/* $Id: init.c,v 1.209 2002/02/09 19:49:31 davem Exp $ * arch/sparc64/mm/init.c * * Copyright (C) 1996-1999 David S. Miller (davem@caip.rutgers.edu) * Copyright (C) 1997-1999 Jakub Jelinek (jj@sunsite.mff.cuni.cz) */ #include <linux/config.h> #include <linux/kernel.h> #include <linux/sched.h> #include <linux/string.h> #include <linux/init.h> #include <linux/bootmem.h> #include <linux/mm.h> #include <linux/hugetlb.h> #include <linux/slab.h> #include <linux/initrd.h> #include <linux/swap.h> #include <linux/pagemap.h> #include <linux/fs.h> #include <linux/seq_file.h> #include <asm/head.h> #include <asm/system.h> #include <asm/page.h> #include <asm/pgalloc.h> #include <asm/pgtable.h> #include <asm/oplib.h> #include <asm/iommu.h> #include <asm/io.h> #include <asm/uaccess.h> #include <asm/mmu_context.h> #include <asm/tlbflush.h> #include <asm/dma.h> #include <asm/starfire.h> #include <asm/tlb.h> #include <asm/spitfire.h> #include <asm/sections.h> DEFINE_PER_CPU(struct mmu_gather, mmu_gathers); extern void device_scan(void); struct sparc_phys_banks sp_banks[SPARC_PHYS_BANKS]; unsigned long *sparc64_valid_addr_bitmap; /* Ugly, but necessary... -DaveM */ unsigned long phys_base; unsigned long pfn_base; /* get_new_mmu_context() uses "cache + 1". */ spinlock_t ctx_alloc_lock = SPIN_LOCK_UNLOCKED; unsigned long tlb_context_cache = CTX_FIRST_VERSION - 1; #define CTX_BMAP_SLOTS (1UL << (CTX_VERSION_SHIFT - 6)) unsigned long mmu_context_bmap[CTX_BMAP_SLOTS]; /* References to special section boundaries */ extern char _start[], _end[]; /* Initial ramdisk setup */ extern unsigned int sparc_ramdisk_image; extern unsigned int sparc_ramdisk_size; struct page *mem_map_zero; int bigkernel = 0; /* XXX Tune this... */ #define PGT_CACHE_LOW 25 #define PGT_CACHE_HIGH 50 void check_pgt_cache(void) { preempt_disable(); if (pgtable_cache_size > PGT_CACHE_HIGH) { do { #ifdef CONFIG_SMP if (pgd_quicklist) free_pgd_slow(get_pgd_fast()); #endif if (pte_quicklist[0]) free_pte_slow(pte_alloc_one_fast(NULL, 0)); if (pte_quicklist[1]) free_pte_slow(pte_alloc_one_fast(NULL, 1 << (PAGE_SHIFT + 10))); } while (pgtable_cache_size > PGT_CACHE_LOW); } #ifndef CONFIG_SMP if (pgd_cache_size > PGT_CACHE_HIGH / 4) { struct page *page, *page2; for (page2 = NULL, page = (struct page *)pgd_quicklist; page;) { if ((unsigned long)page->lru.prev == 3) { if (page2) page2->lru.next = page->lru.next; else (struct page *)pgd_quicklist = page->lru.next; pgd_cache_size -= 2; __free_page(page); if (page2) page = (struct page *)page2->lru.next; else page = (struct page *)pgd_quicklist; if (pgd_cache_size <= PGT_CACHE_LOW / 4) break; continue; } page2 = page; page = (struct page *)page->lru.next; } } #endif preempt_enable(); } #ifdef CONFIG_DEBUG_DCFLUSH atomic_t dcpage_flushes = ATOMIC_INIT(0); #ifdef CONFIG_SMP atomic_t dcpage_flushes_xcall = ATOMIC_INIT(0); #endif #endif __inline__ void flush_dcache_page_impl(struct page *page) { #ifdef CONFIG_DEBUG_DCFLUSH atomic_inc(&dcpage_flushes); #endif #if (L1DCACHE_SIZE > PAGE_SIZE) __flush_dcache_page(page->virtual, ((tlb_type == spitfire) && page->mapping != NULL)); #else if (page->mapping != NULL && tlb_type == spitfire) __flush_icache_page(__pa(page->virtual)); #endif } #define PG_dcache_dirty PG_arch_1 #define dcache_dirty_cpu(page) \ (((page)->flags >> 24) & (NR_CPUS - 1UL)) static __inline__ void set_dcache_dirty(struct page *page) { unsigned long mask = smp_processor_id(); unsigned long non_cpu_bits = ~((NR_CPUS - 1UL) << 24UL); mask = (mask << 24) | (1UL << PG_dcache_dirty); __asm__ __volatile__("1:\n\t" "ldx [%2], %%g7\n\t" "and %%g7, %1, %%g5\n\t" "or %%g5, %0, %%g5\n\t" "casx [%2], %%g7, %%g5\n\t" "cmp %%g7, %%g5\n\t" "bne,pn %%xcc, 1b\n\t" " membar #StoreLoad | #StoreStore" : /* no outputs */ : "r" (mask), "r" (non_cpu_bits), "r" (&page->flags) : "g5", "g7"); } static __inline__ void clear_dcache_dirty_cpu(struct page *page, unsigned long cpu) { unsigned long mask = (1UL << PG_dcache_dirty); __asm__ __volatile__("! test_and_clear_dcache_dirty\n" "1:\n\t" "ldx [%2], %%g7\n\t" "srlx %%g7, 24, %%g5\n\t" "and %%g5, %3, %%g5\n\t" "cmp %%g5, %0\n\t" "bne,pn %%icc, 2f\n\t" " andn %%g7, %1, %%g5\n\t" "casx [%2], %%g7, %%g5\n\t" "cmp %%g7, %%g5\n\t" "bne,pn %%xcc, 1b\n\t" " membar #StoreLoad | #StoreStore\n" "2:" : /* no outputs */ : "r" (cpu), "r" (mask), "r" (&page->flags), "i" (NR_CPUS - 1UL) : "g5", "g7"); } extern void __update_mmu_cache(unsigned long mmu_context_hw, unsigned long address, pte_t pte, int code); void update_mmu_cache(struct vm_area_struct *vma, unsigned long address, pte_t pte) { struct page *page; unsigned long pfn; unsigned long pg_flags; pfn = pte_pfn(pte); if (pfn_valid(pfn) && (page = pfn_to_page(pfn), page->mapping) && ((pg_flags = page->flags) & (1UL << PG_dcache_dirty))) { int cpu = ((pg_flags >> 24) & (NR_CPUS - 1UL)); /* This is just to optimize away some function calls * in the SMP case. */ if (cpu == smp_processor_id()) flush_dcache_page_impl(page); else smp_flush_dcache_page_impl(page, cpu); clear_dcache_dirty_cpu(page, cpu); } if (get_thread_fault_code()) __update_mmu_cache(vma->vm_mm->context & TAG_CONTEXT_BITS, address, pte, get_thread_fault_code()); } void flush_dcache_page(struct page *page) { int dirty = test_bit(PG_dcache_dirty, &page->flags); int dirty_cpu = dcache_dirty_cpu(page); if (page->mapping && list_empty(&page->mapping->i_mmap) && list_empty(&page->mapping->i_mmap_shared)) { if (dirty) { if (dirty_cpu == smp_processor_id()) return; smp_flush_dcache_page_impl(page, dirty_cpu); } set_dcache_dirty(page); } else { /* We could delay the flush for the !page->mapping * case too. But that case is for exec env/arg * pages and those are %99 certainly going to get * faulted into the tlb (and thus flushed) anyways. */ flush_dcache_page_impl(page); } } /* When shared+writable mmaps of files go away, we lose all dirty * page state, so we have to deal with D-cache aliasing here. * * This code relies on the fact that flush_cache_range() is always * called for an area composed by a single VMA. It also assumes that * the MM's page_table_lock is held. */ static inline void flush_cache_pte_range(struct mm_struct *mm, pmd_t *pmd, unsigned long address, unsigned long size) { unsigned long offset; pte_t *ptep; if (pmd_none(*pmd)) return; ptep = pte_offset_map(pmd, address); offset = address & ~PMD_MASK; if (offset + size > PMD_SIZE) size = PMD_SIZE - offset; size &= PAGE_MASK; for (offset = 0; offset < size; ptep++, offset += PAGE_SIZE) { pte_t pte = *ptep; if (pte_none(pte)) continue; if (pte_present(pte) && pte_dirty(pte)) { struct page *page; unsigned long pgaddr, uaddr; unsigned long pfn = pte_pfn(pte); if (!pfn_valid(pfn)) continue; page = pfn_to_page(pfn); if (PageReserved(page) || !page->mapping) continue; pgaddr = (unsigned long) page_address(page); uaddr = address + offset; if ((pgaddr ^ uaddr) & (1 << 13)) flush_dcache_page_all(mm, page); } } pte_unmap(ptep - 1); } static inline void flush_cache_pmd_range(struct mm_struct *mm, pgd_t *dir, unsigned long address, unsigned long size) { pmd_t *pmd; unsigned long end; if (pgd_none(*dir)) return; pmd = pmd_offset(dir, address); end = address + size; if (end > ((address + PGDIR_SIZE) & PGDIR_MASK)) end = ((address + PGDIR_SIZE) & PGDIR_MASK); do { flush_cache_pte_range(mm, pmd, address, end - address); address = (address + PMD_SIZE) & PMD_MASK; pmd++; } while (address < end); } void flush_cache_range(struct vm_area_struct *vma, unsigned long start, unsigned long end) { struct mm_struct *mm = vma->vm_mm; pgd_t *dir = pgd_offset(mm, start); if (mm == current->mm) flushw_user(); if (vma->vm_file == NULL || ((vma->vm_flags & (VM_SHARED|VM_WRITE)) != (VM_SHARED|VM_WRITE))) return; do { flush_cache_pmd_range(mm, dir, start, end - start); start = (start + PGDIR_SIZE) & PGDIR_MASK; dir++; } while (start && (start < end)); } void flush_icache_range(unsigned long start, unsigned long end) { /* Cheetah has coherent I-cache. */ if (tlb_type == spitfire) { unsigned long kaddr; for (kaddr = start; kaddr < end; kaddr += PAGE_SIZE) __flush_icache_page(__get_phys(kaddr)); } } void show_mem(void) { printk("Mem-info:\n"); show_free_areas(); printk("Free swap: %6dkB\n", nr_swap_pages << (PAGE_SHIFT-10)); printk("%ld pages of RAM\n", num_physpages); printk("%d free pages\n", nr_free_pages()); printk("%d pages in page table cache\n",pgtable_cache_size); #ifndef CONFIG_SMP printk("%d entries in page dir cache\n",pgd_cache_size); #endif } void mmu_info(struct seq_file *m) { if (tlb_type == cheetah) seq_printf(m, "MMU Type\t: Cheetah\n"); else if (tlb_type == cheetah_plus) seq_printf(m, "MMU Type\t: Cheetah+\n"); else if (tlb_type == spitfire) seq_printf(m, "MMU Type\t: Spitfire\n"); else seq_printf(m, "MMU Type\t: ???\n"); #ifdef CONFIG_DEBUG_DCFLUSH seq_printf(m, "DCPageFlushes\t: %d\n", atomic_read(&dcpage_flushes)); #ifdef CONFIG_SMP seq_printf(m, "DCPageFlushesXC\t: %d\n", atomic_read(&dcpage_flushes_xcall)); #endif /* CONFIG_SMP */ #endif /* CONFIG_DEBUG_DCFLUSH */ } struct linux_prom_translation { unsigned long virt; unsigned long size; unsigned long data; }; extern unsigned long prom_boot_page; extern void prom_remap(unsigned long physpage, unsigned long virtpage, int mmu_ihandle); extern int prom_get_mmu_ihandle(void); extern void register_prom_callbacks(void); /* Exported for SMP bootup purposes. */ unsigned long kern_locked_tte_data; void __init early_pgtable_allocfail(char *type) { prom_printf("inherit_prom_mappings: Cannot alloc kernel %s.\n", type); prom_halt(); } #define BASE_PAGE_SIZE 8192 static pmd_t *prompmd; /* * Translate PROM's mapping we capture at boot time into physical address. * The second parameter is only set from prom_callback() invocations. */ unsigned long prom_virt_to_phys(unsigned long promva, int *error) { pmd_t *pmdp = prompmd + ((promva >> 23) & 0x7ff); pte_t *ptep; unsigned long base; if (pmd_none(*pmdp)) { if (error) *error = 1; return(0); } ptep = (pte_t *)__pmd_page(*pmdp) + ((promva >> 13) & 0x3ff); if (!pte_present(*ptep)) { if (error) *error = 1; return(0); } if (error) { *error = 0; return(pte_val(*ptep)); } base = pte_val(*ptep) & _PAGE_PADDR; return(base + (promva & (BASE_PAGE_SIZE - 1))); } static void inherit_prom_mappings(void) { struct linux_prom_translation *trans; unsigned long phys_page, tte_vaddr, tte_data; void (*remap_func)(unsigned long, unsigned long, int); pmd_t *pmdp; pte_t *ptep; int node, n, i, tsz; extern unsigned int obp_iaddr_patch[2], obp_daddr_patch[2]; node = prom_finddevice("/virtual-memory"); n = prom_getproplen(node, "translations"); if (n == 0 || n == -1) { prom_printf("Couldn't get translation property\n"); prom_halt(); } n += 5 * sizeof(struct linux_prom_translation); for (tsz = 1; tsz < n; tsz <<= 1) /* empty */; trans = __alloc_bootmem(tsz, SMP_CACHE_BYTES, 0UL); if (trans == NULL) { prom_printf("inherit_prom_mappings: Cannot alloc translations.\n"); prom_halt(); } memset(trans, 0, tsz); if ((n = prom_getproperty(node, "translations", (char *)trans, tsz)) == -1) { prom_printf("Couldn't get translation property\n"); prom_halt(); } n = n / sizeof(*trans); /* * The obp translations are saved based on 8k pagesize, since obp can use * a mixture of pagesizes. Misses to the 0xf0000000 - 0x100000000, ie obp * range, are handled in entry.S and do not use the vpte scheme (see rant * in inherit_locked_prom_mappings()). */ #define OBP_PMD_SIZE 2048 prompmd = __alloc_bootmem(OBP_PMD_SIZE, OBP_PMD_SIZE, 0UL); if (prompmd == NULL) early_pgtable_allocfail("pmd"); memset(prompmd, 0, OBP_PMD_SIZE); for (i = 0; i < n; i++) { unsigned long vaddr; if (trans[i].virt >= LOW_OBP_ADDRESS && trans[i].virt < HI_OBP_ADDRESS) { for (vaddr = trans[i].virt; ((vaddr < trans[i].virt + trans[i].size) && (vaddr < HI_OBP_ADDRESS)); vaddr += BASE_PAGE_SIZE) { unsigned long val; pmdp = prompmd + ((vaddr >> 23) & 0x7ff); if (pmd_none(*pmdp)) { ptep = __alloc_bootmem(BASE_PAGE_SIZE, BASE_PAGE_SIZE, 0UL); if (ptep == NULL) early_pgtable_allocfail("pte"); memset(ptep, 0, BASE_PAGE_SIZE); pmd_set(pmdp, ptep); } ptep = (pte_t *)__pmd_page(*pmdp) + ((vaddr >> 13) & 0x3ff); val = trans[i].data; /* Clear diag TTE bits. */ if (tlb_type == spitfire) val &= ~0x0003fe0000000000UL; set_pte (ptep, __pte(val | _PAGE_MODIFIED)); trans[i].data += BASE_PAGE_SIZE; } } } phys_page = __pa(prompmd); obp_iaddr_patch[0] |= (phys_page >> 10); obp_iaddr_patch[1] |= (phys_page & 0x3ff); flushi((long)&obp_iaddr_patch[0]); obp_daddr_patch[0] |= (phys_page >> 10); obp_daddr_patch[1] |= (phys_page & 0x3ff); flushi((long)&obp_daddr_patch[0]); /* Now fixup OBP's idea about where we really are mapped. */ prom_printf("Remapping the kernel... "); /* Spitfire Errata #32 workaround */ __asm__ __volatile__("stxa %0, [%1] %2\n\t" "flush %%g6" : /* No outputs */ : "r" (0), "r" (PRIMARY_CONTEXT), "i" (ASI_DMMU)); switch (tlb_type) { default: case spitfire: phys_page = spitfire_get_dtlb_data(sparc64_highest_locked_tlbent()); break; case cheetah: case cheetah_plus: phys_page = cheetah_get_litlb_data(sparc64_highest_locked_tlbent()); break; }; phys_page &= _PAGE_PADDR; phys_page += ((unsigned long)&prom_boot_page - (unsigned long)KERNBASE); if (tlb_type == spitfire) { /* Lock this into i/d tlb entry 59 */ __asm__ __volatile__( "stxa %%g0, [%2] %3\n\t" "stxa %0, [%1] %4\n\t" "membar #Sync\n\t" "flush %%g6\n\t" "stxa %%g0, [%2] %5\n\t" "stxa %0, [%1] %6\n\t" "membar #Sync\n\t" "flush %%g6" : : "r" (phys_page | _PAGE_VALID | _PAGE_SZ8K | _PAGE_CP | _PAGE_CV | _PAGE_P | _PAGE_L | _PAGE_W), "r" (59 << 3), "r" (TLB_TAG_ACCESS), "i" (ASI_DMMU), "i" (ASI_DTLB_DATA_ACCESS), "i" (ASI_IMMU), "i" (ASI_ITLB_DATA_ACCESS) : "memory"); } else if (tlb_type == cheetah || tlb_type == cheetah_plus) { /* Lock this into i/d tlb-0 entry 11 */ __asm__ __volatile__( "stxa %%g0, [%2] %3\n\t" "stxa %0, [%1] %4\n\t" "membar #Sync\n\t" "flush %%g6\n\t" "stxa %%g0, [%2] %5\n\t" "stxa %0, [%1] %6\n\t" "membar #Sync\n\t" "flush %%g6" : : "r" (phys_page | _PAGE_VALID | _PAGE_SZ8K | _PAGE_CP | _PAGE_CV | _PAGE_P | _PAGE_L | _PAGE_W), "r" ((0 << 16) | (11 << 3)), "r" (TLB_TAG_ACCESS), "i" (ASI_DMMU), "i" (ASI_DTLB_DATA_ACCESS), "i" (ASI_IMMU), "i" (ASI_ITLB_DATA_ACCESS) : "memory"); } else { /* Implement me :-) */ BUG(); } tte_vaddr = (unsigned long) KERNBASE; /* Spitfire Errata #32 workaround */ __asm__ __volatile__("stxa %0, [%1] %2\n\t" "flush %%g6" : /* No outputs */ : "r" (0), "r" (PRIMARY_CONTEXT), "i" (ASI_DMMU)); if (tlb_type == spitfire) tte_data = spitfire_get_dtlb_data(sparc64_highest_locked_tlbent()); else tte_data = cheetah_get_ldtlb_data(sparc64_highest_locked_tlbent()); kern_locked_tte_data = tte_data; remap_func = (void *) ((unsigned long) &prom_remap - (unsigned long) &prom_boot_page); /* Spitfire Errata #32 workaround */ __asm__ __volatile__("stxa %0, [%1] %2\n\t" "flush %%g6" : /* No outputs */ : "r" (0), "r" (PRIMARY_CONTEXT), "i" (ASI_DMMU)); remap_func((tlb_type == spitfire ? (spitfire_get_dtlb_data(sparc64_highest_locked_tlbent()) & _PAGE_PADDR) : (cheetah_get_litlb_data(sparc64_highest_locked_tlbent()) & _PAGE_PADDR)), (unsigned long) KERNBASE, prom_get_mmu_ihandle()); if (bigkernel) remap_func(((tte_data + 0x400000) & _PAGE_PADDR), (unsigned long) KERNBASE + 0x400000, prom_get_mmu_ihandle()); /* Flush out that temporary mapping. */ spitfire_flush_dtlb_nucleus_page(0x0); spitfire_flush_itlb_nucleus_page(0x0); /* Now lock us back into the TLBs via OBP. */ prom_dtlb_load(sparc64_highest_locked_tlbent(), tte_data, tte_vaddr); prom_itlb_load(sparc64_highest_locked_tlbent(), tte_data, tte_vaddr); if (bigkernel) { prom_dtlb_load(sparc64_highest_locked_tlbent()-1, tte_data + 0x400000, tte_vaddr + 0x400000); prom_itlb_load(sparc64_highest_locked_tlbent()-1, tte_data + 0x400000, tte_vaddr + 0x400000); } /* Re-read translations property. */ if ((n = prom_getproperty(node, "translations", (char *)trans, tsz)) == -1) { prom_printf("Couldn't get translation property\n"); prom_halt(); } n = n / sizeof(*trans); for (i = 0; i < n; i++) { unsigned long vaddr = trans[i].virt; unsigned long size = trans[i].size; if (vaddr < 0xf0000000UL) { unsigned long avoid_start = (unsigned long) KERNBASE; unsigned long avoid_end = avoid_start + (4 * 1024 * 1024); if (bigkernel) avoid_end += (4 * 1024 * 1024); if (vaddr < avoid_start) { unsigned long top = vaddr + size; if (top > avoid_start) top = avoid_start; prom_unmap(top - vaddr, vaddr); } if ((vaddr + size) > avoid_end) { unsigned long bottom = vaddr; if (bottom < avoid_end) bottom = avoid_end; prom_unmap((vaddr + size) - bottom, bottom); } } } prom_printf("done.\n"); register_prom_callbacks(); } /* The OBP specifications for sun4u mark 0xfffffffc00000000 and * upwards as reserved for use by the firmware (I wonder if this * will be the same on Cheetah...). We use this virtual address * range for the VPTE table mappings of the nucleus so we need * to zap them when we enter the PROM. -DaveM */ static void __flush_nucleus_vptes(void) { unsigned long prom_reserved_base = 0xfffffffc00000000UL; int i; /* Only DTLB must be checked for VPTE entries. */ if (tlb_type == spitfire) { for (i = 0; i < 63; i++) { unsigned long tag; /* Spitfire Errata #32 workaround */ __asm__ __volatile__("stxa %0, [%1] %2\n\t" "flush %%g6" : /* No outputs */ : "r" (0), "r" (PRIMARY_CONTEXT), "i" (ASI_DMMU)); tag = spitfire_get_dtlb_tag(i); if (((tag & ~(PAGE_MASK)) == 0) && ((tag & (PAGE_MASK)) >= prom_reserved_base)) { __asm__ __volatile__("stxa %%g0, [%0] %1\n\t" "membar #Sync" : /* no outputs */ : "r" (TLB_TAG_ACCESS), "i" (ASI_DMMU)); spitfire_put_dtlb_data(i, 0x0UL); } } } else if (tlb_type == cheetah || tlb_type == cheetah_plus) { for (i = 0; i < 512; i++) { unsigned long tag = cheetah_get_dtlb_tag(i, 2); if ((tag & ~PAGE_MASK) == 0 && (tag & PAGE_MASK) >= prom_reserved_base) { __asm__ __volatile__("stxa %%g0, [%0] %1\n\t" "membar #Sync" : /* no outputs */ : "r" (TLB_TAG_ACCESS), "i" (ASI_DMMU)); cheetah_put_dtlb_data(i, 0x0UL, 2); } if (tlb_type != cheetah_plus) continue; tag = cheetah_get_dtlb_tag(i, 3); if ((tag & ~PAGE_MASK) == 0 && (tag & PAGE_MASK) >= prom_reserved_base) { __asm__ __volatile__("stxa %%g0, [%0] %1\n\t" "membar #Sync" : /* no outputs */ : "r" (TLB_TAG_ACCESS), "i" (ASI_DMMU)); cheetah_put_dtlb_data(i, 0x0UL, 3); } } } else { /* Implement me :-) */ BUG(); } } static int prom_ditlb_set; struct prom_tlb_entry { int tlb_ent; unsigned long tlb_tag; unsigned long tlb_data; }; struct prom_tlb_entry prom_itlb[16], prom_dtlb[16]; void prom_world(int enter) { unsigned long pstate; int i; if (!enter) set_fs((mm_segment_t) { get_thread_current_ds() }); if (!prom_ditlb_set) return; /* Make sure the following runs atomically. */ __asm__ __volatile__("flushw\n\t" "rdpr %%pstate, %0\n\t" "wrpr %0, %1, %%pstate" : "=r" (pstate) : "i" (PSTATE_IE)); if (enter) { /* Kick out nucleus VPTEs. */ __flush_nucleus_vptes(); /* Install PROM world. */ for (i = 0; i < 16; i++) { if (prom_dtlb[i].tlb_ent != -1) { __asm__ __volatile__("stxa %0, [%1] %2\n\t" "membar #Sync" : : "r" (prom_dtlb[i].tlb_tag), "r" (TLB_TAG_ACCESS), "i" (ASI_DMMU)); if (tlb_type == spitfire) spitfire_put_dtlb_data(prom_dtlb[i].tlb_ent, prom_dtlb[i].tlb_data); else if (tlb_type == cheetah || tlb_type == cheetah_plus) cheetah_put_ldtlb_data(prom_dtlb[i].tlb_ent, prom_dtlb[i].tlb_data); } if (prom_itlb[i].tlb_ent != -1) { __asm__ __volatile__("stxa %0, [%1] %2\n\t" "membar #Sync" : : "r" (prom_itlb[i].tlb_tag), "r" (TLB_TAG_ACCESS), "i" (ASI_IMMU)); if (tlb_type == spitfire) spitfire_put_itlb_data(prom_itlb[i].tlb_ent, prom_itlb[i].tlb_data); else if (tlb_type == cheetah || tlb_type == cheetah_plus) cheetah_put_litlb_data(prom_itlb[i].tlb_ent, prom_itlb[i].tlb_data); } } } else { for (i = 0; i < 16; i++) { if (prom_dtlb[i].tlb_ent != -1) { __asm__ __volatile__("stxa %%g0, [%0] %1\n\t" "membar #Sync" : : "r" (TLB_TAG_ACCESS), "i" (ASI_DMMU)); if (tlb_type == spitfire) spitfire_put_dtlb_data(prom_dtlb[i].tlb_ent, 0x0UL); else cheetah_put_ldtlb_data(prom_dtlb[i].tlb_ent, 0x0UL); } if (prom_itlb[i].tlb_ent != -1) { __asm__ __volatile__("stxa %%g0, [%0] %1\n\t" "membar #Sync" : : "r" (TLB_TAG_ACCESS), "i" (ASI_IMMU)); if (tlb_type == spitfire) spitfire_put_itlb_data(prom_itlb[i].tlb_ent, 0x0UL); else cheetah_put_litlb_data(prom_itlb[i].tlb_ent, 0x0UL); } } } __asm__ __volatile__("wrpr %0, 0, %%pstate" : : "r" (pstate)); } void inherit_locked_prom_mappings(int save_p) { int i; int dtlb_seen = 0; int itlb_seen = 0; /* Fucking losing PROM has more mappings in the TLB, but * it (conveniently) fails to mention any of these in the * translations property. The only ones that matter are * the locked PROM tlb entries, so we impose the following * irrecovable rule on the PROM, it is allowed 8 locked * entries in the ITLB and 8 in the DTLB. * * Supposedly the upper 16GB of the address space is * reserved for OBP, BUT I WISH THIS WAS DOCUMENTED * SOMEWHERE!!!!!!!!!!!!!!!!! Furthermore the entire interface * used between the client program and the firmware on sun5 * systems to coordinate mmu mappings is also COMPLETELY * UNDOCUMENTED!!!!!! Thanks S(t)un! */ if (save_p) { for (i = 0; i < 16; i++) { prom_itlb[i].tlb_ent = -1; prom_dtlb[i].tlb_ent = -1; } } if (tlb_type == spitfire) { int high = SPITFIRE_HIGHEST_LOCKED_TLBENT - bigkernel; for (i = 0; i < high; i++) { unsigned long data; /* Spitfire Errata #32 workaround */ __asm__ __volatile__("stxa %0, [%1] %2\n\t" "flush %%g6" : /* No outputs */ : "r" (0), "r" (PRIMARY_CONTEXT), "i" (ASI_DMMU)); data = spitfire_get_dtlb_data(i); if ((data & (_PAGE_L|_PAGE_VALID)) == (_PAGE_L|_PAGE_VALID)) { unsigned long tag; /* Spitfire Errata #32 workaround */ __asm__ __volatile__("stxa %0, [%1] %2\n\t" "flush %%g6" : /* No outputs */ : "r" (0), "r" (PRIMARY_CONTEXT), "i" (ASI_DMMU)); tag = spitfire_get_dtlb_tag(i); if (save_p) { prom_dtlb[dtlb_seen].tlb_ent = i; prom_dtlb[dtlb_seen].tlb_tag = tag; prom_dtlb[dtlb_seen].tlb_data = data; } __asm__ __volatile__("stxa %%g0, [%0] %1\n\t" "membar #Sync" : : "r" (TLB_TAG_ACCESS), "i" (ASI_DMMU)); spitfire_put_dtlb_data(i, 0x0UL); dtlb_seen++; if (dtlb_seen > 15) break; } } for (i = 0; i < high; i++) { unsigned long data; /* Spitfire Errata #32 workaround */ __asm__ __volatile__("stxa %0, [%1] %2\n\t" "flush %%g6" : /* No outputs */ : "r" (0), "r" (PRIMARY_CONTEXT), "i" (ASI_DMMU)); data = spitfire_get_itlb_data(i); if ((data & (_PAGE_L|_PAGE_VALID)) == (_PAGE_L|_PAGE_VALID)) { unsigned long tag; /* Spitfire Errata #32 workaround */ __asm__ __volatile__("stxa %0, [%1] %2\n\t" "flush %%g6" : /* No outputs */ : "r" (0), "r" (PRIMARY_CONTEXT), "i" (ASI_DMMU)); tag = spitfire_get_itlb_tag(i); if (save_p) { prom_itlb[itlb_seen].tlb_ent = i; prom_itlb[itlb_seen].tlb_tag = tag; prom_itlb[itlb_seen].tlb_data = data; } __asm__ __volatile__("stxa %%g0, [%0] %1\n\t" "membar #Sync" : : "r" (TLB_TAG_ACCESS), "i" (ASI_IMMU)); spitfire_put_itlb_data(i, 0x0UL); itlb_seen++; if (itlb_seen > 15) break; } } } else if (tlb_type == cheetah || tlb_type == cheetah_plus) { int high = CHEETAH_HIGHEST_LOCKED_TLBENT - bigkernel; for (i = 0; i < high; i++) { unsigned long data; data = cheetah_get_ldtlb_data(i); if ((data & (_PAGE_L|_PAGE_VALID)) == (_PAGE_L|_PAGE_VALID)) { unsigned long tag; tag = cheetah_get_ldtlb_tag(i); if (save_p) { prom_dtlb[dtlb_seen].tlb_ent = i; prom_dtlb[dtlb_seen].tlb_tag = tag; prom_dtlb[dtlb_seen].tlb_data = data; } __asm__ __volatile__("stxa %%g0, [%0] %1\n\t" "membar #Sync" : : "r" (TLB_TAG_ACCESS), "i" (ASI_DMMU)); cheetah_put_ldtlb_data(i, 0x0UL); dtlb_seen++; if (dtlb_seen > 15) break; } } for (i = 0; i < high; i++) { unsigned long data; data = cheetah_get_litlb_data(i); if ((data & (_PAGE_L|_PAGE_VALID)) == (_PAGE_L|_PAGE_VALID)) { unsigned long tag; tag = cheetah_get_litlb_tag(i); if (save_p) { prom_itlb[itlb_seen].tlb_ent = i; prom_itlb[itlb_seen].tlb_tag = tag; prom_itlb[itlb_seen].tlb_data = data; } __asm__ __volatile__("stxa %%g0, [%0] %1\n\t" "membar #Sync" : : "r" (TLB_TAG_ACCESS), "i" (ASI_IMMU)); cheetah_put_litlb_data(i, 0x0UL); itlb_seen++; if (itlb_seen > 15) break; } } } else { /* Implement me :-) */ BUG(); } if (save_p) prom_ditlb_set = 1; } /* Give PROM back his world, done during reboots... */ void prom_reload_locked(void) { int i; for (i = 0; i < 16; i++) { if (prom_dtlb[i].tlb_ent != -1) { __asm__ __volatile__("stxa %0, [%1] %2\n\t" "membar #Sync" : : "r" (prom_dtlb[i].tlb_tag), "r" (TLB_TAG_ACCESS), "i" (ASI_DMMU)); if (tlb_type == spitfire) spitfire_put_dtlb_data(prom_dtlb[i].tlb_ent, prom_dtlb[i].tlb_data); else if (tlb_type == cheetah || tlb_type == cheetah_plus) cheetah_put_ldtlb_data(prom_dtlb[i].tlb_ent, prom_dtlb[i].tlb_data); } if (prom_itlb[i].tlb_ent != -1) { __asm__ __volatile__("stxa %0, [%1] %2\n\t" "membar #Sync" : : "r" (prom_itlb[i].tlb_tag), "r" (TLB_TAG_ACCESS), "i" (ASI_IMMU)); if (tlb_type == spitfire) spitfire_put_itlb_data(prom_itlb[i].tlb_ent, prom_itlb[i].tlb_data); else cheetah_put_litlb_data(prom_itlb[i].tlb_ent, prom_itlb[i].tlb_data); } } } void __flush_dcache_range(unsigned long start, unsigned long end) { unsigned long va; if (tlb_type == spitfire) { int n = 0; for (va = start; va < end; va += 32) { spitfire_put_dcache_tag(va & 0x3fe0, 0x0); if (++n >= 512) break; } } else { start = __pa(start); end = __pa(end); for (va = start; va < end; va += 32) __asm__ __volatile__("stxa %%g0, [%0] %1\n\t" "membar #Sync" : /* no outputs */ : "r" (va), "i" (ASI_DCACHE_INVALIDATE)); } } /* If not locked, zap it. */ void __flush_tlb_all(void) { unsigned long pstate; int i; __asm__ __volatile__("flushw\n\t" "rdpr %%pstate, %0\n\t" "wrpr %0, %1, %%pstate" : "=r" (pstate) : "i" (PSTATE_IE)); if (tlb_type == spitfire) { for (i = 0; i < 64; i++) { /* Spitfire Errata #32 workaround */ __asm__ __volatile__("stxa %0, [%1] %2\n\t" "flush %%g6" : /* No outputs */ : "r" (0), "r" (PRIMARY_CONTEXT), "i" (ASI_DMMU)); if (!(spitfire_get_dtlb_data(i) & _PAGE_L)) { __asm__ __volatile__("stxa %%g0, [%0] %1\n\t" "membar #Sync" : /* no outputs */ : "r" (TLB_TAG_ACCESS), "i" (ASI_DMMU)); spitfire_put_dtlb_data(i, 0x0UL); } /* Spitfire Errata #32 workaround */ __asm__ __volatile__("stxa %0, [%1] %2\n\t" "flush %%g6" : /* No outputs */ : "r" (0), "r" (PRIMARY_CONTEXT), "i" (ASI_DMMU)); if (!(spitfire_get_itlb_data(i) & _PAGE_L)) { __asm__ __volatile__("stxa %%g0, [%0] %1\n\t" "membar #Sync" : /* no outputs */ : "r" (TLB_TAG_ACCESS), "i" (ASI_IMMU)); spitfire_put_itlb_data(i, 0x0UL); } } } else if (tlb_type == cheetah || tlb_type == cheetah_plus) { cheetah_flush_dtlb_all(); cheetah_flush_itlb_all(); } __asm__ __volatile__("wrpr %0, 0, %%pstate" : : "r" (pstate)); } /* Caller does TLB context flushing on local CPU if necessary. * The caller also ensures that CTX_VALID(mm->context) is false. * * We must be careful about boundary cases so that we never * let the user have CTX 0 (nucleus) or we ever use a CTX * version of zero (and thus NO_CONTEXT would not be caught * by version mis-match tests in mmu_context.h). */ void get_new_mmu_context(struct mm_struct *mm) { unsigned long ctx, new_ctx; spin_lock(&ctx_alloc_lock); ctx = CTX_HWBITS(tlb_context_cache + 1); new_ctx = find_next_zero_bit(mmu_context_bmap, 1UL << CTX_VERSION_SHIFT, ctx); if (new_ctx >= (1UL << CTX_VERSION_SHIFT)) { new_ctx = find_next_zero_bit(mmu_context_bmap, ctx, 1); if (new_ctx >= ctx) { int i; new_ctx = (tlb_context_cache & CTX_VERSION_MASK) + CTX_FIRST_VERSION; if (new_ctx == 1) new_ctx = CTX_FIRST_VERSION; /* Don't call memset, for 16 entries that's just * plain silly... */ mmu_context_bmap[0] = 3; mmu_context_bmap[1] = 0; mmu_context_bmap[2] = 0; mmu_context_bmap[3] = 0; for (i = 4; i < CTX_BMAP_SLOTS; i += 4) { mmu_context_bmap[i + 0] = 0; mmu_context_bmap[i + 1] = 0; mmu_context_bmap[i + 2] = 0; mmu_context_bmap[i + 3] = 0; } goto out; } } mmu_context_bmap[new_ctx>>6] |= (1UL << (new_ctx & 63)); new_ctx |= (tlb_context_cache & CTX_VERSION_MASK); out: tlb_context_cache = new_ctx; spin_unlock(&ctx_alloc_lock); mm->context = new_ctx; } #ifndef CONFIG_SMP struct pgtable_cache_struct pgt_quicklists; #endif /* OK, we have to color these pages. The page tables are accessed * by non-Dcache enabled mapping in the VPTE area by the dtlb_backend.S * code, as well as by PAGE_OFFSET range direct-mapped addresses by * other parts of the kernel. By coloring, we make sure that the tlbmiss * fast handlers do not get data from old/garbage dcache lines that * correspond to an old/stale virtual address (user/kernel) that * previously mapped the pagetable page while accessing vpte range * addresses. The idea is that if the vpte color and PAGE_OFFSET range * color is the same, then when the kernel initializes the pagetable * using the later address range, accesses with the first address * range will see the newly initialized data rather than the garbage. */ #if (L1DCACHE_SIZE > PAGE_SIZE) /* is there D$ aliasing problem */ #define DC_ALIAS_SHIFT 1 #else #define DC_ALIAS_SHIFT 0 #endif pte_t *pte_alloc_one_kernel(struct mm_struct *mm, unsigned long address) { struct page *page; unsigned long color; { pte_t *ptep = pte_alloc_one_fast(mm, address); if (ptep) return ptep; } color = VPTE_COLOR(address); page = alloc_pages(GFP_KERNEL|__GFP_REPEAT, DC_ALIAS_SHIFT); if (page) { unsigned long *to_free; unsigned long paddr; pte_t *pte; #if (L1DCACHE_SIZE > PAGE_SIZE) /* is there