock_t lock;
};
/* This is the code and data that is downloaded to the EtherExpress card's
* memory at boot time.
*/
static unsigned short start_code[] = {
/* 0x0000 */
0x0001, /* ISCP: busy - cleared after reset */
0x0008,0x0000,0x0000, /* offset,address (lo,hi) of SCB */
0x0000,0x0000, /* SCB: status, commands */
0x0000,0x0000, /* links to first command block,
first receive descriptor */
0x0000,0x0000, /* CRC error, alignment error counts */
0x0000,0x0000, /* out of resources, overrun error counts */
0x0000,0x0000, /* pad */
0x0000,0x0000,
/* 0x20 -- start of 82586 CU program */
#define CONF_LINK 0x20
0x0000,Cmd_Config,
0x0032, /* link to next command */
0x080c, /* 12 bytes follow : fifo threshold=8 */
0x2e40, /* don't rx bad frames
* SRDY/ARDY => ext. sync. : preamble len=8
* take addresses from data buffers
* 6 bytes/address
*/
0x6000, /* default backoff method & priority
* interframe spacing = 0x60 */
0xf200, /* slot time=0x200
* max collision retry = 0xf */
#define CONF_PROMISC 0x2e
0x0000, /* no HDLC : normal CRC : enable broadcast
* disable promiscuous/multicast modes */
0x003c, /* minimum frame length = 60 octets) */
0x0000,Cmd_SetAddr,
0x003e, /* link to next command */
#define CONF_HWADDR 0x38
0x0000,0x0000,0x0000, /* hardware address placed here */
0x0000,Cmd_MCast,
0x0076, /* link to next command */
#define CONF_NR_MULTICAST 0x44
0x0000, /* number of bytes in multicast address(es) */
#define CONF_MULTICAST 0x46
0x0000, 0x0000, 0x0000, /* some addresses */
0x0000, 0x0000, 0x0000,
0x0000, 0x0000, 0x0000,
0x0000, 0x0000, 0x0000,
0x0000, 0x0000, 0x0000,
0x0000, 0x0000, 0x0000,
0x0000, 0x0000, 0x0000,
0x0000, 0x0000, 0x0000,
#define CONF_DIAG_RESULT 0x76
0x0000, Cmd_Diag,
0x007c, /* link to next command */
0x0000,Cmd_TDR|Cmd_INT,
0x0084,
#define CONF_TDR_RESULT 0x82
0x0000,
0x0000,Cmd_END|Cmd_Nop, /* end of configure sequence */
0x0084 /* dummy link */
};
/* maps irq number to EtherExpress magic value */
static char irqrmap[] = { 0,0,1,2,3,4,0,0,0,1,5,6,0,0,0,0 };
/*
* Prototypes for Linux interface
*/
static int eexp_open(struct net_device *dev);
static int eexp_close(struct net_device *dev);
static void eexp_timeout(struct net_device *dev);
static netdev_tx_t eexp_xmit(struct sk_buff *buf,
struct net_device *dev);
static irqreturn_t eexp_irq(int irq, void *dev_addr);
static void eexp_set_multicast(struct net_device *dev);
/*
* Prototypes for hardware access functions
*/
static void eexp_hw_rx_pio(struct net_device *dev);
static void eexp_hw_tx_pio(struct net_device *dev, unsigned short *buf,
unsigned short len);
static int eexp_hw_probe(struct net_device *dev,unsigned short ioaddr);
static unsigned short eexp_hw_readeeprom(unsigned short ioaddr,
unsigned char location);
static unsigned short eexp_hw_lasttxstat(struct net_device *dev);
static void eexp_hw_txrestart(struct net_device *dev);
static void eexp_hw_txinit (struct net_device *dev);
static void eexp_hw_rxinit (struct net_device *dev);
static void eexp_hw_init586 (struct net_device *dev);
static void eexp_setup_filter (struct net_device *dev);
static char *eexp_ifmap[]={"AUI", "BNC", "RJ45"};
enum eexp_iftype {AUI=0, BNC=1, TPE=2};
#define STARTED_RU 2
#define STARTED_CU 1
/*
* Primitive hardware access functions.
*/
static inline unsigned short scb_status(struct net_device *dev)
{
return inw(dev->base_addr + 0xc008);
}
static inline unsigned short scb_rdcmd(struct net_device *dev)
{
return inw(dev->base_addr + 0xc00a);
}
static inline void scb_command(struct net_device *dev, unsigned short cmd)
{
outw(cmd, dev->base_addr + 0xc00a);
}
static inline void scb_wrcbl(struct net_device *dev, unsigned short val)
{
outw(val, dev->base_addr + 0xc00c);
}
static inline void scb_wrrfa(struct net_device *dev, unsigned short val)
{
outw(val, dev->base_addr + 0xc00e);
}
static inline void set_loopback(struct net_device *dev)
{
outb(inb(dev->base_addr + Config) | 2, dev->base_addr + Config);
}
static inline void clear_loopback(struct net_device *dev)
{
outb(inb(dev->base_addr + Config) & ~2, dev->base_addr + Config);
}
static inline unsigned short int SHADOW(short int addr)
{
addr &= 0x1f;
if (addr > 0xf) addr += 0x3ff0;
return addr + 0x4000;
}
/*
* Linux interface
*/
/*
* checks for presence of EtherExpress card
*/
static int __init do_express_probe(struct net_device *dev)
{
unsigned short *port;
static unsigned short ports[] = { 0x240,0x300,0x310,0x270,0x320,0x340,0 };
unsigned short ioaddr = dev->base_addr;
int dev_irq = dev->irq;
int err;
dev->if_port = 0xff; /* not set */
if (ioaddr&0xfe00) {
if (!request_region(ioaddr, EEXP_IO_EXTENT, "EtherExpress"))
return -EBUSY;
err = eexp_hw_probe(dev,ioaddr);
release_region(ioaddr, EEXP_IO_EXTENT);
return err;
} else if (ioaddr)
return -ENXIO;
for (port=&ports[0] ; *port ; port++ )
{
unsigned short sum = 0;
int i;
if (!request_region(*port, EEXP_IO_EXTENT, "EtherExpress"))
continue;
for ( i=0 ; i<4 ; i++ )
{
unsigned short t;
t = inb(*port + ID_PORT);
sum |= (t>>4) << ((t & 0x03)<<2);
}
if (sum==0xbaba && !eexp_hw_probe(dev,*port)) {
release_region(*port, EEXP_IO_EXTENT);
return 0;
}
release_region(*port, EEXP_IO_EXTENT);
dev->irq = dev_irq;
}
return -ENODEV;
}
#ifndef MODULE
struct net_device * __init express_probe(int unit)
{
struct net_device *dev = alloc_etherdev(sizeof(struct net_local));
int err;
if (!dev)
return ERR_PTR(-ENOMEM);
sprintf(dev->name, "eth%d", unit);
