/* * linux/drivers/ide/arm/icside.c * * Copyright (c) 1996-2002 Russell King. * * Changelog: * 08-Jun-1996 RMK Created * 12-Sep-1997 RMK Added interrupt enable/disable * 17-Apr-1999 RMK Added support for V6 EASI * 22-May-1999 RMK Added support for V6 DMA */ #include <linux/config.h> #include <linux/string.h> #include <linux/module.h> #include <linux/ioport.h> #include <linux/slab.h> #include <linux/blkdev.h> #include <linux/errno.h> #include <linux/hdreg.h> #include <linux/ide.h> #include <linux/dma-mapping.h> #include <linux/device.h> #include <linux/init.h> #include <asm/dma.h> #include <asm/ecard.h> #include <asm/io.h> #define ICS_IDENT_OFFSET 0x2280 #define ICS_ARCIN_V5_INTRSTAT 0x000 #define ICS_ARCIN_V5_INTROFFSET 0x001 #define ICS_ARCIN_V5_IDEOFFSET 0xa00 #define ICS_ARCIN_V5_IDEALTOFFSET 0xae0 #define ICS_ARCIN_V5_IDESTEPPING 4 #define ICS_ARCIN_V6_IDEOFFSET_1 0x800 #define ICS_ARCIN_V6_INTROFFSET_1 0x880 #define ICS_ARCIN_V6_INTRSTAT_1 0x8a4 #define ICS_ARCIN_V6_IDEALTOFFSET_1 0x8e0 #define ICS_ARCIN_V6_IDEOFFSET_2 0xc00 #define ICS_ARCIN_V6_INTROFFSET_2 0xc80 #define ICS_ARCIN_V6_INTRSTAT_2 0xca4 #define ICS_ARCIN_V6_IDEALTOFFSET_2 0xce0 #define ICS_ARCIN_V6_IDESTEPPING 4 struct cardinfo { unsigned int dataoffset; unsigned int ctrloffset; unsigned int stepping; }; static struct cardinfo icside_cardinfo_v5 = { ICS_ARCIN_V5_IDEOFFSET, ICS_ARCIN_V5_IDEALTOFFSET, ICS_ARCIN_V5_IDESTEPPING }; static struct cardinfo icside_cardinfo_v6_1 = { ICS_ARCIN_V6_IDEOFFSET_1, ICS_ARCIN_V6_IDEALTOFFSET_1, ICS_ARCIN_V6_IDESTEPPING }; static struct cardinfo icside_cardinfo_v6_2 = { ICS_ARCIN_V6_IDEOFFSET_2, ICS_ARCIN_V6_IDEALTOFFSET_2, ICS_ARCIN_V6_IDESTEPPING }; struct icside_state { unsigned int channel; unsigned int enabled; unsigned long irq_port; unsigned long slot_port; unsigned int type; /* parent device... until the IDE core gets one of its own */ struct device *dev; ide_hwif_t *hwif[2]; }; #define ICS_TYPE_A3IN 0 #define ICS_TYPE_A3USER 1 #define ICS_TYPE_V6 3 #define ICS_TYPE_V5 15 #define ICS_TYPE_NOTYPE ((unsigned int)-1) /* ---------------- Version 5 PCB Support Functions --------------------- */ /* Prototype: icside_irqenable_arcin_v5 (struct expansion_card *ec, int irqnr) * Purpose : enable interrupts from card */ static void icside_irqenable_arcin_v5 (struct expansion_card *ec, int irqnr) { struct icside_state *state = ec->irq_data; unsigned int base = state->irq_port; outb(0, base + ICS_ARCIN_V5_INTROFFSET); } /* Prototype: icside_irqdisable_arcin_v5 (struct expansion_card *ec, int irqnr) * Purpose : disable interrupts from card */ static void icside_irqdisable_arcin_v5 (struct expansion_card *ec, int irqnr) { struct icside_state *state = ec->irq_data; unsigned int base = state->irq_port; inb(base + ICS_ARCIN_V5_INTROFFSET); } static const expansioncard_ops_t icside_ops_arcin_v5 = { .irqenable = icside_irqenable_arcin_v5, .irqdisable = icside_irqdisable_arcin_v5, }; /* ---------------- Version 6 PCB Support Functions --------------------- */ /* Prototype: icside_irqenable_arcin_v6 (struct expansion_card *ec, int irqnr) * Purpose : enable interrupts from card */ static void icside_irqenable_arcin_v6 (struct expansion_card *ec, int irqnr) { struct icside_state *state = ec->irq_data; unsigned int base = state->irq_port; state->enabled = 1; switch (state->channel) { case 0: outb(0, base + ICS_ARCIN_V6_INTROFFSET_1); inb(base + ICS_ARCIN_V6_INTROFFSET_2); break; case 1: outb(0, base + ICS_ARCIN_V6_INTROFFSET_2); inb(base + ICS_ARCIN_V6_INTROFFSET_1); break; } } /* Prototype: icside_irqdisable_arcin_v6 (struct expansion_card *ec, int irqnr) * Purpose : disable interrupts from card */ static void icside_irqdisable_arcin_v6 (struct expansion_card *ec, int irqnr) { struct icside_state *state = ec->irq_data; state->enabled = 0; inb (state->irq_port + ICS_ARCIN_V6_INTROFFSET_1); inb (state->irq_port + ICS_ARCIN_V6_INTROFFSET_2); } /* Prototype: icside_irqprobe(struct expansion_card *ec) * Purpose : detect an active interrupt from card */ static int icside_irqpending_arcin_v6(struct expansion_card *ec) { struct icside_state *state = ec->irq_data; return inb(state->irq_port + ICS_ARCIN_V6_INTRSTAT_1) & 1 || inb(state->irq_port + ICS_ARCIN_V6_INTRSTAT_2) & 1; } static const expansioncard_ops_t icside_ops_arcin_v6 = { .irqenable = icside_irqenable_arcin_v6, .irqdisable = icside_irqdisable_arcin_v6, .irqpending = icside_irqpending_arcin_v6, }; /* * Handle routing of interrupts. This is called before * we write the command to the drive. */ static void icside_maskproc(ide_drive_t *drive, int mask) { ide_hwif_t *hwif = HWIF(drive); struct icside_state *state = hwif->hwif_data; unsigned long flags; local_irq_save(flags); state->channel = hwif->channel; if (state->enabled && !mask) { switch (hwif->channel) { case 0: outb(0, state->irq_port + ICS_ARCIN_V6_INTROFFSET_1); inb(state->irq_port + ICS_ARCIN_V6_INTROFFSET_2); break; case 1: outb(0, state->irq_port + ICS_ARCIN_V6_INTROFFSET_2); inb(state->irq_port + ICS_ARCIN_V6_INTROFFSET_1); break; } } else { inb(state->irq_port + ICS_ARCIN_V6_INTROFFSET_2); inb(state->irq_port + ICS_ARCIN_V6_INTROFFSET_1); } local_irq_restore(flags); } #ifdef CONFIG_BLK_DEV_IDEDMA_ICS /* * SG-DMA support. * * Similar to the BM-DMA, but we use the RiscPCs IOMD DMA controllers. * There is only one DMA controller per card, which means that only * one drive can be accessed at one time. NOTE! We do not enforce that * here, but we rely on the main IDE driver spotting that both * interfaces use the same IRQ, which should guarantee this. */ #define NR_ENTRIES 256 #define TABLE_SIZE (NR_ENTRIES * 8) static void ide_build_sglist(ide_drive_t *drive, struct request *rq) { ide_hwif_t *hwif = drive->hwif; struct icside_state *state = hwif->hwif_data; struct scatterlist *sg = hwif->sg_table; int nents; BUG_ON(hwif->sg_dma_active); if (rq->flags & REQ_DRIVE_TASKFILE) { ide_task_t *args = rq->special; if (args->command_type == IDE_DRIVE_TASK_RAW_WRITE) hwif->sg_dma_direction = DMA_TO_DEVICE; else hwif->sg_dma_direction = DMA_FROM_DEVICE; memset(sg, 0, sizeof(*sg)); sg->page = virt_to_page(rq->buffer); sg->offset = ((unsigned long)rq->buffer) & ~PAGE_MASK; sg->length = rq->nr_sectors * SECTOR_SIZE; nents = 1; } else { nents = blk_rq_map_sg(&drive->queue, rq, sg); if (rq_data_dir(rq) == READ) hwif->sg_dma_direction = DMA_FROM_DEVICE; else hwif->sg_dma_direction = DMA_TO_DEVICE; } nents = dma_map_sg(state->dev, sg, nents, hwif->sg_dma_direction); hwif->sg_nents = nents; } /* * Configure the IOMD to give the appropriate timings for the transfer * mode being requested. We take the advice of the ATA standards, and * calculate the cycle time based on the transfer mode, and the EIDE * MW DMA specs that the drive provides in the IDENTIFY command. * * We have the following IOMD DMA modes to choose from: * * Type Active Recovery Cycle * A 250 (250) 312 (550) 562 (800) * B 187 250 437 * C 125 (125) 125 (375) 250 (500) * D 62 125 187 * * (figures in brackets are actual measured timings) * * However, we also need to take care of the read/write active and * recovery timings: * * Read Write * Mode Active -- Recovery -- Cycle IOMD type * MW0 215 50 215 480 A * MW1 80 50 50 150 C * MW2 70 25 25 120 C */ static int icside_set_speed(ide_drive_t *drive, u8 xfer_mode) { int on = 0, cycle_time = 0, use_dma_info = 0; /* * Limit the transfer speed to MW_DMA_2. */ if (xfer_mode > XFER_MW_DMA_2) xfer_mode = XFER_MW_DMA_2; switch (xfer_mode) { case XFER_MW_DMA_2: cycle_time = 250; use_dma_info = 1; break; case XFER_MW_DMA_1: cycle_time = 250; use_dma_info = 1; break; case XFER_MW_DMA_0: cycle_time = 480; break; case XFER_SW_DMA_2: case XFER_SW_DMA_1: case XFER_SW_DMA_0: cycle_time = 480; break; } /* * If we're going to be doing MW_DMA_1 or MW_DMA_2, we should * take care to note the values in the ID... */ if (use_dma_info && drive->id->eide_dma_time > cycle_time) cycle_time = drive->id->eide_dma_time; drive->drive_data = cycle_time; if (cycle_time && ide_config_drive_speed(drive, xfer_mode) == 0) on = 1; else drive->drive_data = 480; printk("%s: %s selected (peak %dMB/s)\n", drive->name, ide_xfer_verbose(xfer_mode), 2000 / drive->drive_data); drive->current_speed = xfer_mode; return on; } /* * The following is a sick duplication from ide-dma.c ;( * * This should be defined in one place only. */ struct drive_list_entry { const char * id_model; const char * id_firmware; }; static const struct drive_list_entry drive_whitelist [] = { { "Micropolis 2112A", "ALL" }, { "CONNER CTMA 4000", "ALL" }, { "CONNER CTT8000-A", "ALL" }, { "ST34342A", "ALL" }, { NULL, NULL } }; static struct drive_list_entry drive_blacklist [] = { { "WDC AC11000H", "ALL" }, { "WDC AC22100H", "ALL" }, { "WDC AC32500H", "ALL" }, { "WDC AC33100H", "ALL" }, { "WDC AC31600H", "ALL" }, { "WDC