D$ aliasing problem */ set_page_count((page + 1), 1); #endif paddr = (unsigned long) page_address(page); memset((char *)paddr, 0, (PAGE_SIZE << DC_ALIAS_SHIFT)); if (!color) { pte = (pte_t *) paddr; to_free = (unsigned long *) (paddr + PAGE_SIZE); } else { pte = (pte_t *) (paddr + PAGE_SIZE); to_free = (unsigned long *) paddr; } #if (L1DCACHE_SIZE > PAGE_SIZE) /* is there D$ aliasing problem */ /* Now free the other one up, adjust cache size. */ preempt_disable(); *to_free = (unsigned long) pte_quicklist[color ^ 0x1]; pte_quicklist[color ^ 0x1] = to_free; pgtable_cache_size++; preempt_enable(); #endif return pte; } return NULL; } void sparc_ultra_dump_itlb(void) { int slot; if (tlb_type == spitfire) { printk ("Contents of itlb: "); for (slot = 0; slot < 14; slot++) printk (" "); printk ("%2x:%016lx,%016lx\n", 0, spitfire_get_itlb_tag(0), spitfire_get_itlb_data(0)); for (slot = 1; slot < 64; slot+=3) { printk ("%2x:%016lx,%016lx %2x:%016lx,%016lx %2x:%016lx,%016lx\n", slot, spitfire_get_itlb_tag(slot), spitfire_get_itlb_data(slot), slot+1, spitfire_get_itlb_tag(slot+1), spitfire_get_itlb_data(slot+1), slot+2, spitfire_get_itlb_tag(slot+2), spitfire_get_itlb_data(slot+2)); } } else if (tlb_type == cheetah || tlb_type == cheetah_plus) { printk ("Contents of itlb0:\n"); for (slot = 0; slot < 16; slot+=2) { printk ("%2x:%016lx,%016lx %2x:%016lx,%016lx\n", slot, cheetah_get_litlb_tag(slot), cheetah_get_litlb_data(slot), slot+1, cheetah_get_litlb_tag(slot+1), cheetah_get_litlb_data(slot+1)); } printk ("Contents of itlb2:\n"); for (slot = 0; slot < 128; slot+=2) { printk ("%2x:%016lx,%016lx %2x:%016lx,%016lx\n", slot, cheetah_get_itlb_tag(slot), cheetah_get_itlb_data(slot), slot+1, cheetah_get_itlb_tag(slot+1), cheetah_get_itlb_data(slot+1)); } } } void sparc_ultra_dump_dtlb(void) { int slot; if (tlb_type == spitfire) { printk ("Contents of dtlb: "); for (slot = 0; slot < 14; slot++) printk (" "); printk ("%2x:%016lx,%016lx\n", 0, spitfire_get_dtlb_tag(0), spitfire_get_dtlb_data(0)); for (slot = 1; slot < 64; slot+=3) { printk ("%2x:%016lx,%016lx %2x:%016lx,%016lx %2x:%016lx,%016lx\n", slot, spitfire_get_dtlb_tag(slot), spitfire_get_dtlb_data(slot), slot+1, spitfire_get_dtlb_tag(slot+1), spitfire_get_dtlb_data(slot+1), slot+2, spitfire_get_dtlb_tag(slot+2), spitfire_get_dtlb_data(slot+2)); } } else if (tlb_type == cheetah || tlb_type == cheetah_plus) { printk ("Contents of dtlb0:\n"); for (slot = 0; slot < 16; slot+=2) { printk ("%2x:%016lx,%016lx %2x:%016lx,%016lx\n", slot, cheetah_get_ldtlb_tag(slot), cheetah_get_ldtlb_data(slot), slot+1, cheetah_get_ldtlb_tag(slot+1), cheetah_get_ldtlb_data(slot+1)); } printk ("Contents of dtlb2:\n"); for (slot = 0; slot < 512; slot+=2) { printk ("%2x:%016lx,%016lx %2x:%016lx,%016lx\n", slot, cheetah_get_dtlb_tag(slot, 2), cheetah_get_dtlb_data(slot, 2), slot+1, cheetah_get_dtlb_tag(slot+1, 2), cheetah_get_dtlb_data(slot+1, 2)); } if (tlb_type == cheetah_plus) { printk ("Contents of dtlb3:\n"); for (slot = 0; slot < 512; slot+=2) { printk ("%2x:%016lx,%016lx %2x:%016lx,%016lx\n", slot, cheetah_get_dtlb_tag(slot, 3), cheetah_get_dtlb_data(slot, 3), slot+1, cheetah_get_dtlb_tag(slot+1, 3), cheetah_get_dtlb_data(slot+1, 3)); } } } } extern unsigned long cmdline_memory_size; unsigned long __init bootmem_init(unsigned long *pages_avail) { unsigned long bootmap_size, start_pfn, end_pfn; unsigned long end_of_phys_memory = 0UL; unsigned long bootmap_pfn, bytes_avail, size; int i; bytes_avail = 0UL; for (i = 0; sp_banks[i].num_bytes != 0; i++) { end_of_phys_memory = sp_banks[i].base_addr + sp_banks[i].num_bytes; bytes_avail += sp_banks[i].num_bytes; if (cmdline_memory_size) { if (bytes_avail > cmdline_memory_size) { unsigned long slack = bytes_avail - cmdline_memory_size; bytes_avail -= slack; end_of_phys_memory -= slack; sp_banks[i].num_bytes -= slack; if (sp_banks[i].num_bytes == 0) { sp_banks[i].base_addr = 0xdeadbeef; } else { sp_banks[i+1].num_bytes = 0; sp_banks[i+1].base_addr = 0xdeadbeef; } break; } } } *pages_avail = bytes_avail >> PAGE_SHIFT; /* Start with page aligned address of last symbol in kernel * image. The kernel is hard mapped below PAGE_OFFSET in a * 4MB locked TLB translation. */ start_pfn = PAGE_ALIGN((unsigned long) _end) - ((unsigned long) KERNBASE); /* Adjust up to the physical address where the kernel begins. */ start_pfn += phys_base; /* Now shift down to get the real physical page frame number. */ start_pfn >>= PAGE_SHIFT; bootmap_pfn = start_pfn; end_pfn = end_of_phys_memory >> PAGE_SHIFT; #ifdef CONFIG_BLK_DEV_INITRD /* Now have to check initial ramdisk, so that bootmap does not overwrite it */ if (sparc_ramdisk_image) { if (sparc_ramdisk_image >= (unsigned long)_end - 2 * PAGE_SIZE) sparc_ramdisk_image -= KERNBASE; initrd_start = sparc_ramdisk_image + phys_base; initrd_end = initrd_start + sparc_ramdisk_size; if (initrd_end > end_of_phys_memory) { printk(KERN_CRIT "initrd extends beyond end of memory " "(0x%016lx > 0x%016lx)\ndisabling initrd\n", initrd_end, end_of_phys_memory); initrd_start = 0; } if (initrd_start) { if (initrd_start >= (start_pfn << PAGE_SHIFT) && initrd_start < (start_pfn << PAGE_SHIFT) + 2 * PAGE_SIZE) bootmap_pfn = PAGE_ALIGN (initrd_end) >> PAGE_SHIFT; } } #endif /* Initialize the boot-time allocator. */ max_pfn = max_low_pfn = end_pfn; min_low_pfn = pfn_base; bootmap_size = init_bootmem_node(NODE_DATA(0), bootmap_pfn, pfn_base, end_pfn); /* Now register the available physical memory with the * allocator. */ for (i = 0; sp_banks[i].num_bytes != 0; i++) free_bootmem(sp_banks[i].base_addr, sp_banks[i].num_bytes); #ifdef CONFIG_BLK_DEV_INITRD if (initrd_start) { size = initrd_end - initrd_start; /* Resert the initrd image area. */ reserve_bootmem(initrd_start, size); *pages_avail -= PAGE_ALIGN(size) >> PAGE_SHIFT; initrd_start += PAGE_OFFSET; initrd_end += PAGE_OFFSET; } #endif /* Reserve the kernel text/data/bss. */ size = (start_pfn << PAGE_SHIFT) - phys_base; reserve_bootmem(phys_base, size); *pages_avail -= PAGE_ALIGN(size) >> PAGE_SHIFT; /* Reserve the bootmem map. We do not account for it * in pages_avail because we will release that memory * in free_all_bootmem. */ size = bootmap_size; reserve_bootmem((bootmap_pfn << PAGE_SHIFT), size); *pages_avail -= PAGE_ALIGN(size) >> PAGE_SHIFT; return end_pfn; } /* paging_init() sets up the page tables */ extern void sun_serial_setup(void); extern void cheetah_ecache_flush_init(void); static unsigned long last_valid_pfn; void __init paging_init(void) { extern pmd_t swapper_pmd_dir[1024]; extern unsigned int sparc64_vpte_patchme1[1]; extern unsigned int sparc64_vpte_patchme2[1]; unsigned long alias_base = phys_base + PAGE_OFFSET; unsigned long second_alias_page = 0; unsigned long pt, flags, end_pfn, pages_avail; unsigned long shift = alias_base - ((unsigned long)KERNBASE); unsigned long real_end; set_bit(0, mmu_context_bmap); real_end = (unsigned long)_end; if ((real_end > ((unsigned long)KERNBASE + 0x400000))) bigkernel = 1; #ifdef CONFIG_BLK_DEV_INITRD if (sparc_ramdisk_image) real_end = (PAGE_ALIGN(real_end) + PAGE_ALIGN(sparc_ramdisk_size)); #endif /* We assume physical memory starts at some 4mb multiple, * if this were not true we wouldn't boot up to this point * anyways. */ pt = phys_base | _PAGE_VALID | _PAGE_SZ4MB; pt |= _PAGE_CP | _PAGE_CV | _PAGE_P | _PAGE_L | _PAGE_W; local_irq_save(flags); if (tlb_type == spitfire) { __asm__ __volatile__( " stxa %1, [%0] %3\n" " stxa %2, [%5] %4\n" " membar #Sync\n" " flush %%g6\n" " nop\n" " nop\n" " nop\n" : /* No outputs */ : "r" (TLB_TAG_ACCESS), "r" (alias_base), "r" (pt), "i" (ASI_DMMU), "i" (ASI_DTLB_DATA_ACCESS), "r" (61 << 3) : "memory"); if (real_end >= KERNBASE + 0x340000) { second_alias_page = alias_base + 0x400000; __asm__ __volatile__( " stxa %1, [%0] %3\n" " stxa %2, [%5] %4\n" " membar #Sync\n" " flush %%g6\n" " nop\n" " nop\n" " nop\n" : /* No outputs */ : "r" (TLB_TAG_ACCESS), "r" (second_alias_page), "r" (pt + 0x400000), "i" (ASI_DMMU), "i" (ASI_DTLB_DATA_ACCESS), "r" (60 << 3) : "memory"); } } else if (tlb_type == cheetah || tlb_type == cheetah_plus) { __asm__ __volatile__( " stxa %1, [%0] %3\n" " stxa %2, [%5] %4\n" " membar #Sync\n" " flush %%g6\n" " nop\n" " nop\n" " nop\n" : /* No outputs */ : "r" (TLB_TAG_ACCESS), "r" (alias_base), "r" (pt), "i" (ASI_DMMU), "i" (ASI_DTLB_DATA_ACCESS), "r" ((0<<16) | (13<<3)) : "memory"); if (real_end >= KERNBASE + 0x340000) { second_alias_page = alias_base + 0x400000; __asm__ __volatile__( " stxa %1, [%0] %3\n" " stxa %2, [%5] %4\n" " membar #Sync\n" " flush %%g6\n" " nop\n" " nop\n" " nop\n" : /* No outputs */ : "r" (TLB_TAG_ACCESS), "r" (second_alias_page), "r" (pt + 0x400000), "i" (ASI_DMMU), "i" (ASI_DTLB_DATA_ACCESS), "r" ((0<<16) | (12<<3)) : "memory"); } } local_irq_restore(flags); /* Now set kernel pgd to upper alias so physical page computations * work. */ init_mm.pgd += ((shift) / (sizeof(pgd_t))); memset(swapper_pmd_dir, 0, sizeof(swapper_pmd_dir)); /* Now can init the kernel/bad page tables. */ pgd_set(&swapper_pg_dir[0], swapper_pmd_dir + (shift / sizeof(pgd_t))); sparc64_vpte_patchme1[0] |= (pgd_val(init_mm.pgd[0]) >> 10); sparc64_vpte_patchme2[0] |= (pgd_val(init_mm.pgd[0]) & 0x3ff); flushi((long)&sparc64_vpte_patchme1[0]); /* Setup bootmem... */ pages_avail = 0; last_valid_pfn = end_pfn = bootmem_init(&pages_avail); /* Inherit non-locked OBP mappings. */ inherit_prom_mappings(); /* Ok, we can use our TLB miss and window trap handlers safely. * We need to do a quick peek here to see if we are on StarFire * or not, so setup_tba can setup the IRQ globals correctly (it * needs to get the hard smp processor id correctly). */ { extern void setup_tba(int); setup_tba(this_is_starfire); } inherit_locked_prom_mappings(1); /* We only created DTLB mapping of this stuff. */ spitfire_flush_dtlb_nucleus_page(alias_base); if (second_alias_page) spitfire_flush_dtlb_nucleus_page(second_alias_page); __flush_tlb_all(); { unsigned long zones_size[MAX_NR_ZONES]; unsigned long zholes_size[MAX_NR_ZONES]; unsigned long npages; int znum; for (znum = 0; znum < MAX_NR_ZONES; znum++) zones_size[znum] = zholes_size[znum] = 0; npages = end_pfn - pfn_base; zones_size[ZONE_DMA] = npages; zholes_size[ZONE_DMA] = npages - pages_avail; free_area_init_node(0, &contig_page_data, NULL, zones_size, phys_base >> PAGE_SHIFT, zholes_size); mem_map = contig_page_data.node_mem_map; } device_scan(); } /* Ok, it seems that the prom can allocate some more memory chunks * as a side effect of some prom calls we perform during the * boot sequence. My most likely theory is that it is from the * prom_set_traptable() call, and OBP is allocating a scratchpad * for saving client program register state etc. */ void __init sort_memlist(struct linux_mlist_p1275 *thislist) { int swapi = 0; int i, mitr; unsigned long tmpaddr, tmpsize; unsigned long lowest; for (i = 0; thislist[i].theres_more != 0; i++) { lowest = thislist[i].start_adr; for (mitr = i+1; thislist[mitr-1].theres_more != 0; mitr++) if (thislist[mitr].start_adr < lowest) { lowest = thislist[mitr].start_adr; swapi = mitr; } if (lowest == thislist[i].start_adr) continue; tmpaddr = thislist[swapi].start_adr; tmpsize = thislist[swapi].num_bytes; for (mitr = swapi; mitr > i; mitr--) { thislist[mitr].start_adr = thislist[mitr-1].start_adr; thislist[mitr].num_bytes = thislist[mitr-1].num_bytes; } thislist[i].start_adr = tmpaddr; thislist[i].num_bytes = tmpsize; } } void __init rescan_sp_banks(void) { struct linux_prom64_registers memlist[64]; struct linux_mlist_p1275 avail[64], *mlist; unsigned long bytes, base_paddr; int num_regs, node = prom_finddevice("/memory"); int i; num_regs = prom_getproperty(node, "available", (char *) memlist, sizeof(memlist)); num_regs = (num_regs / sizeof(struct linux_prom64_registers)); for (i = 0; i < num_regs; i++) { avail[i].start_adr = memlist[i].phys_addr; avail[i].num_bytes = memlist[i].reg_size; avail[i].theres_more = &avail[i + 1]; } avail[i - 1].theres_more = NULL; sort_memlist(avail); mlist = &avail[0]; i = 0; bytes = mlist->num_bytes; base_paddr = mlist->start_adr; sp_banks[0].base_addr = base_paddr; sp_banks[0].num_bytes = bytes; while (mlist->theres_more != NULL){ i++; mlist = mlist->theres_more; bytes = mlist->num_bytes; if (i >= SPARC_PHYS_BANKS-1) { printk ("The machine has more banks than " "this kernel can support\n" "Increase the SPARC_PHYS_BANKS " "setting (currently %d)\n", SPARC_PHYS_BANKS); i = SPARC_PHYS_BANKS-1; break; } sp_banks[i].base_addr = mlist->start_adr; sp_banks[i].num_bytes = mlist->num_bytes; } i++; sp_banks[i].base_addr = 0xdeadbeefbeefdeadUL; sp_banks[i].num_bytes = 0; for (i = 0; sp_banks[i].num_bytes != 0; i++) sp_banks[i].num_bytes &= PAGE_MASK; } static void __init taint_real_pages(void) { struct sparc_phys_banks saved_sp_banks[SPARC_PHYS_BANKS]; int i; for (i = 0; i < SPARC_PHYS_BANKS; i++) { saved_sp_banks[i].base_addr = sp_banks[i].base_addr; saved_sp_banks[i].num_bytes = sp_banks[i].num_bytes; } rescan_sp_banks(); /* Find changes discovered in the sp_bank rescan and * reserve the lost portions in the bootmem maps. */ for (i = 0; saved_sp_banks[i].num_bytes; i++) { unsigned long old_start, old_end; old_start = saved_sp_banks[i].base_addr; old_end = old_start + saved_sp_banks[i].num_bytes; while (old_start < old_end) { int n; for (n = 0; sp_banks[n].num_bytes; n++) { unsigned long new_start, new_end; new_start = sp_banks[n].base_addr; new_end = new_start + sp_banks[n].num_bytes; if (new_start <= old_start && new_end >= (old_start + PAGE_SIZE)) { set_bit (old_start >> 22, sparc64_valid_addr_bitmap); goto do_next_page; } } reserve_bootmem(old_start, PAGE_SIZE); do_next_page: old_start += PAGE_SIZE; } } } #ifdef CONFIG_HUGETLB_PAGE long htlbpagemem = 0; int htlbpage_max; long htlbzone_pages; extern struct list_head htlbpage_freelist; #endif void __init mem_init(void) { unsigned long codepages, datapages, initpages; unsigned long addr, last; int i; i = last_valid_pfn >> ((22 - PAGE_SHIFT) + 6); i += 1; sparc64_valid_addr_bitmap = (unsigned long *) __alloc_bootmem(i << 3, SMP_CACHE_BYTES, 0UL); if (sparc64_valid_addr_bitmap == NULL) { prom_printf("mem_init: Cannot alloc valid_addr_bitmap.\n"); prom_halt(); } memset(sparc64_valid_addr_bitmap, 0, i << 3); addr = PAGE_OFFSET + phys_base; last = PAGE_ALIGN((unsigned long)_end) - ((unsigned long) KERNBASE); last += PAGE_OFFSET + phys_base; while (addr < last) { set_bit(__pa(addr) >> 22, sparc64_valid_addr_bitmap); addr += PAGE_SIZE; } taint_real_pages(); max_mapnr = last_valid_pfn - pfn_base; high_memory = __va(last_valid_pfn << PAGE_SHIFT); totalram_pages = num_physpages = free_all_bootmem() - 1; /* * Set up the zero page, mark it reserved, so that page count * is not manipulated when freeing the page from user ptes. */ mem_map_zero = alloc_pages(GFP_KERNEL, 0); if (mem_map_zero == NULL) { prom_printf("paging_init: Cannot alloc zero page.\n"); prom_halt(); } SetPageReserved(mem_map_zero); clear_page(page_address(mem_map_zero)); codepages = (((unsigned long) _etext) - ((unsigned long) _start)); codepages = PAGE_ALIGN(codepages) >> PAGE_SHIFT; datapages = (((unsigned long) _edata) - ((unsigned long) _etext)); datapages = PAGE_ALIGN(datapages) >> PAGE_SHIFT; initpages = (((unsigned long) __init_end) - ((unsigned long) __init_begin)); initpages = PAGE_ALIGN(initpages) >> PAGE_SHIFT; #ifndef CONFIG_SMP { /* Put empty_pg_dir on pgd_quicklist */ extern pgd_t empty_pg_dir[1024]; unsigned long addr = (unsigned long)empty_pg_dir; unsigned long alias_base = phys_base + PAGE_OFFSET - (long)(KERNBASE); memset(empty_pg_dir, 0, sizeof(empty_pg_dir)); addr += alias_base; free_pgd_fast((pgd_t *)addr); num_physpages++; totalram_pages++; } #endif printk("Memory: %uk available (%ldk kernel code, %ldk data, %ldk init) [%016lx,%016lx]\n", nr_free_pages() << (PAGE_SHIFT-10), codepages << (PAGE_SHIFT-10), datapages << (PAGE_SHIFT-10), initpages << (PAGE_SHIFT-10), PAGE_OFFSET, (last_valid_pfn << PAGE_SHIFT)); if (tlb_type == cheetah || tlb_type == cheetah_plus) cheetah_ecache_flush_init(); #ifdef CONFIG_HUGETLB_PAGE { long i, j; struct page *page, *map; /* For now reserve quarter for hugetlb_pages. */ htlbzone_pages = (num_physpages >> ((HPAGE_SHIFT - PAGE_SHIFT) + 2)) ; /* Will make this kernel command line. */ INIT_LIST_HEAD(&htlbpage_freelist); for (i = 0; i < htlbzone_pages; i++) { page = alloc_pages(GFP_ATOMIC, HUGETLB_PAGE_ORDER); if (page == NULL) break; map = page; for (j = 0; j < (HPAGE_SIZE / PAGE_SIZE); j++) { SetPageReserved(map); map++; } list_add(&page->list, &htlbpage_freelist); } printk("Total Huge_TLB_Page memory pages allocated %ld\n", i); htlbzone_pages = htlbpagemem = i; htlbpage_max = i; } #endif } void free_initmem (void) { unsigned long addr, initend; /* * The init section is aligned to 8k in vmlinux.lds. Page align for >8k pagesizes. */ addr = PAGE_ALIGN((unsigned long)(__init_begin)); initend = (unsigned long)(__init_end) & PAGE_MASK; for (; addr < initend; addr += PAGE_SIZE) { unsigned long page; struct page *p; page = (addr + ((unsigned long) __va(phys_base)) - ((unsigned long) KERNBASE)); p = virt_to_page(page); ClearPageReserved(p); set_page_count(p, 1); __free_page(p); num_physpages++; totalram_pages++; } } #ifdef CONFIG_BLK_DEV_INITRD void free_initrd_mem(unsigned long start, unsigned long end) { if (start < end) printk ("Freeing initrd memory: %ldk freed\n", (end - start) >> 10); for (; start < end; start += PAGE_SIZE) { struct page *p = virt_to_page(start); ClearPageReserved(p); set_page_count(p, 1); __free_page(p); num_physpages++; totalram_pages++; } } #endif