netdev_boot_setup_check(dev);
err = do_express_probe(dev);
if (!err)
return dev;
free_netdev(dev);
return ERR_PTR(err);
}
#endif
/*
* open and initialize the adapter, ready for use
*/
static int eexp_open(struct net_device *dev)
{
int ret;
unsigned short ioaddr = dev->base_addr;
struct net_local *lp = netdev_priv(dev);
#if NET_DEBUG > 6
printk(KERN_DEBUG "%s: eexp_open()\n", dev->name);
#endif
if (!dev->irq || !irqrmap[dev->irq])
return -ENXIO;
ret = request_irq(dev->irq, eexp_irq, 0, dev->name, dev);
if (ret)
return ret;
if (!request_region(ioaddr, EEXP_IO_EXTENT, "EtherExpress")) {
printk(KERN_WARNING "EtherExpress io port %x, is busy.\n"
, ioaddr);
goto err_out1;
}
if (!request_region(ioaddr+0x4000, EEXP_IO_EXTENT, "EtherExpress shadow")) {
printk(KERN_WARNING "EtherExpress io port %x, is busy.\n"
, ioaddr+0x4000);
goto err_out2;
}
if (!request_region(ioaddr+0x8000, EEXP_IO_EXTENT, "EtherExpress shadow")) {
printk(KERN_WARNING "EtherExpress io port %x, is busy.\n"
, ioaddr+0x8000);
goto err_out3;
}
if (!request_region(ioaddr+0xc000, EEXP_IO_EXTENT, "EtherExpress shadow")) {
printk(KERN_WARNING "EtherExpress io port %x, is busy.\n"
, ioaddr+0xc000);
goto err_out4;
}
if (lp->width) {
printk("%s: forcing ASIC to 8-bit mode\n", dev->name);
outb(inb(dev->base_addr+Config)&~4, dev->base_addr+Config);
}
eexp_hw_init586(dev);
netif_start_queue(dev);
#if NET_DEBUG > 6
printk(KERN_DEBUG "%s: leaving eexp_open()\n", dev->name);
#endif
return 0;
err_out4:
release_region(ioaddr+0x8000, EEXP_IO_EXTENT);
err_out3:
release_region(ioaddr+0x4000, EEXP_IO_EXTENT);
err_out2:
release_region(ioaddr, EEXP_IO_EXTENT);
err_out1:
free_irq(dev->irq, dev);
return -EBUSY;
}
/*
* close and disable the interface, leaving the 586 in reset.
*/
static int eexp_close(struct net_device *dev)
{
unsigned short ioaddr = dev->base_addr;
struct net_local *lp = netdev_priv(dev);
int irq = dev->irq;
netif_stop_queue(dev);
outb(SIRQ_dis|irqrmap[irq],ioaddr+SET_IRQ);
lp->started = 0;
scb_command(dev, SCB_CUsuspend|SCB_RUsuspend);
outb(0,ioaddr+SIGNAL_CA);
free_irq(irq,dev);
outb(i586_RST,ioaddr+EEPROM_Ctrl);
release_region(ioaddr, EEXP_IO_EXTENT);
release_region(ioaddr+0x4000, 16);
release_region(ioaddr+0x8000, 16);
release_region(ioaddr+0xc000, 16);
return 0;
}
/*
* This gets called when a higher level thinks we are broken. Check that
* nothing has become jammed in the CU.
*/
static void unstick_cu(struct net_device *dev)
{
struct net_local *lp = netdev_priv(dev);
unsigned short ioaddr = dev->base_addr;
if (lp->started)
{
if (time_after(jiffies, dev_trans_start(dev) + HZ/2))
{
if (lp->tx_link==lp->last_tx_restart)
{
unsigned short boguscount=200,rsst;
printk(KERN_WARNING "%s: Retransmit timed out, status %04x, resetting...\n",
dev->name, scb_status(dev));
eexp_hw_txinit(dev);
lp->last_tx_restart = 0;
scb_wrcbl(dev, lp->tx_link);
scb_command(dev, SCB_CUstart);
outb(0,ioaddr+SIGNAL_CA);
while (!SCB_complete(rsst=scb_status(dev)))
{
if (!--boguscount)
{
boguscount=200;
printk(KERN_WARNING "%s: Reset timed out status %04x, retrying...\n",
dev->name,rsst);
scb_wrcbl(dev, lp->tx_link);
scb_command(dev, SCB_CUstart);
outb(0,ioaddr+SIGNAL_CA);
}
}
netif_wake_queue(dev);
}
else
{
unsigned short status = scb_status(dev);
if (SCB_CUdead(status))
{
unsigned short txstatus = eexp_hw_lasttxstat(dev);
printk(KERN_WARNING "%s: Transmit timed out, CU not active status %04x %04x, restarting...\n",
dev->name, status, txstatus);
eexp_hw_txrestart(dev);
}
else
{
unsigned short txstatus = eexp_hw_lasttxstat(dev);
if (netif_queue_stopped(dev) && !txstatus)
{
printk(KERN_WARNING "%s: CU wedged, status %04x %04x, resetting...\n",
dev->name,status,txstatus);
eexp_hw_init586(dev);
netif_wake_queue(dev);
}
else
{
printk(KERN_WARNING "%s: transmit timed out\n", dev->name);
}
}
}
}
}
else
{
if (time_after(jiffies, lp->init_time + 10))
{
unsigned short status = scb_status(dev);
printk(KERN_WARNING "%s: i82586 startup timed out, status %04x, resetting...\n",
dev->name, status);
eexp_hw_init586(dev);
netif_wake_queue(dev);
}
}
}
static void eexp_timeout(struct net_device *dev)
{
struct net_local *lp = netdev_priv(dev);
#ifdef CONFIG_SMP
unsigned long flags;
#endif
int status;
disable_irq(dev->irq);
/*
* Best would be to use synchronize_irq(); spin_lock() here
* lets make it work first..
*/
#ifdef CONFIG_SMP
spin_lock_irqsave(&lp->lock, flags);
#endif
status = scb_status(dev);
unstick_cu(dev);
printk(KERN_INFO "%s: transmit timed out, %s?\n", dev->name,
(SCB_complete(status)?"lost interrupt":
"board on fire"));
dev->stats.tx_errors++;
lp->last_tx = jiffies;
if (!SCB_complete(status)) {
scb_command(dev, SCB_CUabort);
outb(0,dev->base_addr+SIGNAL_CA);
}
netif_wake_queue(dev);
#ifdef CONFIG_SMP
spin_unlock_irqrestore(&lp->lock, flags);
#endif
}
/*
* Called to transmit a packet, or to allow us to right ourselves
* if the kernel thinks we've died.
*/
static netdev_tx_t eexp_xmit(struct sk_buff *buf, struct net_device *dev)
{
short length = buf->len;
#ifdef CONFIG_SMP
struct net_local *lp = netdev_priv(dev);
unsigned long flags;
#endif
#if NET_DEBUG > 6
printk(KERN_DEBUG "%s: eexp_xmit()\n", dev->name);
#endif
if (buf->len < ETH_ZLEN) {
if (skb_padto(buf, ETH_ZLEN))
return NETDEV_TX_OK;
length = ETH_ZLEN;
}
disable_irq(dev->irq);
/*
* Best would be to use synchronize_irq(); spin_lock() here
* lets make it work first..
*/
#ifdef CONFIG_SMP
spin_lock_irqsave(&lp->lock, flags);
#endif
{
unsigned short *data = (unsigned short *)buf->data;
dev->stats.tx_bytes += length;
eexp_hw_tx_pio(dev,data,length);
}
dev_kfree_skb(buf);
#ifdef CONFIG_SMP
spin_unlock_irqrestore(&lp->lock, flags);
#endif
enable_irq(dev->irq);
return NETDEV_TX_OK;
}
/*
* Handle an EtherExpress interrupt
* If we've finished initializing, start the RU and CU up.
* If we've already started, reap tx buffers, handle any received packets,
* check to make sure we've not become wedged.
*/
static unsigned short eexp_start_irq(struct net_device *dev,
unsigned short status)
{
unsigned short ack_cmd = SCB_ack(status);
struct net_local *lp = netdev_priv(dev);
unsigned short ioaddr = dev->base_addr;
if ((dev->flags & IFF_UP) && !(lp->started & STARTED_CU)) {
short diag_status, tdr_status;
while (SCB_CUstat(status)==2)
status = scb_status(dev);
#if NET_DEBUG > 4
printk("%s: CU went non-active (status %04x)\n",
dev->name, status);
#endif
outw(CONF_DIAG_RESULT & ~31, ioaddr + SM_PTR);
diag_status = inw(ioaddr + SHADOW(CONF_DIAG_RESULT));
if (diag_status & 1<<11) {
printk(KERN_WARNING "%s: 82586 failed self-test\n",
dev->name);
} else if (!(diag_status & 1<<13)) {
printk(KERN_WARNING "%s: 82586 self-test failed to complete\n", dev->name);
}
outw(CONF_TDR_RESULT & ~31, ioaddr + SM_PTR);
tdr_status = inw(ioaddr + SHADOW(CONF_TDR_RESULT));
if (tdr_status & (TDR_SHORT|TDR_OPEN)) {
printk(KERN_WARNING "%s: TDR reports cable %s at %d tick%s\n", dev->name, (tdr_status & TDR_SHORT)?"short":"broken", tdr_status & TDR_TIME, ((tdr_status & TDR_TIME) != 1) ? "s" : "");
}
else if (tdr_status & TDR_XCVRPROBLEM) {
printk(KERN_WARNING "%s: TDR reports transceiver problem\n", dev->name);
}
else if (tdr_status & TDR_LINKOK) {
#if NET_DEBUG > 4
printk(KERN_DEBUG "%s: TDR reports link OK\n", dev->name);
#endif
} else {
printk("%s: TDR is ga-ga (status %04x)\n", dev->name,
tdr_status);
}
lp->started |= STARTED_CU;
scb_wrcbl(dev, lp->tx_link);
/* if the RU isn't running, start it now */
if (!(lp->started & STARTED_RU)) {
ack_cmd |= SCB_RUstart;
scb_wrrfa(dev, lp->rx_buf_start);
lp->rx_ptr = lp->rx_buf_start;
lp->started |= STARTED_RU;
}
ack_cmd |= SCB_CUstart | 0x2000;
}
if ((dev->flags & IFF_UP) && !(lp->started & STARTED_RU) && SCB_RUstat(status)==4)
lp->started|=STARTED_RU;
return ack_cmd;
}
static void eexp_cmd_clear(struct net_device *dev)
{
unsigned long int oldtime = jiffies;
while (scb_rdcmd(dev) && (time_before(jiffies, oldtime + 10)));
if (scb_rdcmd(dev)) {
printk("%s: command didn't clear\n", dev->name);
}
}
static irqreturn_t eexp_irq(int dummy, void *dev_info)
{
struct net_device *dev = dev_info;
struct net_local *lp;
unsigned short ioaddr,status,ack_cmd;
unsigned short old_read_ptr, old_write_ptr;
lp = netdev_priv(dev);
ioaddr = dev->base_addr;
spin_lock(&lp->lock);
old_read_ptr = inw(ioaddr+READ_PTR);
old_write_ptr = inw(ioaddr+WRITE_PTR);
outb(SIRQ_dis|irqrmap[dev->irq], ioaddr+SET_IRQ);
status = scb_status(dev);
#if NET_DEBUG > 4
printk(KERN_DEBUG "%s: interrupt (status %x)\n", dev->name, status);
#endif
if (lp->started == (STARTED_CU | STARTED_RU)) {
do {
eexp_cmd_clear(dev);
ack_cmd = SCB_ack(status);
scb_command(dev, ack_cmd);
outb(0,ioaddr+SIGNAL_CA);
eexp_cmd_clear(dev);
if (SCB_complete(status)) {
if (!eexp_hw_lasttxstat(dev)) {
printk("%s: tx interrupt but no status\n", dev->name);
}
}
if (SCB_rxdframe(status))
eexp_hw_rx_pio(dev);
status = scb_status(dev);
} while (status & 0xc000);
if (SCB_RUdead(status))
{
printk(KERN_WARNING "%s: RU stopped: status %04x\n",
dev->name,status);
#if 0
printk(KERN_WARNING "%s: cur_rfd=%04x, cur_rbd=%04x\n", dev->name, lp->cur_rfd, lp->cur_rbd);
outw(lp->cur_rfd, ioaddr+READ_PTR);
printk(KERN_WARNING "%s: [%04x]\n", dev->name, inw(ioaddr+DATAPORT));
outw(lp->cur_rfd+6, ioaddr+READ_PTR);
printk(KERN_WARNING "%s: rbd is %04x\n", dev->name, rbd= inw(ioaddr+DATAPORT));
outw(rbd, ioaddr+READ_PTR);
printk(KERN_WARNING "%s: [%04x %04x] ", dev->name, inw(ioaddr+DATAPORT), inw(ioaddr+DATAPORT));
outw(rbd+8, ioaddr+READ_PTR);
printk("[%04x]\n", inw(ioaddr+DATAPORT));
#endif
dev->stats.rx_errors++;
#if 1
eexp_hw_rxinit(dev);
#else
lp->cur_rfd = lp->first_rfd;
#endif
scb_wrrfa(dev, lp->rx_buf_start);
scb_command(dev, SCB_RUstart);
outb(0,ioaddr+SIGNAL_CA);
}
} else {
if (status & 0x8000)
ack_cmd = eexp_start_irq(dev, status);
else
ack_cmd = SCB_ack(status);
scb_command(dev, ack_cmd);
outb(0,ioaddr+SIGNAL_CA);
}
eexp_cmd_clear(dev);
outb(SIRQ_en|irqrmap[dev->irq], ioaddr+SET_IRQ);
#if NET_DEBUG > 6
printk("%s: leaving eexp_irq()\n", dev->name);
#endif
outw(old_read_ptr, ioaddr+READ_PTR);
outw(old_write_ptr, ioaddr+WRITE_PTR);
spin_unlock(&lp->lock);
return IRQ_HANDLED;
}
/*
* Hardware access functions
*/
/*
* Set the cable type to use.