AC32100H", "24.09P07" }, { "WDC AC23200L", "21.10N21" }, { "Compaq CRD-8241B", "ALL" }, { "CRD-8400B", "ALL" }, { "CRD-8480B", "ALL" }, { "CRD-8480C", "ALL" }, { "CRD-8482B", "ALL" }, { "CRD-84", "ALL" }, { "SanDisk SDP3B", "ALL" }, { "SanDisk SDP3B-64", "ALL" }, { "SANYO CD-ROM CRD", "ALL" }, { "HITACHI CDR-8", "ALL" }, { "HITACHI CDR-8335", "ALL" }, { "HITACHI CDR-8435", "ALL" }, { "Toshiba CD-ROM XM-6202B", "ALL" }, { "CD-532E-A", "ALL" }, { "E-IDE CD-ROM CR-840", "ALL" }, { "CD-ROM Drive/F5A", "ALL" }, { "RICOH CD-R/RW MP7083A", "ALL" }, { "WPI CDD-820", "ALL" }, { "SAMSUNG CD-ROM SC-148C", "ALL" }, { "SAMSUNG CD-ROM SC-148F", "ALL" }, { "SAMSUNG CD-ROM SC", "ALL" }, { "SanDisk SDP3B-64", "ALL" }, { "SAMSUNG CD-ROM SN-124", "ALL" }, { "PLEXTOR CD-R PX-W8432T", "ALL" }, { "ATAPI CD-ROM DRIVE 40X MAXIMUM", "ALL" }, { "_NEC DV5800A", "ALL" }, { NULL, NULL } }; static int in_drive_list(struct hd_driveid *id, const struct drive_list_entry *drive_table) { for ( ; drive_table->id_model ; drive_table++) if ((!strcmp(drive_table->id_model, id->model)) && ((!strstr(drive_table->id_firmware, id->fw_rev)) || (!strcmp(drive_table->id_firmware, "ALL")))) return 1; return 0; } static int icside_dma_host_off(ide_drive_t *drive) { return 0; } static int icside_dma_off_quietly(ide_drive_t *drive) { drive->using_dma = 0; return icside_dma_host_off(drive); } static int icside_dma_off(ide_drive_t *drive) { printk("%s: DMA disabled\n", drive->name); return icside_dma_off_quietly(drive); } static int icside_dma_host_on(ide_drive_t *drive) { return 0; } static int icside_dma_on(ide_drive_t *drive) { drive->using_dma = 1; return icside_dma_host_on(drive); } static int icside_dma_check(ide_drive_t *drive) { struct hd_driveid *id = drive->id; ide_hwif_t *hwif = HWIF(drive); int xfer_mode = XFER_PIO_2; int on; if (!(id->capability & 1) || !hwif->autodma) goto out; /* * Consult the list of known "bad" drives */ if (in_drive_list(id, drive_blacklist)) { printk("%s: Disabling DMA for %s (blacklisted)\n", drive->name, id->model); goto out; } /* * Enable DMA on any drive that has multiword DMA */ if (id->field_valid & 2) { xfer_mode = ide_dma_speed(drive, 0); goto out; } /* * Consult the list of known "good" drives */ if (in_drive_list(id, drive_whitelist)) { if (id->eide_dma_time > 150) goto out; xfer_mode = XFER_MW_DMA_1; } out: on = icside_set_speed(drive, xfer_mode); if (on) return icside_dma_on(drive); else return icside_dma_off_quietly(drive); } static int icside_dma_end(ide_drive_t *drive) { ide_hwif_t *hwif = HWIF(drive); struct icside_state *state = hwif->hwif_data; drive->waiting_for_dma = 0; disable_dma(hwif->hw.dma); /* Teardown mappings after DMA has completed. */ dma_unmap_sg(state->dev, hwif->sg_table, hwif->sg_nents, hwif->sg_dma_direction); hwif->sg_dma_active = 0; return get_dma_residue(hwif->hw.dma) != 0; } static int icside_dma_begin(ide_drive_t *drive) { ide_hwif_t *hwif = HWIF(drive); /* We can not enable DMA on both channels simultaneously. */ BUG_ON(dma_channel_active(hwif->hw.dma)); enable_dma(hwif->hw.dma); return 0; } static int icside_dma_count(ide_drive_t *drive) { return icside_dma_begin(drive); } /* * dma_intr() is the handler for disk read/write DMA interrupts */ static ide_startstop_t icside_dmaintr(ide_drive_t *drive) { unsigned int stat; int dma_stat; dma_stat = icside_dma_end(drive); stat = HWIF(drive)->INB(IDE_STATUS_REG); if (OK_STAT(stat, DRIVE_READY, drive->bad_wstat | DRQ_STAT)) { if (!dma_stat) { struct request *rq = HWGROUP(drive)->rq; int i; for (i = rq->nr_sectors; i > 0; ) { i -= rq->current_nr_sectors; DRIVER(drive)->end_request(drive, 1, rq->nr_sectors); } return ide_stopped; } printk(KERN_ERR "%s: bad DMA status (dma_stat=%x)\n", drive->name, dma_stat); } return DRIVER(drive)->error(drive, __FUNCTION__, stat); } static int icside_dma_common(ide_drive_t *drive, struct request *rq, unsigned int dma_mode) { ide_hwif_t *hwif = HWIF(drive); /* * We can not enable DMA on both channels. */ BUG_ON(hwif->sg_dma_active); BUG_ON(dma_channel_active(hwif->hw.dma)); ide_build_sglist(drive, rq); /* * Ensure that we have the right interrupt routed. */ icside_maskproc(drive, 0); /* * Route the DMA signals to the correct interface. */ outb(hwif->select_data, hwif->config_data); /* * Select the correct timing for this drive. */ set_dma_speed(hwif->hw.dma, drive->drive_data); /* * Tell the DMA engine about the SG table and * data direction. */ set_dma_sg(hwif->hw.dma, hwif->sg_table, hwif->sg_nents); set_dma_mode(hwif->hw.dma, dma_mode); return 0; } static int icside_dma_read(ide_drive_t *drive) { struct request *rq = HWGROUP(drive)->rq; task_ioreg_t cmd = WIN_NOP; if (icside_dma_common(drive, rq, DMA_MODE_READ)) return 1; drive->waiting_for_dma = 1; if (drive->media != ide_disk) return 0; BUG_ON(HWGROUP(drive)->handler != NULL); ide_set_handler(drive, icside_dmaintr, 2*WAIT_CMD, NULL); /* * FIX ME to use only ACB ide_task_t args Struct */ #if 0 { ide_task_t *args = rq->special; command = args->tfRegister[IDE_COMMAND_OFFSET]; } #else if (rq->flags & REQ_DRIVE_TASKFILE) { ide_task_t *args = rq->special; cmd = args->tfRegister[IDE_COMMAND_OFFSET]; } else if (drive->addressing == 1) { cmd = WIN_READDMA_EXT; } else { cmd = WIN_READDMA; } #endif /* issue cmd to drive */ HWIF(drive)->OUTB(cmd, IDE_COMMAND_REG); return icside_dma_begin(drive); } int icside_dma_write(ide_drive_t *drive) { struct request *rq = HWGROUP(drive)->rq; task_ioreg_t cmd = WIN_NOP; if (icside_dma_common(drive, rq, DMA_MODE_WRITE)) return 1; drive->waiting_for_dma = 1; if (drive->media != ide_disk) return 0; BUG_ON(HWGROUP(drive)->handler != NULL); ide_set_handler(drive, icside_dmaintr, 2*WAIT_CMD, NULL); /* * FIX ME to use only ACB ide_task_t args Struct */ #if 0 { ide_task_t *args = rq->special; command = args->tfRegister[IDE_COMMAND_OFFSET]; } #else if (rq->flags & REQ_DRIVE_TASKFILE) { ide_task_t *args = rq->special; cmd = args->tfRegister[IDE_COMMAND_OFFSET]; } else if (drive->addressing == 1) { cmd = WIN_WRITEDMA_EXT; } else { cmd = WIN_WRITEDMA; } #endif /* issue cmd to drive */ HWIF(drive)->OUTB(cmd, IDE_COMMAND_REG); return icside_dma_begin(drive); } static int icside_dma_test_irq(ide_drive_t *drive) { ide_hwif_t *hwif = HWIF(drive); struct icside_state *state = hwif->hwif_data; return inb(state->irq_port + (hwif->channel ? ICS_ARCIN_V6_INTRSTAT_2 : ICS_ARCIN_V6_INTRSTAT_1)) & 1; } static int icside_dma_verbose(ide_drive_t *drive) { printk(", %s (peak %dMB/s)", ide_xfer_verbose(drive->current_speed), 2000 / drive->drive_data); return 1; } static int icside_dma_timeout(ide_drive_t *drive) { printk(KERN_ERR "%s: DMA timeout occurred: ", drive->name); if (icside_dma_test_irq(drive)) return 0; ide_dump_status(drive, "DMA timeout", HWIF(drive)->INB(IDE_STATUS_REG)); return icside_dma_end(drive); } static int icside_dma_lostirq(ide_drive_t *drive) { printk(KERN_ERR "%s: IRQ lost\n", drive->name); return 1; } static int icside_dma_init(ide_hwif_t *hwif) { int autodma = 0; #ifdef CONFIG_IDEDMA_ICS_AUTO autodma = 1; #endif printk(" %s: SG-DMA", hwif->name); hwif->sg_table = kmalloc(sizeof(struct scatterlist) * NR_ENTRIES, GFP_KERNEL); if (!hwif->sg_table) goto failed; hwif->atapi_dma = 1; hwif->mwdma_mask = 7; /* MW0..2 */ hwif->swdma_mask = 7; /* SW0..2 */ hwif->dmatable_cpu = NULL; hwif->dmatable_dma = 0; hwif->speedproc = icside_set_speed; hwif->autodma = autodma; hwif->ide_dma_check = icside_dma_check; hwif->ide_dma_host_off = icside_dma_host_off; hwif->ide_dma_off_quietly = icside_dma_off_quietly; hwif->ide_dma_off = icside_dma_off; hwif->ide_dma_host_on = icside_dma_host_on; hwif->ide_dma_on = icside_dma_on; hwif->ide_dma_read = icside_dma_read; hwif->ide_dma_write = icside_dma_write; hwif->ide_dma_count = icside_dma_count; hwif->ide_dma_begin = icside_dma_begin; hwif->ide_dma_end = icside_dma_end; hwif->ide_dma_test_irq = icside_dma_test_irq; hwif->ide_dma_verbose = icside_dma_verbose; hwif->ide_dma_timeout = icside_dma_timeout; hwif->ide_dma_lostirq = icside_dma_lostirq; hwif->drives[0].autodma = hwif->autodma; hwif->drives[1].autodma = hwif->autodma; printk(" capable%s\n", hwif->autodma ? ", auto-enable" : ""); return 1; failed: printk(" disabled, unable to allocate DMA table\n"); return 0; } static void icside_dma_exit(ide_hwif_t *hwif) { if (hwif->sg_table) { kfree(hwif->sg_table); hwif->sg_table = NULL; } } #else #define icside_dma_init(hwif) (0) #define icside_dma_exit(hwif) do { } while (0) #endif static ide_hwif_t *icside_find_hwif(unsigned long dataport) { ide_hwif_t *hwif; int index; for (index = 0; index < MAX_HWIFS; ++index) { hwif = &ide_hwifs[index]; if (hwif->io_ports[IDE_DATA_OFFSET] == dataport) goto found; } for (index = 0; index < MAX_HWIFS; ++index) { hwif = &ide_hwifs[index]; if (!hwif->io_ports[IDE_DATA_OFFSET]) goto found; } hwif = NULL; found: return hwif; } static ide_hwif_t * icside_setup(unsigned long base, struct cardinfo *info, struct expansion_card *ec) { unsigned long port = base + info->dataoffset; ide_hwif_t *hwif; hwif = icside_find_hwif(base); if (hwif) { int i; memset(&hwif->hw, 0, sizeof(hw_regs_t)); for (i = IDE_DATA_OFFSET; i <= IDE_STATUS_OFFSET; i++) { hwif->hw.io_ports[i] = port; hwif->io_ports[i] = port; port += 1 << info->stepping; } hwif->hw.io_ports[IDE_CONTROL_OFFSET] = base + info->ctrloffset; hwif->io_ports[IDE_CONTROL_OFFSET] = base + info->ctrloffset; hwif->hw.irq = ec->irq; hwif->irq = ec->irq; hwif->noprobe = 0; hwif->chipset = ide_acorn; hwif->gendev.parent = &ec->dev; } return hwif; } static int __init icside_register_v5(struct icside_state *state, struct expansion_card *ec) { unsigned long slot_port; ide_hwif_t *hwif; slot_port = ecard_address(ec, ECARD_MEMC, 0); state->irq_port = slot_port; ec->irqaddr = (unsigned char *)ioaddr(slot_port + ICS_ARCIN_V5_INTRSTAT); ec->irqmask = 1; ec->irq_data = state; ec->ops = &icside_ops_arcin_v5; /* * Be on the safe side - disable interrupts */ inb(slot_port + ICS_ARCIN_V5_INTROFFSET); hwif = icside_setup(slot_port, &icside_cardinfo_v5, ec); state->hwif[0] = hwif; return hwif ? 0 : -ENODEV; } static int __init icside_register_v6(struct icside_state *state, struct expansion_card *ec) { unsigned long slot_port, port; ide_hwif_t *hwif, *mate; unsigned int sel = 0; slot_port = ecard_address(ec, ECARD_IOC, ECARD_FAST); port = ecard_address(ec, ECARD_EASI, ECARD_FAST); if (port == 0) port = slot_port; else sel = 1 << 5; outb(sel, slot_port); /* * Be on the safe side - disable interrupts */ inb(port + ICS_ARCIN_V6_INTROFFSET_1); inb(port + ICS_ARCIN_V6_INTROFFSET_2); /* * Find and register the interfaces. */ hwif = icside_setup(port, &icside_cardinfo_v6_1, ec); mate = icside_setup(port, &icside_cardinfo_v6_2, ec); if (!hwif || !mate) return -ENODEV; state->irq_port = port; state->slot_port = slot_port; state->hwif[0] = hwif; state->hwif[1] = mate; ec->irq_data = state; ec->ops = &icside_ops_arcin_v6; hwif->maskproc = icside_maskproc; hwif->channel = 0; hwif->hwif_data = state; hwif->mate = mate; hwif->serialized = 1; hwif->config_data = slot_port; hwif->select_data = sel; hwif->hw.dma = ec->dma; mate->maskproc = icside_maskproc; mate->channel = 1; mate->hwif_data = state; mate->mate = hwif; mate->serialized = 1; mate->config_data = slot_port; mate->select_data = sel | 1; mate->hw.dma = ec->dma; if (ec->dma != NO_DMA && !request_dma(ec->dma, hwif->name)) { icside_dma_init(hwif); icside_dma_init(mate); } return 0; } static int __devinit icside_probe(struct expansion_card *ec, const struct ecard_id *id) { struct icside_state *state; void *idmem; int ret; state = kmalloc(sizeof(struct icside_state), GFP_KERNEL); if (!state) { ret = -ENOMEM; goto out; } memset(state, 0, sizeof(state)); state->type = ICS_TYPE_NOTYPE; state->dev = &ec->dev; idmem = ioremap(ecard_resource_start(ec, ECARD_RES_IOCFAST), ecard_resource_len(ec, ECARD_RES_IOCFAST)); if (idmem) { unsigned int type; type = readb(idmem + ICS_IDENT_OFFSET) & 1; type |= (readb(idmem + ICS_IDENT_OFFSET + 4) & 1) << 1; type |= (readb(idmem + ICS_IDENT_OFFSET + 8) & 1) << 2; type |= (readb(idmem + ICS_IDENT_OFFSET + 12) & 1) << 3; iounmap(idmem); state->type = type; } switch (state->type) { case ICS_TYPE_A3IN: printk(KERN_WARNING "icside: A3IN unsupported\n"); ret = -ENODEV; break; case ICS_TYPE_A3USER: printk(KERN_WARNING "icside: A3USER unsupported\n"); ret = -ENODEV; break; case ICS_TYPE_V5: ret = icside_register_v5(state, ec); break; case ICS_TYPE_V6: ret = icside_register_v6(state, ec); break; default: printk(KERN_WARNING "icside: unknown interface type\n"); ret = -ENODEV; break; } if (ret == 0) { ecard_set_drvdata(ec, state); /* * this locks the driver in-core - remove this * comment and the line below when we can * safely remove interfaces. */ MOD_INC_USE_COUNT; } else { kfree(state); } out: return ret; } static void __devexit icside_remove(struct expansion_card *ec) { struct icside_state *state = ecard_get_drvdata(ec); switch (state->type) { case ICS_TYPE_V5: /* FIXME: tell IDE to stop using the interface */ /* Disable interrupts */ inb(state->slot_port + ICS_ARCIN_V5_INTROFFSET); break; case ICS_TYPE_V6: /* FIXME: tell IDE to stop using the interface */ icside_dma_exit(state->hwif[1]); icside_dma_exit(state->hwif[0]); if (ec->dma != NO_DMA) free_dma(ec->dma); /* Disable interrupts */ inb(state->irq_port + ICS_ARCIN_V6_INTROFFSET_1); inb(state->irq_port + ICS_ARCIN_V6_INTROFFSET_2); /* Reset the ROM pointer/EASI selection */ outb(0, state->slot_port); break; } ecard_set_drvdata(ec, NULL); ec->ops = NULL; ec->irq_data = NULL; kfree(state); } static void icside_shutdown(struct expansion_card *ec) { struct icside_state *state = ecard_get_drvdata(ec); switch (state->type) { case ICS_TYPE_V5: /* Disable interrupts */ inb(state->slot_port + ICS_ARCIN_V5_INTROFFSET); break; case ICS_TYPE_V6: /* Disable interrupts */ inb(state->irq_port + ICS_ARCIN_V6_INTROFFSET_1); inb(state->irq_port + ICS_ARCIN_V6_INTROFFSET_2); /* Reset the ROM pointer/EASI selection */ outb(0, state->slot_port); break; } } static const struct ecard_id icside_ids[] = { { MANU_ICS, PROD_ICS_IDE }, { MANU_ICS2, PROD_ICS2_IDE }, { 0xffff, 0xffff } }; static struct ecard_driver icside_driver = { .probe = icside_probe, .remove = __devexit_p(icside_remove), .shutdown = icside_shutdown, .id_table = icside_ids, .drv = { .name = "icside", }, }; static int __init icside_init(void) { return ecard_register_driver(&icside_driver); } static void __exit icside_exit(void) { ecard_remove_driver(&icside_driver); } MODULE_AUTHOR("Russell King <rmk@arm.linux.org.uk>"); MODULE_LICENSE("GPL"); MODULE_DESCRIPTION("ICS IDE driver"); module_init(icside_init); module_exit(icside_exit);