Commit fc3b6177 authored by Jeff Garzik's avatar Jeff Garzik

Merge redhat.com:/spare/repo/netdev-2.6/mips

into redhat.com:/spare/repo/net-drivers-2.6
parents 2d095b6c 8cee2695
......@@ -471,11 +471,32 @@ config SGI_IOC3_ETH
bool "SGI IOC3 Ethernet"
depends on NET_ETHERNET && SGI_IP27
select CRC32
select MII
help
If you have a network (Ethernet) card of this type, say Y and read
the Ethernet-HOWTO, available from
<http://www.tldp.org/docs.html#howto>.
config SGI_IOC3_ETH_HW_RX_CSUM
bool "Receive hardware checksums"
depends on SGI_IOC3_ETH && INET
default y
help
The SGI IOC3 network adapter supports TCP and UDP checksums in
hardware to offload processing of these checksums from the CPU. At
the moment only acceleration of IPv4 is supported. This option
enables offloading for checksums on receive. If unsure, say Y.
config SGI_IOC3_ETH_HW_TX_CSUM
bool "Transmit hardware checksums"
depends on SGI_IOC3_ETH && INET
default y
help
The SGI IOC3 network adapter supports TCP and UDP checksums in
hardware to offload processing of these checksums from the CPU. At
the moment only acceleration of IPv4 is supported. This option
enables offloading for checksums on transmit. If unsure, say Y.
config SGI_O2MACE_ETH
tristate "SGI O2 MACE Fast Ethernet support"
depends on NET_ETHERNET && SGI_IP32=y
......@@ -1777,7 +1798,7 @@ config SGISEEQ
config DECLANCE
tristate "DEC LANCE ethernet controller support"
depends on NET_ETHERNET && DECSTATION
depends on NET_ETHERNET && MACH_DECSTATION
select CRC32
help
This driver is for the series of Ethernet controllers produced by
......
/* $Id$
/*
* bagetlance.c: Ethernet driver for VME Lance cards on Baget/MIPS
* This code stealed and adopted from linux/drivers/net/atarilance.c
* See that for author info
......
......@@ -786,7 +786,7 @@ static int lance_open(struct net_device *dev)
/* Associate IRQ with lance_interrupt */
if (request_irq(dev->irq, &lance_interrupt, 0, "lance", dev)) {
printk("lance: Can't get IRQ %d\n", dev->irq);
printk("%s: Can't get IRQ %d\n", dev->name, dev->irq);
return -EAGAIN;
}
if (lp->dma_irq >= 0) {
......@@ -795,7 +795,8 @@ static int lance_open(struct net_device *dev)
if (request_irq(lp->dma_irq, &lance_dma_merr_int, 0,
"lance error", dev)) {
free_irq(dev->irq, dev);
printk("lance: Can't get DMA IRQ %d\n", lp->dma_irq);
printk("%s: Can't get DMA IRQ %d\n", dev->name,
lp->dma_irq);
return -EAGAIN;
}
......@@ -1025,6 +1026,8 @@ static void lance_set_multicast_retry(unsigned long _opaque)
static int __init dec_lance_init(const int type, const int slot)
{
static unsigned version_printed;
static const char fmt[] = "declance%d";
char name[10];
struct net_device *dev;
struct lance_private *lp;
volatile struct lance_regs *ll;
......@@ -1039,10 +1042,22 @@ static int __init dec_lance_init(const int type, const int slot)
if (dec_lance_debug && version_printed++ == 0)
printk(version);
i = 0;
dev = root_lance_dev;
while (dev) {
i++;
lp = (struct lance_private *)dev->priv;
dev = lp->next;
}
snprintf(name, sizeof(name), fmt, i);
dev = alloc_etherdev(sizeof(struct lance_private));
if (!dev)
return -ENOMEM;
SET_MODULE_OWNER(dev);
if (!dev) {
printk(KERN_ERR "%s: Unable to allocate etherdev, aborting.\n",
name);
ret = -ENOMEM;
goto err_out;
}
/*
* alloc_etherdev ensures the data structures used by the LANCE
......@@ -1160,9 +1175,10 @@ static int __init dec_lance_init(const int type, const int slot)
break;
default:
printk("declance_init called with unknown type\n");
printk(KERN_ERR "%s: declance_init called with unknown type\n",
name);
ret = -ENODEV;
goto err_out;
goto err_out_free_dev;
}
ll = (struct lance_regs *) dev->base_addr;
......@@ -1172,19 +1188,21 @@ static int __init dec_lance_init(const int type, const int slot)
/* First, check for test pattern */
if (esar[0x60] != 0xff && esar[0x64] != 0x00 &&
esar[0x68] != 0x55 && esar[0x6c] != 0xaa) {
printk("Ethernet station address prom not found!\n");
printk(KERN_ERR
"%s: Ethernet station address prom not found!\n",
name);
ret = -ENODEV;
goto err_out;
goto err_out_free_dev;
}
/* Check the prom contents */
for (i = 0; i < 8; i++) {
if (esar[i * 4] != esar[0x3c - i * 4] &&
esar[i * 4] != esar[0x40 + i * 4] &&
esar[0x3c - i * 4] != esar[0x40 + i * 4]) {
printk("Something is wrong with the ethernet "
"station address prom!\n");
printk(KERN_ERR "%s: Something is wrong with the "
"ethernet station address prom!\n", name);
ret = -ENODEV;
goto err_out;
goto err_out_free_dev;
}
}
......@@ -1194,13 +1212,13 @@ static int __init dec_lance_init(const int type, const int slot)
*/
switch (type) {
case ASIC_LANCE:
printk("%s: IOASIC onboard LANCE, addr = ", dev->name);
printk("%s: IOASIC onboard LANCE, addr = ", name);
break;
case PMAD_LANCE:
printk("%s: PMAD-AA, addr = ", dev->name);
printk("%s: PMAD-AA, addr = ", name);
break;
case PMAX_LANCE:
printk("%s: PMAX onboard LANCE, addr = ", dev->name);
printk("%s: PMAX onboard LANCE, addr = ", name);
break;
}
for (i = 0; i < 6; i++) {
......@@ -1236,15 +1254,24 @@ static int __init dec_lance_init(const int type, const int slot)
init_timer(&lp->multicast_timer);
lp->multicast_timer.data = (unsigned long) dev;
lp->multicast_timer.function = &lance_set_multicast_retry;
ret = register_netdev(dev);
if (ret)
goto err_out;
if (ret) {
printk(KERN_ERR
"%s: Unable to register netdev, aborting.\n", name);
goto err_out_free_dev;
}
lp->next = root_lance_dev;
root_lance_dev = dev;
printk("%s: registered as %s.\n", name, dev->name);
return 0;
err_out_free_dev:
kfree(dev);
err_out:
free_netdev(dev);
return ret;
}
......
......@@ -26,6 +26,10 @@
* which workarounds are required for them? Do we ever have Lucent's?
* o For the 2.5 branch kill the mii-tool ioctls.
*/
#define IOC3_NAME "ioc3-eth"
#define IOC3_VERSION "2.6.3-3"
#include <linux/config.h>
#include <linux/init.h>
#include <linux/delay.h>
......@@ -35,6 +39,11 @@
#include <linux/module.h>
#include <linux/pci.h>
#include <linux/crc32.h>
#include <linux/mii.h>
#include <linux/in.h>
#include <linux/ip.h>
#include <linux/tcp.h>
#include <linux/udp.h>
#ifdef CONFIG_SERIAL_8250
#include <linux/serial.h>
......@@ -48,8 +57,10 @@
#include <linux/ethtool.h>
#include <linux/skbuff.h>
#include <linux/dp83840.h>
#include <net/ip.h>
#include <asm/byteorder.h>
#include <asm/checksum.h>
#include <asm/io.h>
#include <asm/pgtable.h>
#include <asm/uaccess.h>
......@@ -68,18 +79,12 @@
*/
#define RX_BUFFS 64
/* Timer state engine. */
enum ioc3_timer_state {
arbwait = 0, /* Waiting for auto negotiation to complete. */
lupwait = 1, /* Auto-neg complete, awaiting link-up status. */
ltrywait = 2, /* Forcing try of all modes, from fastest to slowest. */
asleep = 3, /* Time inactive. */
};
#define ETCSR_FD ((17<<ETCSR_IPGR2_SHIFT) | (11<<ETCSR_IPGR1_SHIFT) | 21)
#define ETCSR_HD ((21<<ETCSR_IPGR2_SHIFT) | (21<<ETCSR_IPGR1_SHIFT) | 21)
/* Private per NIC data of the driver. */
struct ioc3_private {
struct ioc3 *regs;
int phy;
unsigned long *rxr; /* pointer to receiver ring */
struct ioc3_etxd *txr;
struct sk_buff *rx_skbs[512];
......@@ -92,50 +97,69 @@ struct ioc3_private {
int txqlen;
u32 emcr, ehar_h, ehar_l;
spinlock_t ioc3_lock;
struct net_device *dev;
struct mii_if_info mii;
struct pci_dev *pdev;
/* Members used by autonegotiation */
struct timer_list ioc3_timer;
enum ioc3_timer_state timer_state; /* State of auto-neg timer. */
unsigned int timer_ticks; /* Number of clicks at each state */
unsigned short sw_bmcr; /* sw copy of MII config register */
unsigned short sw_bmsr; /* sw copy of MII status register */
unsigned short sw_physid1; /* sw copy of PHYSID1 */
unsigned short sw_physid2; /* sw copy of PHYSID2 */
unsigned short sw_advertise; /* sw copy of ADVERTISE */
unsigned short sw_lpa; /* sw copy of LPA */
unsigned short sw_csconfig; /* sw copy of CSCONFIG */
};
static inline struct net_device *priv_netdev(struct ioc3_private *dev)
{
return (void *)dev - ((sizeof(struct net_device) + 31) & ~31);
}
static int ioc3_ioctl(struct net_device *dev, struct ifreq *rq, int cmd);
static void ioc3_set_multicast_list(struct net_device *dev);
static int ioc3_start_xmit(struct sk_buff *skb, struct net_device *dev);
static void ioc3_timeout(struct net_device *dev);
static inline unsigned int ioc3_hash(const unsigned char *addr);
static inline void ioc3_stop(struct ioc3_private *ip);
static void ioc3_init(struct ioc3_private *ip);
static void ioc3_init(struct net_device *dev);
static const char ioc3_str[] = "IOC3 Ethernet";
static struct ethtool_ops ioc3_ethtool_ops;
/* We use this to acquire receive skb's that we can DMA directly into. */
#define ALIGNED_RX_SKB_ADDR(addr) \
((((unsigned long)(addr) + (128 - 1)) & ~(128 - 1)) - (unsigned long)(addr))
#define ioc3_alloc_skb(__length, __gfp_flags) \
({ struct sk_buff *__skb; \
__skb = alloc_skb((__length) + 128, (__gfp_flags)); \
if (__skb) { \
int __offset = ALIGNED_RX_SKB_ADDR(__skb->data); \
if(__offset) \
skb_reserve(__skb, __offset); \
} \
__skb; \
})
#define IOC3_CACHELINE 128UL
static inline unsigned long aligned_rx_skb_addr(unsigned long addr)
{
return (~addr + 1) & (IOC3_CACHELINE - 1UL);
}
static inline struct sk_buff * ioc3_alloc_skb(unsigned long length,
unsigned int gfp_mask)
{
struct sk_buff *skb;
skb = alloc_skb(length + IOC3_CACHELINE - 1, gfp_mask);
if (likely(skb)) {
int offset = aligned_rx_skb_addr((unsigned long) skb->data);
if (offset)
skb_reserve(skb, offset);
}
return skb;
}
static inline unsigned long ioc3_map(void *ptr, unsigned long vdev)
{
#ifdef CONFIG_SGI_IP27
vdev <<= 58; /* Shift to PCI64_ATTR_VIRTUAL */
return vdev | (0xaUL << PCI64_ATTR_TARG_SHFT) | PCI64_ATTR_PREF |
((unsigned long)ptr & TO_PHYS_MASK);
#else
return virt_to_bus(ptr);
#endif
}
/* BEWARE: The IOC3 documentation documents the size of rx buffers as
1644 while it's actually 1664. This one was nasty to track down ... */
#define RX_OFFSET 10
#define RX_BUF_ALLOC_SIZE (1664 + RX_OFFSET + 128)
#define RX_BUF_ALLOC_SIZE (1664 + RX_OFFSET + IOC3_CACHELINE)
/* DMA barrier to separate cached and uncached accesses. */
#define BARRIER() \
......@@ -144,70 +168,114 @@ static const char ioc3_str[] = "IOC3 Ethernet";
#define IOC3_SIZE 0x100000
#define ioc3_r(reg) \
({ \
u32 __res; \
__res = ioc3->reg; \
__res; \
})
#define ioc3_w(reg,val) \
do { \
(ioc3->reg = (val)); \
} while(0)
static inline u32
mcr_pack(u32 pulse, u32 sample)
/*
* IOC3 is a big endian device
*
* Unorthodox but makes the users of these macros more readable - the pointer
* to the IOC3's memory mapped registers is expected as struct ioc3 * ioc3
* in the environment.
*/
#define ioc3_r_mcr() be32_to_cpu(ioc3->mcr)
#define ioc3_w_mcr(v) do { ioc3->mcr = cpu_to_be32(v); } while (0)
#define ioc3_w_gpcr_s(v) do { ioc3->gpcr_s = cpu_to_be32(v); } while (0)
#define ioc3_r_emcr() be32_to_cpu(ioc3->emcr)
#define ioc3_w_emcr(v) do { ioc3->emcr = cpu_to_be32(v); } while (0)
#define ioc3_r_eisr() be32_to_cpu(ioc3->eisr)
#define ioc3_w_eisr(v) do { ioc3->eisr = cpu_to_be32(v); } while (0)
#define ioc3_r_eier() be32_to_cpu(ioc3->eier)
#define ioc3_w_eier(v) do { ioc3->eier = cpu_to_be32(v); } while (0)
#define ioc3_r_ercsr() be32_to_cpu(ioc3->ercsr)
#define ioc3_w_ercsr(v) do { ioc3->ercsr = cpu_to_be32(v); } while (0)
#define ioc3_r_erbr_h() be32_to_cpu(ioc3->erbr_h)
#define ioc3_w_erbr_h(v) do { ioc3->erbr_h = cpu_to_be32(v); } while (0)
#define ioc3_r_erbr_l() be32_to_cpu(ioc3->erbr_l)
#define ioc3_w_erbr_l(v) do { ioc3->erbr_l = cpu_to_be32(v); } while (0)
#define ioc3_r_erbar() be32_to_cpu(ioc3->erbar)
#define ioc3_w_erbar(v) do { ioc3->erbar = cpu_to_be32(v); } while (0)
#define ioc3_r_ercir() be32_to_cpu(ioc3->ercir)
#define ioc3_w_ercir(v) do { ioc3->ercir = cpu_to_be32(v); } while (0)
#define ioc3_r_erpir() be32_to_cpu(ioc3->erpir)
#define ioc3_w_erpir(v) do { ioc3->erpir = cpu_to_be32(v); } while (0)
#define ioc3_r_ertr() be32_to_cpu(ioc3->ertr)
#define ioc3_w_ertr(v) do { ioc3->ertr = cpu_to_be32(v); } while (0)
#define ioc3_r_etcsr() be32_to_cpu(ioc3->etcsr)
#define ioc3_w_etcsr(v) do { ioc3->etcsr = cpu_to_be32(v); } while (0)
#define ioc3_r_ersr() be32_to_cpu(ioc3->ersr)
#define ioc3_w_ersr(v) do { ioc3->ersr = cpu_to_be32(v); } while (0)
#define ioc3_r_etcdc() be32_to_cpu(ioc3->etcdc)
#define ioc3_w_etcdc(v) do { ioc3->etcdc = cpu_to_be32(v); } while (0)
#define ioc3_r_ebir() be32_to_cpu(ioc3->ebir)
#define ioc3_w_ebir(v) do { ioc3->ebir = cpu_to_be32(v); } while (0)
#define ioc3_r_etbr_h() be32_to_cpu(ioc3->etbr_h)
#define ioc3_w_etbr_h(v) do { ioc3->etbr_h = cpu_to_be32(v); } while (0)
#define ioc3_r_etbr_l() be32_to_cpu(ioc3->etbr_l)
#define ioc3_w_etbr_l(v) do { ioc3->etbr_l = cpu_to_be32(v); } while (0)
#define ioc3_r_etcir() be32_to_cpu(ioc3->etcir)
#define ioc3_w_etcir(v) do { ioc3->etcir = cpu_to_be32(v); } while (0)
#define ioc3_r_etpir() be32_to_cpu(ioc3->etpir)
#define ioc3_w_etpir(v) do { ioc3->etpir = cpu_to_be32(v); } while (0)
#define ioc3_r_emar_h() be32_to_cpu(ioc3->emar_h)
#define ioc3_w_emar_h(v) do { ioc3->emar_h = cpu_to_be32(v); } while (0)
#define ioc3_r_emar_l() be32_to_cpu(ioc3->emar_l)
#define ioc3_w_emar_l(v) do { ioc3->emar_l = cpu_to_be32(v); } while (0)
#define ioc3_r_ehar_h() be32_to_cpu(ioc3->ehar_h)
#define ioc3_w_ehar_h(v) do { ioc3->ehar_h = cpu_to_be32(v); } while (0)
#define ioc3_r_ehar_l() be32_to_cpu(ioc3->ehar_l)
#define ioc3_w_ehar_l(v) do { ioc3->ehar_l = cpu_to_be32(v); } while (0)
#define ioc3_r_micr() be32_to_cpu(ioc3->micr)
#define ioc3_w_micr(v) do { ioc3->micr = cpu_to_be32(v); } while (0)
#define ioc3_r_midr_r() be32_to_cpu(ioc3->midr_r)
#define ioc3_w_midr_r(v) do { ioc3->midr_r = cpu_to_be32(v); } while (0)
#define ioc3_r_midr_w() be32_to_cpu(ioc3->midr_w)
#define ioc3_w_midr_w(v) do { ioc3->midr_w = cpu_to_be32(v); } while (0)
static inline u32 mcr_pack(u32 pulse, u32 sample)
{
return (pulse << 10) | (sample << 2);
}
static int
nic_wait(struct ioc3 *ioc3)
static int nic_wait(struct ioc3 *ioc3)
{
u32 mcr;
do {
mcr = ioc3_r(mcr);
mcr = ioc3_r_mcr();
} while (!(mcr & 2));
return mcr & 1;
}
static int
nic_reset(struct ioc3 *ioc3)
static int nic_reset(struct ioc3 *ioc3)
{
int presence;
ioc3_w(mcr, mcr_pack(500, 65));
ioc3_w_mcr(mcr_pack(500, 65));
presence = nic_wait(ioc3);
ioc3_w(mcr, mcr_pack(0, 500));
ioc3_w_mcr(mcr_pack(0, 500));
nic_wait(ioc3);
return presence;
}
static inline int
nic_read_bit(struct ioc3 *ioc3)
static inline int nic_read_bit(struct ioc3 *ioc3)
{
int result;
ioc3_w(mcr, mcr_pack(6, 13));
ioc3_w_mcr(mcr_pack(6, 13));
result = nic_wait(ioc3);
ioc3_w(mcr, mcr_pack(0, 100));
ioc3_w_mcr(mcr_pack(0, 100));
nic_wait(ioc3);
return result;
}
static inline void
nic_write_bit(struct ioc3 *ioc3, int bit)
static inline void nic_write_bit(struct ioc3 *ioc3, int bit)
{
if (bit)
ioc3_w(mcr, mcr_pack(6, 110));
ioc3_w_mcr(mcr_pack(6, 110));
else
ioc3_w(mcr, mcr_pack(80, 30));
ioc3_w_mcr(mcr_pack(80, 30));
nic_wait(ioc3);
}
......@@ -215,8 +283,7 @@ nic_write_bit(struct ioc3 *ioc3, int bit)
/*
* Read a byte from an iButton device
*/
static u32
nic_read_byte(struct ioc3 *ioc3)
static u32 nic_read_byte(struct ioc3 *ioc3)
{
u32 result = 0;
int i;
......@@ -230,8 +297,7 @@ nic_read_byte(struct ioc3 *ioc3)
/*
* Write a byte to an iButton device
*/
static void
nic_write_byte(struct ioc3 *ioc3, int byte)
static void nic_write_byte(struct ioc3 *ioc3, int byte)
{
int i, bit;
......@@ -243,8 +309,7 @@ nic_write_byte(struct ioc3 *ioc3, int byte)
}
}
static u64
nic_find(struct ioc3 *ioc3, int *last)
static u64 nic_find(struct ioc3 *ioc3, int *last)
{
int a, b, index, disc;
u64 address = 0;
......@@ -352,7 +417,7 @@ static void ioc3_get_eaddr_nic(struct ioc3_private *ip)
int tries = 2; /* There may be some problem with the battery? */
int i;
ioc3_w(gpcr_s, (1 << 21));
ioc3_w_gpcr_s(1 << 21);
while (tries--) {
if (!nic_init(ioc3))
......@@ -374,7 +439,7 @@ static void ioc3_get_eaddr_nic(struct ioc3_private *ip)
nic[i] = nic_read_byte(ioc3);
for (i = 2; i < 8; i++)
ip->dev->dev_addr[i - 2] = nic[i];
priv_netdev(ip)->dev_addr[i - 2] = nic[i];
}
/*
......@@ -391,7 +456,7 @@ static void ioc3_get_eaddr(struct ioc3_private *ip)
printk("Ethernet address is ");
for (i = 0; i < 6; i++) {
printk("%02x", ip->dev->dev_addr[i]);
printk("%02x", priv_netdev(ip)->dev_addr[i]);
if (i < 5)
printk(":");
}
......@@ -403,42 +468,112 @@ static void ioc3_get_eaddr(struct ioc3_private *ip)
* Caller must hold the ioc3_lock ever for MII readers. This is also
* used to protect the transmitter side but it's low contention.