*/
static void eexp_hw_set_interface(struct net_device *dev)
{
unsigned char oldval = inb(dev->base_addr + 0x300e);
oldval &= ~0x82;
switch (dev->if_port) {
case TPE:
oldval |= 0x2;
case BNC:
oldval |= 0x80;
break;
}
outb(oldval, dev->base_addr+0x300e);
mdelay(20);
}
/*
* Check all the receive buffers, and hand any received packets
* to the upper levels. Basic sanity check on each frame
* descriptor, though we don't bother trying to fix broken ones.
*/
static void eexp_hw_rx_pio(struct net_device *dev)
{
struct net_local *lp = netdev_priv(dev);
unsigned short rx_block = lp->rx_ptr;
unsigned short boguscount = lp->num_rx_bufs;
unsigned short ioaddr = dev->base_addr;
unsigned short status;
#if NET_DEBUG > 6
printk(KERN_DEBUG "%s: eexp_hw_rx()\n", dev->name);
#endif
do {
unsigned short rfd_cmd, rx_next, pbuf, pkt_len;
outw(rx_block, ioaddr + READ_PTR);
status = inw(ioaddr + DATAPORT);
if (FD_Done(status))
{
rfd_cmd = inw(ioaddr + DATAPORT);
rx_next = inw(ioaddr + DATAPORT);
pbuf = inw(ioaddr + DATAPORT);
outw(pbuf, ioaddr + READ_PTR);
pkt_len = inw(ioaddr + DATAPORT);
if (rfd_cmd!=0x0000)
{
printk(KERN_WARNING "%s: rfd_cmd not zero:0x%04x\n",
dev->name, rfd_cmd);
continue;
}
else if (pbuf!=rx_block+0x16)
{
printk(KERN_WARNING "%s: rfd and rbd out of sync 0x%04x 0x%04x\n",
dev->name, rx_block+0x16, pbuf);
continue;
}
else if ((pkt_len & 0xc000)!=0xc000)
{
printk(KERN_WARNING "%s: EOF or F not set on received buffer (%04x)\n",
dev->name, pkt_len & 0xc000);
continue;
}
else if (!FD_OK(status))
{
dev->stats.rx_errors++;
if (FD_CRC(status))
dev->stats.rx_crc_errors++;
if (FD_Align(status))
dev->stats.rx_frame_errors++;
if (FD_Resrc(status))
dev->stats.rx_fifo_errors++;
if (FD_DMA(status))
dev->stats.rx_over_errors++;
if (FD_Short(status))
dev->stats.rx_length_errors++;
}
else
{
struct sk_buff *skb;
pkt_len &= 0x3fff;
skb = netdev_alloc_skb(dev, pkt_len + 16);
if (skb == NULL)
{
printk(KERN_WARNING "%s: Memory squeeze, dropping packet\n",dev->name);
dev->stats.rx_dropped++;
break;
}
skb_reserve(skb, 2);
outw(pbuf+10, ioaddr+READ_PTR);
insw(ioaddr+DATAPORT, skb_put(skb,pkt_len),(pkt_len+1)>>1);
skb->protocol = eth_type_trans(skb,dev);
netif_rx(skb);
dev->stats.rx_packets++;
dev->stats.rx_bytes += pkt_len;
}
outw(rx_block, ioaddr+WRITE_PTR);
outw(0, ioaddr+DATAPORT);
outw(0, ioaddr+DATAPORT);
rx_block = rx_next;
}
} while (FD_Done(status) && boguscount--);
lp->rx_ptr = rx_block;
}
/*
* Hand a packet to the card for transmission
* If we get here, we MUST have already checked
* to make sure there is room in the transmit
* buffer region.
*/
static void eexp_hw_tx_pio(struct net_device *dev, unsigned short *buf,
unsigned short len)
{
struct net_local *lp = netdev_priv(dev);
unsigned short ioaddr = dev->base_addr;
if (LOCKUP16 || lp->width) {
/* Stop the CU so that there is no chance that it
jumps off to a bogus address while we are writing the
pointer to the next transmit packet in 8-bit mode --
this eliminates the "CU wedged" errors in 8-bit mode.
(Zoltan Szilagyi 10-12-96) */
scb_command(dev, SCB_CUsuspend);
outw(0xFFFF, ioaddr+SIGNAL_CA);
}
outw(lp->tx_head, ioaddr + WRITE_PTR);
outw(0x0000, ioaddr + DATAPORT);
outw(Cmd_INT|Cmd_Xmit, ioaddr + DATAPORT);
outw(lp->tx_head+0x08, ioaddr + DATAPORT);
outw(lp->tx_head+0x0e, ioaddr + DATAPORT);
outw(0x0000, ioaddr + DATAPORT);
outw(0x0000, ioaddr + DATAPORT);
outw(lp->tx_head+0x08, ioaddr + DATAPORT);
outw(0x8000|len, ioaddr + DATAPORT);
outw(-1, ioaddr + DATAPORT);
outw(lp->tx_head+0x16, ioaddr + DATAPORT);
outw(0, ioaddr + DATAPORT);
outsw(ioaddr + DATAPORT, buf, (len+1)>>1);
outw(lp->tx_tail+0xc, ioaddr + WRITE_PTR);
outw(lp->tx_head, ioaddr + DATAPORT);
dev->trans_start = jiffies;
lp->tx_tail = lp->tx_head;
if (lp->tx_head==TX_BUF_START+((lp->num_tx_bufs-1)*TX_BUF_SIZE))
lp->tx_head = TX_BUF_START;
else
lp->tx_head += TX_BUF_SIZE;
if (lp->tx_head != lp->tx_reap)
netif_wake_queue(dev);
if (LOCKUP16 || lp->width) {
/* Restart the CU so that the packet can actually
be transmitted. (Zoltan Szilagyi 10-12-96) */
scb_command(dev, SCB_CUresume);
outw(0xFFFF, ioaddr+SIGNAL_CA);
}
dev->stats.tx_packets++;
lp->last_tx = jiffies;
}
static const struct net_device_ops eexp_netdev_ops = {
.ndo_open = eexp_open,
.ndo_stop = eexp_close,
.ndo_start_xmit = eexp_xmit,
.ndo_set_rx_mode = eexp_set_multicast,
.ndo_tx_timeout = eexp_timeout,
.ndo_change_mtu = eth_change_mtu,
.ndo_set_mac_address = eth_mac_addr,
.ndo_validate_addr = eth_validate_addr,
};
/*
* Sanity check the suspected EtherExpress card
* Read hardware address, reset card, size memory and initialize buffer
* memory pointers. These are held in netdev_priv(), in case someone has more
* than one card in a machine.
*/
static int __init eexp_hw_probe(struct net_device *dev, unsigned short ioaddr)
{
unsigned short hw_addr[3];
unsigned char buswidth;
unsigned int memory_size;
int i;
unsigned short xsum = 0;
struct net_local *lp = netdev_priv(dev);
printk("%s: EtherExpress 16 at %#x ",dev->name,ioaddr);
outb(ASIC_RST, ioaddr+EEPROM_Ctrl);
outb(0, ioaddr+EEPROM_Ctrl);
udelay(500);
outb(i586_RST, ioaddr+EEPROM_Ctrl);
hw_addr[0] = eexp_hw_readeeprom(ioaddr,2);
hw_addr[1] = eexp_hw_readeeprom(ioaddr,3);
hw_addr[2] = eexp_hw_readeeprom(ioaddr,4);
/* Standard Address or Compaq LTE Address */
if (!((hw_addr[2]==0x00aa && ((hw_addr[1] & 0xff00)==0x0000)) ||
(hw_addr[2]==0x0080 && ((hw_addr[1] & 0xff00)==0x5F00))))
{
printk(" rejected: invalid address %04x%04x%04x\n",
hw_addr[2],hw_addr[1],hw_addr[0]);
return -ENODEV;
}
/* Calculate the EEPROM checksum. Carry on anyway if it's bad,
* though.
*/
for (i = 0; i < 64; i++)
xsum += eexp_hw_readeeprom(ioaddr, i);
if (xsum != 0xbaba)
printk(" (bad EEPROM xsum 0x%02x)", xsum);
dev->base_addr = ioaddr;
for ( i=0 ; i<6 ; i++ )
dev->dev_addr[i] = ((unsigned char *)hw_addr)[5-i];
{
static const char irqmap[] = { 0, 9, 3, 4, 5, 10, 11, 0 };
unsigned short setupval = eexp_hw_readeeprom(ioaddr,0);
/* Use the IRQ from EEPROM if none was given */
if (!dev->irq)
dev->irq = irqmap[setupval>>13];
if (dev->if_port == 0xff) {
dev->if_port = !(setupval & 0x1000) ? AUI :
eexp_hw_readeeprom(ioaddr,5) & 0x1 ? TPE : BNC;
}
buswidth = !((setupval & 0x400) >> 10);
}
memset(lp, 0, sizeof(struct net_local));
spin_lock_init(&lp->lock);
printk("(IRQ %d, %s connector, %d-bit bus", dev->irq,
eexp_ifmap[dev->if_port], buswidth?8:16);
if (!request_region(dev->base_addr + 0x300e, 1, "EtherExpress"))
return -EBUSY;
eexp_hw_set_interface(dev);
release_region(dev->base_addr + 0x300e, 1);
/* Find out how much RAM we have on the card */
outw(0, dev->base_addr + WRITE_PTR);
for (i = 0; i < 32768; i++)
outw(0, dev->base_addr + DATAPORT);
for (memory_size = 0; memory_size < 64; memory_size++)
{
outw(memory_size<<10, dev->base_addr + READ_PTR);
if (inw(dev->base_addr+DATAPORT))
break;
outw(memory_size<<10, dev->base_addr + WRITE_PTR);
outw(memory_size | 0x5000, dev->base_addr+DATAPORT);
outw(memory_size<<10, dev->base_addr + READ_PTR);
if (inw(dev->base_addr+DATAPORT) != (memory_size | 0x5000))
break;
}
/* Sort out the number of buffers. We may have 16, 32, 48 or 64k
* of RAM to play with.
*/
lp->num_tx_bufs = 4;
lp->rx_buf_end = 0x3ff6;
switch (memory_size)
{
case 64:
lp->rx_buf_end += 0x4000;
case 48:
lp->num_tx_bufs += 4;
lp->rx_buf_end += 0x4000;
case 32:
lp->rx_buf_end += 0x4000;
case 16:
printk(", %dk RAM)\n", memory_size);
break;
default:
printk(") bad memory size (%dk).\n", memory_size);
return -ENODEV;
break;
}
lp->rx_buf_start = TX_BUF_START + (lp->num_tx_bufs*TX_BUF_SIZE);
lp->width = buswidth;
dev->netdev_ops = &eexp_netdev_ops;
dev->watchdog_timeo = 2*HZ;
return register_netdev(dev);
}
/*
* Read a word from the EtherExpress on-board serial EEPROM.
* The EEPROM contains 64 words of 16 bits.
*/
static unsigned short __init eexp_hw_readeeprom(unsigned short ioaddr,
unsigned char location)
{
unsigned short cmd = 0x180|(location&0x7f);
unsigned short rval = 0,wval = EC_CS|i586_RST;
int i;
outb(EC_CS|i586_RST,ioaddr+EEPROM_Ctrl);
for (i=0x100 ; i ; i>>=1 )
{
if (cmd&i)
wval |= EC_Wr;
else
wval &= ~EC_Wr;
outb(wval,ioaddr+EEPROM_Ctrl);
outb(wval|EC_Clk,ioaddr+EEPROM_Ctrl);
eeprom_delay();
outb(wval,ioaddr+EEPROM_Ctrl);
eeprom_delay();
}
wval &= ~EC_Wr;
outb(wval,ioaddr+EEPROM_Ctrl);
for (i=0x8000 ; i ; i>>=1 )
{
outb(wval|EC_Clk,ioaddr+EEPROM_Ctrl);
eeprom_delay();
if (inb(ioaddr+EEPROM_Ctrl)&EC_Rd)
rval |= i;
outb(wval,ioaddr+EEPROM_Ctrl);
eeprom_delay();
}
wval &= ~EC_CS;
outb(wval|EC_Clk,ioaddr+EEPROM_Ctrl);
eeprom_delay();
outb(wval,ioaddr+EEPROM_Ctrl);
eeprom_delay();
return rval;
}
/*
* Reap tx buffers and return last transmit status.
* if ==0 then either:
* a) we're not transmitting anything, so why are we here?
* b) we've died.
* otherwise, Stat_Busy(return) means we've still got some packets
* to transmit, Stat_Done(return) means our buffers should be empty
* again
*/
static unsigned short eexp_hw_lasttxstat(struct net_device *dev)
{
struct net_local *lp = netdev_priv(dev);
unsigned short tx_block = lp->tx_reap;
unsigned short status;
if (!netif_queue_stopped(dev) && lp->tx_head==lp->tx_reap)
return 0x0000;
do
{
outw(tx_block & ~31, dev->base_addr + SM_PTR);
status = inw(dev->base_addr + SHADOW(tx_block));
if (!Stat_Done(status))
{
lp->tx_link = tx_block;
return status;
}
else
{
lp->last_tx_restart = 0;
dev->stats.collisions += Stat_NoColl(status);
if (!Stat_OK(status))
{
char *whatsup = NULL;
dev->stats.tx_errors++;
if (Stat_Abort(status))
dev->stats.tx_aborted_errors++;
if (Stat_TNoCar(status)) {
whatsup = "aborted, no carrier";
dev->stats.tx_carrier_errors++;
}
if (Stat_TNoCTS(status)) {
whatsup = "aborted, lost CTS";
dev->stats.tx_carrier_errors++;
}
if (Stat_TNoDMA(status)) {
whatsup = "FIFO underran";
dev->stats.tx_fifo_errors++;
}
if (Stat_TXColl(status)) {
whatsup = "aborted, too many collisions";
dev->stats.tx_aborted_errors++;
}
if (whatsup)
printk(KERN_INFO "%s: transmit %s\n",
dev->name, whatsup);
}
else
dev->stats.tx_packets++;
}
if (tx_block == TX_BUF_START+((lp->num_tx_bufs-1)*TX_BUF_SIZE))
lp->tx_reap = tx_block = TX_BUF_START;
else
lp->tx_reap = tx_block += TX_BUF_SIZE;
netif_wake_queue(dev);
}
while (lp->tx_reap != lp->tx_head);
lp->tx_link = lp->tx_tail + 0x08;
return status;
}
/*
* This should never happen. It is called when some higher routine detects
* that the CU has stopped, to try to restart it from the last packet we knew
* we were working on, or the idle loop if we had finished for the time.
*/
static void eexp_hw_txrestart(struct net_device *dev)
{
struct net_local *lp = netdev_priv(dev);
unsigned short ioaddr = dev->base_addr;
lp->last_tx_restart = lp->tx_link;
scb_wrcbl(dev, lp->tx_link);
scb_command(dev, SCB_CUstart);
outb(0,ioaddr+SIGNAL_CA);
{
unsigned short boguscount=50,failcount=5;
while (!scb_status(dev))
{
if (!--boguscount)
{
if (--failcount)
{
printk(KERN_WARNING "%s: CU start timed out, status %04x, cmd %04x\n", dev->name, scb_status(dev), scb_rdcmd(dev));
scb_wrcbl(dev, lp->tx_link);
scb_command(dev, SCB_CUstart);
outb(0,ioaddr+SIGNAL_CA);
boguscount = 100;
}
else
{
printk(KERN_WARNING "%s: Failed to restart CU, resetting board...\n",dev->name);
eexp_hw_init586(dev);
netif_wake_queue(dev);
return;
}
}
}
}
}
/*
* Writes down the list of transmit buffers into card memory. Each
* entry consists of an 82586 transmit command, followed by a jump
* pointing to itself. When we want to transmit a packet, we write
* the data into the appropriate transmit buffer and then modify the
* preceding jump to point at the new transmit command. This means that
* the 586 command unit is continuously active.
*/
static void eexp_hw_txinit(struct net_device *dev)
{
struct net_local *lp = netdev_priv(dev);
unsigned short tx_block = TX_BUF_START;
unsigned short curtbuf;
unsigned short ioaddr = dev->base_addr;
for ( curtbuf=0 ; curtbuf<lp->num_tx_bufs ; curtbuf++ )
{
outw(tx_block, ioaddr + WRITE_PTR);
outw(0x0000, ioaddr + DATAPORT);
outw(Cmd_INT|Cmd_Xmit, ioaddr + DATAPORT);
outw(tx_block+0x08, ioaddr + DATAPORT);
outw(tx_block+0x0e, ioaddr + DATAPORT);
outw(0x0000, ioaddr + DATAPORT);
outw(0x0000, ioaddr + DATAPORT);
outw(tx_block+0x08, ioaddr + DATAPORT);
outw(0x8000, ioaddr + DATAPORT);
outw(-1, ioaddr + DATAPORT);
outw(tx_block+0x16, ioaddr + DATAPORT);
outw(0x0000, ioaddr + DATAPORT);
tx_block += TX_BUF_SIZE;
}
lp->tx_head = TX_BUF_START;
lp->tx_reap = TX_BUF_START;
lp->tx_tail = tx_block - TX_BUF_SIZE;
lp->tx_link = lp->tx_tail + 0x08;
lp->rx_buf_start = tx_block;
}
/*
* Write the circular list of receive buffer descriptors to card memory.
* The end of the list isn't marked, which means that the 82586 receive
* unit will loop until buffers become available (this avoids it giving us
* "out of resources" messages).
*/
static void eexp_hw_rxinit(struct net_device *dev)
{
struct net_local *lp = netdev_priv(dev);
unsigned short rx_block = lp->rx_buf_start;
unsigned short ioaddr = dev->base_addr;
lp->num_rx_bufs = 0;
lp->rx_first = lp->rx_ptr = rx_block;
do
{
lp->num_rx_bufs++;
outw(rx_block, ioaddr + WRITE_PTR);
outw(0, ioaddr + DATAPORT); outw(0, ioaddr+DATAPORT);
outw(rx_block + RX_BUF_SIZE, ioaddr+DATAPORT);
outw(0xffff, ioaddr+DATAPORT);
outw(0x0000, ioaddr+DATAPORT);
outw(0xdead, ioaddr+DATAPORT);
outw(0xdead, ioaddr+DATAPORT);
outw(0xdead, ioaddr+DATAPORT);
outw(0xdead, ioaddr+DATAPORT);
outw(0xdead, ioaddr+DATAPORT);
outw(0xdead, ioaddr+DATAPORT);
outw(0x0000, ioaddr+DATAPORT);
outw(rx_block + RX_BUF_SIZE + 0x16, ioaddr+DATAPORT);
outw(rx_block + 0x20, ioaddr+DATAPORT);
outw(0, ioaddr+DATAPORT);
outw(RX_BUF_SIZE-0x20, ioaddr+DATAPORT);
lp->rx_last = rx_block;
rx_block += RX_BUF_SIZE;
} while (rx_block <= lp->rx_buf_end-RX_BUF_SIZE);
/* Make first Rx frame descriptor point to first Rx buffer
descriptor */
outw(lp->rx_first + 6, ioaddr+WRITE_PTR);
outw(lp->rx_first + 0x16, ioaddr+DATAPORT);
/* Close Rx frame descriptor ring */
outw(lp->rx_last + 4, ioaddr+WRITE_PTR);
outw(lp->rx_first, ioaddr+DATAPORT);
/* Close Rx buffer descriptor ring */
outw(lp->rx_last + 0x16 + 2, ioaddr+WRITE_PTR);
outw(lp->rx_first + 0x16, ioaddr+DATAPORT);
}
/*
* Un-reset the 586, and start the configuration sequence. We don't wait for
* this to finish, but allow the interrupt handler to start the CU and RU for
* us. We can't start the receive/transmission system up before we know that
* the hardware is configured correctly.
*/
static void eexp_hw_init586(struct net_device *dev)
{
struct net_local *lp = netdev_priv(dev);
unsigned short ioaddr = dev->base_addr;
int i;
#if NET_DEBUG > 6
printk("%s: eexp_hw_init586()\n", dev->name);
#endif
lp->started = 0;
set_loopback(dev);
outb(SIRQ_dis|irqrmap[dev->irq],ioaddr+SET_IRQ);
/* Download the startup code */
outw(lp->rx_buf_end & ~31, ioaddr + SM_PTR);
outw(lp->width?0x0001:0x0000, ioaddr + 0x8006);
outw(0x0000, ioaddr + 0x8008);
outw(0x0000, ioaddr + 0x800a);
outw(0x0000, ioaddr + 0x800c);
outw(0x0000, ioaddr + 0x800e);
for (i = 0; i < ARRAY_SIZE(start_code) * 2; i+=32) {
int j;
outw(i, ioaddr + SM_PTR);
for (j = 0; j < 16 && (i+j)/2 < ARRAY_SIZE(start_code); j+=2)
outw(start_code[(i+j)/2],
ioaddr+0x4000+j);
for (j = 0; j < 16 && (i+j+16)/2 < ARRAY_SIZE(start_code); j+=2)
outw(start_code[(i+j+16)/2],
ioaddr+0x8000+j);
}
/* Do we want promiscuous mode or multicast? */
outw(CONF_PROMISC & ~31, ioaddr+SM_PTR);
i = inw(ioaddr+SHADOW(CONF_PROMISC));
outw((dev->flags & IFF_PROMISC)?(i|1):(i & ~1),
ioaddr+SHADOW(CONF_PROMISC));
lp->was_promisc = dev->flags & IFF_PROMISC;
#if 0
eexp_setup_filter(dev);
#endif
/* Write our hardware address */
outw(CONF_HWADDR & ~31, ioaddr+SM_PTR);
outw(((unsigned short *)dev->dev_addr)[0], ioaddr+SHADOW(CONF_HWADDR));
outw(((unsigned short *)dev->dev_addr)[1],
ioaddr+SHADOW(CONF_HWADDR+2));
outw(((unsigned short *)dev->dev_addr)[2],
ioaddr+SHADOW(CONF_HWADDR+4));
eexp_hw_txinit(dev);
eexp_hw_rxinit(dev);
outb(0,ioaddr+EEPROM_Ctrl);
mdelay(5);
scb_command(dev, 0xf000);
outb(0,ioaddr+SIGNAL_CA);
outw(0, ioaddr+SM_PTR);
{
unsigned short rboguscount=50,rfailcount=5;
while (inw(ioaddr+0x4000))
{
if (!--rboguscount)
{
printk(KERN_WARNING "%s: i82586 reset timed out, kicking...\n",
dev->name);
scb_command(dev, 0);
outb(0,ioaddr+SIGNAL_CA);
rboguscount = 100;
if (!--rfailcount)
{
printk(KERN_WARNING "%s: i82586 not responding, giving up.\n",
dev->name);
return;
}
}
}
}
scb_wrcbl(dev, CONF_LINK);
scb_command(dev, 0xf000|SCB_CUstart);
outb(0,ioaddr+SIGNAL_CA);
{
unsigned short iboguscount=50,ifailcount=5;
while (!scb_status(dev))
{
if (!--iboguscount)
{
if (--ifailcount)
{
printk(KERN_WARNING "%s: i82586 initialization timed out, status %04x, cmd %04x\n",
dev->name, scb_status(dev), scb_rdcmd(dev));
scb_wrcbl(dev, CONF_LINK);
scb_command(dev, 0xf000|SCB_CUstart);
outb(0,ioaddr+SIGNAL_CA);
iboguscount = 100;
}
else
{
printk(KERN_WARNING "%s: Failed to initialize i82586, giving up.\n",dev->name);
return;
}
}
}
}
clear_loopback(dev);
outb(SIRQ_en|irqrmap[dev->irq],ioaddr+SET_IRQ);
lp->init_time = jiffies;
#if NET_DEBUG > 6
printk("%s: leaving eexp_hw_init586()\n", dev->name);
#endif
}
static void eexp_setup_filter(struct net_device *dev)
{
struct netdev_hw_addr *ha;
unsigned short ioaddr = dev->base_addr;
int count = netdev_mc_count(dev);
int i;
if (count > 8) {
printk(KERN_INFO "%s: too many multicast addresses (%d)\n",
dev->name, count);
count = 8;
}
outw(CONF_NR_MULTICAST & ~31, ioaddr+SM_PTR);
outw(6*count, ioaddr+SHADOW(CONF_NR_MULTICAST));
i = 0;
netdev_for_each_mc_addr(ha, dev) {
unsigned short *data = (unsigned short *) ha->addr;
if (i == count)
break;
outw((CONF_MULTICAST+(6*i)) & ~31, ioaddr+SM_PTR);
outw(data[0], ioaddr+SHADOW(CONF_MULTICAST+(6*i)));
outw((CONF_MULTICAST+(6*i)+2) & ~31, ioaddr+SM_PTR);
outw(data[1], ioaddr+SHADOW(CONF_MULTICAST+(6*i)+2));
outw((CONF_MULTICAST+(6*i)+4) & ~31, ioaddr+SM_PTR);
outw(data[2], ioaddr+SHADOW(CONF_MULTICAST+(6*i)+4));
i++;
}
}
/*
* Set or clear the multicast filter for this adaptor.
*/
static void
eexp_set_multicast(struct net_device *dev)
{
unsigned short ioaddr = dev->base_addr;
struct net_local *lp = netdev_priv(dev);
int kick = 0, i;
if ((dev->flags & IFF_PROMISC) != lp->was_promisc) {
outw(CONF_PROMISC & ~31, ioaddr+SM_PTR);
i = inw(ioaddr+SHADOW(CONF_PROMISC));
outw((dev->flags & IFF_PROMISC)?(i|1):(i & ~1),
ioaddr+SHADOW(CONF_PROMISC));
lp->was_promisc = dev->flags & IFF_PROMISC;
kick = 1;
}
if (!(dev->flags & IFF_PROMISC)) {
eexp_setup_filter(dev);
if (lp->old_mc_count != netdev_mc_count(dev)) {
kick = 1;
lp->old_mc_count = netdev_mc_count(dev);
}
}
if (kick) {
unsigned long oj;
scb_command(dev, SCB_CUsuspend);
outb(0, ioaddr+SIGNAL_CA);
outb(0, ioaddr+SIGNAL_CA);
#if 0
printk("%s: waiting for CU to go suspended\n", dev->name);
#endif
oj = jiffies;
while ((SCB_CUstat(scb_status(dev)) == 2) &&
(time_before(jiffies, oj + 2000)));
if (SCB_CUstat(scb_status(dev)) == 2)
printk("%s: warning, CU didn't stop\n", dev->name);
lp->started &= ~(STARTED_CU);
scb_wrcbl(dev, CONF_LINK);
scb_command(dev, SCB_CUstart);
outb(0, ioaddr+SIGNAL_CA);
}
}
/*
* MODULE stuff
*/
#ifdef MODULE
#define EEXP_MAX_CARDS 4 /* max number of cards to support */
static struct net_device *dev_eexp[EEXP_MAX_CARDS];
static int irq[EEXP_MAX_CARDS];
static int io[EEXP_MAX_CARDS];
module_param_array(io, int, NULL, 0);
module_param_array(irq, int, NULL, 0);
MODULE_PARM_DESC(io, "EtherExpress 16 I/O base address(es)");
MODULE_PARM_DESC(irq, "EtherExpress 16 IRQ number(s)");
MODULE_LICENSE("GPL");
/* Ideally the user would give us io=, irq= for every card. If any parameters
* are specified, we verify and then use them. If no parameters are given, we
* autoprobe for one card only.
*/
int __init init_module(void)
{
struct net_device *dev;
int this_dev, found = 0;
for (this_dev = 0; this_dev < EEXP_MAX_CARDS; this_dev++) {
dev = alloc_etherdev(sizeof(struct net_local));
dev->irq = irq[this_dev];
dev->base_addr = io[this_dev];
if (io[this_dev] == 0) {
if (this_dev)
break;
printk(KERN_NOTICE "eexpress.c: Module autoprobe not recommended, give io=xx.\n");
}
if (do_express_probe(dev) == 0) {
dev_eexp[this_dev] = dev;
found++;
continue;
}
printk(KERN_WARNING "eexpress.c: Failed to register card at 0x%x.\n", io[this_dev]);
free_netdev(dev);
break;
}
if (found)
return 0;
return -ENXIO;
}
void __exit cleanup_module(void)
{
int this_dev;
for (this_dev = 0; this_dev < EEXP_MAX_CARDS; this_dev++) {
struct net_device *dev = dev_eexp[this_dev];
if (dev) {
unregister_netdev(dev);
free_netdev(dev);
}
}
}
#endif
/*
* Local Variables:
* c-file-style: "linux"
* tab-width: 8
* End:
*/
/*
* eexpress.h: Intel EtherExpress16 defines
*/
/*
* EtherExpress card register addresses
* as offsets from the base IO region (dev->base_addr)
*/
#define DATAPORT 0x0000
#define WRITE_PTR 0x0002
#define READ_PTR 0x0004
#define SIGNAL_CA 0x0006
#define SET_IRQ 0x0007
#define SM_PTR 0x0008
#define MEM_Dec 0x000a
#define MEM_Ctrl 0x000b
#define MEM_Page_Ctrl 0x000c
#define Config 0x000d
#define EEPROM_Ctrl 0x000e
#define ID_PORT 0x000f
#define MEM_ECtrl 0x000f
/*
* card register defines
*/
/* SET_IRQ */
#define SIRQ_en 0x08
#define SIRQ_dis 0x00
/* EEPROM_Ctrl */
#define EC_Clk 0x01
#define EC_CS 0x02
#define EC_Wr 0x04
#define EC_Rd 0x08
#define ASIC_RST 0x40
#define i586_RST 0x80
#define eeprom_delay() { udelay(40); }
/*
* i82586 Memory Configuration
*/
/* (System Configuration Pointer) System start up block, read after 586_RST */
#define SCP_START 0xfff6
/* Intermediate System Configuration Pointer */
#define ISCP_START 0x0000
/* System Command Block */
#define SCB_START 0x0008
/* Start of buffer region. Everything before this is used for control
* structures and the CU configuration program. The memory layout is
* determined in eexp_hw_probe(), once we know how much memory is
* available on the card.
*/
#define TX_BUF_START 0x0100
#define TX_BUF_SIZE ((24+ETH_FRAME_LEN+31)&~0x1f)
#define RX_BUF_SIZE ((32+ETH_FRAME_LEN+31)&~0x1f)
/*
* SCB defines
*/
/* these functions take the SCB status word and test the relevant status bit */
#define SCB_complete(s) (((s) & 0x8000) != 0)
#define SCB_rxdframe(s) (((s) & 0x4000) != 0)
#define SCB_CUdead(s) (((s) & 0x2000) != 0)
#define SCB_RUdead(s) (((s) & 0x1000) != 0)
#define SCB_ack(s) ((s) & 0xf000)
/* Command unit status: 0=idle, 1=suspended, 2=active */
#define SCB_CUstat(s) (((s)&0x0300)>>8)
/* Receive unit status: 0=idle, 1=suspended, 2=out of resources, 4=ready */
#define SCB_RUstat(s) (((s)&0x0070)>>4)
/* SCB commands */
#define SCB_CUnop 0x0000
#define SCB_CUstart 0x0100
#define SCB_CUresume 0x0200
#define SCB_CUsuspend 0x0300
#define SCB_CUabort 0x0400
#define SCB_resetchip 0x0080
#define SCB_RUnop 0x0000
#define SCB_RUstart 0x0010
#define SCB_RUresume 0x0020
#define SCB_RUsuspend 0x0030
#define SCB_RUabort 0x0040
/*
* Command block defines
*/
#define Stat_Done(s) (((s) & 0x8000) != 0)
#define Stat_Busy(s) (((s) & 0x4000) != 0)
#define Stat_OK(s) (((s) & 0x2000) != 0)
#define Stat_Abort(s) (((s) & 0x1000) != 0)
#define Stat_STFail (((s) & 0x0800) != 0)
#define Stat_TNoCar(s) (((s) & 0x0400) != 0)
#define Stat_TNoCTS(s) (((s) & 0x0200) != 0)
#define Stat_TNoDMA(s) (((s) & 0x0100) != 0)
#define Stat_TDefer(s) (((s) & 0x0080) != 0)
#define Stat_TColl(s) (((s) & 0x0040) != 0)
#define Stat_TXColl(s) (((s) & 0x0020) != 0)
#define Stat_NoColl(s) ((s) & 0x000f)
/* Cmd_END will end AFTER the command if this is the first
* command block after an SCB_CUstart, but BEFORE the command
* for all subsequent commands. Best strategy is to place
* Cmd_INT on the last command in the sequence, followed by a
* dummy Cmd_Nop with Cmd_END after this.
*/
#define Cmd_END 0x8000
#define Cmd_SUS 0x4000
#define Cmd_INT 0x2000
#define Cmd_Nop 0x0000
#define Cmd_SetAddr 0x0001
#define Cmd_Config 0x0002
#define Cmd_MCast 0x0003
#define Cmd_Xmit 0x0004
#define Cmd_TDR 0x0005
#define Cmd_Dump 0x0006
#define Cmd_Diag 0x0007
/*
* Frame Descriptor (Receive block) defines
*/
#define FD_Done(s) (((s) & 0x8000) != 0)
#define FD_Busy(s) (((s) & 0x4000) != 0)
#define FD_OK(s) (((s) & 0x2000) != 0)
#define FD_CRC(s) (((s) & 0x0800) != 0)
#define FD_Align(s) (((s) & 0x0400) != 0)
#define FD_Resrc(s) (((s) & 0x0200) != 0)
#define FD_DMA(s) (((s) & 0x0100) != 0)
#define FD_Short(s) (((s) & 0x0080) != 0)
#define FD_NoEOF(s) (((s) & 0x0040) != 0)
struct rfd_header {
volatile unsigned long flags;
volatile unsigned short link;
volatile unsigned short rbd_offset;
volatile unsigned short dstaddr1;
volatile unsigned short dstaddr2;
volatile unsigned short dstaddr3;
volatile unsigned short srcaddr1;
volatile unsigned short srcaddr2;
volatile unsigned short srcaddr3;
volatile unsigned short length;
/* This is actually a Receive Buffer Descriptor. The way we
* arrange memory means that an RBD always follows the RFD that
* points to it, so they might as well be in the same structure.
*/
volatile unsigned short actual_count;
volatile unsigned short next_rbd;
volatile unsigned short buf_addr1;
volatile unsigned short buf_addr2;
volatile unsigned short size;
};
/* Returned data from the Time Domain Reflectometer */
#define TDR_LINKOK (1<<15)
#define TDR_XCVRPROBLEM (1<<14)
#define TDR_OPEN (1<<13)
#define TDR_SHORT (1<<12)
#define TDR_TIME 0x7ff
Markdown is supported
0%
or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment