// SPDX-License-Identifier: GPL-2.0-or-later /* * Copyright (C) 2015 Andrea Venturi * Andrea Venturi <be17068@iperbole.bo.it> * * Copyright (C) 2016 Maxime Ripard * Maxime Ripard <maxime.ripard@free-electrons.com> */ #include <linux/clk.h> #include <linux/dmaengine.h> #include <linux/module.h> #include <linux/of_device.h> #include <linux/platform_device.h> #include <linux/pm_runtime.h> #include <linux/regmap.h> #include <linux/reset.h> #include <sound/dmaengine_pcm.h> #include <sound/pcm_params.h> #include <sound/soc.h> #include <sound/soc-dai.h> #define SUN4I_I2S_CTRL_REG 0x00 #define SUN4I_I2S_CTRL_SDO_EN_MASK GENMASK(11, 8) #define SUN4I_I2S_CTRL_SDO_EN(sdo) BIT(8 + (sdo)) #define SUN4I_I2S_CTRL_MODE_MASK BIT(5) #define SUN4I_I2S_CTRL_MODE_SLAVE (1 << 5) #define SUN4I_I2S_CTRL_MODE_MASTER (0 << 5) #define SUN4I_I2S_CTRL_TX_EN BIT(2) #define SUN4I_I2S_CTRL_RX_EN BIT(1) #define SUN4I_I2S_CTRL_GL_EN BIT(0) #define SUN4I_I2S_FMT0_REG 0x04 #define SUN4I_I2S_FMT0_LRCLK_POLARITY_MASK BIT(7) #define SUN4I_I2S_FMT0_LRCLK_POLARITY_INVERTED (1 << 7) #define SUN4I_I2S_FMT0_LRCLK_POLARITY_NORMAL (0 << 7) #define SUN4I_I2S_FMT0_BCLK_POLARITY_MASK BIT(6) #define SUN4I_I2S_FMT0_BCLK_POLARITY_INVERTED (1 << 6) #define SUN4I_I2S_FMT0_BCLK_POLARITY_NORMAL (0 << 6) #define SUN4I_I2S_FMT0_SR_MASK GENMASK(5, 4) #define SUN4I_I2S_FMT0_SR(sr) ((sr) << 4) #define SUN4I_I2S_FMT0_WSS_MASK GENMASK(3, 2) #define SUN4I_I2S_FMT0_WSS(wss) ((wss) << 2) #define SUN4I_I2S_FMT0_FMT_MASK GENMASK(1, 0) #define SUN4I_I2S_FMT0_FMT_RIGHT_J (2 << 0) #define SUN4I_I2S_FMT0_FMT_LEFT_J (1 << 0) #define SUN4I_I2S_FMT0_FMT_I2S (0 << 0) #define SUN4I_I2S_FMT1_REG 0x08 #define SUN4I_I2S_FIFO_TX_REG 0x0c #define SUN4I_I2S_FIFO_RX_REG 0x10 #define SUN4I_I2S_FIFO_CTRL_REG 0x14 #define SUN4I_I2S_FIFO_CTRL_FLUSH_TX BIT(25) #define SUN4I_I2S_FIFO_CTRL_FLUSH_RX BIT(24) #define SUN4I_I2S_FIFO_CTRL_TX_MODE_MASK BIT(2) #define SUN4I_I2S_FIFO_CTRL_TX_MODE(mode) ((mode) << 2) #define SUN4I_I2S_FIFO_CTRL_RX_MODE_MASK GENMASK(1, 0) #define SUN4I_I2S_FIFO_CTRL_RX_MODE(mode) (mode) #define SUN4I_I2S_FIFO_STA_REG 0x18 #define SUN4I_I2S_DMA_INT_CTRL_REG 0x1c #define SUN4I_I2S_DMA_INT_CTRL_TX_DRQ_EN BIT(7) #define SUN4I_I2S_DMA_INT_CTRL_RX_DRQ_EN BIT(3) #define SUN4I_I2S_INT_STA_REG 0x20 #define SUN4I_I2S_CLK_DIV_REG 0x24 #define SUN4I_I2S_CLK_DIV_MCLK_EN BIT(7) #define SUN4I_I2S_CLK_DIV_BCLK_MASK GENMASK(6, 4) #define SUN4I_I2S_CLK_DIV_BCLK(bclk) ((bclk) << 4) #define SUN4I_I2S_CLK_DIV_MCLK_MASK GENMASK(3, 0) #define SUN4I_I2S_CLK_DIV_MCLK(mclk) ((mclk) << 0) #define SUN4I_I2S_TX_CNT_REG 0x28 #define SUN4I_I2S_RX_CNT_REG 0x2c #define SUN4I_I2S_TX_CHAN_SEL_REG 0x30 #define SUN4I_I2S_CHAN_SEL_MASK GENMASK(2, 0) #define SUN4I_I2S_CHAN_SEL(num_chan) (((num_chan) - 1) << 0) #define SUN4I_I2S_TX_CHAN_MAP_REG 0x34 #define SUN4I_I2S_TX_CHAN_MAP(chan, sample) ((sample) << (chan << 2)) #define SUN4I_I2S_RX_CHAN_SEL_REG 0x38 #define SUN4I_I2S_RX_CHAN_MAP_REG 0x3c /* Defines required for sun8i-h3 support */ #define SUN8I_I2S_CTRL_BCLK_OUT BIT(18) #define SUN8I_I2S_CTRL_LRCK_OUT BIT(17) #define SUN8I_I2S_CTRL_MODE_MASK GENMASK(5, 4) #define SUN8I_I2S_CTRL_MODE_RIGHT (2 << 4) #define SUN8I_I2S_CTRL_MODE_LEFT (1 << 4) #define SUN8I_I2S_CTRL_MODE_PCM (0 << 4) #define SUN8I_I2S_FMT0_LRCLK_POLARITY_MASK BIT(19) #define SUN8I_I2S_FMT0_LRCLK_POLARITY_INVERTED (1 << 19) #define SUN8I_I2S_FMT0_LRCLK_POLARITY_NORMAL (0 << 19) #define SUN8I_I2S_FMT0_LRCK_PERIOD_MASK GENMASK(17, 8) #define SUN8I_I2S_FMT0_LRCK_PERIOD(period) ((period - 1) << 8) #define SUN8I_I2S_FMT0_BCLK_POLARITY_MASK BIT(7) #define SUN8I_I2S_FMT0_BCLK_POLARITY_INVERTED (1 << 7) #define SUN8I_I2S_FMT0_BCLK_POLARITY_NORMAL (0 << 7) #define SUN8I_I2S_INT_STA_REG 0x0c #define SUN8I_I2S_FIFO_TX_REG 0x20 #define SUN8I_I2S_CHAN_CFG_REG 0x30 #define SUN8I_I2S_CHAN_CFG_RX_SLOT_NUM_MASK GENMASK(6, 4) #define SUN8I_I2S_CHAN_CFG_RX_SLOT_NUM(chan) ((chan - 1) << 4) #define SUN8I_I2S_CHAN_CFG_TX_SLOT_NUM_MASK GENMASK(2, 0) #define SUN8I_I2S_CHAN_CFG_TX_SLOT_NUM(chan) (chan - 1) #define SUN8I_I2S_TX_CHAN_MAP_REG 0x44 #define SUN8I_I2S_TX_CHAN_SEL_REG 0x34 #define SUN8I_I2S_TX_CHAN_OFFSET_MASK GENMASK(13, 12) #define SUN8I_I2S_TX_CHAN_OFFSET(offset) (offset << 12) #define SUN8I_I2S_TX_CHAN_EN_MASK GENMASK(11, 4) #define SUN8I_I2S_TX_CHAN_EN(num_chan) (((1 << num_chan) - 1) << 4) #define SUN8I_I2S_RX_CHAN_SEL_REG 0x54 #define SUN8I_I2S_RX_CHAN_MAP_REG 0x58 struct sun4i_i2s; /** * struct sun4i_i2s_quirks - Differences between SoC variants. * @has_reset: SoC needs reset deasserted. * @reg_offset_txdata: offset of the tx fifo. * @sun4i_i2s_regmap: regmap config to use. * @field_clkdiv_mclk_en: regmap field to enable mclk output. * @field_fmt_wss: regmap field to set word select size. * @field_fmt_sr: regmap field to set sample resolution. * @bclk_dividers: bit clock dividers array * @num_bclk_dividers: number of bit clock dividers * @mclk_dividers: mclk dividers array * @num_mclk_dividers: number of mclk dividers * @get_bclk_parent_rate: callback to get bclk parent rate * @get_sr: callback to get sample resolution * @get_wss: callback to get word select size * @set_chan_cfg: callback to set channel configuration * @set_fmt: callback to set format */ struct sun4i_i2s_quirks { bool has_reset; unsigned int reg_offset_txdata; /* TX FIFO */ const struct regmap_config *sun4i_i2s_regmap; /* Register fields for i2s */ struct reg_field field_clkdiv_mclk_en; struct reg_field field_fmt_wss; struct reg_field field_fmt_sr; const struct sun4i_i2s_clk_div *bclk_dividers; unsigned int num_bclk_dividers; const struct sun4i_i2s_clk_div *mclk_dividers; unsigned int num_mclk_dividers; unsigned long (*get_bclk_parent_rate)(const struct sun4i_i2s *); s8 (*get_sr)(const struct sun4i_i2s *, int); s8 (*get_wss)(const struct sun4i_i2s *, int); int (*set_chan_cfg)(const struct sun4i_i2s *, const struct snd_pcm_hw_params *); int (*set_fmt)(const struct sun4i_i2s *, unsigned int); }; struct sun4i_i2s { struct clk *bus_clk; struct clk *mod_clk; struct regmap *regmap; struct reset_control *rst; unsigned int format; unsigned int mclk_freq; unsigned int slots; unsigned int slot_width; struct snd_dmaengine_dai_dma_data capture_dma_data; struct snd_dmaengine_dai_dma_data playback_dma_data; /* Register fields for i2s */ struct regmap_field *field_clkdiv_mclk_en; struct regmap_field *field_fmt_wss; struct regmap_field *field_fmt_sr; const struct sun4i_i2s_quirks *variant; }; struct sun4i_i2s_clk_div { u8 div; u8 val; }; static const struct sun4i_i2s_clk_div sun4i_i2s_bclk_div[] = { { .div = 2, .val = 0 }, { .div = 4, .val = 1 }, { .div = 6, .val = 2 }, { .div = 8, .val = 3 }, { .div = 12, .val = 4 }, { .div = 16, .val = 5 }, /* TODO - extend divide ratio supported by newer SoCs */ }; static const struct sun4i_i2s_clk_div sun4i_i2s_mclk_div[] = { { .div = 1, .val = 0 }, { .div = 2, .val = 1 }, { .div = 4, .val = 2 }, { .div = 6, .val = 3 }, { .div = 8, .val = 4 }, { .div = 12, .val = 5 }, { .div = 16, .val = 6 }, { .div = 24, .val = 7 }, /* TODO - extend divide ratio supported by newer SoCs */ }; static const struct sun4i_i2s_clk_div sun8i_i2s_clk_div[] = { { .div = 1, .val = 1 }, { .div = 2, .val = 2 }, { .div = 4, .val = 3 }, { .div = 6, .val = 4 }, { .div = 8, .val = 5 }, { .div = 12, .val = 6 }, { .div = 16, .val = 7 }, { .div = 24, .val = 8 }, { .div = 32, .val = 9 }, { .div = 48, .val = 10 }, { .div = 64, .val = 11 }, { .div = 96, .val = 12 }, { .div = 128, .val = 13 }, { .div = 176, .val = 14 }, { .div = 192, .val = 15 }, }; static unsigned long sun4i_i2s_get_bclk_parent_rate(const struct sun4i_i2s *i2s) { return i2s->mclk_freq; } static unsigned long sun8i_i2s_get_bclk_parent_rate(const struct sun4i_i2s *i2s) { return clk_get_rate(i2s->mod_clk); } static int sun4i_i2s_get_bclk_div(struct sun4i_i2s *i2s, unsigned long parent_rate, unsigned int sampling_rate, unsigned int channels, unsigned int word_size) { const struct sun4i_i2s_clk_div *dividers = i2s->variant->bclk_dividers; int div = parent_rate / sampling_rate / word_size / channels; int i; for (i = 0; i < i2s->variant->num_bclk_dividers; i++) { const struct sun4i_i2s_clk_div *bdiv = ÷rs[i]; if (bdiv->div == div) return bdiv->val; } return -EINVAL; } static int sun4i_i2s_get_mclk_div(struct sun4i_i2s *i2s, unsigned long parent_rate, unsigned long mclk_rate) { const struct sun4i_i2s_clk_div *dividers = i2s->variant->mclk_dividers; int div = parent_rate / mclk_rate; int i; for (i = 0; i < i2s->variant->num_mclk_dividers; i++) { const struct sun4i_i2s_clk_div *mdiv = ÷rs[i]; if (mdiv->div == div) return mdiv->val; } return -EINVAL; } static int sun4i_i2s_oversample_rates[] = { 128, 192, 256, 384, 512, 768 }; static bool sun4i_i2s_oversample_is_valid(unsigned int oversample) { int i; for (i = 0; i < ARRAY_SIZE(sun4i_i2s_oversample_rates); i++) if (sun4i_i2s_oversample_rates[i] == oversample) return true; return false; } static int sun4i_i2s_set_clk_rate(struct snd_soc_dai *dai, unsigned int rate, unsigned int slots, unsigned int slot_width) { struct sun4i_i2s *i2s = snd_soc_dai_get_drvdata(dai); unsigned int oversample_rate, clk_rate, bclk_parent_rate; int bclk_div, mclk_div; int ret; switch (rate) { case 176400: case 88200: case 44100: case 22050: case 11025: clk_rate = 22579200; break; case 192000: case 128000: case 96000: case 64000: case 48000: case 32000: case 24000: case 16000: case 12000: case 8000: clk_rate = 24576000; break; default: dev_err(dai->dev, "Unsupported sample rate: %u\n", rate); return -EINVAL; } ret = clk_set_rate(i2s->mod_clk, clk_rate); if (ret) return ret; oversample_rate = i2s->mclk_freq / rate; if (!sun4i_i2s_oversample_is_valid(oversample_rate)) { dev_err(dai->dev, "Unsupported oversample rate: %d\n", oversample_rate); return -EINVAL; } bclk_parent_rate = i2s->variant->get_bclk_parent_rate(i2s); bclk_div = sun4i_i2s_get_bclk_div(i2s, bclk_parent_rate, rate, slots, slot_width); if (bclk_div < 0) { dev_err(dai->dev, "Unsupported BCLK divider: %d\n", bclk_div); return -EINVAL; } mclk_div = sun4i_i2s_get_mclk_div(i2s, clk_rate, i2s->mclk_freq); if (mclk_div < 0) { dev_err(dai->dev, "Unsupported MCLK divider: %d\n", mclk_div); return -EINVAL; } regmap_write(i2s->regmap, SUN4I_I2S_CLK_DIV_REG, SUN4I_I2S_CLK_DIV_BCLK(bclk_div) | SUN4I_I2S_CLK_DIV_MCLK(mclk_div)); regmap_field_write(i2s->field_clkdiv_mclk_en, 1); return 0; } static s8 sun4i_i2s_get_sr(const struct sun4i_i2s *i2s, int width) { if (width < 16 || width > 24) return -EINVAL; if (width % 4) return -EINVAL; return (width - 16) / 4; } static s8 sun4i_i2s_get_wss(const struct sun4i_i2s *i2s, int width) { if (width < 16 || width > 32) return -EINVAL; if (width % 4) return -EINVAL; return (width - 16) / 4; } static s8 sun8i_i2s_get_sr_wss(const struct sun4i_i2s *i2s, int width) { if (width % 4) return -EINVAL; if (width < 8 || width > 32) return -EINVAL; return (width - 8) / 4 + 1; } static int sun4i_i2s_set_chan_cfg(const struct sun4i_i2s *i2s, const struct snd_pcm_hw_params *params) { unsigned int channels = params_channels(params); /* Map the channels for playback and capture */ regmap_write(i2s->regmap, SUN4I_I2S_TX_CHAN_MAP_REG, 0x76543210); regmap_write(i2s->regmap, SUN4I_I2S_RX_CHAN_MAP_REG, 0x00003210); /* Configure the channels */ regmap_update_bits(i2s->regmap, SUN4I_I2S_TX_CHAN_SEL_REG, SUN4I_I2S_CHAN_SEL_MASK, SUN4I_I2S_CHAN_SEL(channels)); regmap_update_bits(i2s->regmap, SUN4I_I2S_RX_CHAN_SEL_REG, SUN4I_I2S_CHAN_SEL_MASK, SUN4I_I2S_CHAN_SEL(channels)); return 0; } static int sun8i_i2s_set_chan_cfg(const struct sun4i_i2s *i2s, const struct snd_pcm_hw_params *params) { unsigned int channels = params_channels(params); unsigned int slots = channels; unsigned int lrck_period; if (i2s->slots) slots = i2s->slots; /* Map the channels for playback and capture */ regmap_write(i2s->regmap, SUN8I_I2S_TX_CHAN_MAP_REG, 0x76543210); regmap_write(i2s->regmap, SUN8I_I2S_RX_CHAN_MAP_REG, 0x76543210); /* Configure the channels */ regmap_update_bits(i2s->regmap, SUN8I_I2S_TX_CHAN_SEL_REG, SUN4I_I2S_CHAN_SEL_MASK, SUN4I_I2S_CHAN_SEL(channels)); regmap_update_bits(i2s->regmap, SUN8I_I2S_RX_CHAN_SEL_REG, SUN4I_I2S_CHAN_SEL_MASK, SUN4I_I2S_CHAN_SEL(channels)); regmap_update_bits(i2s->regmap, SUN8I_I2S_CHAN_CFG_REG, SUN8I_I2S_CHAN_CFG_TX_SLOT_NUM_MASK, SUN8I_I2S_CHAN_CFG_TX_SLOT_NUM(channels)); regmap_update_bits(i2s->regmap, SUN8I_I2S_CHAN_CFG_REG, SUN8I_I2S_CHAN_CFG_RX_SLOT_NUM_MASK, SUN8I_I2S_CHAN_CFG_RX_SLOT_NUM(channels)); switch (i2s->format & SND_SOC_DAIFMT_FORMAT_MASK) { case SND_SOC_DAIFMT_DSP_A: case SND_SOC_DAIFMT_DSP_B: case SND_SOC_DAIFMT_LEFT_J: case SND_SOC_DAIFMT_RIGHT_J: lrck_period = params_physical_width(params) * slots; break; case SND_SOC_DAIFMT_I2S: lrck_period = params_physical_width(params); break; default: return -EINVAL; } regmap_update_bits(i2s->regmap, SUN4I_I2S_FMT0_REG, SUN8I_I2S_FMT0_LRCK_PERIOD_MASK, SUN8I_I2S_FMT0_LRCK_PERIOD(lrck_period)); regmap_update_bits(i2s->regmap, SUN8I_I2S_TX_CHAN_SEL_REG, SUN8I_I2S_TX_CHAN_EN_MASK, SUN8I_I2S_TX_CHAN_EN(channels)); return 0; } static int sun4i_i2s_hw_params(struct snd_pcm_substream *substream, struct snd_pcm_hw_params *params, struct snd_soc_dai *dai) { struct sun4i_i2s *i2s = snd_soc_dai_get_drvdata(dai); unsigned int word_size = params_width(params); unsigned int slot_width = params_physical_width(params); unsigned int channels = params_channels(params); unsigned int slots = channels; int ret, sr, wss; u32 width; if (i2s->slots) slots = i2s->slots; if (i2s->slot_width) slot_width = i2s->slot_width; ret = i2s->variant->set_chan_cfg(i2s, params); if (ret < 0) { dev_err(dai->dev, "Invalid channel configuration\n"); return ret; } switch (params_physical_width(params)) { case 16: width = DMA_SLAVE_BUSWIDTH_2_BYTES; break; default: dev_err(dai->dev, "Unsupported physical sample width: %d\n", params_physical_width(params)); return -EINVAL; } i2s->playback_dma_data.addr_width = width; sr = i2s->variant->get_sr(i2s, word_size); if (sr < 0) return -EINVAL; wss = i2s->variant->get_wss(i2s, slot_width); if (wss < 0) return -EINVAL; regmap_field_write(i2s->field_fmt_wss, wss); regmap_field_write(i2s->field_fmt_sr, sr); return sun4i_i2s_set_clk_rate(dai, params_rate(params), slots, slot_width); } static int sun4i_i2s_set_soc_fmt(const struct sun4i_i2s *i2s, unsigned int fmt) { u32 val; /* DAI clock polarity */ switch (fmt & SND_SOC_DAIFMT_INV_MASK) { case SND_SOC_DAIFMT_IB_IF: /* Invert both clocks */ val = SUN4I_I2S_FMT0_BCLK_POLARITY_INVERTED | SUN4I_I2S_FMT0_LRCLK_POLARITY_INVERTED; break; case SND_SOC_DAIFMT_IB_NF: /* Invert bit clock */ val = SUN4I_I2S_FMT0_BCLK_POLARITY_INVERTED; break; case SND_SOC_DAIFMT_NB_IF: /* Invert frame clock */ val = SUN4I_I2S_FMT0_LRCLK_POLARITY_INVERTED; break; case SND_SOC_DAIFMT_NB_NF: val = 0; break; default: return -EINVAL; } regmap_update_bits(i2s->regmap, SUN4I_I2S_FMT0_REG, SUN4I_I2S_FMT0_LRCLK_POLARITY_MASK | SUN4I_I2S_FMT0_BCLK_POLARITY_MASK, val); /* DAI Mode */ switch (fmt & SND_SOC_DAIFMT_FORMAT_MASK) { case SND_SOC_DAIFMT_I2S: val = SUN4I_I2S_FMT0_FMT_I2S; break; case SND_SOC_DAIFMT_LEFT_J: val = SUN4I_I2S_FMT0_FMT_LEFT_J; break; case SND_SOC_DAIFMT_RIGHT_J: val = SUN4I_I2S_FMT0_FMT_RIGHT_J; break; default: return -EINVAL; } regmap_update_bits(i2s->regmap, SUN4I_I2S_FMT0_REG, SUN4I_I2S_FMT0_FMT_MASK, val); /* DAI clock master masks */ switch (fmt & SND_SOC_DAIFMT_MASTER_MASK) { case SND_SOC_DAIFMT_CBS_CFS: /* BCLK and LRCLK master */ val = SUN4I_I2S_CTRL_MODE_MASTER; break; case SND_SOC_DAIFMT_CBM_CFM: /* BCLK and LRCLK slave */ val = SUN4I_I2S_CTRL_MODE_SLAVE; break; default: return -EINVAL; } regmap_update_bits(i2s->regmap, SUN4I_I2S_CTRL_REG, SUN4I_I2S_CTRL_MODE_MASK, val); return 0; } static int sun8i_i2s_set_soc_fmt(const struct sun4i_i2s *i2s, unsigned int fmt) { u32 mode, val; u8 offset; /* * DAI clock polarity * * The setup for LRCK contradicts the datasheet, but under a * scope it's clear that the LRCK polarity is reversed * compared to the expected polarity on the bus. */ switch (fmt & SND_SOC_DAIFMT_INV_MASK) { case SND_SOC_DAIFMT_IB_IF: /* Invert both clocks */ val = SUN8I_I2S_FMT0_BCLK_POLARITY_INVERTED; break; case SND_SOC_DAIFMT_IB_NF: /* Invert bit clock */ val = SUN8I_I2S_FMT0_BCLK_POLARITY_INVERTED | SUN8I_I2S_FMT0_LRCLK_POLARITY_INVERTED; break; case SND_SOC_DAIFMT_NB_IF: /* Invert frame clock */ val = 0; break; case SND_SOC_DAIFMT_NB_NF: val = SUN8I_I2S_FMT0_LRCLK_POLARITY_INVERTED; break; default: return -EINVAL; } regmap_update_bits(i2s->regmap, SUN4I_I2S_FMT0_REG, SUN8I_I2S_FMT0_LRCLK_POLARITY_MASK | SUN8I_I2S_FMT0_BCLK_POLARITY_MASK, val); /* DAI Mode */ switch (fmt & SND_SOC_DAIFMT_FORMAT_MASK) { case SND_SOC_DAIFMT_DSP_A: mode = SUN8I_I2S_CTRL_MODE_PCM; offset = 1; break; case SND_SOC_DAIFMT_DSP_B: mode = SUN8I_I2S_CTRL_MODE_PCM; offset = 0; break; case SND_SOC_DAIFMT_I2S: mode = SUN8I_I2S_CTRL_MODE_LEFT; offset = 1; break; case SND_SOC_DAIFMT_LEFT_J: mode = SUN8I_I2S_CTRL_MODE_LEFT; offset = 0; break; case SND_SOC_DAIFMT_RIGHT_J: mode = SUN8I_I2S_CTRL_MODE_RIGHT; offset = 0; break; default: return -EINVAL; } regmap_update_bits(i2s->regmap, SUN4I_I2S_CTRL_REG, SUN8I_I2S_CTRL_MODE_MASK, mode); regmap_update_bits(i2s->regmap, SUN8I_I2S_TX_CHAN_SEL_REG, SUN8I_I2S_TX_CHAN_OFFSET_MASK, SUN8I_I2S_TX_CHAN_OFFSET(offset)); regmap_update_bits(i2s->regmap, SUN8I_I2S_RX_CHAN_SEL_REG, SUN8I_I2S_TX_CHAN_OFFSET_MASK, SUN8I_I2S_TX_CHAN_OFFSET(offset)); /* DAI clock master masks */ switch (fmt & SND_SOC_DAIFMT_MASTER_MASK) { case SND_SOC_DAIFMT_CBS_CFS: /* BCLK and LRCLK master */ val = SUN8I_I2S_CTRL_BCLK_OUT | SUN8I_I2S_CTRL_LRCK_OUT; break; case SND_SOC_DAIFMT_CBM_CFM: /* BCLK and LRCLK slave */ val = 0; break; default: return -EINVAL; } regmap_update_bits(i2s->regmap, SUN4I_I2S_CTRL_REG, SUN8I_I2S_CTRL_BCLK_OUT | SUN8I_I2S_CTRL_LRCK_OUT, val); return 0; } static int sun4i_i2s_set_fmt(struct snd_soc_dai *dai, unsigned int fmt) { struct sun4i_i2s *i2s = snd_soc_dai_get_drvdata(dai); int ret; ret = i2s->variant->set_fmt(i2s, fmt); if (ret) { dev_err(dai->dev, "Unsupported format configuration\n"); return ret; } /* Set significant bits in our FIFOs */ regmap_update_bits(i2s->regmap, SUN4I_I2S_FIFO_CTRL_REG, SUN4I_I2S_FIFO_CTRL_TX_MODE_MASK | SUN4I_I2S_FIFO_CTRL_RX_MODE_MASK, SUN4I_I2S_FIFO_CTRL_TX_MODE(1) | SUN4I_I2S_FIFO_CTRL_RX_MODE(1)); i2s->format = fmt; return 0; } static void sun4i_i2s_start_capture(struct sun4i_i2s *i2s) { /* Flush RX FIFO */ regmap_update_bits(i2s->regmap, SUN4I_I2S_FIFO_CTRL_REG, SUN4I_I2S_FIFO_CTRL_FLUSH_RX, SUN4I_I2S_FIFO_CTRL_FLUSH_RX); /* Clear RX counter */ regmap_write(i2s->regmap, SUN4I_I2S_RX_CNT_REG, 0); /* Enable RX Block */ regmap_update_bits(i2s->regmap, SUN4I_I2S_CTRL_REG, SUN4I_I2S_CTRL_RX_EN, SUN4I_I2S_CTRL_RX_EN); /* Enable RX DRQ */ regmap_update_bits(i2s->regmap, SUN4I_I2S_DMA_INT_CTRL_REG, SUN4I_I2S_DMA_INT_CTRL_RX_DRQ_EN, SUN4I_I2S_DMA_INT_CTRL_RX_DRQ_EN); } static void sun4i_i2s_start_playback(struct sun4i_i2s *i2s) { /* Flush TX FIFO */ regmap_update_bits(i2s->regmap, SUN4I_I2S_FIFO_CTRL_REG, SUN4I_I2S_FIFO_CTRL_FLUSH_TX, SUN4I_I2S_FIFO_CTRL_FLUSH_TX); /* Clear TX counter */ regmap_write(i2s->regmap, SUN4I_I2S_TX_CNT_REG, 0); /* Enable TX Block */ regmap_update_bits(i2s->regmap, SUN4I_I2S_CTRL_REG, SUN4I_I2S_CTRL_TX_EN, SUN4I_I2S_CTRL_TX_EN); /* Enable TX DRQ */ regmap_update_bits(i2s->regmap, SUN4I_I2S_DMA_INT_CTRL_REG, SUN4I_I2S_DMA_INT_CTRL_TX_DRQ_EN, SUN4I_I2S_DMA_INT_CTRL_TX_DRQ_EN); } static void sun4i_i2s_stop_capture(struct sun4i_i2s *i2s) { /* Disable RX Block */ regmap_update_bits(i2s->regmap, SUN4I_I2S_CTRL_REG, SUN4I_I2S_CTRL_RX_EN, 0); /* Disable RX DRQ */ regmap_update_bits(i2s->regmap, SUN4I_I2S_DMA_INT_CTRL_REG, SUN4I_I2S_DMA_INT_CTRL_RX_DRQ_EN, 0); } static void sun4i_i2s_stop_playback(struct sun4i_i2s *i2s) { /* Disable TX Block */ regmap_update_bits(i2s->regmap, SUN4I_I2S_CTRL_REG, SUN4I_I2S_CTRL_TX_EN, 0); /* Disable TX DRQ */ regmap_update_bits(i2s->regmap, SUN4I_I2S_DMA_INT_CTRL_REG, SUN4I_I2S_DMA_INT_CTRL_TX_DRQ_EN, 0); } static int sun4i_i2s_trigger(struct snd_pcm_substream *substream, int cmd, struct snd_soc_dai *dai) { struct sun4i_i2s *i2s = snd_soc_dai_get_drvdata(dai); switch (cmd) { case SNDRV_PCM_TRIGGER_START: case SNDRV_PCM_TRIGGER_PAUSE_RELEASE: case SNDRV_PCM_TRIGGER_RESUME: if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK) sun4i_i2s_start_playback(i2s); else sun4i_i2s_start_capture(i2s); break; case SNDRV_PCM_TRIGGER_STOP: case SNDRV_PCM_TRIGGER_PAUSE_PUSH: case SNDRV_PCM_TRIGGER_SUSPEND: if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK) sun4i_i2s_stop_playback(i2s); else sun4i_i2s_stop_capture(i2s); break; default: return -EINVAL; } return 0; } static int sun4i_i2s_set_sysclk(struct snd_soc_dai *dai, int clk_id, unsigned int freq, int dir) { struct sun4i_i2s *i2s = snd_soc_dai_get_drvdata(dai); if (clk_id != 0) return -EINVAL; i2s->mclk_freq = freq; return 0; } static int sun4i_i2s_set_tdm_slot(struct snd_soc_dai *dai, unsigned int tx_mask, unsigned int rx_mask, int slots, int slot_width) { struct sun4i_i2s *i2s = snd_soc_dai_get_drvdata(dai); if (slots > 8) return -EINVAL; i2s->slots = slots; i2s->slot_width = slot_width; return 0; } static const struct snd_soc_dai_ops sun4i_i2s_dai_ops = { .hw_params = sun4i_i2s_hw_params, .set_fmt = sun4i_i2s_set_fmt, .set_sysclk = sun4i_i2s_set_sysclk, .set_tdm_slot = sun4i_i2s_set_tdm_slot, .trigger = sun4i_i2s_trigger, }; static int sun4i_i2s_dai_probe(struct snd_soc_dai *dai) { struct sun4i_i2s *i2s = snd_soc_dai_get_drvdata(dai); snd_soc_dai_init_dma_data(dai, &i2s->playback_dma_data, &i2s->capture_dma_data); snd_soc_dai_set_drvdata(dai, i2s); return 0; } static struct snd_soc_dai_driver sun4i_i2s_dai = { .probe = sun4i_i2s_dai_probe, .capture = { .stream_name = "Capture", .channels_min = 1, .channels_max = 8, .rates = SNDRV_PCM_RATE_8000_192000, .formats = SNDRV_PCM_FMTBIT_S16_LE, }, .playback = { .stream_name = "Playback", .channels_min = 1, .channels_max = 8, .rates = SNDRV_PCM_RATE_8000_192000, .formats = SNDRV_PCM_FMTBIT_S16_LE, }, .ops = &sun4i_i2s_dai_ops, .symmetric_rates = 1, }; static const struct snd_soc_component_driver sun4i_i2s_component = { .name = "sun4i-dai", }; static bool sun4i_i2s_rd_reg(struct device *dev, unsigned int reg) { switch (reg) { case SUN4I_I2S_FIFO_TX_REG: return false; default: return true; } } static bool sun4i_i2s_wr_reg(struct device *dev, unsigned int reg) { switch (reg) { case SUN4I_I2S_FIFO_RX_REG: case SUN4I_I2S_FIFO_STA_REG: return false; default: return true; } } static bool sun4i_i2s_volatile_reg(struct device *dev, unsigned int reg) { switch (reg) { case SUN4I_I2S_FIFO_RX_REG: case SUN4I_I2S_INT_STA_REG: case SUN4I_I2S_RX_CNT_REG: case SUN4I_I2S_TX_CNT_REG: return true; default: return false; } } static bool sun8i_i2s_rd_reg(struct device *dev, unsigned int reg) { switch (reg) { case SUN8I_I2S_FIFO_TX_REG: return false; default: return true; } } static bool sun8i_i2s_volatile_reg(struct device *dev, unsigned int reg) { if (reg == SUN8I_I2S_INT_STA_REG) return true; if (reg == SUN8I_I2S_FIFO_TX_REG) return false; return sun4i_i2s_volatile_reg(dev, reg); } static const struct reg_default sun4i_i2s_reg_defaults[] = { { SUN4I_I2S_CTRL_REG, 0x00000000 }, { SUN4I_I2S_FMT0_REG, 0x0000000c }, { SUN4I_I2S_FMT1_REG, 0x00004020 }, { SUN4I_I2S_FIFO_CTRL_REG, 0x000400f0 }, { SUN4I_I2S_DMA_INT_CTRL_REG, 0x00000000 }, { SUN4I_I2S_CLK_DIV_REG, 0x00000000 }, { SUN4I_I2S_TX_CHAN_SEL_REG, 0x00000001 }, { SUN4I_I2S_TX_CHAN_MAP_REG, 0x76543210 }, { SUN4I_I2S_RX_CHAN_SEL_REG, 0x00000001 }, { SUN4I_I2S_RX_CHAN_MAP_REG, 0x00003210 }, }; static const struct reg_default sun8i_i2s_reg_defaults[] = { { SUN4I_I2S_CTRL_REG, 0x00060000 }, { SUN4I_I2S_FMT0_REG, 0x00000033 }, { SUN4I_I2S_FMT1_REG, 0x00000030 }, { SUN4I_I2S_FIFO_CTRL_REG, 0x000400f0 }, { SUN4I_I2S_DMA_INT_CTRL_REG, 0x00000000 }, { SUN4I_I2S_CLK_DIV_REG, 0x00000000 }, { SUN8I_I2S_CHAN_CFG_REG, 0x00000000 }, { SUN8I_I2S_TX_CHAN_SEL_REG, 0x00000000 }, { SUN8I_I2S_TX_CHAN_MAP_REG, 0x00000000 }, { SUN8I_I2S_RX_CHAN_SEL_REG, 0x00000000 }, { SUN8I_I2S_RX_CHAN_MAP_REG, 0x00000000 }, }; static const struct regmap_config sun4i_i2s_regmap_config = { .reg_bits = 32, .reg_stride = 4, .val_bits = 32, .max_register = SUN4I_I2S_RX_CHAN_MAP_REG, .cache_type = REGCACHE_FLAT, .reg_defaults = sun4i_i2s_reg_defaults, .num_reg_defaults = ARRAY_SIZE(sun4i_i2s_reg_defaults), .writeable_reg = sun4i_i2s_wr_reg, .readable_reg = sun4i_i2s_rd_reg, .volatile_reg = sun4i_i2s_volatile_reg, }; static const struct regmap_config sun8i_i2s_regmap_config = { .reg_bits = 32, .reg_stride = 4, .val_bits = 32, .max_register = SUN8I_I2S_RX_CHAN_MAP_REG, .cache_type = REGCACHE_FLAT, .reg_defaults = sun8i_i2s_reg_defaults, .num_reg_defaults = ARRAY_SIZE(sun8i_i2s_reg_defaults), .writeable_reg = sun4i_i2s_wr_reg, .readable_reg = sun8i_i2s_rd_reg, .volatile_reg = sun8i_i2s_volatile_reg, }; static int sun4i_i2s_runtime_resume(struct device *dev) { struct sun4i_i2s *i2s = dev_get_drvdata(dev); int ret; ret = clk_prepare_enable(i2s->bus_clk); if (ret) { dev_err(dev, "Failed to enable bus clock\n"); return ret; } regcache_cache_only(i2s->regmap, false); regcache_mark_dirty(i2s->regmap); ret = regcache_sync(i2s->regmap); if (ret) { dev_err(dev, "Failed to sync regmap cache\n"); goto err_disable_clk; } /* Enable the whole hardware block */ regmap_update_bits(i2s->regmap, SUN4I_I2S_CTRL_REG, SUN4I_I2S_CTRL_GL_EN, SUN4I_I2S_CTRL_GL_EN); /* Enable the first output line */ regmap_update_bits(i2s->regmap, SUN4I_I2S_CTRL_REG, SUN4I_I2S_CTRL_SDO_EN_MASK, SUN4I_I2S_CTRL_SDO_EN(0)); ret = clk_prepare_enable(i2s->mod_clk); if (ret) { dev_err(dev, "Failed to enable module clock\n"); goto err_disable_clk; } return 0; err_disable_clk: clk_disable_unprepare(i2s->bus_clk); return ret; } static int sun4i_i2s_runtime_suspend(struct device *dev) { struct sun4i_i2s *i2s = dev_get_drvdata(dev); clk_disable_unprepare(i2s->mod_clk); /* Disable our output lines */ regmap_update_bits(i2s->regmap, SUN4I_I2S_CTRL_REG, SUN4I_I2S_CTRL_SDO_EN_MASK, 0); /* Disable the whole hardware block */ regmap_update_bits(i2s->regmap, SUN4I_I2S_CTRL_REG, SUN4I_I2S_CTRL_GL_EN, 0); regcache_cache_only(i2s->regmap, true); clk_disable_unprepare(i2s->bus_clk); return 0; } static const struct sun4i_i2s_quirks sun4i_a10_i2s_quirks = { .has_reset = false, .reg_offset_txdata = SUN4I_I2S_FIFO_TX_REG, .sun4i_i2s_regmap = &sun4i_i2s_regmap_config, .field_clkdiv_mclk_en = REG_FIELD(SUN4I_I2S_CLK_DIV_REG, 7, 7), .field_fmt_wss = REG_FIELD(SUN4I_I2S_FMT0_REG, 2, 3), .field_fmt_sr = REG_FIELD(SUN4I_I2S_FMT0_REG, 4, 5), .bclk_dividers = sun4i_i2s_bclk_div, .num_bclk_dividers = ARRAY_SIZE(sun4i_i2s_bclk_div), .mclk_dividers = sun4i_i2s_mclk_div, .num_mclk_dividers = ARRAY_SIZE(sun4i_i2s_mclk_div), .get_bclk_parent_rate = sun4i_i2s_get_bclk_parent_rate, .get_sr = sun4i_i2s_get_sr, .get_wss = sun4i_i2s_get_wss, .set_chan_cfg = sun4i_i2s_set_chan_cfg, .set_fmt = sun4i_i2s_set_soc_fmt, }; static const struct sun4i_i2s_quirks sun6i_a31_i2s_quirks = { .has_reset = true, .reg_offset_txdata = SUN4I_I2S_FIFO_TX_REG, .sun4i_i2s_regmap = &sun4i_i2s_regmap_config, .field_clkdiv_mclk_en = REG_FIELD(SUN4I_I2S_CLK_DIV_REG, 7, 7), .field_fmt_wss = REG_FIELD(SUN4I_I2S_FMT0_REG, 2, 3), .field_fmt_sr = REG_FIELD(SUN4I_I2S_FMT0_REG, 4, 5), .bclk_dividers = sun4i_i2s_bclk_div, .num_bclk_dividers = ARRAY_SIZE(sun4i_i2s_bclk_div), .mclk_dividers = sun4i_i2s_mclk_div, .num_mclk_dividers = ARRAY_SIZE(sun4i_i2s_mclk_div), .get_bclk_parent_rate = sun4i_i2s_get_bclk_parent_rate, .get_sr = sun4i_i2s_get_sr, .get_wss = sun4i_i2s_get_wss, .set_chan_cfg = sun4i_i2s_set_chan_cfg, .set_fmt = sun4i_i2s_set_soc_fmt, }; /* * This doesn't describe the TDM controller documented in the A83t * datasheet, but the three undocumented I2S controller that use the * older design. */ static const struct sun4i_i2s_quirks sun8i_a83t_i2s_quirks = { .has_reset = true, .reg_offset_txdata = SUN8I_I2S_FIFO_TX_REG, .sun4i_i2s_regmap = &sun4i_i2s_regmap_config, .field_clkdiv_mclk_en = REG_FIELD(SUN4I_I2S_CLK_DIV_REG, 7, 7), .field_fmt_wss = REG_FIELD(SUN4I_I2S_FMT0_REG, 2, 3), .field_fmt_sr = REG_FIELD(SUN4I_I2S_FMT0_REG, 4, 5), .bclk_dividers = sun4i_i2s_bclk_div, .num_bclk_dividers = ARRAY_SIZE(sun4i_i2s_bclk_div), .mclk_dividers = sun4i_i2s_mclk_div, .num_mclk_dividers = ARRAY_SIZE(sun4i_i2s_mclk_div), .get_bclk_parent_rate = sun4i_i2s_get_bclk_parent_rate, .get_sr = sun4i_i2s_get_sr, .get_wss = sun4i_i2s_get_wss, .set_chan_cfg = sun4i_i2s_set_chan_cfg, .set_fmt = sun4i_i2s_set_soc_fmt, }; static const struct sun4i_i2s_quirks sun8i_h3_i2s_quirks = { .has_reset = true, .reg_offset_txdata = SUN8I_I2S_FIFO_TX_REG, .sun4i_i2s_regmap = &sun8i_i2s_regmap_config, .field_clkdiv_mclk_en = REG_FIELD(SUN4I_I2S_CLK_DIV_REG, 8, 8), .field_fmt_wss = REG_FIELD(SUN4I_I2S_FMT0_REG, 0, 2), .field_fmt_sr = REG_FIELD(SUN4I_I2S_FMT0_REG, 4, 6), .bclk_dividers = sun8i_i2s_clk_div, .num_bclk_dividers = ARRAY_SIZE(sun8i_i2s_clk_div), .mclk_dividers = sun8i_i2s_clk_div, .num_mclk_dividers = ARRAY_SIZE(sun8i_i2s_clk_div), .get_bclk_parent_rate = sun8i_i2s_get_bclk_parent_rate, .get_sr = sun8i_i2s_get_sr_wss, .get_wss = sun8i_i2s_get_sr_wss, .set_chan_cfg = sun8i_i2s_set_chan_cfg, .set_fmt = sun8i_i2s_set_soc_fmt, }; static const struct sun4i_i2s_quirks sun50i_a64_codec_i2s_quirks = { .has_reset = true, .reg_offset_txdata = SUN8I_I2S_FIFO_TX_REG, .sun4i_i2s_regmap = &sun4i_i2s_regmap_config, .field_clkdiv_mclk_en = REG_FIELD(SUN4I_I2S_CLK_DIV_REG, 7, 7), .field_fmt_wss = REG_FIELD(SUN4I_I2S_FMT0_REG, 2, 3), .field_fmt_sr = REG_FIELD(SUN4I_I2S_FMT0_REG, 4, 5), .bclk_dividers = sun4i_i2s_bclk_div, .num_bclk_dividers = ARRAY_SIZE(sun4i_i2s_bclk_div), .mclk_dividers = sun4i_i2s_mclk_div, .num_mclk_dividers = ARRAY_SIZE(sun4i_i2s_mclk_div), .get_bclk_parent_rate = sun4i_i2s_get_bclk_parent_rate, .get_sr = sun4i_i2s_get_sr, .get_wss = sun4i_i2s_get_wss, .set_chan_cfg = sun4i_i2s_set_chan_cfg, .set_fmt = sun4i_i2s_set_soc_fmt, }; static int sun4i_i2s_init_regmap_fields(struct device *dev, struct sun4i_i2s *i2s) { i2s->field_clkdiv_mclk_en = devm_regmap_field_alloc(dev, i2s->regmap, i2s->variant->field_clkdiv_mclk_en); if (IS_ERR(i2s->field_clkdiv_mclk_en)) return PTR_ERR(i2s->field_clkdiv_mclk_en); i2s->field_fmt_wss = devm_regmap_field_alloc(dev, i2s->regmap, i2s->variant->field_fmt_wss); if (IS_ERR(i2s->field_fmt_wss)) return PTR_ERR(i2s->field_fmt_wss); i2s->field_fmt_sr = devm_regmap_field_alloc(dev, i2s->regmap, i2s->variant->field_fmt_sr); if (IS_ERR(i2s->field_fmt_sr)) return PTR_ERR(i2s->field_fmt_sr); return 0; } static int sun4i_i2s_probe(struct platform_device *pdev) { struct sun4i_i2s *i2s; struct resource *res; void __iomem *regs; int irq, ret; i2s = devm_kzalloc(&pdev->dev, sizeof(*i2s), GFP_KERNEL); if (!i2s) return -ENOMEM; platform_set_drvdata(pdev, i2s); res = platform_get_resource(pdev, IORESOURCE_MEM, 0); regs = devm_ioremap_resource(&pdev->dev, res); if (IS_ERR(regs)) return PTR_ERR(regs); irq = platform_get_irq(pdev, 0); if (irq < 0) return irq; i2s->variant = of_device_get_match_data(&pdev->dev); if (!i2s->variant) { dev_err(&pdev->dev, "Failed to determine the quirks to use\n"); return -ENODEV; } i2s->bus_clk = devm_clk_get(&pdev->dev, "apb"); if (IS_ERR(i2s->bus_clk)) { dev_err(&pdev->dev, "Can't get our bus clock\n"); return PTR_ERR(i2s->bus_clk); } i2s->regmap = devm_regmap_init_mmio(&pdev->dev, regs, i2s->variant->sun4i_i2s_regmap); if (IS_ERR(i2s->regmap)) { dev_err(&pdev->dev, "Regmap initialisation failed\n"); return PTR_ERR(i2s->regmap); } i2s->mod_clk = devm_clk_get(&pdev->dev, "mod"); if (IS_ERR(i2s->mod_clk)) { dev_err(&pdev->dev, "Can't get our mod clock\n"); return PTR_ERR(i2s->mod_clk); } if (i2s->variant->has_reset) { i2s->rst = devm_reset_control_get_exclusive(&pdev->dev, NULL); if (IS_ERR(i2s->rst)) { dev_err(&pdev->dev, "Failed to get reset control\n"); return PTR_ERR(i2s->rst); } } if (!IS_ERR(i2s->rst)) { ret = reset_control_deassert(i2s->rst); if (ret) { dev_err(&pdev->dev, "Failed to deassert the reset control\n"); return -EINVAL; } } i2s->playback_dma_data.addr = res->start + i2s->variant->reg_offset_txdata; i2s->playback_dma_data.maxburst = 8; i2s->capture_dma_data.addr = res->start + SUN4I_I2S_FIFO_RX_REG; i2s->capture_dma_data.maxburst = 8; pm_runtime_enable(&pdev->dev); if (!pm_runtime_enabled(&pdev->dev)) { ret = sun4i_i2s_runtime_resume(&pdev->dev); if (ret) goto err_pm_disable; } ret = sun4i_i2s_init_regmap_fields(&pdev->dev, i2s); if (ret) { dev_err(&pdev->dev, "Could not initialise regmap fields\n"); goto err_suspend; } ret = devm_snd_dmaengine_pcm_register(&pdev->dev, NULL, 0); if (ret) { dev_err(&pdev->dev, "Could not register PCM\n"); goto err_suspend; } ret = devm_snd_soc_register_component(&pdev->dev, &sun4i_i2s_component, &sun4i_i2s_dai, 1); if (ret) { dev_err(&pdev->dev, "Could not register DAI\n"); goto err_suspend; } return 0; err_suspend: if (!pm_runtime_status_suspended(&pdev->dev)) sun4i_i2s_runtime_suspend(&pdev->dev); err_pm_disable: pm_runtime_disable(&pdev->dev); if (!IS_ERR(i2s->rst)) reset_control_assert(i2s->rst); return ret; } static int sun4i_i2s_remove(struct platform_device *pdev) { struct sun4i_i2s *i2s = dev_get_drvdata(&pdev->dev); pm_runtime_disable(&pdev->dev); if (!pm_runtime_status_suspended(&pdev->dev)) sun4i_i2s_runtime_suspend(&pdev->dev); if (!IS_ERR(i2s->rst)) reset_control_assert(i2s->rst); return 0; } static const struct of_device_id sun4i_i2s_match[] = { { .compatible = "allwinner,sun4i-a10-i2s", .data = &sun4i_a10_i2s_quirks, }, { .compatible = "allwinner,sun6i-a31-i2s", .data = &sun6i_a31_i2s_quirks, }, { .compatible = "allwinner,sun8i-a83t-i2s", .data = &sun8i_a83t_i2s_quirks, }, { .compatible = "allwinner,sun8i-h3-i2s", .data = &sun8i_h3_i2s_quirks, }, { .compatible = "allwinner,sun50i-a64-codec-i2s", .data = &sun50i_a64_codec_i2s_quirks, }, {} }; MODULE_DEVICE_TABLE(of, sun4i_i2s_match); static const struct dev_pm_ops sun4i_i2s_pm_ops = { .runtime_resume = sun4i_i2s_runtime_resume, .runtime_suspend = sun4i_i2s_runtime_suspend, }; static struct platform_driver sun4i_i2s_driver = { .probe = sun4i_i2s_probe, .remove = sun4i_i2s_remove, .driver = { .name = "sun4i-i2s", .of_match_table = sun4i_i2s_match, .pm = &sun4i_i2s_pm_ops, }, }; module_platform_driver(sun4i_i2s_driver); MODULE_AUTHOR("Andrea Venturi <be17068@iperbole.bo.it>"); MODULE_AUTHOR("Maxime Ripard <maxime.ripard@free-electrons.com>"); MODULE_DESCRIPTION("Allwinner A10 I2S driver"); MODULE_LICENSE("GPL");