*/
static u16 mii_read(struct ioc3_private *ip, int reg)
static int ioc3_mdio_read(struct net_device *dev, int phy, int reg)
{
struct ioc3_private *ip = netdev_priv(dev);
struct ioc3 *ioc3 = ip->regs;
int phy = ip->phy;
while (ioc3->micr & MICR_BUSY);
ioc3->micr = (phy << MICR_PHYADDR_SHIFT) | reg | MICR_READTRIG;
while (ioc3->micr & MICR_BUSY);
while (ioc3_r_micr() & MICR_BUSY);
ioc3_w_micr((phy << MICR_PHYADDR_SHIFT) | reg | MICR_READTRIG);
while (ioc3_r_micr() & MICR_BUSY);
return ioc3->midr_r & MIDR_DATA_MASK;
return ioc3_r_micr() & MIDR_DATA_MASK;
}
static void mii_write(struct ioc3_private *ip, int reg, u16 data)
static void ioc3_mdio_write(struct net_device *dev, int phy, int reg, int data)
{
struct ioc3_private *ip = netdev_priv(dev);
struct ioc3 *ioc3 = ip->regs;
int phy = ip->phy;
while (ioc3->micr & MICR_BUSY);
ioc3->midr_w = data;
ioc3->micr = (phy << MICR_PHYADDR_SHIFT) | reg;
while (ioc3->micr & MICR_BUSY);
while (ioc3_r_micr() & MICR_BUSY);
ioc3_w_midr_w(data);
ioc3_w_micr((phy << MICR_PHYADDR_SHIFT) | reg);
while (ioc3_r_micr() & MICR_BUSY);
}
static int ioc3_mii_init(struct ioc3_private *ip);
static struct net_device_stats *ioc3_get_stats(struct net_device *dev)
{
struct ioc3_private *ip = dev->priv;
struct ioc3_private *ip = netdev_priv(dev);
struct ioc3 *ioc3 = ip->regs;
ip->stats.collisions += (ioc3->etcdc & ETCDC_COLLCNT_MASK);
ip->stats.collisions += (ioc3_r_etcdc() & ETCDC_COLLCNT_MASK);
return &ip->stats;
}
static inline void
ioc3_rx(struct ioc3_private *ip)
#ifdef CONFIG_SGI_IOC3_ETH_HW_RX_CSUM
static void ioc3_tcpudp_checksum(struct sk_buff *skb, uint32_t hwsum, int len)
{
struct ethhdr *eh = skb->mac.ethernet;
uint32_t csum, ehsum;
unsigned int proto;
struct iphdr *ih;
uint16_t *ew;
unsigned char *cp;
/*
* Did hardware handle the checksum at all? The cases we can handle
* are:
*
* - TCP and UDP checksums of IPv4 only.
* - IPv6 would be doable but we keep that for later ...
* - Only unfragmented packets. Did somebody already tell you
* fragmentation is evil?
* - don't care about packet size. Worst case when processing a
* malformed packet we'll try to access the packet at ip header +
* 64 bytes which is still inside the skb. Even in the unlikely
* case where the checksum is right the higher layers will still
* drop the packet as appropriate.
*/
if (eh->h_proto != ntohs(ETH_P_IP))
return;
ih = (struct iphdr *) ((char *)eh + ETH_HLEN);
if (ih->frag_off & htons(IP_MF | IP_OFFSET))
return;
proto = ih->protocol;
if (proto != IPPROTO_TCP && proto != IPPROTO_UDP)
return;
/* Same as tx - compute csum of pseudo header */
csum = hwsum +
(ih->tot_len - (ih->ihl << 2)) +
htons((uint16_t)ih->protocol) +
(ih->saddr >> 16) + (ih->saddr & 0xffff) +
(ih->daddr >> 16) + (ih->daddr & 0xffff);
/* Sum up ethernet dest addr, src addr and protocol */
ew = (uint16_t *) eh;
ehsum = ew[0] + ew[1] + ew[2] + ew[3] + ew[4] + ew[5] + ew[6];
ehsum = (ehsum & 0xffff) + (ehsum >> 16);
ehsum = (ehsum & 0xffff) + (ehsum >> 16);
csum += 0xffff ^ ehsum;
/* In the next step we also subtract the 1's complement
checksum of the trailing ethernet CRC. */
cp = (char *)eh + len; /* points at trailing CRC */
if (len & 1) {
csum += 0xffff ^ (uint16_t) ((cp[1] << 8) | cp[0]);
csum += 0xffff ^ (uint16_t) ((cp[3] << 8) | cp[2]);
} else {
csum += 0xffff ^ (uint16_t) ((cp[0] << 8) | cp[1]);
csum += 0xffff ^ (uint16_t) ((cp[2] << 8) | cp[3]);
}
csum = (csum & 0xffff) + (csum >> 16);
csum = (csum & 0xffff) + (csum >> 16);
if (csum == 0xffff)
skb->ip_summed = CHECKSUM_UNNECESSARY;
}
#endif /* CONFIG_SGI_IOC3_ETH_HW_RX_CSUM */
static inline void ioc3_rx(struct ioc3_private *ip)
{
struct sk_buff *skb, *new_skb;
struct ioc3 *ioc3 = ip->regs;
......@@ -460,7 +595,7 @@ ioc3_rx(struct ioc3_private *ip)
if (err & ERXBUF_GOODPKT) {
len = ((w0 >> ERXBUF_BYTECNT_SHIFT) & 0x7ff) - 4;
skb_trim(skb, len);
skb->protocol = eth_type_trans(skb, ip->dev);
skb->protocol = eth_type_trans(skb, priv_netdev(ip));
new_skb = ioc3_alloc_skb(RX_BUF_ALLOC_SIZE, GFP_ATOMIC);
if (!new_skb) {
......@@ -470,18 +605,23 @@ ioc3_rx(struct ioc3_private *ip)
new_skb = skb;
goto next;
}
#ifdef CONFIG_SGI_IOC3_ETH_HW_RX_CSUM
ioc3_tcpudp_checksum(skb, w0 & ERXBUF_IPCKSUM_MASK,len);
#endif
netif_rx(skb);
ip->rx_skbs[rx_entry] = NULL; /* Poison */
new_skb->dev = ip->dev;
new_skb->dev = priv_netdev(ip);
/* Because we reserve afterwards. */
skb_put(new_skb, (1664 + RX_OFFSET));
rxb = (struct ioc3_erxbuf *) new_skb->data;
skb_reserve(new_skb, RX_OFFSET);
ip->dev->last_rx = jiffies;
priv_netdev(ip)->last_rx = jiffies;
ip->stats.rx_packets++; /* Statistics */
ip->stats.rx_bytes += len;
} else {
......@@ -497,8 +637,7 @@ ioc3_rx(struct ioc3_private *ip)
ip->stats.rx_frame_errors++;
next:
ip->rx_skbs[n_entry] = new_skb;
rxr[n_entry] = cpu_to_be64((0xa5UL << 56) |
((unsigned long) rxb & TO_PHYS_MASK));
rxr[n_entry] = cpu_to_be64(ioc3_map(rxb, 1));
rxb->w0 = 0; /* Clear valid flag */
n_entry = (n_entry + 1) & 511; /* Update erpir */
......@@ -508,13 +647,12 @@ ioc3_rx(struct ioc3_private *ip)
rxb = (struct ioc3_erxbuf *) (skb->data - RX_OFFSET);
w0 = be32_to_cpu(rxb->w0);
}
ioc3->erpir = (n_entry << 3) | ERPIR_ARM;
ioc3_w_erpir((n_entry << 3) | ERPIR_ARM);
ip->rx_pi = n_entry;
ip->rx_ci = rx_entry;
}
static inline void
ioc3_tx(struct ioc3_private *ip)
static inline void ioc3_tx(struct ioc3_private *ip)
{
unsigned long packets, bytes;
struct ioc3 *ioc3 = ip->regs;
......@@ -523,7 +661,7 @@ ioc3_tx(struct ioc3_private *ip)
u32 etcir;
spin_lock(&ip->ioc3_lock);
etcir = ioc3->etcir;
etcir = ioc3_r_etcir();
tx_entry = (etcir >> 7) & 127;
o_entry = ip->tx_ci;
......@@ -539,7 +677,7 @@ ioc3_tx(struct ioc3_private *ip)
o_entry = (o_entry + 1) & 127; /* Next */
etcir = ioc3->etcir; /* More pkts sent? */
etcir = ioc3_r_etcir(); /* More pkts sent? */
tx_entry = (etcir >> 7) & 127;
}
......@@ -548,7 +686,7 @@ ioc3_tx(struct ioc3_private *ip)
ip->txqlen -= packets;
if (ip->txqlen < 128)
netif_wake_queue(ip->dev);
netif_wake_queue(priv_netdev(ip));
ip->tx_ci = o_entry;
spin_unlock(&ip->ioc3_lock);
......@@ -561,12 +699,13 @@ ioc3_tx(struct ioc3_private *ip)
* with such error interrupts if something really goes wrong, so we might
* also consider to take the interface down.
*/
static void
ioc3_error(struct ioc3_private *ip, u32 eisr)
static void ioc3_error(struct ioc3_private *ip, u32 eisr)
{
struct net_device *dev = ip->dev;
struct net_device *dev = priv_netdev(ip);
unsigned char *iface = dev->name;
spin_lock(&ip->ioc3_lock);
if (eisr & EISR_RXOFLO)
printk(KERN_ERR "%s: RX overflow.\n", iface);
if (eisr & EISR_RXBUFOFLO)
......@@ -581,11 +720,12 @@ ioc3_error(struct ioc3_private *ip, u32 eisr)
printk(KERN_ERR "%s: TX PCI error.\n", iface);
ioc3_stop(ip);
ioc3_init(ip);
ioc3_init(dev);
ioc3_mii_init(ip);
dev->trans_start = jiffies;
netif_wake_queue(dev);
spin_unlock(&ip->ioc3_lock);
}
/* The interrupt handler does all of the Rx thread work and cleans up
......@@ -593,18 +733,17 @@ ioc3_error(struct ioc3_private *ip, u32 eisr)
static irqreturn_t ioc3_interrupt(int irq, void *_dev, struct pt_regs *regs)
{
struct net_device *dev = (struct net_device *)_dev;
struct ioc3_private *ip = dev->priv;
struct ioc3_private *ip = netdev_priv(dev);
struct ioc3 *ioc3 = ip->regs;
const u32 enabled = EISR_RXTIMERINT | EISR_RXOFLO | EISR_RXBUFOFLO |
EISR_RXMEMERR | EISR_RXPARERR | EISR_TXBUFUFLO |
EISR_TXEXPLICIT | EISR_TXMEMERR;
u32 eisr;
eisr = ioc3->eisr & enabled;
eisr = ioc3_r_eisr() & enabled;
while (eisr) {
ioc3->eisr = eisr;
ioc3->eisr; /* Flush */
ioc3_w_eisr(eisr);
(void) ioc3_r_eisr(); /* Flush */
if (eisr & (EISR_RXOFLO | EISR_RXBUFOFLO | EISR_RXMEMERR |
EISR_RXPARERR | EISR_TXBUFUFLO | EISR_TXMEMERR))
......@@ -614,503 +753,80 @@ static irqreturn_t ioc3_interrupt(int irq, void *_dev, struct pt_regs *regs)
if (eisr & EISR_TXEXPLICIT)
ioc3_tx(ip);
eisr = ioc3->eisr & enabled;
}
return IRQ_HANDLED;
}
/*
* Auto negotiation. The scheme is very simple. We have a timer routine that
* keeps watching the auto negotiation process as it progresses. The DP83840
* is first told to start doing it's thing, we set up the time and place the
* timer state machine in it's initial state.
*
* Here the timer peeks at the DP83840 status registers at each click to see
* if the auto negotiation has completed, we assume here that the DP83840 PHY
* will time out at some point and just tell us what (didn't) happen. For
* complete coverage we only allow so many of the ticks at this level to run,
* when this has expired we print a warning message and try another strategy.
* This "other" strategy is to force the interface into various speed/duplex
* configurations and we stop when we see a link-up condition before the
* maximum number of "peek" ticks have occurred.
*
* Once a valid link status has been detected we configure the IOC3 to speak
* the most efficient protocol we could get a clean link for. The priority
* for link configurations, highest first is:
*
* 100 Base-T Full Duplex
* 100 Base-T Half Duplex
* 10 Base-T Full Duplex
* 10 Base-T Half Duplex
*
* We start a new timer now, after a successful auto negotiation status has
* been detected. This timer just waits for the link-up bit to get set in
* the BMCR of the DP83840. When this occurs we print a kernel log message
* describing the link type in use and the fact that it is up.
*
* If a fatal error of some sort is signalled and detected in the interrupt
* service routine, and the chip is reset, or the link is ifconfig'd down
* and then back up, this entire process repeats itself all over again.
*/
static int ioc3_try_next_permutation(struct ioc3_private *ip)
{
ip->sw_bmcr = mii_read(ip, MII_BMCR);
/* Downgrade from full to half duplex. Only possible via ethtool. */
if (ip->sw_bmcr & BMCR_FULLDPLX) {
ip->sw_bmcr &= ~BMCR_FULLDPLX;
mii_write(ip, MII_BMCR, ip->sw_bmcr);
return 0;
}
/* Downgrade from 100 to 10. */
if (ip->sw_bmcr & BMCR_SPEED100) {
ip->sw_bmcr &= ~BMCR_SPEED100;
mii_write(ip, MII_BMCR, ip->sw_bmcr);
return 0;
}
/* We've tried everything. */
return -1;
}
static void
ioc3_display_link_mode(struct ioc3_private *ip)
{
char *tmode = "";
ip->sw_lpa = mii_read(ip, MII_LPA);
if (ip->sw_lpa & (LPA_100HALF | LPA_100FULL)) {
if (ip->sw_lpa & LPA_100FULL)
tmode = "100Mb/s, Full Duplex";
else
tmode = "100Mb/s, Half Duplex";
} else {
if (ip->sw_lpa & LPA_10FULL)
tmode = "10Mb/s, Full Duplex";
else
tmode = "10Mb/s, Half Duplex";
}
printk(KERN_INFO "%s: Link is up at %s.\n", ip->dev->name, tmode);
}
static void
ioc3_display_forced_link_mode(struct ioc3_private *ip)
{
char *speed = "", *duplex = "";
ip->sw_bmcr = mii_read(ip, MII_BMCR);
if (ip->sw_bmcr & BMCR_SPEED100)
speed = "100Mb/s, ";
else
speed = "10Mb/s, ";
if (ip->sw_bmcr & BMCR_FULLDPLX)
duplex = "Full Duplex.\n";
else
duplex = "Half Duplex.\n";
printk(KERN_INFO "%s: Link has been forced up at %s%s", ip->dev->name,
speed, duplex);
}
static int ioc3_set_link_modes(struct ioc3_private *ip)
static inline void ioc3_setup_duplex(struct ioc3_private *ip)
{
struct ioc3 *ioc3 = ip->regs;
int full;
/*
* All we care about is making sure the bigmac tx_cfg has a
* proper duplex setting.
*/
if (ip->timer_state == arbwait) {
ip->sw_lpa = mii_read(ip, MII_LPA);
if (!(ip->sw_lpa & (LPA_10HALF | LPA_10FULL |
LPA_100HALF | LPA_100FULL)))
goto no_response;
if (ip->sw_lpa & LPA_100FULL)
full = 1;
else if (ip->sw_lpa & LPA_100HALF)
full = 0;
else if (ip->sw_lpa & LPA_10FULL)
full = 1;
else
full = 0;
} else {
/* Forcing a link mode. */
ip->sw_bmcr = mii_read(ip, MII_BMCR);
if (ip->sw_bmcr & BMCR_FULLDPLX)
full = 1;
else
full = 0;
}
if (full)
if (ip->mii.full_duplex) {
ioc3_w_etcsr(ETCSR_FD);
ip->emcr |= EMCR_DUPLEX;
else
} else {
ioc3_w_etcsr(ETCSR_HD);
ip->emcr &= ~EMCR_DUPLEX;
ioc3->emcr = ip->emcr;
ioc3->emcr;
return 0;
no_response:
return 1;
}
static int is_lucent_phy(struct ioc3_private *ip)
{
unsigned short mr2, mr3;
int ret = 0;
mr2 = mii_read(ip, MII_PHYSID1);
mr3 = mii_read(ip, MII_PHYSID2);
if ((mr2 & 0xffff) == 0x0180 && ((mr3 & 0xffff) >> 10) == 0x1d) {
ret = 1;
}
return ret;
ioc3_w_emcr(ip->emcr);
}
static void ioc3_timer(unsigned long data)
{
struct ioc3_private *ip = (struct ioc3_private *) data;
int restart_timer = 0;
ip->timer_ticks++;
switch (ip->timer_state) {
case arbwait:
/*
* Only allow for 5 ticks, thats 10 seconds and much too
* long to wait for arbitration to complete.
*/
if (ip->timer_ticks >= 10) {
/* Enter force mode. */
do_force_mode:
ip->sw_bmcr = mii_read(ip, MII_BMCR);
printk(KERN_NOTICE "%s: Auto-Negotiation unsuccessful,"
" trying force link mode\n", ip->dev->name);
ip->sw_bmcr = BMCR_SPEED100;
mii_write(ip, MII_BMCR, ip->sw_bmcr);
if (!is_lucent_phy(ip)) {
/*
* OK, seems we need do disable the transceiver
* for the first tick to make sure we get an
* accurate link state at the second tick.
*/
ip->sw_csconfig = mii_read(ip, MII_CSCONFIG);
ip->sw_csconfig &= ~(CSCONFIG_TCVDISAB);
mii_write(ip, MII_CSCONFIG, ip->sw_csconfig);
}
ip->timer_state = ltrywait;
ip->timer_ticks = 0;
restart_timer = 1;
} else {
/* Anything interesting happen? */
ip->sw_bmsr = mii_read(ip, MII_BMSR);
if (ip->sw_bmsr & BMSR_ANEGCOMPLETE) {
int ret;
/* Just what we've been waiting for... */
ret = ioc3_set_link_modes(ip);
if (ret) {
/* Ooops, something bad happened, go to
* force mode.
*
* XXX Broken hubs which don't support
* XXX 802.3u auto-negotiation make this
* XXX happen as well.
*/
goto do_force_mode;
}
/*
* Success, at least so far, advance our state
* engine.
*/
ip->timer_state = lupwait;
restart_timer = 1;
} else {
restart_timer = 1;
}
}
break;
case lupwait:
/*
* Auto negotiation was successful and we are awaiting a
* link up status. I have decided to let this timer run
* forever until some sort of error is signalled, reporting
* a message to the user at 10 second intervals.
*/
ip->sw_bmsr = mii_read(ip, MII_BMSR);
if (ip->sw_bmsr & BMSR_LSTATUS) {
/*
* Wheee, it's up, display the link mode in use and put
* the timer to sleep.
*/
ioc3_display_link_mode(ip);
ip->timer_state = asleep;
restart_timer = 0;
} else {
if (ip->timer_ticks >= 10) {
printk(KERN_NOTICE "%s: Auto negotiation successful, link still "
"not completely up.\n", ip->dev->name);
ip->timer_ticks = 0;
restart_timer = 1;
} else {
restart_timer = 1;
}
}
break;
case ltrywait:
/*
* Making the timeout here too long can make it take
* annoyingly long to attempt all of the link mode
* permutations, but then again this is essentially
* error recovery code for the most part.
*/
ip->sw_bmsr = mii_read(ip, MII_BMSR);
ip->sw_csconfig = mii_read(ip, MII_CSCONFIG);
if (ip->timer_ticks == 1) {
if (!is_lucent_phy(ip)) {
/*
* Re-enable transceiver, we'll re-enable the
* transceiver next tick, then check link state
* on the following tick.
*/
ip->sw_csconfig |= CSCONFIG_TCVDISAB;
mii_write(ip, MII_CSCONFIG, ip->sw_csconfig);
}
restart_timer = 1;
break;
}
if (ip->timer_ticks == 2) {
if (!is_lucent_phy(ip)) {
ip->sw_csconfig &= ~(CSCONFIG_TCVDISAB);
mii_write(ip, MII_CSCONFIG, ip->sw_csconfig);
}
restart_timer = 1;
break;
}
if (ip->sw_bmsr & BMSR_LSTATUS) {
/* Force mode selection success. */
ioc3_display_forced_link_mode(ip);
ioc3_set_link_modes(ip); /* XXX error? then what? */
ip->timer_state = asleep;
restart_timer = 0;
} else {
if (ip->timer_ticks >= 4) { /* 6 seconds or so... */
int ret;
/* Print the link status if it has changed */
mii_check_media(&ip->mii, 1, 0);
ioc3_setup_duplex(ip);
ret = ioc3_try_next_permutation(ip);
if (ret == -1) {
/*
* Aieee, tried them all, reset the
* chip and try all over again.
*/
printk(KERN_NOTICE "%s: Link down, "
"cable problem?\n",
ip->dev->name);
ioc3_init(ip);
return;
}
if (!is_lucent_phy(ip)) {
ip->sw_csconfig = mii_read(ip,
MII_CSCONFIG);
ip->sw_csconfig |= CSCONFIG_TCVDISAB;
mii_write(ip, MII_CSCONFIG,
ip->sw_csconfig);
}
ip->timer_ticks = 0;
restart_timer = 1;
} else {
restart_timer = 1;
}
}
break;
case asleep:
default:
/* Can't happens.... */
printk(KERN_ERR "%s: Aieee, link timer is asleep but we got "
"one anyways!\n", ip->dev->name);
restart_timer = 0;
ip->timer_ticks = 0;
ip->timer_state = asleep; /* foo on you */
break;
};
if (restart_timer) {
ip->ioc3_timer.expires = jiffies + ((12 * HZ)/10); /* 1.2s */
add_timer(&ip->ioc3_timer);
}
}
static void
ioc3_start_auto_negotiation(struct ioc3_private *ip, struct ethtool_cmd *ep)
{
int timeout;
/* Read all of the registers we are interested in now. */
ip->sw_bmsr = mii_read(ip, MII_BMSR);
ip->sw_bmcr = mii_read(ip, MII_BMCR);
ip->sw_physid1 = mii_read(ip, MII_PHYSID1);
ip->sw_physid2 = mii_read(ip, MII_PHYSID2);
/* XXX Check BMSR_ANEGCAPABLE, should not be necessary though. */
ip->sw_advertise = mii_read(ip, MII_ADVERTISE);
if (ep == NULL || ep->autoneg == AUTONEG_ENABLE) {
/* Advertise everything we can support. */
if (ip->sw_bmsr & BMSR_10HALF)
ip->sw_advertise |= ADVERTISE_10HALF;
else
ip->sw_advertise &= ~ADVERTISE_10HALF;
if (ip->sw_bmsr & BMSR_10FULL)
ip->sw_advertise |= ADVERTISE_10FULL;
else
ip->sw_advertise &= ~ADVERTISE_10FULL;
if (ip->sw_bmsr & BMSR_100HALF)
ip->sw_advertise |= ADVERTISE_100HALF;
else
ip->sw_advertise &= ~ADVERTISE_100HALF;
if (ip->sw_bmsr & BMSR_100FULL)
ip->sw_advertise |= ADVERTISE_100FULL;
else
ip->sw_advertise &= ~ADVERTISE_100FULL;
mii_write(ip, MII_ADVERTISE, ip->sw_advertise);
/*
* XXX Currently no IOC3 card I know off supports 100BaseT4,
* XXX and this is because the DP83840 does not support it,
* XXX changes XXX would need to be made to the tx/rx logic in
* XXX the driver as well so I completely skip checking for it
* XXX in the BMSR for now.
*/
#ifdef AUTO_SWITCH_DEBUG
ASD(("%s: Advertising [ ", ip->dev->name));
if (ip->sw_advertise & ADVERTISE_10HALF)
ASD(("10H "));
if (ip->sw_advertise & ADVERTISE_10FULL)
ASD(("10F "));
if (ip->sw_advertise & ADVERTISE_100HALF)
ASD(("100H "));
if (ip->sw_advertise & ADVERTISE_100FULL)
ASD(("100F "));
#endif
/* Enable Auto-Negotiation, this is usually on already... */
ip->sw_bmcr |= BMCR_ANENABLE;
mii_write(ip, MII_BMCR, ip->sw_bmcr);
/* Restart it to make sure it is going. */
ip->sw_bmcr |= BMCR_ANRESTART;
mii_write(ip, MII_BMCR, ip->sw_bmcr);
/* BMCR_ANRESTART self clears when the process has begun. */
timeout = 64; /* More than enough. */
while (--timeout) {
ip->sw_bmcr = mii_read(ip, MII_BMCR);
if (!(ip->sw_bmcr & BMCR_ANRESTART))
break; /* got it. */
udelay(10);
}
if (!timeout) {
printk(KERN_ERR "%s: IOC3 would not start auto "
"negotiation BMCR=0x%04x\n",
ip->dev->name, ip->sw_bmcr);
printk(KERN_NOTICE "%s: Performing force link "
"detection.\n", ip->dev->name);
goto force_link;
} else {
ip->timer_state = arbwait;
}
} else {
force_link:
/*
* Force the link up, trying first a particular mode. Either
* we are here at the request of ethtool or because the IOC3
* would not start to autoneg.
*/
/*
* Disable auto-negotiation in BMCR, enable the duplex and
* speed setting, init the timer state machine, and fire it off.
*/
if (ep == NULL || ep->autoneg == AUTONEG_ENABLE) {
ip->sw_bmcr = BMCR_SPEED100;
} else {
if (ep->speed == SPEED_100)
ip->sw_bmcr = BMCR_SPEED100;
else
ip->sw_bmcr = 0;
if (ep->duplex == DUPLEX_FULL)
ip->sw_bmcr |= BMCR_FULLDPLX;
}
mii_write(ip, MII_BMCR, ip->sw_bmcr);
if (!is_lucent_phy(ip)) {
/*
* OK, seems we need do disable the transceiver for the
* first tick to make sure we get an accurate link
* state at the second tick.
/*
* Try to find a PHY. There is no apparent relation between the MII addresses
* in the SGI documentation and what we find in reality, so we simply probe
* for the PHY. It seems IOC3 PHYs usually live on address 31. One of my
* onboard IOC3s has the special oddity that probing doesn't seem to find it
* yet the interface seems to work fine, so if probing fails we for now will
* simply default to PHY 31 instead of bailing out.
*/
ip->sw_csconfig = mii_read(ip, MII_CSCONFIG);
ip->sw_csconfig &= ~(CSCONFIG_TCVDISAB);
mii_write(ip, MII_CSCONFIG, ip->sw_csconfig);
}
ip->timer_state = ltrywait;
}
del_timer(&ip->ioc3_timer);
ip->timer_ticks = 0;
ip->ioc3_timer.expires = jiffies + (12 * HZ)/10; /* 1.2 sec. */
ip->ioc3_timer.data = (unsigned long) ip;
ip->ioc3_timer.function = &ioc3_timer;
add_timer(&ip->ioc3_timer);
}
static int ioc3_mii_init(struct ioc3_private *ip)
{
int i, found;
struct net_device *dev = priv_netdev(ip);
int i, found = 0, res = 0;
int ioc3_phy_workaround = 1;
u16 word;
found = 0;
spin_lock_irq(&ip->ioc3_lock);
for (i = 0; i < 32; i++) {
ip->phy = i;
word = mii_read(ip, 2);
if ((word != 0xffff) && (word != 0x0000)) {
word = ioc3_mdio_read(dev, i, MII_PHYSID1);
if (word != 0xffff && word != 0x0000) {
found = 1;
break; /* Found a PHY */
}
}
if (!found) {
spin_unlock_irq(&ip->ioc3_lock);
return -ENODEV;
if (ioc3_phy_workaround)
i = 31;
else {
ip->mii.phy_id = -1;
res = -ENODEV;
goto out;
}
}
ioc3_start_auto_negotiation(ip, NULL); // XXX ethtool
spin_unlock_irq(&ip->ioc3_lock);
ip->mii.phy_id = i;
ip->ioc3_timer.expires = jiffies + (12 * HZ)/10; /* 1.2 sec. */
ip->ioc3_timer.data = (unsigned long) ip;
ip->ioc3_timer.function = &ioc3_timer;
add_timer(&ip->ioc3_timer);
return 0;
out:
return res;
}
static inline void
ioc3_clean_rx_ring(struct ioc3_private *ip)
static inline void ioc3_clean_rx_ring(struct ioc3_private *ip)
{
struct sk_buff *skb;
int i;
......@@ -1130,8 +846,7 @@ ioc3_clean_rx_ring(struct ioc3_private *ip)
}
}
static inline void
ioc3_clean_tx_ring(struct ioc3_private *ip)
static inline void ioc3_clean_tx_ring(struct ioc3_private *ip)
{
struct sk_buff *skb;
int i;
......@@ -1148,8 +863,7 @@ ioc3_clean_tx_ring(struct ioc3_private *ip)
ip->tx_ci = 0;
}
static void
ioc3_free_rings(struct ioc3_private *ip)
static void ioc3_free_rings(struct ioc3_private *ip)
{
struct sk_buff *skb;
int rx_entry, n_entry;
......@@ -1176,10 +890,9 @@ ioc3_free_rings(struct ioc3_private *ip)
}
}
static void
ioc3_alloc_rings(struct net_device *dev, struct ioc3_private *ip,
struct ioc3 *ioc3)
static void ioc3_alloc_rings(struct net_device *dev)
{
struct ioc3_private *ip = netdev_priv(dev);
struct ioc3_erxbuf *rxb;
unsigned long *rxr;
int i;
......@@ -1209,8 +922,7 @@ ioc3_alloc_rings(struct net_device *dev, struct ioc3_private *ip,
/* Because we reserve afterwards. */
skb_put(skb, (1664 + RX_OFFSET));
rxb = (struct ioc3_erxbuf *) skb->data;
rxr[i] = cpu_to_be64((0xa5UL << 56) |
((unsigned long) rxb & TO_PHYS_MASK));
rxr[i] = cpu_to_be64(ioc3_map(rxb, 1));
skb_reserve(skb, RX_OFFSET);
}
ip->rx_ci = 0;
......@@ -1227,39 +939,38 @@ ioc3_alloc_rings(struct net_device *dev, struct ioc3_private *ip,
}
}
static void
ioc3_init_rings(struct net_device *dev, struct ioc3_private *ip,
struct ioc3 *ioc3)
static void ioc3_init_rings(struct net_device *dev)
{
struct ioc3_private *ip = netdev_priv(dev);
struct ioc3 *ioc3 = ip->regs;
unsigned long ring;
ioc3_free_rings(ip);
ioc3_alloc_rings(dev, ip, ioc3);
ioc3_alloc_rings(dev);
ioc3_clean_rx_ring(ip);
ioc3_clean_tx_ring(ip);
/* Now the rx ring base, consume & produce registers. */
ring = (0xa5UL << 56) | ((unsigned long)ip->rxr & TO_PHYS_MASK);
ioc3->erbr_h = ring >> 32;
ioc3->erbr_l = ring & 0xffffffff;
ioc3->ercir = (ip->rx_ci << 3);
ioc3->erpir = (ip->rx_pi << 3) | ERPIR_ARM;
ring = ioc3_map(ip->rxr, 0);
ioc3_w_erbr_h(ring >> 32);
ioc3_w_erbr_l(ring & 0xffffffff);
ioc3_w_ercir(ip->rx_ci << 3);
ioc3_w_erpir((ip->rx_pi << 3) | ERPIR_ARM);
ring = (0xa5UL << 56) | ((unsigned long)ip->txr & TO_PHYS_MASK);
ring = ioc3_map(ip->txr, 0);
ip->txqlen = 0; /* nothing queued */
/* Now the tx ring base, consume & produce registers. */
ioc3->etbr_h = ring >> 32;
ioc3->etbr_l = ring & 0xffffffff;
ioc3->etpir = (ip->tx_pi << 7);
ioc3->etcir = (ip->tx_ci << 7);
ioc3->etcir; /* Flush */
ioc3_w_etbr_h(ring >> 32);
ioc3_w_etbr_l(ring & 0xffffffff);
ioc3_w_etpir(ip->tx_pi << 7);
ioc3_w_etcir(ip->tx_ci << 7);
(void) ioc3_r_etcir(); /* Flush */
}
static inline void
ioc3_ssram_disc(struct ioc3_private *ip)
static inline void ioc3_ssram_disc(struct ioc3_private *ip)
{
struct ioc3 *ioc3 = ip->regs;
volatile u32 *ssram0 = &ioc3->ssram[0x0000];
......@@ -1267,7 +978,7 @@ ioc3_ssram_disc(struct ioc3_private *ip)
unsigned int pattern = 0x5555;
/* Assume the larger size SSRAM and enable parity checking */
ioc3->emcr |= (EMCR_BUFSIZ | EMCR_RAMPAR);
ioc3_w_emcr(ioc3_r_emcr() | (EMCR_BUFSIZ | EMCR_RAMPAR));
*ssram0 = pattern;
*ssram1 = ~pattern & IOC3_SSRAM_DM;
......@@ -1276,62 +987,63 @@ ioc3_ssram_disc(struct ioc3_private *ip)
(*ssram1 & IOC3_SSRAM_DM) != (~pattern & IOC3_SSRAM_DM)) {
/* set ssram size to 64 KB */
ip->emcr = EMCR_RAMPAR;
ioc3->emcr &= ~EMCR_BUFSIZ;
} else {
ioc3_w_emcr(ioc3_r_emcr() & ~EMCR_BUFSIZ);
} else
ip->emcr = EMCR_BUFSIZ | EMCR_RAMPAR;
}
}
static void ioc3_init(struct ioc3_private *ip)
static void ioc3_init(struct net_device *dev)
{
struct net_device *dev = ip->dev;
struct ioc3_private *ip = netdev_priv(dev);
struct ioc3 *ioc3 = ip->regs;
del_timer(&ip->ioc3_timer); /* Kill if running */
ioc3->emcr = EMCR_RST; /* Reset */
ioc3->emcr; /* Flush WB */
ioc3_w_emcr(EMCR_RST); /* Reset */
(void) ioc3_r_emcr(); /* Flush WB */
udelay(4); /* Give it time ... */
ioc3->emcr = 0;
ioc3->emcr;
ioc3_w_emcr(0);
(void) ioc3_r_emcr();
/* Misc registers */
ioc3->erbar = 0;
ioc3->etcsr = (17<<ETCSR_IPGR2_SHIFT) | (11<<ETCSR_IPGR1_SHIFT) | 21;
ioc3->etcdc; /* Clear on read */
ioc3->ercsr = 15; /* RX low watermark */
ioc3->ertr = 0; /* Interrupt immediately */
ioc3->emar_h = (dev->dev_addr[5] << 8) | dev->dev_addr[4];
ioc3->emar_l = (dev->dev_addr[3] << 24) | (dev->dev_addr[2] << 16) |
(dev->dev_addr[1] << 8) | dev->dev_addr[0];
ioc3->ehar_h = ip->ehar_h;
ioc3->ehar_l = ip->ehar_l;
ioc3->ersr = 42; /* XXX should be random */
ioc3_init_rings(ip->dev, ip, ioc3);
#ifdef CONFIG_SGI_IP27
ioc3_w_erbar(PCI64_ATTR_BAR >> 32); /* Barrier on last store */
#else
ioc3_w_erbar(0); /* Let PCI API get it right */
#endif
(void) ioc3_r_etcdc(); /* Clear on read */
ioc3_w_ercsr(15); /* RX low watermark */
ioc3_w_ertr(0); /* Interrupt immediately */
ioc3_w_emar_h((dev->dev_addr[5] << 8) | dev->dev_addr[4]);
ioc3_w_emar_l((dev->dev_addr[3] << 24) | (dev->dev_addr[2] << 16) |
(dev->dev_addr[1] << 8) | dev->dev_addr[0]);
ioc3_w_ehar_h(ip->ehar_h);
ioc3_w_ehar_l(ip->ehar_l);
ioc3_w_ersr(42); /* XXX should be random */
ioc3_init_rings(dev);
ip->emcr |= ((RX_OFFSET / 2) << EMCR_RXOFF_SHIFT) | EMCR_TXDMAEN |
EMCR_TXEN | EMCR_RXDMAEN | EMCR_RXEN;
ioc3->emcr = ip->emcr;
ioc3->eier = EISR_RXTIMERINT | EISR_RXOFLO | EISR_RXBUFOFLO |
EMCR_TXEN | EMCR_RXDMAEN | EMCR_RXEN | EMCR_PADEN;
ioc3_w_emcr(ip->emcr);
ioc3_w_eier(EISR_RXTIMERINT | EISR_RXOFLO | EISR_RXBUFOFLO |
EISR_RXMEMERR | EISR_RXPARERR | EISR_TXBUFUFLO |
EISR_TXEXPLICIT | EISR_TXMEMERR;
ioc3->eier;
EISR_TXEXPLICIT | EISR_TXMEMERR);
(void) ioc3_r_eier();
}
static inline void ioc3_stop(struct ioc3_private *ip)
{
struct ioc3 *ioc3 = ip->regs;
ioc3->emcr = 0; /* Shutup */
ioc3->eier = 0; /* Disable interrupts */
ioc3->eier; /* Flush */
ioc3_w_emcr(0); /* Shutup */
ioc3_w_eier(0); /* Disable interrupts */
(void) ioc3_r_eier(); /* Flush */
}
static int
ioc3_open(struct net_device *dev)
static int ioc3_open(struct net_device *dev)
{
struct ioc3_private *ip = dev->priv;
struct ioc3_private *ip = netdev_priv(dev);
if (request_irq(dev->irq, ioc3_interrupt, SA_SHIRQ, ioc3_str, dev)) {
printk(KERN_ERR "%s: Can't get irq %d\n", dev->name, dev->irq);
......@@ -1341,16 +1053,15 @@ ioc3_open(struct net_device *dev)
ip->ehar_h = 0;
ip->ehar_l = 0;
ioc3_init(ip);
ioc3_init(dev);
netif_start_queue(dev);
return 0;
}
static int
ioc3_close(struct net_device *dev)
static int ioc3_close(struct net_device *dev)
{
struct ioc3_private *ip = dev->priv;
struct ioc3_private *ip = netdev_priv(dev);
del_timer(&ip->ioc3_timer);
......@@ -1389,6 +1100,34 @@ static inline int ioc3_is_menet(struct pci_dev *pdev)
&& dev->device == PCI_DEVICE_ID_SGI_IOC3;
}
/*
* Note about serial ports and consoles:
* For console output, everyone uses the IOC3 UARTA (offset 0x178)
* connected to the master node (look in ip27_setup_console() and
* ip27prom_console_write()).
*
* For serial (/dev/ttyS0 etc), we can not have hardcoded serial port
* addresses on a partitioned machine. Since we currently use the ioc3
* serial ports, we use dynamic serial port discovery that the serial.c
* driver uses for pci/pnp ports (there is an entry for the SGI ioc3
* boards in pci_boards[]). Unfortunately, UARTA's pio address is greater
* than UARTB's, although UARTA on o200s has traditionally been known as
* port 0. So, we just use one serial port from each ioc3 (since the
* serial driver adds addresses to get to higher ports).
*
* The first one to do a register_console becomes the preferred console
* (if there is no kernel command line console= directive). /dev/console
* (ie 5, 1) is then "aliased" into the device number returned by the
* "device" routine referred to in this console structure
* (ip27prom_console_dev).
*
* Also look in ip27-pci.c:pci_fixuop_ioc3() for some comments on working
* around ioc3 oddities in this respect.
*
* The IOC3 serials use a 22MHz clock rate with an additional divider by 3.
* (IOC3_BAUD = (22000000 / (3*16)))
*/
static inline void ioc3_serial_probe(struct pci_dev *pdev,
struct ioc3 *ioc3)
{
......@@ -1425,6 +1164,7 @@ static inline void ioc3_serial_probe(struct pci_dev *pdev,
static int __devinit ioc3_probe(struct pci_dev *pdev,
const struct pci_device_id *ent)
{
unsigned int sw_physid1, sw_physid2;
struct net_device *dev = NULL;
struct ioc3_private *ip;
struct ioc3 *ioc3;
......@@ -1443,8 +1183,7 @@ static int __devinit ioc3_probe(struct pci_dev *pdev,
SET_MODULE_OWNER(dev);
SET_NETDEV_DEV(dev, &pdev->dev);
ip = dev->priv;
ip->dev = dev;
ip = netdev_priv(dev);
dev->irq = pdev->irq;
......@@ -1464,14 +1203,22 @@ static int __devinit ioc3_probe(struct pci_dev *pdev,
#endif
spin_lock_init(&ip->ioc3_lock);
init_timer(&ip->ioc3_timer);
ioc3_stop(ip);
ioc3_init(ip);
ioc3_init(dev);
ip->pdev = pdev;
ip->mii.phy_id_mask = 0x1f;
ip->mii.reg_num_mask = 0x1f;
ip->mii.dev = dev;
ip->mii.mdio_read = ioc3_mdio_read;
ip->mii.mdio_write = ioc3_mdio_write;
init_timer(&ip->ioc3_timer);
ioc3_mii_init(ip);
if (ip->phy == -1) {
if (ip->mii.phy_id == -1) {
printk(KERN_CRIT "ioc3-eth(%s): Didn't find a PHY, goodbye.\n",
pci_name(pdev));
err = -ENODEV;
......@@ -1490,16 +1237,26 @@ static int __devinit ioc3_probe(struct pci_dev *pdev,
dev->get_stats = ioc3_get_stats;
dev->do_ioctl = ioc3_ioctl;
dev->set_multicast_list = ioc3_set_multicast_list;
dev->ethtool_ops = &ioc3_ethtool_ops;
#ifdef CONFIG_SGI_IOC3_ETH_HW_TX_CSUM
dev->features = NETIF_F_IP_CSUM;
#endif
ioc3_setup_duplex(ip);
sw_physid1 = ioc3_mdio_read(dev, ip->mii.phy_id, MII_PHYSID1);
sw_physid2 = ioc3_mdio_read(dev, ip->mii.phy_id, MII_PHYSID2);
err = register_netdev(dev);
if (err)
goto out_stop;
vendor = (ip->sw_physid1 << 12) | (ip->sw_physid2 >> 4);
model = (ip->sw_physid2 >> 4) & 0x3f;
rev = ip->sw_physid2 & 0xf;
mii_check_media(&ip->mii, 1, 1);
vendor = (sw_physid1 << 12) | (sw_physid2 >> 4);
model = (sw_physid2 >> 4) & 0x3f;
rev = sw_physid2 & 0xf;
printk(KERN_INFO "%s: Using PHY %d, vendor 0x%x, model %d, "
"rev %d.\n", dev->name, ip->phy, vendor, model, rev);
"rev %d.\n", dev->name, ip->mii.phy_id, vendor, model, rev);
printk(KERN_INFO "%s: IOC3 SSRAM has %d kbyte.\n", dev->name,
ip->emcr & EMCR_BUFSIZ ? 128 : 64);
......@@ -1507,7 +1264,6 @@ static int __devinit ioc3_probe(struct pci_dev *pdev,
out_stop:
ioc3_stop(ip);
free_irq(dev->irq, dev);
ioc3_free_rings(ip);
out_res:
pci_release_regions(pdev);
......@@ -1519,7 +1275,7 @@ static int __devinit ioc3_probe(struct pci_dev *pdev,
static void __devexit ioc3_remove_one (struct pci_dev *pdev)
{
struct net_device *dev = pci_get_drvdata(pdev);
struct ioc3_private *ip = dev->priv;
struct ioc3_private *ip = netdev_priv(dev);
struct ioc3 *ioc3 = ip->regs;
unregister_netdev(dev);
......@@ -1551,16 +1307,66 @@ static void __exit ioc3_cleanup_module(void)
pci_unregister_driver(&ioc3_driver);
}
static int
ioc3_start_xmit(struct sk_buff *skb, struct net_device *dev)
static int ioc3_start_xmit(struct sk_buff *skb, struct net_device *dev)
{
unsigned long data;
struct ioc3_private *ip = dev->priv;
struct ioc3_private *ip = netdev_priv(dev);
struct ioc3 *ioc3 = ip->regs;
unsigned int len;
struct ioc3_etxd *desc;
uint32_t w0 = 0;
int produce;
#ifdef CONFIG_SGI_IOC3_ETH_HW_TX_CSUM
/*
* IOC3 has a fairly simple minded checksumming hardware which simply
* adds up the 1's complement checksum for the entire packet and
* inserts it at an offset which can be specified in the descriptor
* into the transmit packet. This means we have to compensate for the
* MAC header which should not be summed and the TCP/UDP pseudo headers
* manually.
*/
if (skb->ip_summed == CHECKSUM_HW) {
int proto = ntohs(skb->nh.iph->protocol);
unsigned int csoff;
struct iphdr *ih = skb->nh.iph;
uint32_t csum, ehsum;
uint16_t *eh;
/* The MAC header. skb->mac.ethernet seem the logic approach
to find the MAC header - except it's a NULL pointer ... */
eh = (uint16_t *) skb->data;
/* Sum up dest addr, src addr and protocol */
ehsum = eh[0] + eh[1] + eh[2] + eh[3] + eh[4] + eh[5] + eh[6];
/* Fold ehsum. can't use csum_fold which negates also ... */
ehsum = (ehsum & 0xffff) + (ehsum >> 16);
ehsum = (ehsum & 0xffff) + (ehsum >> 16);
/* Skip IP header; it's sum is always zero and was
already filled in by ip_output.c */
csum = csum_tcpudp_nofold(ih->saddr, ih->daddr,
ih->tot_len - (ih->ihl << 2),
proto, 0xffff ^ ehsum);
csum = (csum & 0xffff) + (csum >> 16); /* Fold again */
csum = (csum & 0xffff) + (csum >> 16);
csoff = ETH_HLEN + (ih->ihl << 2);
if (proto == IPPROTO_UDP) {
csoff += offsetof(struct udphdr, check);
skb->h.uh->check = csum;
}
if (proto == IPPROTO_TCP) {
csoff += offsetof(struct tcphdr, check);
skb->h.th->check = csum;
}
w0 = ETXD_DOCHECKSUM | (csoff << ETXD_CHKOFF_SHIFT);
}
#endif /* CONFIG_SGI_IOC3_ETH_HW_TX_CSUM */
spin_lock_irq(&ip->ioc3_lock);
data = (unsigned long) skb->data;
......@@ -1577,29 +1383,24 @@ ioc3_start_xmit(struct sk_buff *skb, struct net_device *dev)
memset(desc->data + len, 0, ETH_ZLEN - len);
len = ETH_ZLEN;
}
desc->cmd = cpu_to_be32(len | ETXD_INTWHENDONE | ETXD_D0V);
desc->cmd = cpu_to_be32(len | ETXD_INTWHENDONE | ETXD_D0V | w0);
desc->bufcnt = cpu_to_be32(len);
} else if ((data ^ (data + len)) & 0x4000) {
unsigned long b2, s1, s2;
b2 = (data | 0x3fffUL) + 1UL;
s1 = b2 - data;
s2 = data + len - b2;
} else if ((data ^ (data + len - 1)) & 0x4000) {
unsigned long b2 = (data | 0x3fffUL) + 1UL;
unsigned long s1 = b2 - data;
unsigned long s2 = data + len - b2;
desc->cmd = cpu_to_be32(len | ETXD_INTWHENDONE |
ETXD_B1V | ETXD_B2V);
desc->bufcnt = cpu_to_be32((s1 << ETXD_B1CNT_SHIFT)
| (s2 << ETXD_B2CNT_SHIFT));
desc->p1 = cpu_to_be64((0xa5UL << 56) |
(data & TO_PHYS_MASK));
desc->p2 = cpu_to_be64((0xa5UL << 56) |
(data & TO_PHYS_MASK));
ETXD_B1V | ETXD_B2V | w0);
desc->bufcnt = cpu_to_be32((s1 << ETXD_B1CNT_SHIFT) |
(s2 << ETXD_B2CNT_SHIFT));
desc->p1 = cpu_to_be64(ioc3_map(skb->data, 1));
desc->p2 = cpu_to_be64(ioc3_map((void *) b2, 1));
} else {
/* Normal sized packet that doesn't cross a page boundary. */
desc->cmd = cpu_to_be32(len | ETXD_INTWHENDONE | ETXD_B1V);
desc->cmd = cpu_to_be32(len | ETXD_INTWHENDONE | ETXD_B1V | w0);
desc->bufcnt = cpu_to_be32(len << ETXD_B1CNT_SHIFT);
desc->p1 = cpu_to_be64((0xa5UL << 56) |
(data & TO_PHYS_MASK));
desc->p1 = cpu_to_be64(ioc3_map(skb->data, 1));
}
BARRIER();
......@@ -1608,11 +1409,11 @@ ioc3_start_xmit(struct sk_buff *skb, struct net_device *dev)
ip->tx_skbs[produce] = skb; /* Remember skb */
produce = (produce + 1) & 127;
ip->tx_pi = produce;
ioc3->etpir = produce << 7; /* Fire ... */
ioc3_w_etpir(produce << 7); /* Fire ... */
ip->txqlen++;
if (ip->txqlen > 127)
if (ip->txqlen >= 127)
netif_stop_queue(dev);
spin_unlock_irq(&ip->ioc3_lock);
......@@ -1622,15 +1423,18 @@ ioc3_start_xmit(struct sk_buff *skb, struct net_device *dev)
static void ioc3_timeout(struct net_device *dev)
{
struct ioc3_private *ip = dev->priv;
struct ioc3_private *ip = netdev_priv(dev);
printk(KERN_ERR "%s: transmit timed out, resetting\n", dev->name);
spin_lock_irq(&ip->ioc3_lock);
ioc3_stop(ip);
ioc3_init(ip);
ioc3_init(dev);
ioc3_mii_init(ip);
dev->trans_start = jiffies;
spin_unlock_irq(&ip->ioc3_lock);
netif_wake_queue(dev);
}
......@@ -1639,11 +1443,9 @@ static void ioc3_timeout(struct net_device *dev)
* address's bit index in the logical address filter mask
*/
static inline unsigned int
ioc3_hash(const unsigned char *addr)
static inline unsigned int ioc3_hash(const unsigned char *addr)
{
unsigned int temp = 0;
unsigned char byte;
u32 crc;
int bits;
......@@ -1659,132 +1461,89 @@ ioc3_hash(const unsigned char *addr)
return temp;
}
/* We provide both the mii-tools and the ethtool ioctls. */
static int ioc3_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
static void ioc3_get_drvinfo (struct net_device *dev,
struct ethtool_drvinfo *info)
{
struct ioc3_private *ip = dev->priv;
struct ethtool_cmd *ep_user = (struct ethtool_cmd *) rq->ifr_data;
u16 *data = (u16 *)&rq->ifr_data;
struct ioc3 *ioc3 = ip->regs;
struct ethtool_cmd ecmd;
switch (cmd) {
case SIOCGMIIPHY: /* Get the address of the PHY in use. */
if (ip->phy == -1)
return -ENODEV;
data[0] = ip->phy;
return 0;
struct ioc3_private *ip = netdev_priv(dev);
case SIOCGMIIREG: { /* Read a PHY register. */
unsigned int phy = data[0];
unsigned int reg = data[1];
strcpy (info->driver, IOC3_NAME);
strcpy (info->version, IOC3_VERSION);
strcpy (info->bus_info, pci_name(ip->pdev));
}
if (phy > 0x1f || reg > 0x1f)
return -EINVAL;
static int ioc3_get_settings(struct net_device *dev, struct ethtool_cmd *cmd)
{
struct ioc3_private *ip = netdev_priv(dev);
int rc;
spin_lock_irq(&ip->ioc3_lock);
while (ioc3->micr & MICR_BUSY);
ioc3->micr = (phy << MICR_PHYADDR_SHIFT) | reg | MICR_READTRIG;
while (ioc3->micr & MICR_BUSY);
data[3] = (ioc3->midr_r & MIDR_DATA_MASK);
rc = mii_ethtool_gset(&ip->mii, cmd);
spin_unlock_irq(&ip->ioc3_lock);
return 0;
return rc;
}
case SIOCSMIIREG: /* Write a PHY register. */
phy = data[0];
reg = data[1];
static int ioc3_set_settings(struct net_device *dev, struct ethtool_cmd *cmd)
{
struct ioc3_private *ip = netdev_priv(dev);
int rc;
if (!capable(CAP_NET_ADMIN))
return -EPERM;
spin_lock_irq(&ip->ioc3_lock);
rc = mii_ethtool_sset(&ip->mii, cmd);
spin_unlock_irq(&ip->ioc3_lock);
if (phy > 0x1f || reg > 0x1f)
return -EINVAL;
return rc;
}
static int ioc3_nway_reset(struct net_device *dev)
{
struct ioc3_private *ip = netdev_priv(dev);
int rc;
spin_lock_irq(&ip->ioc3_lock);
while (ioc3->micr & MICR_BUSY);
ioc3->midr_w = data[2];
ioc3->micr = (phy << MICR_PHYADDR_SHIFT) | reg;
while (ioc3->micr & MICR_BUSY);
rc = mii_nway_restart(&ip->mii);
spin_unlock_irq(&ip->ioc3_lock);
return 0;
}
case SIOCETHTOOL:
if (copy_from_user(&ecmd, ep_user, sizeof(ecmd)))
return -EFAULT;
if (ecmd.cmd == ETHTOOL_GSET) {
ecmd.supported =
(SUPPORTED_10baseT_Half |
SUPPORTED_10baseT_Full |
SUPPORTED_100baseT_Half |
SUPPORTED_100baseT_Full | SUPPORTED_Autoneg |
SUPPORTED_TP | SUPPORTED_MII);
ecmd.port = PORT_TP;
ecmd.transceiver = XCVR_INTERNAL;
ecmd.phy_address = ip->phy;
/* Record PHY settings. */
return rc;
}
static u32 ioc3_get_link(struct net_device *dev)
{
struct ioc3_private *ip = netdev_priv(dev);
int rc;
spin_lock_irq(&ip->ioc3_lock);
ip->sw_bmcr = mii_read(ip, MII_BMCR);
ip->sw_lpa = mii_read(ip, MII_LPA);
rc = mii_link_ok(&ip->mii);
spin_unlock_irq(&ip->ioc3_lock);
if (ip->sw_bmcr & BMCR_ANENABLE) {
ecmd.autoneg = AUTONEG_ENABLE;
ecmd.speed = (ip->sw_lpa &
(LPA_100HALF | LPA_100FULL)) ?
SPEED_100 : SPEED_10;
if (ecmd.speed == SPEED_100)
ecmd.duplex = (ip->sw_lpa & (LPA_100FULL)) ?
DUPLEX_FULL : DUPLEX_HALF;
else
ecmd.duplex = (ip->sw_lpa & (LPA_10FULL)) ?
DUPLEX_FULL : DUPLEX_HALF;
} else {
ecmd.autoneg = AUTONEG_DISABLE;
ecmd.speed = (ip->sw_bmcr & BMCR_SPEED100) ?
SPEED_100 : SPEED_10;
ecmd.duplex = (ip->sw_bmcr & BMCR_FULLDPLX) ?
DUPLEX_FULL : DUPLEX_HALF;
}
if (copy_to_user(ep_user, &ecmd, sizeof(ecmd)))
return -EFAULT;
return 0;
} else if (ecmd.cmd == ETHTOOL_SSET) {
/* Verify the settings we care about. */
if (ecmd.autoneg != AUTONEG_ENABLE &&
ecmd.autoneg != AUTONEG_DISABLE)
return -EINVAL;
if (ecmd.autoneg == AUTONEG_DISABLE &&
((ecmd.speed != SPEED_100 &&
ecmd.speed != SPEED_10) ||
(ecmd.duplex != DUPLEX_HALF &&
ecmd.duplex != DUPLEX_FULL)))
return -EINVAL;
/* Ok, do it to it. */
del_timer(&ip->ioc3_timer);
return rc;
}
static struct ethtool_ops ioc3_ethtool_ops = {
.get_drvinfo = ioc3_get_drvinfo,
.get_settings = ioc3_get_settings,
.set_settings = ioc3_set_settings,
.nway_reset = ioc3_nway_reset,
.get_link = ioc3_get_link,
};
static int ioc3_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
{
struct mii_ioctl_data *data = (struct mii_ioctl_data *) & rq->ifr_data;
struct ioc3_private *ip = netdev_priv(dev);
int rc;
spin_lock_irq(&ip->ioc3_lock);
ioc3_start_auto_negotiation(ip, &ecmd);
rc = generic_mii_ioctl(&ip->mii, data, cmd, NULL);
spin_unlock_irq(&ip->ioc3_lock);
return 0;
} else
default:
return -EOPNOTSUPP;
}
return -EOPNOTSUPP;
return rc;
}
static void ioc3_set_multicast_list(struct net_device *dev)
{
struct dev_mc_list *dmi = dev->mc_list;
struct ioc3_private *ip = dev->priv;
struct ioc3_private *ip = netdev_priv(dev);
struct ioc3 *ioc3 = ip->regs;
u64 ehar = 0;
int i;
......@@ -1795,12 +1554,12 @@ static void ioc3_set_multicast_list(struct net_device *dev)
/* Unconditionally log net taps. */
printk(KERN_INFO "%s: Promiscuous mode enabled.\n", dev->name);
ip->emcr |= EMCR_PROMISC;
ioc3->emcr = ip->emcr;
ioc3->emcr;
ioc3_w_emcr(ip->emcr);
(void) ioc3_r_emcr();
} else {
ip->emcr &= ~EMCR_PROMISC;
ioc3->emcr = ip->emcr; /* Clear promiscuous. */
ioc3->emcr;
ioc3_w_emcr(ip->emcr); /* Clear promiscuous. */
(void) ioc3_r_emcr();
if ((dev->flags & IFF_ALLMULTI) || (dev->mc_count > 64)) {
/* Too many for hashing to make sense or we want all
......@@ -1821,14 +1580,14 @@ static void ioc3_set_multicast_list(struct net_device *dev)
ip->ehar_h = ehar >> 32;
ip->ehar_l = ehar & 0xffffffff;
}
ioc3->ehar_h = ip->ehar_h;
ioc3->ehar_l = ip->ehar_l;
ioc3_w_ehar_h(ip->ehar_h);
ioc3_w_ehar_l(ip->ehar_l);
}
netif_wake_queue(dev); /* Let us get going again. */
}
MODULE_AUTHOR("Ralf Baechle <ralf@oss.sgi.com>");
MODULE_AUTHOR("Ralf Baechle <ralf@linux-mips.org>");
MODULE_DESCRIPTION("SGI IOC3 Ethernet driver");
MODULE_LICENSE("GPL");
......
/*
*
* Alchemy Semi Au1000 IrDA driver
*
* Copyright 2001 MontaVista Software Inc.
* Author: MontaVista Software, Inc.
* ppopov@mvista.com or source@mvista.com
*
* ########################################################################
*
* This program is free software; you can distribute it and/or modify it
* under the terms of the GNU General Public License (Version 2) as
* published by the Free Software Foundation.
......@@ -20,17 +17,7 @@
* You should have received a copy of the GNU General Public License along
* with this program; if not, write to the Free Software Foundation, Inc.,
* 59 Temple Place - Suite 330, Boston MA 02111-1307, USA.
*
* ########################################################################
*
*
*/
#ifndef __mips__
#error This driver only works with MIPS architectures!
#endif
#include <linux/config.h>
#include <linux/module.h>
#include <linux/types.h>
......@@ -46,7 +33,13 @@
#include <asm/bitops.h>
#include <asm/io.h>
#include <asm/au1000.h>
#if defined(CONFIG_MIPS_PB1000) || defined(CONFIG_MIPS_PB1100)
#include <asm/pb1000.h>
#elif defined(CONFIG_MIPS_DB1000) || defined(CONFIG_MIPS_DB1100)
#include <asm/db1x00.h>
#else
#error au1k_ir: unsupported board
#endif
#include <net/irda/irda.h>
#include <net/irda/irmod.h>
......@@ -71,10 +64,14 @@ static void dma_free(void *, size_t);
static int qos_mtt_bits = 0x07; /* 1 ms or more */
static struct net_device *ir_devs[NUM_IR_IFF];
static char version[] __devinitdata =
"au1k_ircc:1.0 ppopov@mvista.com\n";
"au1k_ircc:1.2 ppopov@mvista.com\n";
#define RUN_AT(x) (jiffies + (x))
#if defined(CONFIG_MIPS_DB1000) || defined(CONFIG_MIPS_DB1100)
static BCSR * const bcsr = (BCSR *)0xAE000000;
#endif
static spinlock_t ir_lock = SPIN_LOCK_UNLOCKED;
/*
......@@ -128,7 +125,7 @@ static void *dma_alloc(size_t size, dma_addr_t * dma_handle)
if (ret != NULL) {
memset(ret, 0, size);
*dma_handle = virt_to_bus(ret);
ret = KSEG0ADDR(ret);
ret = (void *)KSEG0ADDR(ret);
}
return ret;
}
......@@ -136,7 +133,7 @@ static void *dma_alloc(size_t size, dma_addr_t * dma_handle)
static void dma_free(void *vaddr, size_t size)
{
vaddr = KSEG0ADDR(vaddr);
vaddr = (void *)KSEG0ADDR(vaddr);
free_pages((unsigned long) vaddr, get_order(size));
}
......@@ -180,7 +177,7 @@ static int au1k_irda_init(void)
return 0;
out1:
aup = dev->priv;
aup = netdev_priv(dev);
dma_free((void *)aup->db[0].vaddr,
MAX_BUF_SIZE * 2*NUM_IR_DESC);
dma_free((void *)aup->rx_ring[0],
......@@ -205,10 +202,10 @@ static int au1k_irda_init_iobuf(iobuff_t *io, int size)
static int au1k_irda_net_init(struct net_device *dev)
{
struct au1k_private *aup = dev->priv;
struct au1k_private *aup = netdev_priv(dev);
int i, retval = 0, err;
db_dest_t *pDB, *pDBfree;
unsigned long temp;
dma_addr_t temp;
err = au1k_irda_init_iobuf(&aup->rx_buff, 14384);
if (err)
......@@ -281,6 +278,14 @@ static int au1k_irda_net_init(struct net_device *dev)
aup->tx_ring[i]->flags = 0;
aup->tx_db_inuse[i] = pDB;
}
#if defined(CONFIG_MIPS_DB1000) || defined(CONFIG_MIPS_DB1100)
/* power on */
bcsr->resets &= ~BCSR_RESETS_IRDA_MODE_MASK;
bcsr->resets |= BCSR_RESETS_IRDA_MODE_FULL;
au_sync();
#endif
return 0;
out3:
......@@ -296,7 +301,7 @@ static int au1k_irda_net_init(struct net_device *dev)
static int au1k_init(struct net_device *dev)
{
struct au1k_private *aup = (struct au1k_private *) dev->priv;
struct au1k_private *aup = netdev_priv(dev);
int i;
u32 control;
u32 ring_address;
......@@ -340,13 +345,10 @@ static int au1k_irda_start(struct net_device *dev)
{
int retval;
char hwname[32];
struct au1k_private *aup = (struct au1k_private *) dev->priv;
MOD_INC_USE_COUNT;
struct au1k_private *aup = netdev_priv(dev);
if ((retval = au1k_init(dev))) {
printk(KERN_ERR "%s: error in au1k_init\n", dev->name);
MOD_DEC_USE_COUNT;
return retval;
}
......@@ -354,7 +356,6 @@ static int au1k_irda_start(struct net_device *dev)
0, dev->name, dev))) {
printk(KERN_ERR "%s: unable to get IRQ %d\n",
dev->name, dev->irq);
MOD_DEC_USE_COUNT;
return retval;
}
if ((retval = request_irq(AU1000_IRDA_RX_INT, &au1k_irda_interrupt,
......@@ -362,7 +363,6 @@ static int au1k_irda_start(struct net_device *dev)
free_irq(AU1000_IRDA_TX_INT, dev);
printk(KERN_ERR "%s: unable to get IRQ %d\n",
dev->name, dev->irq);
MOD_DEC_USE_COUNT;
return retval;
}
......@@ -380,7 +380,7 @@ static int au1k_irda_start(struct net_device *dev)
static int au1k_irda_stop(struct net_device *dev)
{
struct au1k_private *aup = (struct au1k_private *) dev->priv;
struct au1k_private *aup = netdev_priv(dev);
/* disable interrupts */
writel(read_ir_reg(IR_CONFIG_2) & ~(1<<8), IR_CONFIG_2);
......@@ -399,14 +399,13 @@ static int au1k_irda_stop(struct net_device *dev)
/* disable the interrupt */
free_irq(AU1000_IRDA_TX_INT, dev);
free_irq(AU1000_IRDA_RX_INT, dev);
MOD_DEC_USE_COUNT;
return 0;
}
static void __exit au1k_irda_exit(void)
{
struct net_device *dev = ir_devs[0];
struct au1k_private *aup = (struct au1k_private *) dev->priv;
struct au1k_private *aup = netdev_priv(dev);
unregister_netdev(dev);
......@@ -422,7 +421,7 @@ static void __exit au1k_irda_exit(void)
static inline void
update_tx_stats(struct net_device *dev, u32 status, u32 pkt_len)
{
struct au1k_private *aup = (struct au1k_private *) dev->priv;
struct au1k_private *aup = netdev_priv(dev);
struct net_device_stats *ps = &aup->stats;
ps->tx_packets++;
......@@ -437,7 +436,7 @@ update_tx_stats(struct net_device *dev, u32 status, u32 pkt_len)
static void au1k_tx_ack(struct net_device *dev)
{
struct au1k_private *aup = (struct au1k_private *) dev->priv;
struct au1k_private *aup = netdev_priv(dev);
volatile ring_dest_t *ptxd;
ptxd = aup->tx_ring[aup->tx_tail];
......@@ -480,7 +479,7 @@ static void au1k_tx_ack(struct net_device *dev)
*/
static int au1k_irda_hard_xmit(struct sk_buff *skb, struct net_device *dev)
{
struct au1k_private *aup = (struct au1k_private *) dev->priv;
struct au1k_private *aup = netdev_priv(dev);
int speed = irda_get_next_speed(skb);
volatile ring_dest_t *ptxd;
u32 len;
......@@ -505,13 +504,13 @@ static int au1k_irda_hard_xmit(struct sk_buff *skb, struct net_device *dev)
flags = ptxd->flags;
if (flags & AU_OWN) {
printk(KERN_INFO "%s: tx_full\n", dev->name);
printk(KERN_DEBUG "%s: tx_full\n", dev->name);
netif_stop_queue(dev);
aup->tx_full = 1;
return 1;
}
else if (((aup->tx_head + 1) & (NUM_IR_DESC - 1)) == aup->tx_tail) {
printk(KERN_INFO "%s: tx_full\n", dev->name);
printk(KERN_DEBUG "%s: tx_full\n", dev->name);
netif_stop_queue(dev);
aup->tx_full = 1;
return 1;
......@@ -531,6 +530,7 @@ static int au1k_irda_hard_xmit(struct sk_buff *skb, struct net_device *dev)
memcpy((void *)pDB->vaddr, skb->data, skb->len);
ptxd->count_0 = skb->len & 0xff;
ptxd->count_1 = (skb->len >> 8) & 0xff;
}
else {
/* SIR */
......@@ -538,6 +538,7 @@ static int au1k_irda_hard_xmit(struct sk_buff *skb, struct net_device *dev)
ptxd->count_0 = len & 0xff;
ptxd->count_1 = (len >> 8) & 0xff;
ptxd->flags |= IR_DIS_CRC;
au_writel(au_readl(0xae00000c) & ~(1<<13), 0xae00000c);
}
ptxd->flags |= AU_OWN;
au_sync();
......@@ -556,7 +557,7 @@ static int au1k_irda_hard_xmit(struct sk_buff *skb, struct net_device *dev)
static inline void
update_rx_stats(struct net_device *dev, u32 status, u32 count)
{
struct au1k_private *aup = (struct au1k_private *) dev->priv;
struct au1k_private *aup = netdev_priv(dev);
struct net_device_stats *ps = &aup->stats;
ps->rx_packets++;
......@@ -579,7 +580,7 @@ update_rx_stats(struct net_device *dev, u32 status, u32 count)
*/
static int au1k_irda_rx(struct net_device *dev)
{
struct au1k_private *aup = (struct au1k_private *) dev->priv;
struct au1k_private *aup = netdev_priv(dev);
struct sk_buff *skb;
volatile ring_dest_t *prxd;
u32 flags, count;
......@@ -650,7 +651,7 @@ void au1k_irda_interrupt(int irq, void *dev_id, struct pt_regs *regs)
static void au1k_tx_timeout(struct net_device *dev)
{
u32 speed;
struct au1k_private *aup = (struct au1k_private *) dev->priv;
struct au1k_private *aup = netdev_priv(dev);
printk(KERN_ERR "%s: tx timeout\n", dev->name);
speed = aup->speed;
......@@ -668,10 +669,13 @@ static int
au1k_irda_set_speed(struct net_device *dev, int speed)
{
unsigned long flags;
struct au1k_private *aup = (struct au1k_private *) dev->priv;
struct au1k_private *aup = netdev_priv(dev);
u32 control;
int ret = 0, timeout = 10, i;
volatile ring_dest_t *ptxd;
#if defined(CONFIG_MIPS_DB1000) || defined(CONFIG_MIPS_DB1100)
unsigned long irda_resets;
#endif
if (speed == aup->speed)
return ret;
......@@ -717,10 +721,20 @@ au1k_irda_set_speed(struct net_device *dev, int speed)
ptxd->flags = AU_OWN;
}
if (speed == 4000000)
if (speed == 4000000) {
#if defined(CONFIG_MIPS_DB1000) || defined(CONFIG_MIPS_DB1100)
bcsr->resets |= BCSR_RESETS_FIR_SEL;
#else /* Pb1000 and Pb1100 */
writel(1<<13, CPLD_AUX1);
else
#endif
}
else {
#if defined(CONFIG_MIPS_DB1000) || defined(CONFIG_MIPS_DB1100)
bcsr->resets &= ~BCSR_RESETS_FIR_SEL;
#else /* Pb1000 and Pb1100 */
writel(readl(CPLD_AUX1) & ~(1<<13), CPLD_AUX1);
#endif
}
switch (speed) {
case 9600:
......@@ -766,15 +780,15 @@ au1k_irda_set_speed(struct net_device *dev, int speed)
}
else {
if (control & (1<<11))
printk(KERN_INFO "%s Valid SIR config\n", dev->name);
printk(KERN_DEBUG "%s Valid SIR config\n", dev->name);
if (control & (1<<12))
printk(KERN_INFO "%s Valid MIR config\n", dev->name);
printk(KERN_DEBUG "%s Valid MIR config\n", dev->name);
if (control & (1<<13))
printk(KERN_INFO "%s Valid FIR config\n", dev->name);
printk(KERN_DEBUG "%s Valid FIR config\n", dev->name);
if (control & (1<<10))
printk(KERN_INFO "%s TX enabled\n", dev->name);
printk(KERN_DEBUG "%s TX enabled\n", dev->name);
if (control & (1<<9))
printk(KERN_INFO "%s RX enabled\n", dev->name);
printk(KERN_DEBUG "%s RX enabled\n", dev->name);
}
spin_unlock_irqrestore(&ir_lock, flags);
......@@ -785,7 +799,7 @@ static int
au1k_irda_ioctl(struct net_device *dev, struct ifreq *ifreq, int cmd)
{
struct if_irda_req *rq = (struct if_irda_req *)ifreq;
struct au1k_private *aup = dev->priv;
struct au1k_private *aup = netdev_priv(dev);
int ret = -EOPNOTSUPP;
switch (cmd) {
......@@ -826,14 +840,12 @@ au1k_irda_ioctl(struct net_device *dev, struct ifreq *ifreq, int cmd)
static struct net_device_stats *au1k_irda_stats(struct net_device *dev)
{
struct au1k_private *aup = (struct au1k_private *) dev->priv;
struct au1k_private *aup = netdev_priv(dev);
return &aup->stats;
}
#ifdef MODULE
MODULE_AUTHOR("Pete Popov <ppopov@mvista.com>");
MODULE_DESCRIPTION("Au1000 IrDA Device Driver");
module_init(au1k_irda_init);
module_exit(au1k_irda_exit);
#endif /* MODULE */
/*
* meth.c -- O2 Builtin 10/100 Ethernet driver
*
* Copyright (C) 2001 Ilya Volynets
* Copyright (C) 2001-2003 Ilya Volynets
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
......@@ -18,9 +18,10 @@
#include <linux/errno.h> /* error codes */
#include <linux/types.h> /* size_t */
#include <linux/interrupt.h> /* mark_bh */
#include <linux/pci.h>
#include <linux/in.h>
#include <linux/in6.h>
#include <linux/device.h> /* struct device, et al */
#include <linux/netdevice.h> /* struct device, and other headers */
#include <linux/etherdevice.h> /* eth_type_trans */
#include <linux/ip.h> /* struct iphdr */
......@@ -28,21 +29,22 @@
#include <linux/skbuff.h>
#include <linux/mii.h> /*MII definitions */
#include <asm/ip32/crime.h>
#include <asm/ip32/mace.h>
#include <asm/ip32/ip32_ints.h>
#include "meth.h"
#include <linux/in6.h>
#include <asm/io.h>
#include <asm/checksum.h>
#include <asm/scatterlist.h>
#include <linux/dma-mapping.h>
#include "meth.h"
#ifndef MFE_DEBUG
#define MFE_DEBUG 0
#endif
#if MFE_DEBUG>=1
#define DPRINTK(str,args...) printk (KERN_DEBUG "meth(%ld): %s: " str, jiffies, __FUNCTION__ , ## args)
#define DPRINTK(str,args...) printk(KERN_DEBUG "meth: %s: " str, __FUNCTION__ , ## args)
#define MFE_RX_DEBUG 2
#else
#define DPRINTK(str,args...)
......@@ -50,15 +52,10 @@
#endif
static const char *version="meth.c: Ilya Volynets (ilya@theIlya.com)";
static const char *meth_str="SGI O2 Fast Ethernet";
MODULE_AUTHOR("Ilya Volynets");
MODULE_AUTHOR("Ilya Volynets <ilya@theIlya.com>");
MODULE_DESCRIPTION("SGI O2 Builtin Fast Ethernet driver");
/* This is a load-time options */
/*static int eth = 0;
MODULE_PARM(eth, "i");*/
#define HAVE_TX_TIMEOUT
/* The maximum time waited (in jiffies) before assuming a Tx failed. (400ms) */
#define TX_TIMEOUT (400*HZ/1000)
......@@ -68,120 +65,82 @@ static int timeout = TX_TIMEOUT;
MODULE_PARM(timeout, "i");
#endif
int meth_eth;
/*
* This structure is private to each device. It is used to pass
* packets in and out, so there is place for a packet
*/
typedef struct meth_private {
struct meth_private {
struct net_device_stats stats;
volatile struct meth_regs *regs;
u64 mode; /* in-memory copy of MAC control register */
int phy_addr; /* address of phy, used by mdio_* functions, initialized in mdio_probe*/
/* in-memory copy of MAC Control register */
unsigned long mac_ctrl;
/* in-memory copy of DMA Control register */
unsigned long dma_ctrl;
/* address of PHY, used by mdio_* functions, initialized in mdio_probe */
unsigned long phy_addr;
tx_packet *tx_ring;
dma_addr_t tx_ring_dma;
int free_space;
struct sk_buff *tx_skbs[TX_RING_ENTRIES];
dma_addr_t tx_skb_dmas[TX_RING_ENTRIES];
int tx_read,tx_write;
int tx_count;
unsigned long tx_read, tx_write, tx_count;
rx_packet *rx_ring[RX_RING_ENTRIES];
dma_addr_t rx_ring_dmas[RX_RING_ENTRIES];
int rx_write;
struct sk_buff *rx_skbs[RX_RING_ENTRIES];
unsigned long rx_write;
spinlock_t meth_lock;
} meth_private;
};
void meth_tx_timeout (struct net_device *dev);
void meth_interrupt(int irq, void *dev_id, struct pt_regs *pregs);
static void meth_tx_timeout(struct net_device *dev);
static irqreturn_t meth_interrupt(int irq, void *dev_id, struct pt_regs *pregs);
/* global, initialized in ip32-setup.c */
char o2meth_eaddr[8]={0,0,0,0,0,0,0,0};
static inline void load_eaddr(struct net_device *dev,
volatile struct meth_regs *regs)
static inline void load_eaddr(struct net_device *dev)
{
int i;
DPRINTK("Loading MAC Address: %02x:%02x:%02x:%02x:%02x:%02x\n",
(int)o2meth_eaddr[0]&0xFF,(int)o2meth_eaddr[1]&0xFF,(int)o2meth_eaddr[2]&0xFF,
(int)o2meth_eaddr[3]&0xFF,(int)o2meth_eaddr[4]&0xFF,(int)o2meth_eaddr[5]&0xFF);
//memcpy(dev->dev_addr,o2meth_eaddr+2,6);
for (i=0; i<6; i++)
dev->dev_addr[i]=o2meth_eaddr[i];
regs->mac_addr= //dev->dev_addr[0]|(dev->dev_addr[1]<<8)|
//dev->dev_addr[2]<<16|(dev->dev_addr[3]<<24)|
//dev->dev_addr[4]<<32|(dev->dev_addr[5]<<40);
(*(u64*)o2meth_eaddr)>>16;
DPRINTK("MAC, finally is %0lx\n",regs->mac_addr);
for (i = 0; i < 6; i++)
dev->dev_addr[i] = o2meth_eaddr[i];
mace_eth_write((*(u64*)o2meth_eaddr)>>16, mac_addr);
}
/*
*Waits for BUSY status of mdio bus to clear
* Waits for BUSY status of mdio bus to clear
*/
#define WAIT_FOR_PHY(___regs, ___rval) \
while((___rval=___regs->phy_data)&MDIO_BUSY){ \
#define WAIT_FOR_PHY(___rval) \
while ((___rval = mace_eth_read(phy_data)) & MDIO_BUSY) { \
udelay(25); \
}
/*read phy register, return value read */
static int mdio_read(meth_private *priv,int phyreg)
static unsigned long mdio_read(struct meth_private *priv, unsigned long phyreg)
{
volatile meth_regs* regs=priv->regs;
volatile u32 rval;
WAIT_FOR_PHY(regs,rval)
regs->phy_registers=(priv->phy_addr<<5)|(phyreg&0x1f);
unsigned long rval;
WAIT_FOR_PHY(rval);
mace_eth_write((priv->phy_addr << 5) | (phyreg & 0x1f), phy_regs);
udelay(25);
regs->phy_trans_go=1;
mace_eth_write(1, phy_trans_go);
udelay(25);
WAIT_FOR_PHY(regs,rval)
WAIT_FOR_PHY(rval);
return rval&MDIO_DATA_MASK;
}
/*write phy register */
static void mdio_write(meth_private* priv,int pfyreg,int val)
static int mdio_probe(struct meth_private *priv)
{
volatile meth_regs* regs=priv->regs;
int rval;
/// DPRINTK("Trying to write value %i to reguster %i\n",val, pfyreg);
spin_lock_irq(&priv->meth_lock);
WAIT_FOR_PHY(regs,rval)
regs->phy_registers=(priv->phy_addr<<5)|(pfyreg&0x1f);
regs->phy_data=val;
udelay(25);
WAIT_FOR_PHY(regs,rval)
spin_unlock_irq(&priv->meth_lock);
}
/* Modify phy register using given mask and value */
static void mdio_update(meth_private* priv,int phyreg, int val, int mask)
{
int rval;
DPRINTK("RMW value %i to PHY register %i with mask %i\n",val,phyreg,mask);
rval=mdio_read(priv,phyreg);
rval=(rval&~mask)|(val&mask);
mdio_write(priv,phyreg,rval);
}
/* handle errata data on MDIO bus */
//static void mdio_errata(meth_private *priv)
//{
/* Hmmm... what the hell is phyerrata? does it come from sys init parameters in IRIX */
//}
static int mdio_probe(meth_private *priv)
{
int i, p2, p3;
DPRINTK("Detecting PHY kind\n");
int i;
unsigned long p2, p3;
/* check if phy is detected already */
if(priv->phy_addr>=0&&priv->phy_addr<32)
return 0;
spin_lock_irq(&priv->meth_lock);
spin_lock(&priv->meth_lock);
for (i=0;i<32;++i){
priv->phy_addr=(char)i;
priv->phy_addr=i;
p2=mdio_read(priv,2);
#ifdef MFE_DEBUG
p3=mdio_read(priv,3);
#if MFE_DEBUG>=2
switch ((p2<<12)|(p3>>4)){
case PHY_QS6612X:
DPRINTK("PHY is QS6612X\n");
......@@ -202,7 +161,7 @@ static int mdio_probe(meth_private *priv)
break;
}
}
spin_unlock_irq(&priv->meth_lock);
spin_unlock(&priv->meth_lock);
if(priv->phy_addr<32) {
return 0;
}
......@@ -214,76 +173,72 @@ static int mdio_probe(meth_private *priv)
static void meth_check_link(struct net_device *dev)
{
struct meth_private *priv = (struct meth_private *) dev->priv;
int mii_partner = mdio_read(priv, 5);
int mii_advertising = mdio_read(priv, 4);
int negotiated = mii_advertising & mii_partner;
int duplex, speed;
unsigned long mii_advertising = mdio_read(priv, 4);
unsigned long mii_partner = mdio_read(priv, 5);
unsigned long negotiated = mii_advertising & mii_partner;
unsigned long duplex, speed;
if (mii_partner == 0xffff)
return;
duplex = ((negotiated & 0x0100) || (negotiated & 0x01C0) == 0x0040)?METH_PHY_FDX:0;
speed = (negotiated & 0x0380)?METH_100MBIT:0;
speed = (negotiated & 0x0380) ? METH_100MBIT : 0;
duplex = ((negotiated & 0x0100) || (negotiated & 0x01C0) == 0x0040) ?
METH_PHY_FDX : 0;
if ((priv->mode & METH_PHY_FDX) ^ duplex)
{
if ((priv->mac_ctrl & METH_PHY_FDX) ^ duplex) {
DPRINTK("Setting %s-duplex\n", duplex ? "full" : "half");
if (duplex)
priv->mode |= METH_PHY_FDX;
priv->mac_ctrl |= METH_PHY_FDX;
else
priv->mode &= ~METH_PHY_FDX;
priv->regs->mac_ctrl = priv->mode;
priv->mac_ctrl &= ~METH_PHY_FDX;
mace_eth_write(priv->mac_ctrl, mac_ctrl);
}
if ((priv->mode & METH_100MBIT) ^ speed)
{
if ((priv->mac_ctrl & METH_100MBIT) ^ speed) {
DPRINTK("Setting %dMbs mode\n", speed ? 100 : 10);
if (duplex)
priv->mode |= METH_100MBIT;
priv->mac_ctrl |= METH_100MBIT;
else
priv->mode &= ~METH_100MBIT;
priv->regs->mac_ctrl = priv->mode;
priv->mac_ctrl &= ~METH_100MBIT;
mace_eth_write(priv->mac_ctrl, mac_ctrl);
}
}
static int meth_init_tx_ring(meth_private *priv)
static int meth_init_tx_ring(struct meth_private *priv)
{
/* Init TX ring */
DPRINTK("Initializing TX ring\n");
priv->tx_ring = (tx_packet *) pci_alloc_consistent(NULL,TX_RING_BUFFER_SIZE,&(priv->tx_ring_dma));
if(!priv->tx_ring)
priv->tx_ring = dma_alloc_coherent(NULL, TX_RING_BUFFER_SIZE,
&priv->tx_ring_dma, GFP_ATOMIC);
if (!priv->tx_ring)
return -ENOMEM;
memset(priv->tx_ring, 0, TX_RING_BUFFER_SIZE);
priv->tx_count = priv->tx_read = priv->tx_write = 0;
priv->regs->tx_ring_base = priv->tx_ring_dma;
priv->free_space = TX_RING_ENTRIES;
mace_eth_write(priv->tx_ring_dma, tx_ring_base);
/* Now init skb save area */
memset(priv->tx_skbs,0,sizeof(priv->tx_skbs));
memset(priv->tx_skb_dmas,0,sizeof(priv->tx_skb_dmas));
DPRINTK("Done with TX ring init\n");
return 0;
}
static int meth_init_rx_ring(meth_private *priv)
static int meth_init_rx_ring(struct meth_private *priv)
{
int i;
DPRINTK("Initializing RX ring\n");
for(i=0;i<RX_RING_ENTRIES;i++){
DPRINTK("\t1:\t%i\t",i);
/*if(!(priv->rx_ring[i]=get_free_page(GFP_KERNEL)))
return -ENOMEM;
DPRINTK("\t2:\t%i\n",i);*/
priv->rx_ring[i]=(rx_packet*)pci_alloc_consistent(NULL,METH_RX_BUFF_SIZE,&(priv->rx_ring_dmas[i]));
priv->rx_skbs[i]=alloc_skb(METH_RX_BUFF_SIZE,0);
/* 8byte status vector+3quad padding + 2byte padding,
to put data on 64bit aligned boundary */
skb_reserve(priv->rx_skbs[i],METH_RX_HEAD);
priv->rx_ring[i]=(rx_packet*)(priv->rx_skbs[i]->head);
/* I'll need to re-sync it after each RX */
DPRINTK("\t%p\n",priv->rx_ring[i]);
priv->regs->rx_fifo=priv->rx_ring_dmas[i];
priv->rx_ring_dmas[i]=dma_map_single(NULL,priv->rx_ring[i],
METH_RX_BUFF_SIZE,DMA_FROM_DEVICE);
mace_eth_write(priv->rx_ring_dmas[i], rx_fifo);
}
priv->rx_write = 0;
DPRINTK("Done with RX ring\n");
return 0;
}
static void meth_free_tx_ring(meth_private *priv)
static void meth_free_tx_ring(struct meth_private *priv)
{
int i;
......@@ -293,20 +248,21 @@ static void meth_free_tx_ring(meth_private *priv)
dev_kfree_skb(priv->tx_skbs[i]);
priv->tx_skbs[i] = NULL;
}
pci_free_consistent(NULL,
TX_RING_BUFFER_SIZE,
priv->tx_ring,
dma_free_coherent(NULL, TX_RING_BUFFER_SIZE, priv->tx_ring,
priv->tx_ring_dma);
}
static void meth_free_rx_ring(meth_private *priv)
/* Presumes RX DMA engine is stopped, and RX fifo ring is reset */
static void meth_free_rx_ring(struct meth_private *priv)
{
int i;
for(i=0;i<RX_RING_ENTRIES;i++)
pci_free_consistent(NULL,
METH_RX_BUFF_SIZE,
priv->rx_ring[i],
priv->rx_ring_dmas[i]);
for(i=0;i<RX_RING_ENTRIES;i++) {
dma_unmap_single(NULL,priv->rx_ring_dmas[i],METH_RX_BUFF_SIZE,DMA_FROM_DEVICE);
priv->rx_ring[i]=0;
priv->rx_ring_dmas[i]=0;
kfree_skb(priv->rx_skbs[i]);
}
}
int meth_reset(struct net_device *dev)
......@@ -314,13 +270,12 @@ int meth_reset(struct net_device *dev)
struct meth_private *priv = (struct meth_private *) dev->priv;
/* Reset card */
priv->regs->mac_ctrl = SGI_MAC_RESET;
priv->regs->mac_ctrl = 0;
mace_eth_write(SGI_MAC_RESET, mac_ctrl);
mace_eth_write(0, mac_ctrl);
udelay(25);
DPRINTK("MAC control after reset: %016lx\n", priv->regs->mac_ctrl);
/* Load ethernet address */
load_eaddr(dev, priv->regs);
load_eaddr(dev);
/* Should load some "errata", but later */
/* Check for device */
......@@ -329,20 +284,21 @@ int meth_reset(struct net_device *dev)
return -ENODEV;
}
/* Initial mode -- 10|Half-duplex|Accept normal packets */
priv->mode=METH_ACCEPT_MCAST|METH_DEFAULT_IPG;
/* Initial mode: 10 | Half-duplex | Accept normal packets */
priv->mac_ctrl = METH_ACCEPT_MCAST | METH_DEFAULT_IPG;
if(dev->flags | IFF_PROMISC)
priv->mode |= METH_PROMISC;
priv->regs->mac_ctrl = priv->mode;
priv->mac_ctrl |= METH_PROMISC;
mace_eth_write(priv->mac_ctrl, mac_ctrl);
/* Autonegociate speed and duplex mode */
/* Autonegotiate speed and duplex mode */
meth_check_link(dev);
/* Now set dma control, but don't enable DMA, yet */
priv->regs->dma_ctrl= (4 << METH_RX_OFFSET_SHIFT) |
priv->dma_ctrl= (4 << METH_RX_OFFSET_SHIFT) |
(RX_RING_ENTRIES << METH_RX_DEPTH_SHIFT);
mace_eth_write(priv->dma_ctrl, dma_ctrl);
return(0);
return 0;
}
/*============End Helper Routines=====================*/
......@@ -350,41 +306,71 @@ int meth_reset(struct net_device *dev)
/*
* Open and close
*/
int meth_open(struct net_device *dev)
static int meth_open(struct net_device *dev)
{
meth_private *priv=dev->priv;
volatile meth_regs *regs=priv->regs;
struct meth_private *priv = dev->priv;
int ret;
/* Start DMA */
regs->dma_ctrl|=
METH_DMA_TX_EN|/*METH_DMA_TX_INT_EN|*/
METH_DMA_RX_EN|METH_DMA_RX_INT_EN;
priv->phy_addr = -1; /* No PHY is known yet... */
/* Initialize the hardware */
ret = meth_reset(dev);
if (ret < 0)
return ret;
/* Allocate the ring buffers */
ret = meth_init_tx_ring(priv);
if (ret < 0)
return ret;
ret = meth_init_rx_ring(priv);
if (ret < 0)
goto out_free_tx_ring;
if(request_irq(dev->irq,meth_interrupt,SA_SHIRQ,meth_str,dev)){
ret = request_irq(dev->irq, meth_interrupt, 0, meth_str, dev);
if (ret) {
printk(KERN_ERR "%s: Can't get irq %d\n", dev->name, dev->irq);
return -EAGAIN;
goto out_free_rx_ring;
}
/* Start DMA */
priv->dma_ctrl |= METH_DMA_TX_EN | /*METH_DMA_TX_INT_EN |*/
METH_DMA_RX_EN | METH_DMA_RX_INT_EN;
mace_eth_write(priv->dma_ctrl, dma_ctrl);
DPRINTK("About to start queue\n");
netif_start_queue(dev);
DPRINTK("Opened... DMA control=0x%08lx\n", regs->dma_ctrl);
return 0;
out_free_rx_ring:
meth_free_rx_ring(priv);
out_free_tx_ring:
meth_free_tx_ring(priv);
return ret;
}
int meth_release(struct net_device *dev)
static int meth_release(struct net_device *dev)
{
struct meth_private *priv = dev->priv;
DPRINTK("Stopping queue\n");
netif_stop_queue(dev); /* can't transmit any more */
/* shut down dma */
((meth_private*)(dev->priv))->regs->dma_ctrl&=
~(METH_DMA_TX_EN|METH_DMA_TX_INT_EN|
METH_DMA_RX_EN|METH_DMA_RX_INT_EN);
/* shut down DMA */
priv->dma_ctrl &= ~(METH_DMA_TX_EN | METH_DMA_TX_INT_EN |
METH_DMA_RX_EN | METH_DMA_RX_INT_EN);
mace_eth_write(priv->dma_ctrl, dma_ctrl);
free_irq(dev->irq, dev);
meth_free_tx_ring(priv);
meth_free_rx_ring(priv);
return 0;
}
/*
* Configuration changes (passed on by ifconfig)
*/
int meth_config(struct net_device *dev, struct ifmap *map)
static int meth_config(struct net_device *dev, struct ifmap *map)
{
if (dev->flags & IFF_UP) /* can't act on a running interface */
return -EBUSY;
......@@ -395,7 +381,7 @@ int meth_config(struct net_device *dev, struct ifmap *map)
return -EOPNOTSUPP;
}
/* Allow changing the IRQ */
/* Don't allow changing the IRQ */
if (map->irq != dev->irq) {
printk(KERN_WARNING "meth: Can't change IRQ\n");
return -EOPNOTSUPP;
......@@ -409,51 +395,94 @@ int meth_config(struct net_device *dev, struct ifmap *map)
/*
* Receive a packet: retrieve, encapsulate and pass over to upper levels
*/
void meth_rx(struct net_device* dev)
static void meth_rx(struct net_device* dev, unsigned long int_status)
{
struct sk_buff *skb;
struct meth_private *priv = (struct meth_private *) dev->priv;
rx_packet *rxb;
DPRINTK("RX...\n");
// TEMP while((rxb=priv->rx_ring[priv->rx_write])->status.raw&0x8000000000000000){
while((rxb=priv->rx_ring[priv->rx_write])->status.raw&0x8000000000000000){
int len=rxb->status.parsed.rx_len - 4; /* omit CRC */
DPRINTK("(%i)\n",priv->rx_write);
unsigned long fifo_rptr=(int_status&METH_INT_RX_RPTR_MASK)>>8;
spin_lock(&priv->meth_lock);
priv->dma_ctrl&=~METH_DMA_RX_INT_EN;
mace_eth_write(priv->dma_ctrl, dma_ctrl);
spin_unlock(&priv->meth_lock);
if (int_status & METH_INT_RX_UNDERFLOW){
fifo_rptr=(fifo_rptr-1)&(0xF);
}
while(priv->rx_write != fifo_rptr) {
u64 status;
dma_unmap_single(NULL,priv->rx_ring_dmas[priv->rx_write],
METH_RX_BUFF_SIZE,DMA_FROM_DEVICE);
status=priv->rx_ring[priv->rx_write]->status.raw;
#if MFE_DEBUG
if(!(status&METH_RX_ST_VALID)) {
DPRINTK("Not received? status=%016lx\n",status);
}
#endif
if((!(status&METH_RX_STATUS_ERRORS))&&(status&METH_RX_ST_VALID)){
int len=(status&0xFFFF) - 4; /* omit CRC */
/* length sanity check */
if(len < 60 || len > 1518) {
printk(KERN_DEBUG "%s: bogus packet size: %d, status=%#2x.\n",
dev->name, priv->rx_write, rxb->status.raw);
printk(KERN_DEBUG "%s: bogus packet size: %d, status=%#2lx.\n",
dev->name, priv->rx_write,
priv->rx_ring[priv->rx_write]->status.raw);
priv->stats.rx_errors++;
priv->stats.rx_length_errors++;
}
if(!(rxb->status.raw&METH_RX_STATUS_ERRORS)){
skb=alloc_skb(len+2,GFP_ATOMIC);/* Should be atomic -- we are in interrupt */
skb=priv->rx_skbs[priv->rx_write];
} else {
skb=alloc_skb(METH_RX_BUFF_SIZE,GFP_ATOMIC|GFP_DMA);
if(!skb){
/* Ouch! No memory! Drop packet on the floor */
DPRINTK("!!!>>>Ouch! Not enough Memory for RX buffer!\n");
DPRINTK("No mem: dropping packet\n");
priv->stats.rx_dropped++;
skb=priv->rx_skbs[priv->rx_write];
} else {
skb_reserve(skb, 2); /* align IP on 16B boundary */
memcpy(skb_put(skb, len), rxb->buf, len);
struct sk_buff *skb_c=priv->rx_skbs[priv->rx_write];
/* 8byte status vector+3quad padding + 2byte padding,
to put data on 64bit aligned boundary */
skb_reserve(skb,METH_RX_HEAD);
/* Write metadata, and then pass to the receive level */
skb->dev = dev;
skb->protocol = eth_type_trans(skb, dev);
//skb->ip_summed = CHECKSUM_UNNECESSARY; /* don't check it */
DPRINTK("passing packet\n");
DPRINTK("len = %d rxb->status = %x\n",
len, rxb->status.raw);
netif_rx(skb);
skb_put(skb_c,len);
priv->rx_skbs[priv->rx_write]=skb;
skb_c->dev = dev;
skb_c->protocol = eth_type_trans(skb_c, dev);
dev->last_rx = jiffies;
priv->stats.rx_packets++;
priv->stats.rx_bytes+=len;
DPRINTK("There we go... Whew...\n");
netif_rx(skb_c);
}
}
priv->regs->rx_fifo=priv->rx_ring_dmas[priv->rx_write];
rxb->status.raw=0;
priv->rx_write=(priv->rx_write+1)&(RX_RING_ENTRIES-1);
} else {
priv->stats.rx_errors++;
skb=priv->rx_skbs[priv->rx_write];
#if MFE_DEBUG>0
printk(KERN_WARNING "meth: RX error: status=0x%016lx\n",status);
if(status&METH_RX_ST_RCV_CODE_VIOLATION)
printk(KERN_WARNING "Receive Code Violation\n");
if(status&METH_RX_ST_CRC_ERR)
printk(KERN_WARNING "CRC error\n");
if(status&METH_RX_ST_INV_PREAMBLE_CTX)
printk(KERN_WARNING "Invalid Preamble Context\n");
if(status&METH_RX_ST_LONG_EVT_SEEN)
printk(KERN_WARNING "Long Event Seen...\n");
if(status&METH_RX_ST_BAD_PACKET)
printk(KERN_WARNING "Bad Packet\n");
if(status&METH_RX_ST_CARRIER_EVT_SEEN)
printk(KERN_WARNING "Carrier Event Seen\n");
#endif
}
priv->rx_ring[priv->rx_write]=(rx_packet*)skb->head;
priv->rx_ring[priv->rx_write]->status.raw=0;
priv->rx_ring_dmas[priv->rx_write]=dma_map_single(NULL,priv->rx_ring[priv->rx_write],
METH_RX_BUFF_SIZE,DMA_FROM_DEVICE);
mace_eth_write(priv->rx_ring_dmas[priv->rx_write], rx_fifo);
ADVANCE_RX_PTR(priv->rx_write);
}
spin_lock(&priv->meth_lock);
/* In case there was underflow, and Rx DMA was disabled */
priv->dma_ctrl|=METH_DMA_RX_INT_EN|METH_DMA_RX_EN;
mace_eth_write(priv->dma_ctrl, dma_ctrl);
mace_eth_write(METH_INT_RX_THRESHOLD, int_stat);
spin_unlock(&priv->meth_lock);
}
static int meth_tx_full(struct net_device *dev)
......@@ -463,29 +492,56 @@ static int meth_tx_full(struct net_device *dev)
return(priv->tx_count >= TX_RING_ENTRIES-1);
}
void meth_tx_cleanup(struct net_device* dev, int rptr)
static void meth_tx_cleanup(struct net_device* dev, unsigned long int_status)
{
meth_private *priv=dev->priv;
tx_packet* status;
struct meth_private *priv = dev->priv;
u64 status;
struct sk_buff *skb;
unsigned long rptr=(int_status&TX_INFO_RPTR)>>16;
spin_lock(&priv->meth_lock);
/* Stop DMA */
priv->regs->dma_ctrl &= ~(METH_DMA_TX_INT_EN);
/* Stop DMA notification */
priv->dma_ctrl &= ~(METH_DMA_TX_INT_EN);
mace_eth_write(priv->dma_ctrl, dma_ctrl);
while(priv->tx_read != rptr){
skb = priv->tx_skbs[priv->tx_read];
status = &priv->tx_ring[priv->tx_read];
if(!status->header.res.sent)
break;
if(status->header.raw & METH_TX_STATUS_DONE) {
status = priv->tx_ring[priv->tx_read].header.raw;
#if MFE_DEBUG>=1
if(priv->tx_read==priv->tx_write)
DPRINTK("Auchi! tx_read=%d,tx_write=%d,rptr=%d?\n",priv->tx_read,priv->tx_write,rptr);
#endif
if(status & METH_TX_ST_DONE) {
if(status & METH_TX_ST_SUCCESS){
priv->stats.tx_packets++;
priv->stats.tx_bytes += skb->len;
} else {
priv->stats.tx_errors++;
#if MFE_DEBUG>=1
DPRINTK("TX error: status=%016lx <",status);
if(status & METH_TX_ST_SUCCESS)
printk(" SUCCESS");
if(status & METH_TX_ST_TOOLONG)
printk(" TOOLONG");
if(status & METH_TX_ST_UNDERRUN)
printk(" UNDERRUN");
if(status & METH_TX_ST_EXCCOLL)
printk(" EXCCOLL");
if(status & METH_TX_ST_DEFER)
printk(" DEFER");
if(status & METH_TX_ST_LATECOLL)
printk(" LATECOLL");
printk(" >\n");
#endif
}
} else {
DPRINTK("RPTR points us here, but packet not done?\n");
break;
}
dev_kfree_skb_irq(skb);
priv->tx_skbs[priv->tx_read] = NULL;
status->header.raw = 0;
priv->tx_ring[priv->tx_read].header.raw = 0;
priv->tx_read = (priv->tx_read+1)&(TX_RING_ENTRIES-1);
priv->tx_count --;
}
......@@ -495,94 +551,100 @@ void meth_tx_cleanup(struct net_device* dev, int rptr)
netif_wake_queue(dev);
}
spin_unlock(priv->meth_lock);
mace_eth_write(METH_INT_TX_EMPTY | METH_INT_TX_PKT, int_stat);
spin_unlock(&priv->meth_lock);
}
static void meth_error(struct net_device* dev, u32 status)
{
struct meth_private *priv = (struct meth_private *) dev->priv;
printk(KERN_WARNING "meth: error status: 0x%08x\n",status);
/* check for errors too... */
if (status & (METH_INT_TX_LINK_FAIL))
printk(KERN_WARNING "meth: link failure\n");
/* Should I do full reset in this case? */
if (status & (METH_INT_MEM_ERROR))
printk(KERN_WARNING "meth: memory error\n");
if (status & (METH_INT_TX_ABORT))
printk(KERN_WARNING "meth: aborted\n");
if (status & (METH_INT_RX_OVERFLOW))
printk(KERN_WARNING "meth: Rx overflow\n");
if (status & (METH_INT_RX_UNDERFLOW)) {
printk(KERN_WARNING "meth: Rx underflow\n");
spin_lock(&priv->meth_lock);
mace_eth_write(METH_INT_RX_UNDERFLOW, int_stat);
/* more underflow interrupts will be delivered,
effectively throwing us into an infinite loop.
Thus I stop processing Rx in this case.
*/
priv->dma_ctrl&=~METH_DMA_RX_EN;
mace_eth_write(priv->dma_ctrl, dma_ctrl);
DPRINTK("Disabled meth Rx DMA temporarily\n");
spin_unlock(&priv->meth_lock);
}
mace_eth_write(METH_INT_ERROR, int_stat);
}
/*
* The typical interrupt entry point
*/
void meth_interrupt(int irq, void *dev_id, struct pt_regs *pregs)
static irqreturn_t meth_interrupt(int irq, void *dev_id, struct pt_regs *pregs)
{
struct meth_private *priv;
union {
u32 reg; /*Whole status register */
struct {
u32 : 2,
rx_seq : 5,
tx_read : 9,
rx_read : 8,
int_mask: 8;
} parsed;
} status;
/*
* As usual, check the "device" pointer for shared handlers.
* Then assign "struct device *dev"
*/
struct net_device *dev = (struct net_device *)dev_id;
/* ... and check with hw if it's really ours */
if (!dev /*paranoid*/ ) return;
/* Lock the device */
priv = (struct meth_private *) dev->priv;
status.reg = priv->regs->int_flags;
DPRINTK("Interrupt, status %08x...\n",status.reg);
if (status.parsed.int_mask & METH_INT_RX_THRESHOLD) {
/* send it to meth_rx for handling */
meth_rx(dev);
struct meth_private *priv = (struct meth_private *) dev->priv;
unsigned long status;
status = mace_eth_read(int_stat);
while (status & 0xFF) {
/* First handle errors - if we get Rx underflow,
Rx DMA will be disabled, and Rx handler will reenable
it. I don't think it's possible to get Rx underflow,
without getting Rx interrupt */
if (status & METH_INT_ERROR) {
meth_error(dev, status);
}
if (status.parsed.int_mask & (METH_INT_TX_EMPTY|METH_INT_TX_PKT)) {
if (status & (METH_INT_TX_EMPTY | METH_INT_TX_PKT)) {
/* a transmission is over: free the skb */
meth_tx_cleanup(dev, status.parsed.tx_read);
meth_tx_cleanup(dev, status);
}
if (status & METH_INT_RX_THRESHOLD) {
if (!(priv->dma_ctrl & METH_DMA_RX_INT_EN))
break;
/* send it to meth_rx for handling */
meth_rx(dev, status);
}
status = mace_eth_read(int_stat);
}
/* check for errors too... */
if (status.parsed.int_mask & (METH_INT_TX_LINK_FAIL))
printk(KERN_WARNING "meth: link failure\n");
if (status.parsed.int_mask & (METH_INT_MEM_ERROR))
printk(KERN_WARNING "meth: memory error\n");
if (status.parsed.int_mask & (METH_INT_TX_ABORT))
printk(KERN_WARNING "meth: aborted\n");
DPRINTK("Interrupt handling done...\n");
priv->regs->int_flags=status.reg&0xff; /* clear interrupts */
return IRQ_HANDLED;
}
/*
* Transmits packets that fit into TX descriptor (are <=120B)
*/
static void meth_tx_short_prepare(meth_private* priv, struct sk_buff* skb)
static void meth_tx_short_prepare(struct meth_private *priv,
struct sk_buff *skb)
{
tx_packet *desc=&priv->tx_ring[priv->tx_write];
int len = (skb->len<ETH_ZLEN)?ETH_ZLEN:skb->len;
DPRINTK("preparing short packet\n");
desc->header.raw=METH_TX_CMD_INT_EN|(len-1)|((128-len)<<16);
/* maybe I should set whole thing to 0 first... */
memcpy(desc->data.dt+(120-len),skb->data,skb->len);
if(skb->len < len)
memset(desc->data.dt+120-len+skb->len,0,len-skb->len);
desc->header.raw=METH_TX_CMD_INT_EN|(len-1)|((128-len)<<16);
DPRINTK("desc=%016lx\n",desc->header.raw);
}
#define TX_CATBUF1 BIT(25)
static void meth_tx_1page_prepare(meth_private* priv, struct sk_buff* skb)
static void meth_tx_1page_prepare(struct meth_private *priv,
struct sk_buff *skb)
{
tx_packet *desc=&priv->tx_ring[priv->tx_write];
void *buffer_data = (void *)(((u64)skb->data + 7ULL) & (~7ULL));
int unaligned_len = (int)((u64)buffer_data - (u64)skb->data);
void *buffer_data = (void *)(((unsigned long)skb->data + 7) & ~7);
int unaligned_len = (int)((unsigned long)buffer_data - (unsigned long)skb->data);
int buffer_len = skb->len - unaligned_len;
dma_addr_t catbuf;
DPRINTK("preparing 1 page...\n");
DPRINTK("length=%d data=%p\n", skb->len, skb->data);
DPRINTK("unaligned_len=%d\n", unaligned_len);
DPRINTK("buffer_data=%p buffer_len=%d\n",
buffer_data,
buffer_len);
desc->header.raw=METH_TX_CMD_INT_EN|TX_CATBUF1|(skb->len-1);
/* unaligned part */
......@@ -593,37 +655,23 @@ static void meth_tx_1page_prepare(meth_private* priv, struct sk_buff* skb)
}
/* first page */
catbuf = pci_map_single(NULL,
buffer_data,
buffer_len,
PCI_DMA_TODEVICE);
DPRINTK("catbuf=%x\n", catbuf);
catbuf = dma_map_single(NULL, buffer_data, buffer_len,
DMA_TO_DEVICE);
desc->data.cat_buf[0].form.start_addr = catbuf >> 3;
desc->data.cat_buf[0].form.len = buffer_len-1;
DPRINTK("desc=%016lx\n",desc->header.raw);
DPRINTK("cat_buf[0].raw=%016lx\n",desc->data.cat_buf[0].raw);
}
#define TX_CATBUF2 BIT(26)
static void meth_tx_2page_prepare(meth_private* priv, struct sk_buff* skb)
static void meth_tx_2page_prepare(struct meth_private *priv,
struct sk_buff *skb)
{
tx_packet *desc=&priv->tx_ring[priv->tx_write];
void *buffer1_data = (void *)(((u64)skb->data + 7ULL) & (~7ULL));
void *buffer2_data = (void *)PAGE_ALIGN((u64)skb->data);
int unaligned_len = (int)((u64)buffer1_data - (u64)skb->data);
int buffer1_len = (int)((u64)buffer2_data - (u64)buffer1_data);
void *buffer1_data = (void *)(((unsigned long)skb->data + 7) & ~7);
void *buffer2_data = (void *)PAGE_ALIGN((unsigned long)skb->data);
int unaligned_len = (int)((unsigned long)buffer1_data - (unsigned long)skb->data);
int buffer1_len = (int)((unsigned long)buffer2_data - (unsigned long)buffer1_data);
int buffer2_len = skb->len - buffer1_len - unaligned_len;
dma_addr_t catbuf1, catbuf2;
DPRINTK("preparing 2 pages... \n");
DPRINTK("length=%d data=%p\n", skb->len, skb->data);
DPRINTK("unaligned_len=%d\n", unaligned_len);
DPRINTK("buffer1_data=%p buffer1_len=%d\n",
buffer1_data,
buffer1_len);
DPRINTK("buffer2_data=%p buffer2_len=%d\n",
buffer2_data,
buffer2_len);
desc->header.raw=METH_TX_CMD_INT_EN|TX_CATBUF1|TX_CATBUF2|(skb->len-1);
/* unaligned part */
if(unaligned_len){
......@@ -633,70 +681,64 @@ static void meth_tx_2page_prepare(meth_private* priv, struct sk_buff* skb)
}
/* first page */
catbuf1 = pci_map_single(NULL,
buffer1_data,
buffer1_len,
PCI_DMA_TODEVICE);
DPRINTK("catbuf1=%x\n", catbuf1);
catbuf1 = dma_map_single(NULL, buffer1_data, buffer1_len,
DMA_TO_DEVICE);
desc->data.cat_buf[0].form.start_addr = catbuf1 >> 3;
desc->data.cat_buf[0].form.len = buffer1_len-1;
/* second page */
catbuf2 = pci_map_single(NULL,
buffer2_data,
buffer2_len,
PCI_DMA_TODEVICE);
DPRINTK("catbuf2=%x\n", catbuf2);
catbuf2 = dma_map_single(NULL, buffer2_data, buffer2_len,
DMA_TO_DEVICE);
desc->data.cat_buf[1].form.start_addr = catbuf2 >> 3;
desc->data.cat_buf[1].form.len = buffer2_len-1;
DPRINTK("desc=%016lx\n",desc->header.raw);
DPRINTK("cat_buf[0].raw=%016lx\n",desc->data.cat_buf[0].raw);
DPRINTK("cat_buf[1].raw=%016lx\n",desc->data.cat_buf[1].raw);
}
void meth_add_to_tx_ring(meth_private *priv, struct sk_buff* skb)
static void meth_add_to_tx_ring(struct meth_private *priv, struct sk_buff *skb)
{
DPRINTK("Transmitting data...\n");
/* Remember the skb, so we can free it at interrupt time */
priv->tx_skbs[priv->tx_write] = skb;
if(skb->len <= 120) {
/* Whole packet fits into descriptor */
meth_tx_short_prepare(priv,skb);
} else if(PAGE_ALIGN((u64)skb->data) !=
PAGE_ALIGN((u64)skb->data+skb->len-1)) {
} else if(PAGE_ALIGN((unsigned long)skb->data) !=
PAGE_ALIGN((unsigned long)skb->data+skb->len-1)) {
/* Packet crosses page boundary */
meth_tx_2page_prepare(priv,skb);
} else {
/* Packet is in one page */
meth_tx_1page_prepare(priv,skb);
}
/* Remember the skb, so we can free it at interrupt time */
priv->tx_skbs[priv->tx_write] = skb;
priv->tx_write = (priv->tx_write+1) & (TX_RING_ENTRIES-1);
priv->regs->tx_info.wptr = priv->tx_write;
mace_eth_write(priv->tx_write, tx_info);
priv->tx_count ++;
/* Enable DMA transfer */
priv->regs->dma_ctrl |= METH_DMA_TX_INT_EN;
}
/*
* Transmit a packet (called by the kernel)
*/
int meth_tx(struct sk_buff *skb, struct net_device *dev)
static int meth_tx(struct sk_buff *skb, struct net_device *dev)
{
struct meth_private *priv = (struct meth_private *) dev->priv;
unsigned long flags;
spin_lock_irq(&priv->meth_lock);
spin_lock_irqsave(&priv->meth_lock,flags);
/* Stop DMA notification */
priv->dma_ctrl &= ~(METH_DMA_TX_INT_EN);
mace_eth_write(priv->dma_ctrl, dma_ctrl);
meth_add_to_tx_ring(priv, skb);
dev->trans_start = jiffies; /* save the timestamp */
/* If TX ring is full, tell the upper layer to stop sending packets */
if (meth_tx_full(dev)) {
DPRINTK("TX full: stopping\n");
printk(KERN_DEBUG "TX full: stopping\n");
netif_stop_queue(dev);
}
spin_unlock_irq(&priv->meth_lock);
/* Restart DMA notification */
priv->dma_ctrl |= METH_DMA_TX_INT_EN;
mace_eth_write(priv->dma_ctrl, dma_ctrl);
spin_unlock_irqrestore(&priv->meth_lock,flags);
return 0;
}
......@@ -704,17 +746,17 @@ int meth_tx(struct sk_buff *skb, struct net_device *dev)
/*
* Deal with a transmit timeout.
*/
void meth_tx_timeout (struct net_device *dev)
static void meth_tx_timeout(struct net_device *dev)
{
struct meth_private *priv = (struct meth_private *) dev->priv;
unsigned long flags;
printk(KERN_WARNING "%s: transmit timed out\n", dev->name);
/* Protect against concurrent rx interrupts */
spin_lock_irq(&priv->meth_lock);
spin_lock_irqsave(&priv->meth_lock,flags);
/* Try to reset the adaptor. */
/* Try to reset the interface. */
meth_reset(dev);
priv->stats.tx_errors++;
......@@ -726,10 +768,11 @@ void meth_tx_timeout (struct net_device *dev)
meth_init_rx_ring(priv);
/* Restart dma */
priv->regs->dma_ctrl|=METH_DMA_TX_EN|METH_DMA_RX_EN|METH_DMA_RX_INT_EN;
priv->dma_ctrl|=METH_DMA_TX_EN|METH_DMA_RX_EN|METH_DMA_RX_INT_EN;
mace_eth_write(priv->dma_ctrl, dma_ctrl);
/* Enable interrupt */
spin_unlock_irq(&priv->meth_lock);
spin_unlock_irqrestore(&priv->meth_lock,flags);
dev->trans_start = jiffies;
netif_wake_queue(dev);
......@@ -740,9 +783,8 @@ void meth_tx_timeout (struct net_device *dev)
/*
* Ioctl commands
*/
int meth_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
static int meth_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
{
DPRINTK("ioctl\n");
return 0;
}
......@@ -750,19 +792,19 @@ int meth_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
/*
* Return statistics to the caller
*/
struct net_device_stats *meth_stats(struct net_device *dev)
static struct net_device_stats *meth_stats(struct net_device *dev)
{
struct meth_private *priv = (struct meth_private *) dev->priv;
return &priv->stats;
}
/*
* The init function (sometimes called probe).
* The init function.
*/
static struct net_device *meth_init(struct net_device *dev)
static struct net_device *meth_init(void)
{
struct net_device *dev;
meth_private *priv;
struct meth_private *priv;
int ret;
dev = alloc_etherdev(sizeof(struct meth_private));
......@@ -780,61 +822,25 @@ static struct net_device *meth_init(struct net_device *dev)
dev->watchdog_timeo = timeout;
#endif
dev->irq = MACE_ETHERNET_IRQ;
SET_MODULE_OWNER(dev);
dev->base_addr = (unsigned long)&mace->eth;
priv = dev->priv;
priv = (struct meth_private *) dev->priv;
spin_lock_init(&priv->meth_lock);
/*
* Make the usual checks: check_region(), probe irq, ... -ENODEV
* should be returned if no device found. No resource should be
* grabbed: this is done on open().
*/
priv->regs=(meth_regs*)SGI_MFE;
dev->base_addr=SGI_MFE;
priv->phy_addr = -1; /* No phy is known yet... */
/* Initialize the hardware */
ret = meth_reset(dev);
if (ret < 0)
goto out;
/* Allocate the ring buffers */
ret = meth_init_tx_ring(priv);
if (ret < 0)
goto out;
ret = meth_init_rx_ring(priv);
if (ret < 0)
goto out1;
ret = register_netdev(dev);
if (ret)
goto out2;
printk("SGI O2 Fast Ethernet rev. %ld\n", priv->regs->mac_ctrl >> 29);
return ret;
out2:
meth_free_rx_ring(priv);
out1:
meth_free_tx_ring(priv);
out:
if (ret) {
free_netdev(dev);
return ERR_PTR(ret);
}
/*
* The devices
*/
}
struct net_device *meth_dev;
printk(KERN_INFO "%s: SGI MACE Ethernet rev. %d\n",
dev->name, (unsigned int)mace_eth_read(mac_ctrl) >> 29);
return 0;
}
/*
* Finally, the module stuff
*/
static struct net_device *meth_dev;
int meth_init_module(void)
static int __init meth_init_module(void)
{
meth_dev = meth_init();
if (IS_ERR(meth_dev))
......@@ -842,14 +848,11 @@ int meth_init_module(void)
return 0;
}
void meth_cleanup(void)
static void __exit meth_exit_module(void)
{
meth_private *priv = meth_dev->priv;
unregister_netdev(meth_dev);
meth_free_rx_ring(priv);
meth_free_tx_ring(priv);
free_netdev(meth_dev);
}
module_init(meth_init_module);
module_exit(meth_cleanup);
module_exit(meth_exit_module);
......@@ -16,9 +16,6 @@
/* version dependencies have been confined to a separate file */
#define SGI_MFE (MACE_BASE+MACE_ENET)
/* (0xBF280000)*/
/* Tunable parameters */
#define TX_RING_ENTRIES 64 /* 64-512?*/
......@@ -27,10 +24,12 @@
#define TX_RING_BUFFER_SIZE (TX_RING_ENTRIES*sizeof(tx_packet))
#define RX_BUFFER_SIZE 1546 /* ethenet packet size */
#define METH_RX_BUFF_SIZE 4096
#define METH_RX_HEAD 34 /* status + 3 quad garbage-fill + 2 byte zero-pad */
#define RX_BUFFER_OFFSET (sizeof(rx_status_vector)+2) /* staus vector + 2 bytes of padding */
#define RX_BUCKET_SIZE 256
#undef BIT
#define BIT(x) (1 << (x))
/* For more detailed explanations of what each field menas,
see Nick's great comments to #defines below (or docs, if
......@@ -85,7 +84,7 @@ typedef struct tx_packet {
} tx_packet;
typedef union rx_status_vector {
struct {
volatile struct {
u64 pad1:1;/*fill it with ones*/
u64 pad2:15;/*fill with 0*/
u64 ip_chk_sum:16;
......@@ -103,7 +102,7 @@ typedef union rx_status_vector {
u64 rx_code_violation:1;
u64 rx_len:16;
} parsed;
u64 raw;
volatile u64 raw;
} rx_status_vector;
typedef struct rx_packet {
......@@ -113,50 +112,8 @@ typedef struct rx_packet {
char buf[METH_RX_BUFF_SIZE-sizeof(rx_status_vector)-3*sizeof(u64)-sizeof(u16)];/* data */
} rx_packet;
typedef struct meth_regs {
u64 mac_ctrl; /*0x00,rw,31:0*/
u64 int_flags; /*0x08,rw,30:0*/
u64 dma_ctrl; /*0x10,rw,15:0*/
u64 timer; /*0x18,rw,5:0*/
u64 int_tx; /*0x20,wo,0:0*/
u64 int_rx; /*0x28,wo,9:4*/
struct {
u32 tx_info_pad;
u32 rptr:16,wptr:16;
} tx_info; /*0x30,rw,31:0*/
u64 tx_info_al; /*0x38,rw,31:0*/
struct {
u32 rx_buff_pad1;
u32 rx_buff_pad2:8,
wptr:8,
rptr:8,
depth:8;
} rx_buff; /*0x40,ro,23:0*/
u64 rx_buff_al1; /*0x48,ro,23:0*/
u64 rx_buff_al2; /*0x50,ro,23:0*/
u64 int_update; /*0x58,wo,31:0*/
u32 phy_data_pad;
u32 phy_data; /*0x60,rw,16:0*/
u32 phy_reg_pad;
u32 phy_registers; /*0x68,rw,9:0*/
u64 phy_trans_go; /*0x70,wo,0:0*/
u64 backoff_seed; /*0x78,wo,10:0*/
u64 imq_reserved[4];/*0x80,ro,64:0(x4)*/
/*===================================*/
u64 mac_addr; /*0xA0,rw,47:0, I think it's MAC address, but I'm not sure*/
u64 mcast_addr; /*0xA8,rw,47:0, This seems like secondary MAC address*/
u64 mcast_filter; /*0xB0,rw,63:0*/
u64 tx_ring_base; /*0xB8,rw,31:13*/
/* Following are read-only debugging info register */
u64 tx_pkt1_hdr; /*0xC0,ro,63:0*/
u64 tx_pkt1_ptr[3]; /*0xC8,ro,63:0(x3)*/
u64 tx_pkt2_hdr; /*0xE0,ro,63:0*/
u64 tx_pkt2_ptr[3]; /*0xE8,ro,63:0(x3)*/
/*===================================*/
u32 rx_pad;
u32 rx_fifo;
u64 reserved[31];
}meth_regs;
#define TX_INFO_RPTR 0x00FF0000
#define TX_INFO_WPTR 0x000000FF
/* Bits in METH_MAC */
......@@ -203,9 +160,14 @@ typedef struct meth_regs {
#define METH_DMA_RX_EN BIT(15) /* Enable RX */
#define METH_DMA_RX_INT_EN BIT(9) /* Enable interrupt on RX packet */
/* RX FIFO MCL Info bits */
#define METH_RX_FIFO_WPTR(x) (((x)>>16)&0xf)
#define METH_RX_FIFO_RPTR(x) (((x)>>8)&0xf)
#define METH_RX_FIFO_DEPTH(x) ((x)&0x1f)
/* RX status bits */
#define METH_RX_ST_VALID BIT(63)
#define METH_RX_ST_RCV_CODE_VIOLATION BIT(16)
#define METH_RX_ST_DRBL_NBL BIT(17)
#define METH_RX_ST_CRC_ERR BIT(18)
......@@ -240,25 +202,34 @@ typedef struct meth_regs {
#define METH_INT_RX_UNDERFLOW BIT(6) /* 0: No interrupt pending, 1: FIFO was empty, packet could not be queued */
#define METH_INT_RX_OVERFLOW BIT(7) /* 0: No interrupt pending, 1: DMA FIFO Overflow, DMA stopped, FATAL */
#define METH_INT_RX_RPTR_MASK 0x0001F00 /* Bits 8 through 12 alias of RX read-pointer */
/*#define METH_INT_RX_RPTR_MASK 0x0001F00*/ /* Bits 8 through 12 alias of RX read-pointer */
#define METH_INT_RX_RPTR_MASK 0x0000F00 /* Bits 8 through 11 alias of RX read-pointer - so, is Rx FIFO 16 or 32 entry?*/
/* Bits 13 through 15 are always 0. */
#define METH_INT_TX_RPTR_MASK 0x1FF0000 /* Bits 16 through 24 alias of TX read-pointer */
#define METH_INT_SEQ_MASK 0x2E000000 /* Bits 25 through 29 are the starting seq number for the message at the */
#define METH_INT_RX_SEQ_MASK 0x2E000000 /* Bits 25 through 29 are the starting seq number for the message at the */
/* top of the queue */
#define METH_ERRORS ( \
METH_INT_RX_OVERFLOW| \
METH_INT_RX_UNDERFLOW| \
#define METH_INT_ERROR (METH_INT_TX_LINK_FAIL| \
METH_INT_MEM_ERROR| \
METH_INT_TX_ABORT)
METH_INT_TX_ABORT| \
METH_INT_RX_OVERFLOW| \
METH_INT_RX_UNDERFLOW)
#define METH_INT_MCAST_HASH BIT(30) /* If RX DMA is enabled the hash select logic output is latched here */
/* TX status bits */
#define METH_TX_STATUS_DONE BIT(23) /* Packet was transmitted successfully */
#define METH_TX_ST_DONE BIT(63) /* TX complete */
#define METH_TX_ST_SUCCESS BIT(23) /* Packet was transmitted successfully */
#define METH_TX_ST_TOOLONG BIT(24) /* TX abort due to excessive length */
#define METH_TX_ST_UNDERRUN BIT(25) /* TX abort due to underrun (?) */
#define METH_TX_ST_EXCCOLL BIT(26) /* TX abort due to excess collisions */
#define METH_TX_ST_DEFER BIT(27) /* TX abort due to excess deferals */
#define METH_TX_ST_LATECOLL BIT(28) /* TX abort due to late collision */
/* Tx command header bits */
#define METH_TX_CMD_INT_EN BIT(24) /* Generate TX interrupt when packet is sent */
......@@ -271,3 +242,5 @@ typedef struct meth_regs {
#define PHY_ICS1889 0x0015F41 /* ICS FX */
#define PHY_ICS1890 0x0015F42 /* ICS TX */
#define PHY_DP83840 0x20005C0 /* National TX */
#define ADVANCE_RX_PTR(x) x=(x+1)&(RX_RING_ENTRIES-1)
......@@ -113,7 +113,6 @@ MODULE_PARM(int_timeout, "i");
#include <asm/sibyte/sb1250_dma.h>
#include <asm/sibyte/sb1250_int.h>
#include <asm/sibyte/sb1250_scd.h>
#include <asm/sibyte/64bit.h>
/**********************************************************************
......@@ -147,8 +146,8 @@ typedef enum { sbmac_state_uninit, sbmac_state_off, sbmac_state_on,
#define NUMCACHEBLKS(x) (((x)+SMP_CACHE_BYTES-1)/SMP_CACHE_BYTES)
#define SBMAC_READCSR(t) in64((unsigned long)t)
#define SBMAC_WRITECSR(t,v) out64(v, (unsigned long)t)
#define SBMAC_READCSR(t) __raw_readq((unsigned long)t)
#define SBMAC_WRITECSR(t,v) __raw_writeq(v, (unsigned long)t)
#define SBMAC_MAX_TXDESCR 32
......@@ -468,14 +467,17 @@ static void sbmac_mii_sync(struct sbmac_softc *s)
{
int cnt;
uint64_t bits;
int mac_mdio_genc;
mac_mdio_genc = SBMAC_READCSR(s->sbm_mdio) & M_MAC_GENC;
bits = M_MAC_MDIO_DIR_OUTPUT | M_MAC_MDIO_OUT;
SBMAC_WRITECSR(s->sbm_mdio,bits);
SBMAC_WRITECSR(s->sbm_mdio,bits | mac_mdio_genc);
for (cnt = 0; cnt < 32; cnt++) {
SBMAC_WRITECSR(s->sbm_mdio,bits | M_MAC_MDC);
SBMAC_WRITECSR(s->sbm_mdio,bits);
SBMAC_WRITECSR(s->sbm_mdio,bits | M_MAC_MDC | mac_mdio_genc);
SBMAC_WRITECSR(s->sbm_mdio,bits | mac_mdio_genc);
}
}
......@@ -496,9 +498,12 @@ static void sbmac_mii_senddata(struct sbmac_softc *s,unsigned int data, int bitc
int i;
uint64_t bits;
unsigned int curmask;
int mac_mdio_genc;
mac_mdio_genc = SBMAC_READCSR(s->sbm_mdio) & M_MAC_GENC;
bits = M_MAC_MDIO_DIR_OUTPUT;
SBMAC_WRITECSR(s->sbm_mdio,bits);
SBMAC_WRITECSR(s->sbm_mdio,bits | mac_mdio_genc);
curmask = 1 << (bitcnt - 1);
......@@ -506,9 +511,9 @@ static void sbmac_mii_senddata(struct sbmac_softc *s,unsigned int data, int bitc
if (data & curmask)
bits |= M_MAC_MDIO_OUT;
else bits &= ~M_MAC_MDIO_OUT;
SBMAC_WRITECSR(s->sbm_mdio,bits);
SBMAC_WRITECSR(s->sbm_mdio,bits | M_MAC_MDC);
SBMAC_WRITECSR(s->sbm_mdio,bits);
SBMAC_WRITECSR(s->sbm_mdio,bits | mac_mdio_genc);
SBMAC_WRITECSR(s->sbm_mdio,bits | M_MAC_MDC | mac_mdio_genc);
SBMAC_WRITECSR(s->sbm_mdio,bits | mac_mdio_genc);
curmask >>= 1;
}
}
......@@ -534,6 +539,7 @@ static unsigned int sbmac_mii_read(struct sbmac_softc *s,int phyaddr,int regidx)
int idx;
int error;
int regval;
int mac_mdio_genc;
/*
* Synchronize ourselves so that the PHY knows the next
......@@ -555,17 +561,20 @@ static unsigned int sbmac_mii_read(struct sbmac_softc *s,int phyaddr,int regidx)
sbmac_mii_senddata(s,phyaddr, 5);
sbmac_mii_senddata(s,regidx, 5);
mac_mdio_genc = SBMAC_READCSR(s->sbm_mdio) & M_MAC_GENC;
/*
* Switch the port around without a clock transition.
*/
SBMAC_WRITECSR(s->sbm_mdio,M_MAC_MDIO_DIR_INPUT);
SBMAC_WRITECSR(s->sbm_mdio,M_MAC_MDIO_DIR_INPUT | mac_mdio_genc);
/*
* Send out a clock pulse to signal we want the status
*/
SBMAC_WRITECSR(s->sbm_mdio,M_MAC_MDIO_DIR_INPUT | M_MAC_MDC);
SBMAC_WRITECSR(s->sbm_mdio,M_MAC_MDIO_DIR_INPUT);
SBMAC_WRITECSR(s->sbm_mdio,
M_MAC_MDIO_DIR_INPUT | M_MAC_MDC | mac_mdio_genc);
SBMAC_WRITECSR(s->sbm_mdio,M_MAC_MDIO_DIR_INPUT | mac_mdio_genc);
/*
* If an error occurred, the PHY will signal '1' back
......@@ -576,8 +585,9 @@ static unsigned int sbmac_mii_read(struct sbmac_softc *s,int phyaddr,int regidx)
* Issue an 'idle' clock pulse, but keep the direction
* the same.
*/
SBMAC_WRITECSR(s->sbm_mdio,M_MAC_MDIO_DIR_INPUT | M_MAC_MDC);
SBMAC_WRITECSR(s->sbm_mdio,M_MAC_MDIO_DIR_INPUT);
SBMAC_WRITECSR(s->sbm_mdio,
M_MAC_MDIO_DIR_INPUT | M_MAC_MDC | mac_mdio_genc);
SBMAC_WRITECSR(s->sbm_mdio,M_MAC_MDIO_DIR_INPUT | mac_mdio_genc);
regval = 0;
......@@ -589,12 +599,14 @@ static unsigned int sbmac_mii_read(struct sbmac_softc *s,int phyaddr,int regidx)
regval |= 1;
}
SBMAC_WRITECSR(s->sbm_mdio,M_MAC_MDIO_DIR_INPUT | M_MAC_MDC);
SBMAC_WRITECSR(s->sbm_mdio,M_MAC_MDIO_DIR_INPUT);
SBMAC_WRITECSR(s->sbm_mdio,
M_MAC_MDIO_DIR_INPUT|M_MAC_MDC | mac_mdio_genc);
SBMAC_WRITECSR(s->sbm_mdio,
M_MAC_MDIO_DIR_INPUT | mac_mdio_genc);
}
/* Switch back to output */
SBMAC_WRITECSR(s->sbm_mdio,M_MAC_MDIO_DIR_OUTPUT);
SBMAC_WRITECSR(s->sbm_mdio,M_MAC_MDIO_DIR_OUTPUT | mac_mdio_genc);
if (error == 0)
return regval;
......@@ -620,6 +632,7 @@ static unsigned int sbmac_mii_read(struct sbmac_softc *s,int phyaddr,int regidx)
static void sbmac_mii_write(struct sbmac_softc *s,int phyaddr,int regidx,
unsigned int regval)
{
int mac_mdio_genc;
sbmac_mii_sync(s);
......@@ -630,7 +643,9 @@ static void sbmac_mii_write(struct sbmac_softc *s,int phyaddr,int regidx,
sbmac_mii_senddata(s,MII_COMMAND_ACK,2);
sbmac_mii_senddata(s,regval,16);
SBMAC_WRITECSR(s->sbm_mdio,M_MAC_MDIO_DIR_OUTPUT);
mac_mdio_genc = SBMAC_READCSR(s->sbm_mdio) & M_MAC_GENC;
SBMAC_WRITECSR(s->sbm_mdio,M_MAC_MDIO_DIR_OUTPUT | mac_mdio_genc);
}
......@@ -672,47 +687,47 @@ static void sbdma_initctx(sbmacdma_t *d,
s->sbe_idx =(s->sbm_base - A_MAC_BASE_0)/MAC_SPACING;
#endif
SBMAC_WRITECSR(KSEG1ADDR(
SBMAC_WRITECSR(IOADDR(
A_MAC_REGISTER(s->sbe_idx, R_MAC_RMON_TX_BYTES)), 0);
SBMAC_WRITECSR(KSEG1ADDR(
SBMAC_WRITECSR(IOADDR(
A_MAC_REGISTER(s->sbe_idx, R_MAC_RMON_COLLISIONS)), 0);
SBMAC_WRITECSR(KSEG1ADDR(
SBMAC_WRITECSR(IOADDR(
A_MAC_REGISTER(s->sbe_idx, R_MAC_RMON_LATE_COL)), 0);
SBMAC_WRITECSR(KSEG1ADDR(
SBMAC_WRITECSR(IOADDR(
A_MAC_REGISTER(s->sbe_idx, R_MAC_RMON_EX_COL)), 0);
SBMAC_WRITECSR(KSEG1ADDR(
SBMAC_WRITECSR(IOADDR(
A_MAC_REGISTER(s->sbe_idx, R_MAC_RMON_FCS_ERROR)), 0);
SBMAC_WRITECSR(KSEG1ADDR(
SBMAC_WRITECSR(IOADDR(
A_MAC_REGISTER(s->sbe_idx, R_MAC_RMON_TX_ABORT)), 0);
SBMAC_WRITECSR(KSEG1ADDR(
SBMAC_WRITECSR(IOADDR(
A_MAC_REGISTER(s->sbe_idx, R_MAC_RMON_TX_BAD)), 0);
SBMAC_WRITECSR(KSEG1ADDR(
SBMAC_WRITECSR(IOADDR(
A_MAC_REGISTER(s->sbe_idx, R_MAC_RMON_TX_GOOD)), 0);
SBMAC_WRITECSR(KSEG1ADDR(
SBMAC_WRITECSR(IOADDR(
A_MAC_REGISTER(s->sbe_idx, R_MAC_RMON_TX_RUNT)), 0);
SBMAC_WRITECSR(KSEG1ADDR(
SBMAC_WRITECSR(IOADDR(
A_MAC_REGISTER(s->sbe_idx, R_MAC_RMON_TX_OVERSIZE)), 0);
SBMAC_WRITECSR(KSEG1ADDR(
SBMAC_WRITECSR(IOADDR(
A_MAC_REGISTER(s->sbe_idx, R_MAC_RMON_RX_BYTES)), 0);
SBMAC_WRITECSR(KSEG1ADDR(
SBMAC_WRITECSR(IOADDR(
A_MAC_REGISTER(s->sbe_idx, R_MAC_RMON_RX_MCAST)), 0);
SBMAC_WRITECSR(KSEG1ADDR(
SBMAC_WRITECSR(IOADDR(
A_MAC_REGISTER(s->sbe_idx, R_MAC_RMON_RX_BCAST)), 0);
SBMAC_WRITECSR(KSEG1ADDR(
SBMAC_WRITECSR(IOADDR(
A_MAC_REGISTER(s->sbe_idx, R_MAC_RMON_RX_BAD)), 0);
SBMAC_WRITECSR(KSEG1ADDR(
SBMAC_WRITECSR(IOADDR(
A_MAC_REGISTER(s->sbe_idx, R_MAC_RMON_RX_GOOD)), 0);
SBMAC_WRITECSR(KSEG1ADDR(
SBMAC_WRITECSR(IOADDR(
A_MAC_REGISTER(s->sbe_idx, R_MAC_RMON_RX_RUNT)), 0);
SBMAC_WRITECSR(KSEG1ADDR(
SBMAC_WRITECSR(IOADDR(
A_MAC_REGISTER(s->sbe_idx, R_MAC_RMON_RX_OVERSIZE)), 0);
SBMAC_WRITECSR(KSEG1ADDR(
SBMAC_WRITECSR(IOADDR(
A_MAC_REGISTER(s->sbe_idx, R_MAC_RMON_RX_FCS_ERROR)), 0);
SBMAC_WRITECSR(KSEG1ADDR(
SBMAC_WRITECSR(IOADDR(
A_MAC_REGISTER(s->sbe_idx, R_MAC_RMON_RX_LENGTH_ERROR)), 0);
SBMAC_WRITECSR(KSEG1ADDR(
SBMAC_WRITECSR(IOADDR(
A_MAC_REGISTER(s->sbe_idx, R_MAC_RMON_RX_CODE_ERROR)), 0);
SBMAC_WRITECSR(KSEG1ADDR(
SBMAC_WRITECSR(IOADDR(
A_MAC_REGISTER(s->sbe_idx, R_MAC_RMON_RX_ALIGN_ERROR)), 0);
/*
......@@ -1212,25 +1227,21 @@ static void sbdma_rx_process(struct sbmac_softc *sc,sbmacdma_t *d)
/*
* Buffer has been replaced on the
* receive ring. Pass the buffer to
* the kernel */
* the kernel
*/
sc->sbm_stats.rx_bytes += len;
sc->sbm_stats.rx_packets++;
sb->protocol = eth_type_trans(sb,d->sbdma_eth->sbm_dev);
/* Check hw IPv4/TCP checksum if supported */
if (sc->rx_hw_checksum == ENABLE) {
/* if the ip checksum is good
indicate in skb. else set
CHECKSUM_NONE as device
failed to checksum the
packet */
if (((dsc->dscr_b) |M_DMA_ETHRX_BADTCPCS) ||
((dsc->dscr_a)| M_DMA_ETHRX_BADIP4CS)) {
sb->ip_summed = CHECKSUM_NONE;
} else {
printk(KERN_DEBUG "hw checksum fail .\n");
if (!((dsc->dscr_a) & M_DMA_ETHRX_BADIP4CS) &&
!((dsc->dscr_a) & M_DMA_ETHRX_BADTCPCS)) {
sb->ip_summed = CHECKSUM_UNNECESSARY;
/* don't need to set sb->csum */
} else {
sb->ip_summed = CHECKSUM_NONE;
}
}
} /* rx_hw_checksum */
netif_rx(sb);
}
......@@ -1295,35 +1306,9 @@ static void sbdma_tx_process(struct sbmac_softc *sc,sbmacdma_t *d)
*/
curidx = d->sbdma_remptr - d->sbdma_dscrtable;
{
/* XXX This is gross, ugly, and only here
* because justin hacked it in to fix a
* problem without really understanding it.
*
* It seems that, for whatever reason, this
* routine is invoked immediately upon the
* enabling of interrupts. So then the Read
* below returns zero, making hwidx a negative
* number, and anti-hilarity ensues.
*
* I'm guessing there's a proper fix involving
* clearing out interrupt state from old
* packets before enabling interrupts, but I'm
* not sure.
*
* Anyways, this hack seems to work, and is
* Good Enough for 11 PM. :)
*
* -Justin
*/
uint64_t tmp = SBMAC_READCSR(d->sbdma_curdscr);
if (!tmp) {
break;
}
hwidx = (int) (((tmp & M_DMA_CURDSCR_ADDR) -
hwidx = (int) (((SBMAC_READCSR(d->sbdma_curdscr) & M_DMA_CURDSCR_ADDR) -
d->sbdma_dscrtable_phys) / sizeof(sbdmadscr_t));
}
/*
* If they're the same, that means we've processed all
* of the descriptors up to (but not including) the one that
......@@ -2378,7 +2363,7 @@ static int sbmac_init(struct net_device *dev, int idx)
/* Determine controller base address */
sc->sbm_base = KSEG1ADDR(dev->base_addr);
sc->sbm_base = IOADDR(dev->base_addr);
sc->sbm_dev = dev;
sc->sbe_idx = idx;
......@@ -2414,17 +2399,6 @@ static int sbmac_init(struct net_device *dev, int idx)
sbmac_initctx(sc);
/*
* Display Ethernet address (this is called during the config
* process so we need to finish off the config message that
* was being displayed)
*/
printk(KERN_INFO
"%s: SiByte Ethernet at 0x%08lX, address: %02X-%02X-%02X-%02X-%02X-%02X\n",
dev->name, dev->base_addr,
eaddr[0],eaddr[1],eaddr[2],eaddr[3],eaddr[4],eaddr[5]);
/*
* Set up Linux device callins
*/
......@@ -2447,7 +2421,24 @@ static int sbmac_init(struct net_device *dev, int idx)
err = register_netdev(dev);
if (err)
goto out_uninit;
/*
* Display Ethernet address (this is called during the config
* process so we need to finish off the config message that
* was being displayed)
*/
printk(KERN_INFO
"%s: SiByte Ethernet at 0x%08lX, address: %02X:%02X:%02X:%02X:%02X:%02X\n",
dev->name, dev->base_addr,
eaddr[0],eaddr[1],eaddr[2],eaddr[3],eaddr[4],eaddr[5]);
return 0;
out_uninit:
sbmac_uninitctx(sc);
return err;
}
......@@ -2461,9 +2452,12 @@ static int sbmac_open(struct net_device *dev)
}
/*
* map/route interrupt
* map/route interrupt (clear status first, in case something
* weird is pending; we haven't initialized the mac registers
* yet)
*/
SBMAC_READCSR(sc->sbm_isr);
if (request_irq(dev->irq, &sbmac_intr, SA_SHIRQ, dev->name, dev))
return -EBUSY;
......@@ -2803,8 +2797,8 @@ sbmac_setup_hwaddr(int chan,char *addr)
port = A_MAC_CHANNEL_BASE(chan);
sbmac_parse_hwaddr(addr,eaddr);
val = sbmac_addr2reg(eaddr);
SBMAC_WRITECSR(KSEG1ADDR(port+R_MAC_ETHERNET_ADDR),val);
val = SBMAC_READCSR(KSEG1ADDR(port+R_MAC_ETHERNET_ADDR));
SBMAC_WRITECSR(IOADDR(port+R_MAC_ETHERNET_ADDR),val);
val = SBMAC_READCSR(IOADDR(port+R_MAC_ETHERNET_ADDR));
}
#endif
......@@ -2869,7 +2863,7 @@ sbmac_init_module(void)
* If we find a zero, skip this MAC.
*/
sbmac_orig_hwaddr[idx] = SBMAC_READCSR(KSEG1ADDR(port+R_MAC_ETHERNET_ADDR));
sbmac_orig_hwaddr[idx] = SBMAC_READCSR(IOADDR(port+R_MAC_ETHERNET_ADDR));
if (sbmac_orig_hwaddr[idx] == 0) {
printk(KERN_DEBUG "sbmac: not configuring MAC at "
"%lx\n", port);
......@@ -2905,18 +2899,20 @@ sbmac_init_module(void)
static void __exit
sbmac_cleanup_module(void)
{
int idx;
struct net_device *dev;
sbmac_port_t port;
int idx;
for (idx = 0; idx < MAX_UNITS; idx++) {
dev = dev_sbmac[idx];
if (!dev) {
if (!dev)
continue;
struct sbmac_softc *sc = netdev_priv(dev);
unregister_netdev(dev);
sbmac_uninitctx(sc);
free_netdev(dev);
}
}
}
module_init(sbmac_init_module);
......
......@@ -5,17 +5,17 @@
*/
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/errno.h>
#include <linux/init.h>
#include <linux/types.h>
#include <linux/interrupt.h>
#include <linux/ioport.h>
#include <linux/socket.h>
#include <linux/in.h>
#include <linux/route.h>
#include <linux/slab.h>
#include <linux/socket.h>
#include <linux/string.h>
#include <linux/delay.h>
#include <linux/errno.h>
#include <linux/netdevice.h>
#include <linux/etherdevice.h>
#include <linux/skbuff.h>
......@@ -32,19 +32,18 @@
#include "sgiseeq.h"
static char *version =
"sgiseeq.c: David S. Miller (dm@engr.sgi.com)\n";
static char *version = "sgiseeq.c: David S. Miller (dm@engr.sgi.com)\n";
static char *sgiseeqstr = "SGI Seeq8003";
/* If you want speed, you do something silly, it always has worked
* for me. So, with that in mind, I've decided to make this driver
* look completely like a stupid Lance from a driver architecture
* perspective. Only difference is that here our "ring buffer" looks
* and acts like a real Lance one does but is layed out like how the
* HPC DMA and the Seeq want it to. You'd be surprised how a stupid
* idea like this can pay off in performance, not to mention making
* this driver 2,000 times easier to write. ;-)
/*
* If you want speed, you do something silly, it always has worked for me. So,
* with that in mind, I've decided to make this driver look completely like a
* stupid Lance from a driver architecture perspective. Only difference is that
* here our "ring buffer" looks and acts like a real Lance one does but is
* layed out like how the HPC DMA and the Seeq want it to. You'd be surprised
* how a stupid idea like this can pay off in performance, not to mention
* making this driver 2,000 times easier to write. ;-)
*/
/* Tune these if we tend to run out often etc. */
......@@ -74,9 +73,10 @@ struct sgiseeq_tx_desc {
signed int buf_vaddr;
};
/* Warning: This structure is layed out in a certain way because
* HPC dma descriptors must be 8-byte aligned. So don't
* touch this without some care.
/*
* Warning: This structure is layed out in a certain way because HPC dma
* descriptors must be 8-byte aligned. So don't touch this without
* some care.
*/
struct sgiseeq_init_block { /* Note the name ;-) */
/* Ptrs to the descriptors in KSEG1 uncached space. */
......@@ -105,6 +105,7 @@ struct sgiseeq_private {
struct net_device_stats stats;
struct net_device *next_module;
spinlock_t tx_lock;
};
/* A list of all installed seeq devices, for removing the driver module. */
......@@ -112,7 +113,7 @@ static struct net_device *root_sgiseeq_dev;
static inline void hpc3_eth_reset(struct hpc3_ethregs *hregs)
{
hregs->rx_reset = (HPC3_ERXRST_CRESET | HPC3_ERXRST_CLRIRQ);
hregs->rx_reset = HPC3_ERXRST_CRESET | HPC3_ERXRST_CLRIRQ;
udelay(20);
hregs->rx_reset = 0;
}
......@@ -169,16 +170,16 @@ static int seeq_init_ring(struct net_device *dev)
/* Setup tx ring. */
for(i = 0; i < SEEQ_TX_BUFFERS; i++) {
if(!ib->tx_desc[i].tdma.pbuf) {
if (!ib->tx_desc[i].tdma.pbuf) {
unsigned long buffer;
buffer = (unsigned long) kmalloc(PKT_BUF_SZ, GFP_KERNEL);
if (!buffer)
return -ENOMEM;
ib->tx_desc[i].buf_vaddr = KSEG1ADDR(buffer);
ib->tx_desc[i].tdma.pbuf = PHYSADDR(buffer);
ib->tx_desc[i].tdma.pbuf = CPHYSADDR(buffer);
}
ib->tx_desc[i].tdma.cntinfo = (TCNTINFO_INIT);
ib->tx_desc[i].tdma.cntinfo = TCNTINFO_INIT;
}
/* And now the rx ring. */
......@@ -190,11 +191,11 @@ static int seeq_init_ring(struct net_device *dev)
if (!buffer)
return -ENOMEM;
ib->rx_desc[i].buf_vaddr = KSEG1ADDR(buffer);
ib->rx_desc[i].rdma.pbuf = PHYSADDR(buffer);
ib->rx_desc[i].rdma.pbuf = CPHYSADDR(buffer);
}
ib->rx_desc[i].rdma.cntinfo = (RCNTINFO_INIT);
ib->rx_desc[i].rdma.cntinfo = RCNTINFO_INIT;
}
ib->rx_desc[i - 1].rdma.cntinfo |= (HPCDMA_EOR);
ib->rx_desc[i - 1].rdma.cntinfo |= HPCDMA_EOR;
return 0;
}
......@@ -210,7 +211,7 @@ void sgiseeq_dump_rings(void)
struct hpc3_ethregs *hregs = gpriv->hregs;
int i;
if(once)
if (once)
return;
once++;
printk("RING DUMP:\n");
......@@ -258,17 +259,17 @@ static int init_seeq(struct net_device *dev, struct sgiseeq_private *sp,
/* Setup to field the proper interrupt types. */
if (sp->is_edlc) {
sregs->tstat = (TSTAT_INIT_EDLC);
sregs->tstat = TSTAT_INIT_EDLC;
sregs->rw.wregs.control = sp->control;
sregs->rw.wregs.frame_gap = 0;
} else {
sregs->tstat = (TSTAT_INIT_SEEQ);
sregs->tstat = TSTAT_INIT_SEEQ;
}
hregs->rx_dconfig |= RDMACFG_INIT;
hregs->rx_ndptr = PHYSADDR(&sp->srings.rx_desc[0]);
hregs->tx_ndptr = PHYSADDR(&sp->srings.tx_desc[0]);
hregs->rx_ndptr = CPHYSADDR(sp->srings.rx_desc);
hregs->tx_ndptr = CPHYSADDR(sp->srings.tx_desc);
seeq_go(sp, hregs, sregs);
return 0;
......@@ -293,7 +294,7 @@ static inline void rx_maybe_restart(struct sgiseeq_private *sp,
struct sgiseeq_regs *sregs)
{
if (!(hregs->rx_ctrl & HPC3_ERXCTRL_ACTIVE)) {
hregs->rx_ndptr = PHYSADDR(&sp->srings.rx_desc[sp->rx_new]);
hregs->rx_ndptr = CPHYSADDR(sp->srings.rx_desc + sp->rx_new);
seeq_go(sp, hregs, sregs);
}
}
......@@ -315,7 +316,7 @@ static inline void sgiseeq_rx(struct net_device *dev, struct sgiseeq_private *sp
/* Service every received packet. */
for_each_rx(rd, sp) {
len = (PKT_BUF_SZ - (rd->rdma.cntinfo & HPCDMA_BCNT) - 3);
len = PKT_BUF_SZ - (rd->rdma.cntinfo & HPCDMA_BCNT) - 3;
pkt_pointer = (unsigned char *)(long)rd->buf_vaddr;
pkt_status = pkt_pointer[len + 2];
......@@ -345,7 +346,7 @@ static inline void sgiseeq_rx(struct net_device *dev, struct sgiseeq_private *sp
}
/* Return the entry to the ring pool. */
rd->rdma.cntinfo = (RCNTINFO_INIT);
rd->rdma.cntinfo = RCNTINFO_INIT;
sp->rx_new = NEXT_RX(sp->rx_new);
}
sp->srings.rx_desc[orig_end].rdma.cntinfo &= ~(HPCDMA_EOR);
......@@ -375,7 +376,7 @@ static inline void kick_tx(struct sgiseeq_tx_desc *td,
(HPCDMA_XIU | HPCDMA_ETXD))
td = (struct sgiseeq_tx_desc *)(long) KSEG1ADDR(td->tdma.pnext);
if (td->tdma.cntinfo & HPCDMA_XIU) {
hregs->tx_ndptr = PHYSADDR(td);
hregs->tx_ndptr = CPHYSADDR(td);
hregs->tx_ctrl = HPC3_ETXCTRL_ACTIVE;
}
}
......@@ -407,8 +408,8 @@ static inline void sgiseeq_tx(struct net_device *dev, struct sgiseeq_private *sp
if (!(td->tdma.cntinfo & (HPCDMA_XIU)))
break;
if (!(td->tdma.cntinfo & (HPCDMA_ETXD))) {
if(!(status & HPC3_ETXCTRL_ACTIVE)) {
hregs->tx_ndptr = PHYSADDR(td);
if (!(status & HPC3_ETXCTRL_ACTIVE)) {
hregs->tx_ndptr = CPHYSADDR(td);
hregs->tx_ctrl = HPC3_ETXCTRL_ACTIVE;
}
break;
......@@ -427,6 +428,8 @@ static irqreturn_t sgiseeq_interrupt(int irq, void *dev_id, struct pt_regs *regs
struct hpc3_ethregs *hregs = sp->hregs;
struct sgiseeq_regs *sregs = sp->sregs;
spin_lock(&sp->tx_lock);
/* Ack the IRQ and set software state. */
hregs->rx_reset = HPC3_ERXRST_CLRIRQ;
......@@ -440,6 +443,8 @@ static irqreturn_t sgiseeq_interrupt(int irq, void *dev_id, struct pt_regs *regs
if ((TX_BUFFS_AVAIL(sp) > 0) && netif_queue_stopped(dev)) {
netif_wake_queue(dev);
}
spin_unlock(&sp->tx_lock);
return IRQ_HANDLED;
}
......@@ -500,7 +505,7 @@ static int sgiseeq_start_xmit(struct sk_buff *skb, struct net_device *dev)
struct sgiseeq_tx_desc *td;
int skblen, len, entry;
local_irq_save(flags);
spin_lock_irqsave(&sp->tx_lock, flags);
/* Setup... */
skblen = skb->len;
......@@ -526,12 +531,12 @@ static int sgiseeq_start_xmit(struct sk_buff *skb, struct net_device *dev)
if (len != skblen)
memset((char *)(long)td->buf_vaddr + skb->len, 0, len-skblen);
td->tdma.cntinfo = (len & HPCDMA_BCNT) |
(HPCDMA_XIU | HPCDMA_EOXP | HPCDMA_XIE | HPCDMA_EOX);
HPCDMA_XIU | HPCDMA_EOXP | HPCDMA_XIE | HPCDMA_EOX;
if (sp->tx_old != sp->tx_new) {
struct sgiseeq_tx_desc *backend;
backend = &sp->srings.tx_desc[PREV_TX(sp->tx_new)];
backend->tdma.cntinfo &= ~(HPCDMA_EOX);
backend->tdma.cntinfo &= ~HPCDMA_EOX;
}
sp->tx_new = NEXT_TX(sp->tx_new); /* Advance. */
......@@ -544,7 +549,7 @@ static int sgiseeq_start_xmit(struct sk_buff *skb, struct net_device *dev)
if (!TX_BUFFS_AVAIL(sp))
netif_stop_queue(dev);
local_irq_restore(flags);
spin_unlock_irqrestore(&sp->tx_lock, flags);
return 0;
}
......@@ -574,11 +579,11 @@ static inline void setup_tx_ring(struct sgiseeq_tx_desc *buf, int nbufs)
int i = 0;
while (i < (nbufs - 1)) {
buf[i].tdma.pnext = PHYSADDR(&buf[i + 1]);
buf[i].tdma.pnext = CPHYSADDR(buf + i + 1);
buf[i].tdma.pbuf = 0;
i++;
}
buf[i].tdma.pnext = PHYSADDR(&buf[0]);
buf[i].tdma.pnext = CPHYSADDR(buf);
}
static inline void setup_rx_ring(struct sgiseeq_rx_desc *buf, int nbufs)
......@@ -586,12 +591,12 @@ static inline void setup_rx_ring(struct sgiseeq_rx_desc *buf, int nbufs)
int i = 0;
while (i < (nbufs - 1)) {
buf[i].rdma.pnext = PHYSADDR(&buf[i + 1]);
buf[i].rdma.pnext = CPHYSADDR(buf + i + 1);
buf[i].rdma.pbuf = 0;
i++;
}
buf[i].rdma.pbuf = 0;
buf[i].rdma.pnext = PHYSADDR(&buf[0]);
buf[i].rdma.pnext = CPHYSADDR(buf);
}
#define ALIGNED(x) ((((unsigned long)(x)) + 0xf) & ~(0xf))
......@@ -600,45 +605,36 @@ int sgiseeq_init(struct hpc3_regs* regs, int irq)
{
struct net_device *dev;
struct sgiseeq_private *sp;
int err = -ENOMEM;
int i;
sp = (struct sgiseeq_private *) get_zeroed_page(GFP_KERNEL);
if (!sp) {
printk (KERN_ERR
"Seeq8003: Could not allocate private data.\n");
return -ENOMEM;
}
int err, i;
dev = alloc_etherdev(0);
if (!dev) {
printk (KERN_ERR
"Seeq8003: Could not allocate memory for device.\n");
goto out;
printk(KERN_ERR "Sgiseeq: Etherdev alloc failed, aborting.\n");
err = -ENOMEM;
goto err_out;
}
/* Make private data page aligned */
sp = (struct sgiseeq_private *) get_zeroed_page(GFP_KERNEL);
if (!sp) {
printk(KERN_ERR "Sgiseeq: Page alloc failed, aborting.\n");
err = -ENOMEM;
goto err_out_free_dev;
}
if (request_irq(irq, sgiseeq_interrupt, 0, sgiseeqstr, dev)) {
printk(KERN_ERR "Seeq8003: Can't get irq %d\n", irq);
printk(KERN_ERR "Seeq8003: Can't get irq %d\n", dev->irq);
err = -EAGAIN;
goto out1;
goto err_out_free_page;
}
printk(KERN_INFO "%s: SGI Seeq8003 ", dev->name);
#define EADDR_NVOFS 250
for (i = 0; i < 3; i++) {
unsigned short tmp = ip22_nvram_read(EADDR_NVOFS / 2 + i);
printk("%2.2x:%2.2x%c",
dev->dev_addr[2 * i] = tmp >> 8,
dev->dev_addr[2 * i + 1] = tmp & 0xff,
i == 2 ? ' ' : ':');
dev->dev_addr[2 * i] = tmp >> 8;
dev->dev_addr[2 * i + 1] = tmp & 0xff;
}
printk("\n");
SET_MODULE_OWNER(dev);
dev->priv = sp;
#ifdef DEBUG
gpriv = sp;
gdev = dev;
......@@ -648,11 +644,11 @@ int sgiseeq_init(struct hpc3_regs* regs, int irq)
sp->name = sgiseeqstr;
sp->srings.rx_desc = (struct sgiseeq_rx_desc *)
(KSEG1ADDR(ALIGNED(&sp->srings.rxvector[0])));
KSEG1ADDR(ALIGNED(&sp->srings.rxvector[0]));
dma_cache_wback_inv((unsigned long)&sp->srings.rxvector,
sizeof(sp->srings.rxvector));
sp->srings.tx_desc = (struct sgiseeq_tx_desc *)
(KSEG1ADDR(ALIGNED(&sp->srings.txvector[0])));
KSEG1ADDR(ALIGNED(&sp->srings.txvector[0]));
dma_cache_wback_inv((unsigned long)&sp->srings.txvector,
sizeof(sp->srings.txvector));
......@@ -665,9 +661,9 @@ int sgiseeq_init(struct hpc3_regs* regs, int irq)
sp->is_edlc = !(sp->sregs->rw.rregs.collision_tx[0] & 0xff);
if (sp->is_edlc)
sp->control = (SEEQ_CTRL_XCNT | SEEQ_CTRL_ACCNT |
sp->control = SEEQ_CTRL_XCNT | SEEQ_CTRL_ACCNT |
SEEQ_CTRL_SFLAG | SEEQ_CTRL_ESHORT |
SEEQ_CTRL_ENCARR);
SEEQ_CTRL_ENCARR;
dev->open = sgiseeq_open;
dev->stop = sgiseeq_close;
......@@ -678,21 +674,32 @@ int sgiseeq_init(struct hpc3_regs* regs, int irq)
dev->set_multicast_list = sgiseeq_set_multicast;
dev->irq = irq;
dev->dma = 0;
dev->priv = sp;
err = register_netdev(dev);
if (err)
goto out2;
if (register_netdev(dev)) {
printk(KERN_ERR "Sgiseeq: Cannot register net device, "
"aborting.\n");
err = -ENODEV;
goto err_out_free_irq;
}
printk(KERN_INFO "%s: SGI Seeq8003 ", dev->name);
for (i = 0; i < 6; i++)
printk("%2.2x%c", dev->dev_addr[i], i == 5 ? '\n' : ':');
sp->next_module = root_sgiseeq_dev;
root_sgiseeq_dev = dev;
return 0;
out2:
free_irq(dev->irq, dev);
out1:
free_netdev(dev);
out:
err_out_free_irq:
free_irq(irq, dev);
err_out_free_page:
free_page((unsigned long) sp);
err_out_free_dev:
kfree(dev);
err_out:
return err;
}
......@@ -706,17 +713,18 @@ static int __init sgiseeq_probe(void)
static void __exit sgiseeq_exit(void)
{
struct net_device *next, *dev;
struct sgiseeq_private *sp;
struct net_device *next, *dev = root_sgiseeq_dev;
int irq;
while (dev) {
sp = dev->priv;
for (dev = root_sgiseeq_dev; dev; dev = next) {
sp = (struct sgiseeq_private *) dev->priv;
next = sp->next_module;
irq = dev->irq;
unregister_netdev(dev);
free_irq(dev->irq, dev);
free_page((unsigned long) sp);
free_irq(irq, dev);
free_page((unsigned long) dev->priv);
free_netdev(dev);
dev = next;
}
}
......
Markdown is supported
0%
or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment