/* * linux/arch/arm/mm/consistent.c * * Copyright (C) 2000-2002 Russell King * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License version 2 as * published by the Free Software Foundation. * * DMA uncached mapping support. */ #include <linux/config.h> #include <linux/types.h> #include <linux/mm.h> #include <linux/slab.h> #include <linux/string.h> #include <linux/interrupt.h> #include <linux/errno.h> #include <linux/list.h> #include <linux/init.h> #include <linux/device.h> #include <linux/dma-mapping.h> #include <asm/io.h> #include <asm/pgtable.h> #include <asm/pgalloc.h> #include <asm/tlbflush.h> #define CONSISTENT_BASE (0xffc00000) #define CONSISTENT_END (0xffe00000) #define CONSISTENT_OFFSET(x) (((unsigned long)(x) - CONSISTENT_BASE) >> PAGE_SHIFT) /* * This is the page table (2MB) covering uncached, DMA consistent allocations */ static pte_t *consistent_pte; static spinlock_t consistent_lock = SPIN_LOCK_UNLOCKED; /* * VM region handling support. * * This should become something generic, handling VM region allocations for * vmalloc and similar (ioremap, module space, etc). * * I envisage vmalloc()'s supporting vm_struct becoming: * * struct vm_struct { * struct vm_region region; * unsigned long flags; * struct page **pages; * unsigned int nr_pages; * unsigned long phys_addr; * }; * * get_vm_area() would then call vm_region_alloc with an appropriate * struct vm_region head (eg): * * struct vm_region vmalloc_head = { * .vm_list = LIST_HEAD_INIT(vmalloc_head.vm_list), * .vm_start = VMALLOC_START, * .vm_end = VMALLOC_END, * }; * * However, vmalloc_head.vm_start is variable (typically, it is dependent on * the amount of RAM found at boot time.) I would imagine that get_vm_area() * would have to initialise this each time prior to calling vm_region_alloc(). */ struct vm_region { struct list_head vm_list; unsigned long vm_start; unsigned long vm_end; }; static struct vm_region consistent_head = { .vm_list = LIST_HEAD_INIT(consistent_head.vm_list), .vm_start = CONSISTENT_BASE, .vm_end = CONSISTENT_END, }; #if 0 static void vm_region_dump(struct vm_region *head, char *fn) { struct vm_region *c; printk("Consistent Allocation Map (%s):\n", fn); list_for_each_entry(c, &head->vm_list, vm_list) { printk(" %p: %08lx - %08lx (0x%08x)\n", c, c->vm_start, c->vm_end, c->vm_end - c->vm_start); } } #else #define vm_region_dump(head,fn) do { } while(0) #endif static int vm_region_alloc(struct vm_region *head, struct vm_region *new, size_t size) { unsigned long addr = head->vm_start, end = head->vm_end - size; struct vm_region *c; list_for_each_entry(c, &head->vm_list, vm_list) { if ((addr + size) < addr) goto out; if ((addr + size) <= c->vm_start) goto found; addr = c->vm_end; if (addr > end) goto out; } found: /* * Insert this entry _before_ the one we found. */ list_add_tail(&new->vm_list, &c->vm_list); new->vm_start = addr; new->vm_end = addr + size; return 0; out: return -ENOMEM; } static struct vm_region *vm_region_find(struct vm_region *head, unsigned long addr) { struct vm_region *c; list_for_each_entry(c, &head->vm_list, vm_list) { if (c->vm_start == addr) goto out; } c = NULL; out: return c; } /* * This allocates one page of cache-coherent memory space and returns * both the virtual and a "dma" address to that space. */ void *consistent_alloc(int gfp, size_t size, dma_addr_t *handle, unsigned long cache_flags) { struct page *page; struct vm_region *c; unsigned long order, flags; void *ret = NULL; if (!consistent_pte) { printk(KERN_ERR "consistent_alloc: not initialised\n"); dump_stack(); return NULL; } size = PAGE_ALIGN(size); order = get_order(size); page = alloc_pages(gfp, order); if (!page) goto no_page; /* * Invalidate any data that might be lurking in the * kernel direct-mapped region. */ { unsigned long kaddr = (unsigned long)page_address(page); invalidate_dcache_range(kaddr, kaddr + size); } /* * Our housekeeping doesn't need to come from DMA, * but it must not come from highmem. */ c = kmalloc(sizeof(struct vm_region), gfp & ~(__GFP_DMA | __GFP_HIGHMEM)); if (!c) goto no_remap; spin_lock_irqsave(&consistent_lock, flags); vm_region_dump(&consistent_head, "before alloc"); /* * Attempt to allocate a virtual address in the * consistent mapping region. */ if (!vm_region_alloc(&consistent_head, c, size)) { pte_t *pte = consistent_pte + CONSISTENT_OFFSET(c->vm_start); struct page *end = page + (1 << order); pgprot_t prot = __pgprot(L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY | L_PTE_WRITE | cache_flags); /* * Set the "dma handle" */ *handle = page_to_bus(page); do { BUG_ON(!pte_none(*pte)); set_page_count(page, 1); SetPageReserved(page); set_pte(pte, mk_pte(page, prot)); page++; pte++; } while (size -= PAGE_SIZE); /* * Free the otherwise unused pages. */ while (page < end) { set_page_count(page, 1); __free_page(page); page++; } ret = (void *)c->vm_start; } vm_region_dump(&consistent_head, "after alloc"); spin_unlock_irqrestore(&consistent_lock, flags); no_remap: if (ret == NULL) { kfree(c); __free_pages(page, order); } no_page: return ret; } /* * free a page as defined by the above mapping. */ void consistent_free(void *vaddr, size_t size, dma_addr_t handle) { struct vm_region *c; unsigned long flags; pte_t *ptep; size = PAGE_ALIGN(size); spin_lock_irqsave(&consistent_lock, flags); vm_region_dump(&consistent_head, "before free"); c = vm_region_find(&consistent_head, (unsigned long)vaddr); if (!c) goto no_area; if ((c->vm_end - c->vm_start) != size) { printk(KERN_ERR "consistent_free: wrong size (%ld != %d)\n", c->vm_end - c->vm_start, size); dump_stack(); size = c->vm_end - c->vm_start; } ptep = consistent_pte + CONSISTENT_OFFSET(c->vm_start); do { pte_t pte = ptep_get_and_clear(ptep); unsigned long pfn; ptep++; if (!pte_none(pte) && pte_present(pte)) { pfn = pte_pfn(pte); if (pfn_valid(pfn)) { struct page *page = pfn_to_page(pfn); ClearPageReserved(page); __free_page(page); continue; } } printk(KERN_CRIT "consistent_free: bad page in kernel page " "table\n"); } while (size -= PAGE_SIZE); flush_tlb_kernel_range(c->vm_start, c->vm_end); list_del(&c->vm_list); vm_region_dump(&consistent_head, "after free"); spin_unlock_irqrestore(&consistent_lock, flags); kfree(c); return; no_area: spin_unlock_irqrestore(&consistent_lock, flags); printk(KERN_ERR "consistent_free: trying to free " "invalid area: %p\n", vaddr); dump_stack(); } /* * Initialise the consistent memory allocation. */ static int __init consistent_init(void) { pgd_t *pgd; pmd_t *pmd; pte_t *pte; do { pgd = pgd_offset(&init_mm, CONSISTENT_BASE); pmd = pmd_alloc(&init_mm, pgd, CONSISTENT_BASE); if (!pmd) { printk(KERN_ERR "consistent_init: out of pmd tables\n"); return -ENOMEM; } if (!pmd_none(*pmd)) { printk(KERN_ERR "consistent_init: PMD already allocated\n"); return -EINVAL; } pte = pte_alloc_kernel(&init_mm, pmd, CONSISTENT_BASE); if (!pte) { printk(KERN_ERR "consistent_init: out of pte tables\n"); return -ENOMEM; } consistent_pte = pte; } while (0); return 0; } core_initcall(consistent_init); /* * make an area consistent. */ void consistent_sync(void *vaddr, size_t size, int direction) { unsigned long start = (unsigned long)vaddr; unsigned long end = start + size; switch (direction) { case DMA_FROM_DEVICE: /* invalidate only */ invalidate_dcache_range(start, end); break; case DMA_TO_DEVICE: /* writeback only */ clean_dcache_range(start, end); break; case DMA_BIDIRECTIONAL: /* writeback and invalidate */ flush_dcache_range(start, end); break; default: BUG(); } }