/* * Generic pidhash and scalable, time-bounded PID allocator * * (C) 2002 William Irwin, IBM * (C) 2002 Ingo Molnar, Red Hat * * pid-structures are backing objects for tasks sharing a given ID to chain * against. There is very little to them aside from hashing them and * parking tasks using given ID's on a list. * * The hash is always changed with the tasklist_lock write-acquired, * and the hash is only accessed with the tasklist_lock at least * read-acquired, so there's no additional SMP locking needed here. * * We have a list of bitmap pages, which bitmaps represent the PID space. * Allocating and freeing PIDs is completely lockless. The worst-case * allocation scenario when all but one out of 1 million PIDs possible are * allocated already: the scanning of 32 list entries and at most PAGE_SIZE * bytes. The typical fastpath is a single successful setbit. Freeing is O(1). */ #include <linux/mm.h> #include <linux/slab.h> #include <linux/init.h> #include <linux/bootmem.h> #include <linux/hash.h> #define pid_hashfn(nr) hash_long((unsigned long)nr, pidhash_shift) static struct list_head *pid_hash[PIDTYPE_MAX]; static int pidhash_shift; int pid_max = PID_MAX_DEFAULT; int last_pid; #define RESERVED_PIDS 300 #define PIDMAP_ENTRIES (PID_MAX_LIMIT/PAGE_SIZE/8) #define BITS_PER_PAGE (PAGE_SIZE*8) #define BITS_PER_PAGE_MASK (BITS_PER_PAGE-1) /* * PID-map pages start out as NULL, they get allocated upon * first use and are never deallocated. This way a low pid_max * value does not cause lots of bitmaps to be allocated, but * the scheme scales to up to 4 million PIDs, runtime. */ typedef struct pidmap { atomic_t nr_free; void *page; } pidmap_t; static pidmap_t pidmap_array[PIDMAP_ENTRIES] = { [ 0 ... PIDMAP_ENTRIES-1 ] = { ATOMIC_INIT(BITS_PER_PAGE), NULL } }; static pidmap_t *map_limit = pidmap_array + PIDMAP_ENTRIES; static spinlock_t pidmap_lock __cacheline_aligned_in_smp = SPIN_LOCK_UNLOCKED; inline void free_pidmap(int pid) { pidmap_t *map = pidmap_array + pid / BITS_PER_PAGE; int offset = pid & BITS_PER_PAGE_MASK; clear_bit(offset, map->page); atomic_inc(&map->nr_free); } /* * Here we search for the next map that has free bits left. * Normally the next map has free PIDs. */ static inline pidmap_t *next_free_map(pidmap_t *map, int *max_steps) { while (--*max_steps) { if (++map == map_limit) map = pidmap_array; if (unlikely(!map->page)) { unsigned long page = get_zeroed_page(GFP_KERNEL); /* * Free the page if someone raced with us * installing it: */ spin_lock(&pidmap_lock); if (map->page) free_page(page); else map->page = (void *)page; spin_unlock(&pidmap_lock); if (!map->page) break; } if (atomic_read(&map->nr_free)) return map; } return NULL; } int alloc_pidmap(void) { int pid, offset, max_steps = PIDMAP_ENTRIES + 1; pidmap_t *map; pid = last_pid + 1; if (pid >= pid_max) pid = RESERVED_PIDS; offset = pid & BITS_PER_PAGE_MASK; map = pidmap_array + pid / BITS_PER_PAGE; if (likely(map->page && !test_and_set_bit(offset, map->page))) { /* * There is a small window for last_pid updates to race, * but in that case the next allocation will go into the * slowpath and that fixes things up. */ return_pid: atomic_dec(&map->nr_free); last_pid = pid; return pid; } if (!offset || !atomic_read(&map->nr_free)) { next_map: map = next_free_map(map, &max_steps); if (!map) goto failure; offset = 0; } /* * Find the next zero bit: */ scan_more: offset = find_next_zero_bit(map->page, BITS_PER_PAGE, offset); if (offset >= BITS_PER_PAGE) goto next_map; if (test_and_set_bit(offset, map->page)) goto scan_more; /* we got the PID: */ pid = (map - pidmap_array) * BITS_PER_PAGE + offset; goto return_pid; failure: return -1; } inline struct pid *find_pid(enum pid_type type, int nr) { struct list_head *elem, *bucket = &pid_hash[type][pid_hashfn(nr)]; struct pid *pid; __list_for_each(elem, bucket) { pid = list_entry(elem, struct pid, hash_chain); if (pid->nr == nr) return pid; } return NULL; } void link_pid(task_t *task, struct pid_link *link, struct pid *pid) { atomic_inc(&pid->count); list_add_tail(&link->pid_chain, &pid->task_list); link->pidptr = pid; } int attach_pid(task_t *task, enum pid_type type, int nr) { struct pid *pid = find_pid(type, nr); if (pid) atomic_inc(&pid->count); else { pid = &task->pids[type].pid; pid->nr = nr; atomic_set(&pid->count, 1); INIT_LIST_HEAD(&pid->task_list); pid->task = task; get_task_struct(task); list_add(&pid->hash_chain, &pid_hash[type][pid_hashfn(nr)]); } list_add_tail(&task->pids[type].pid_chain, &pid->task_list); task->pids[type].pidptr = pid; return 0; } static inline int __detach_pid(task_t *task, enum pid_type type) { struct pid_link *link = task->pids + type; struct pid *pid = link->pidptr; int nr; list_del(&link->pid_chain); if (!atomic_dec_and_test(&pid->count)) return 0; nr = pid->nr; list_del(&pid->hash_chain); put_task_struct(pid->task); return nr; } static void _detach_pid(task_t *task, enum pid_type type) { __detach_pid(task, type); } void detach_pid(task_t *task, enum pid_type type) { int nr = __detach_pid(task, type); if (!nr) return; for (type = 0; type < PIDTYPE_MAX; ++type) if (find_pid(type, nr)) return; free_pidmap(nr); } task_t *find_task_by_pid(int nr) { struct pid *pid = find_pid(PIDTYPE_PID, nr); if (!pid) return NULL; return pid_task(pid->task_list.next, PIDTYPE_PID); } /* * This function switches the PIDs if a non-leader thread calls * sys_execve() - this must be done without releasing the PID. * (which a detach_pid() would eventually do.) */ void switch_exec_pids(task_t *leader, task_t *thread) { _detach_pid(leader, PIDTYPE_PID); _detach_pid(leader, PIDTYPE_TGID); _detach_pid(leader, PIDTYPE_PGID); _detach_pid(leader, PIDTYPE_SID); _detach_pid(thread, PIDTYPE_PID); _detach_pid(thread, PIDTYPE_TGID); leader->pid = leader->tgid = thread->pid; thread->pid = thread->tgid; attach_pid(thread, PIDTYPE_PID, thread->pid); attach_pid(thread, PIDTYPE_TGID, thread->tgid); attach_pid(thread, PIDTYPE_PGID, thread->signal->pgrp); attach_pid(thread, PIDTYPE_SID, thread->signal->session); list_add_tail(&thread->tasks, &init_task.tasks); attach_pid(leader, PIDTYPE_PID, leader->pid); attach_pid(leader, PIDTYPE_TGID, leader->tgid); attach_pid(leader, PIDTYPE_PGID, leader->signal->pgrp); attach_pid(leader, PIDTYPE_SID, leader->signal->session); } /* * The pid hash table is scaled according to the amount of memory in the * machine. From a minimum of 16 slots up to 4096 slots at one gigabyte or * more. */ void __init pidhash_init(void) { int i, j, pidhash_size; unsigned long megabytes = max_pfn >> (20 - PAGE_SHIFT); pidhash_shift = max(4, fls(megabytes * 4)); pidhash_shift = min(12, pidhash_shift); pidhash_size = 1 << pidhash_shift; printk("PID hash table entries: %d (order %d: %Zd bytes)\n", pidhash_size, pidhash_shift, pidhash_size * sizeof(struct list_head)); for (i = 0; i < PIDTYPE_MAX; i++) { pid_hash[i] = alloc_bootmem(pidhash_size * sizeof(struct list_head)); if (!pid_hash[i]) panic("Could not alloc pidhash!\n"); for (j = 0; j < pidhash_size; j++) INIT_LIST_HEAD(&pid_hash[i][j]); } } void __init pidmap_init(void) { int i; pidmap_array->page = (void *)get_zeroed_page(GFP_KERNEL); set_bit(0, pidmap_array->page); atomic_dec(&pidmap_array->nr_free); /* * Allocate PID 0, and hash it via all PID types: */ for (i = 0; i < PIDTYPE_MAX; i++) attach_pid(current, i, 0); }