/* * linux/mm/memory.c * * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds */ /* * demand-loading started 01.12.91 - seems it is high on the list of * things wanted, and it should be easy to implement. - Linus */ /* * Ok, demand-loading was easy, shared pages a little bit tricker. Shared * pages started 02.12.91, seems to work. - Linus. * * Tested sharing by executing about 30 /bin/sh: under the old kernel it * would have taken more than the 6M I have free, but it worked well as * far as I could see. * * Also corrected some "invalidate()"s - I wasn't doing enough of them. */ /* * Real VM (paging to/from disk) started 18.12.91. Much more work and * thought has to go into this. Oh, well.. * 19.12.91 - works, somewhat. Sometimes I get faults, don't know why. * Found it. Everything seems to work now. * 20.12.91 - Ok, making the swap-device changeable like the root. */ /* * 05.04.94 - Multi-page memory management added for v1.1. * Idea by Alex Bligh (alex@cconcepts.co.uk) * * 16.07.99 - Support of BIGMEM added by Gerhard Wichert, Siemens AG * (Gerhard.Wichert@pdb.siemens.de) */ #include <linux/kernel_stat.h> #include <linux/mm.h> #include <linux/hugetlb.h> #include <linux/mman.h> #include <linux/swap.h> #include <linux/highmem.h> #include <linux/pagemap.h> #include <linux/rmap-locking.h> #include <linux/module.h> #include <asm/pgalloc.h> #include <asm/rmap.h> #include <asm/uaccess.h> #include <asm/tlb.h> #include <asm/tlbflush.h> #include <asm/pgtable.h> #include <linux/swapops.h> #ifndef CONFIG_DISCONTIGMEM /* use the per-pgdat data instead for discontigmem - mbligh */ unsigned long max_mapnr; struct page *mem_map; #endif unsigned long num_physpages; void * high_memory; struct page *highmem_start_page; /* * We special-case the C-O-W ZERO_PAGE, because it's such * a common occurrence (no need to read the page to know * that it's zero - better for the cache and memory subsystem). */ static inline void copy_cow_page(struct page * from, struct page * to, unsigned long address) { if (from == ZERO_PAGE(address)) { clear_user_highpage(to, address); return; } copy_user_highpage(to, from, address); } /* * Note: this doesn't free the actual pages themselves. That * has been handled earlier when unmapping all the memory regions. */ static inline void free_one_pmd(struct mmu_gather *tlb, pmd_t * dir) { struct page *page; if (pmd_none(*dir)) return; if (pmd_bad(*dir)) { pmd_ERROR(*dir); pmd_clear(dir); return; } page = pmd_page(*dir); pmd_clear(dir); pgtable_remove_rmap(page); pte_free_tlb(tlb, page); } static inline void free_one_pgd(struct mmu_gather *tlb, pgd_t * dir) { int j; pmd_t * pmd; if (pgd_none(*dir)) return; if (pgd_bad(*dir)) { pgd_ERROR(*dir); pgd_clear(dir); return; } pmd = pmd_offset(dir, 0); pgd_clear(dir); for (j = 0; j < PTRS_PER_PMD ; j++) free_one_pmd(tlb, pmd+j); pmd_free_tlb(tlb, pmd); } /* * This function clears all user-level page tables of a process - this * is needed by execve(), so that old pages aren't in the way. * * Must be called with pagetable lock held. */ void clear_page_tables(struct mmu_gather *tlb, unsigned long first, int nr) { pgd_t * page_dir = tlb->mm->pgd; page_dir += first; do { free_one_pgd(tlb, page_dir); page_dir++; } while (--nr); } pte_t * pte_alloc_map(struct mm_struct *mm, pmd_t *pmd, unsigned long address) { if (!pmd_present(*pmd)) { struct page *new; spin_unlock(&mm->page_table_lock); new = pte_alloc_one(mm, address); spin_lock(&mm->page_table_lock); if (!new) return NULL; /* * Because we dropped the lock, we should re-check the * entry, as somebody else could have populated it.. */ if (pmd_present(*pmd)) { pte_free(new); goto out; } pgtable_add_rmap(new, mm, address); pmd_populate(mm, pmd, new); } out: return pte_offset_map(pmd, address); } pte_t * pte_alloc_kernel(struct mm_struct *mm, pmd_t *pmd, unsigned long address) { if (!pmd_present(*pmd)) { pte_t *new; spin_unlock(&mm->page_table_lock); new = pte_alloc_one_kernel(mm, address); spin_lock(&mm->page_table_lock); if (!new) return NULL; /* * Because we dropped the lock, we should re-check the * entry, as somebody else could have populated it.. */ if (pmd_present(*pmd)) { pte_free_kernel(new); goto out; } pgtable_add_rmap(virt_to_page(new), mm, address); pmd_populate_kernel(mm, pmd, new); } out: return pte_offset_kernel(pmd, address); } #define PTE_TABLE_MASK ((PTRS_PER_PTE-1) * sizeof(pte_t)) #define PMD_TABLE_MASK ((PTRS_PER_PMD-1) * sizeof(pmd_t)) /* * copy one vm_area from one task to the other. Assumes the page tables * already present in the new task to be cleared in the whole range * covered by this vma. * * 08Jan98 Merged into one routine from several inline routines to reduce * variable count and make things faster. -jj * * dst->page_table_lock is held on entry and exit, * but may be dropped within pmd_alloc() and pte_alloc_map(). */ int copy_page_range(struct mm_struct *dst, struct mm_struct *src, struct vm_area_struct *vma) { pgd_t * src_pgd, * dst_pgd; unsigned long address = vma->vm_start; unsigned long end = vma->vm_end; unsigned long cow; struct pte_chain *pte_chain = NULL; if (is_vm_hugetlb_page(vma)) return copy_hugetlb_page_range(dst, src, vma); pte_chain = pte_chain_alloc(GFP_ATOMIC); if (!pte_chain) { spin_unlock(&dst->page_table_lock); pte_chain = pte_chain_alloc(GFP_KERNEL); spin_lock(&dst->page_table_lock); if (!pte_chain) goto nomem; } cow = (vma->vm_flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE; src_pgd = pgd_offset(src, address)-1; dst_pgd = pgd_offset(dst, address)-1; for (;;) { pmd_t * src_pmd, * dst_pmd; src_pgd++; dst_pgd++; /* copy_pmd_range */ if (pgd_none(*src_pgd)) goto skip_copy_pmd_range; if (pgd_bad(*src_pgd)) { pgd_ERROR(*src_pgd); pgd_clear(src_pgd); skip_copy_pmd_range: address = (address + PGDIR_SIZE) & PGDIR_MASK; if (!address || (address >= end)) goto out; continue; } src_pmd = pmd_offset(src_pgd, address); dst_pmd = pmd_alloc(dst, dst_pgd, address); if (!dst_pmd) goto nomem; do { pte_t * src_pte, * dst_pte; /* copy_pte_range */ if (pmd_none(*src_pmd)) goto skip_copy_pte_range; if (pmd_bad(*src_pmd)) { pmd_ERROR(*src_pmd); pmd_clear(src_pmd); skip_copy_pte_range: address = (address + PMD_SIZE) & PMD_MASK; if (address >= end) goto out; goto cont_copy_pmd_range; } dst_pte = pte_alloc_map(dst, dst_pmd, address); if (!dst_pte) goto nomem; spin_lock(&src->page_table_lock); src_pte = pte_offset_map_nested(src_pmd, address); do { pte_t pte = *src_pte; struct page *page; unsigned long pfn; /* copy_one_pte */ if (pte_none(pte)) goto cont_copy_pte_range_noset; /* pte contains position in swap, so copy. */ if (!pte_present(pte)) { if (!pte_file(pte)) swap_duplicate(pte_to_swp_entry(pte)); set_pte(dst_pte, pte); goto cont_copy_pte_range_noset; } pfn = pte_pfn(pte); /* the pte points outside of valid memory, the * mapping is assumed to be good, meaningful * and not mapped via rmap - duplicate the * mapping as is. */ page = NULL; if (pfn_valid(pfn)) page = pfn_to_page(pfn); if (!page || PageReserved(page)) { set_pte(dst_pte, pte); goto cont_copy_pte_range_noset; } /* * If it's a COW mapping, write protect it both * in the parent and the child */ if (cow) { ptep_set_wrprotect(src_pte); pte = *src_pte; } /* * If it's a shared mapping, mark it clean in * the child */ if (vma->vm_flags & VM_SHARED) pte = pte_mkclean(pte); pte = pte_mkold(pte); get_page(page); dst->rss++; set_pte(dst_pte, pte); pte_chain = page_add_rmap(page, dst_pte, pte_chain); if (pte_chain) goto cont_copy_pte_range_noset; pte_chain = pte_chain_alloc(GFP_ATOMIC); if (pte_chain) goto cont_copy_pte_range_noset; /* * pte_chain allocation failed, and we need to * run page reclaim. */ pte_unmap_nested(src_pte); pte_unmap(dst_pte); spin_unlock(&src->page_table_lock); spin_unlock(&dst->page_table_lock); pte_chain = pte_chain_alloc(GFP_KERNEL); spin_lock(&dst->page_table_lock); if (!pte_chain) goto nomem; spin_lock(&src->page_table_lock); dst_pte = pte_offset_map(dst_pmd, address); src_pte = pte_offset_map_nested(src_pmd, address); cont_copy_pte_range_noset: address += PAGE_SIZE; if (address >= end) { pte_unmap_nested(src_pte); pte_unmap(dst_pte); goto out_unlock; } src_pte++; dst_pte++; } while ((unsigned long)src_pte & PTE_TABLE_MASK); pte_unmap_nested(src_pte-1); pte_unmap(dst_pte-1); spin_unlock(&src->page_table_lock); cont_copy_pmd_range: src_pmd++; dst_pmd++; } while ((unsigned long)src_pmd & PMD_TABLE_MASK); } out_unlock: spin_unlock(&src->page_table_lock); out: pte_chain_free(pte_chain); return 0; nomem: pte_chain_free(pte_chain); return -ENOMEM; } static void zap_pte_range(struct mmu_gather *tlb, pmd_t * pmd, unsigned long address, unsigned long size) { unsigned long offset; pte_t *ptep; if (pmd_none(*pmd)) return; if (pmd_bad(*pmd)) { pmd_ERROR(*pmd); pmd_clear(pmd); return; } ptep = pte_offset_map(pmd, address); offset = address & ~PMD_MASK; if (offset + size > PMD_SIZE) size = PMD_SIZE - offset; size &= PAGE_MASK; for (offset=0; offset < size; ptep++, offset += PAGE_SIZE) { pte_t pte = *ptep; if (pte_none(pte)) continue; if (pte_present(pte)) { unsigned long pfn = pte_pfn(pte); pte = ptep_get_and_clear(ptep); tlb_remove_tlb_entry(tlb, ptep, address+offset); if (pfn_valid(pfn)) { struct page *page = pfn_to_page(pfn); if (!PageReserved(page)) { if (pte_dirty(pte)) set_page_dirty(page); if (page->mapping && pte_young(pte) && !PageSwapCache(page)) mark_page_accessed(page); tlb->freed++; page_remove_rmap(page, ptep); tlb_remove_page(tlb, page); } } } else { if (!pte_file(pte)) free_swap_and_cache(pte_to_swp_entry(pte)); pte_clear(ptep); } } pte_unmap(ptep-1); } static void zap_pmd_range(struct mmu_gather *tlb, pgd_t * dir, unsigned long address, unsigned long size) { pmd_t * pmd; unsigned long end; if (pgd_none(*dir)) return; if (pgd_bad(*dir)) { pgd_ERROR(*dir); pgd_clear(dir); return; } pmd = pmd_offset(dir, address); end = address + size; if (end > ((address + PGDIR_SIZE) & PGDIR_MASK)) end = ((address + PGDIR_SIZE) & PGDIR_MASK); do { zap_pte_range(tlb, pmd, address, end - address); address = (address + PMD_SIZE) & PMD_MASK; pmd++; } while (address < end); } void unmap_page_range(struct mmu_gather *tlb, struct vm_area_struct *vma, unsigned long address, unsigned long end) { pgd_t * dir; if (is_vm_hugetlb_page(vma)) { unmap_hugepage_range(vma, address, end); return; } BUG_ON(address >= end); dir = pgd_offset(vma->vm_mm, address); tlb_start_vma(tlb, vma); do { zap_pmd_range(tlb, dir, address, end - address); address = (address + PGDIR_SIZE) & PGDIR_MASK; dir++; } while (address && (address < end)); tlb_end_vma(tlb, vma); } /* Dispose of an entire struct mmu_gather per rescheduling point */ #if defined(CONFIG_SMP) && defined(CONFIG_PREEMPT) #define ZAP_BLOCK_SIZE (FREE_PTE_NR * PAGE_SIZE) #endif /* For UP, 256 pages at a time gives nice low latency */ #if !defined(CONFIG_SMP) && defined(CONFIG_PREEMPT) #define ZAP_BLOCK_SIZE (256 * PAGE_SIZE) #endif /* No preempt: go for the best straight-line efficiency */ #if !defined(CONFIG_PREEMPT) #define ZAP_BLOCK_SIZE (~(0UL)) #endif /** * unmap_vmas - unmap a range of memory covered by a list of vma's * @tlbp: address of the caller's struct mmu_gather * @mm: the controlling mm_struct * @vma: the starting vma * @start_addr: virtual address at which to start unmapping * @end_addr: virtual address at which to end unmapping * @nr_accounted: Place number of unmapped pages in vm-accountable vma's here * * Returns the number of vma's which were covered by the unmapping. * * Unmap all pages in the vma list. Called under page_table_lock. * * We aim to not hold page_table_lock for too long (for scheduling latency * reasons). So zap pages in ZAP_BLOCK_SIZE bytecounts. This means we need to * return the ending mmu_gather to the caller. * * Only addresses between `start' and `end' will be unmapped. * * The VMA list must be sorted in ascending virtual address order. * * unmap_vmas() assumes that the caller will flush the whole unmapped address * range after unmap_vmas() returns. So the only responsibility here is to * ensure that any thus-far unmapped pages are flushed before unmap_vmas() * drops the lock and schedules. */ int unmap_vmas(struct mmu_gather **tlbp, struct mm_struct *mm, struct vm_area_struct *vma, unsigned long start_addr, unsigned long end_addr, unsigned long *nr_accounted) { unsigned long zap_bytes = ZAP_BLOCK_SIZE; unsigned long tlb_start; /* For tlb_finish_mmu */ int tlb_start_valid = 0; int ret = 0; if (vma) { /* debug. killme. */ if (end_addr <= vma->vm_start) printk("%s: end_addr(0x%08lx) <= vm_start(0x%08lx)\n", __FUNCTION__, end_addr, vma->vm_start); if (start_addr >= vma->vm_end) printk("%s: start_addr(0x%08lx) <= vm_end(0x%08lx)\n", __FUNCTION__, start_addr, vma->vm_end); } for ( ; vma && vma->vm_start < end_addr; vma = vma->vm_next) { unsigned long start; unsigned long end; start = max(vma->vm_start, start_addr); if (start >= vma->vm_end) continue; end = min(vma->vm_end, end_addr); if (end <= vma->vm_start) continue; if (vma->vm_flags & VM_ACCOUNT) *nr_accounted += (end - start) >> PAGE_SHIFT; ret++; while (start != end) { unsigned long block; if (is_vm_hugetlb_page(vma)) block = end - start; else block = min(zap_bytes, end - start); if (!tlb_start_valid) { tlb_start = start; tlb_start_valid = 1; } unmap_page_range(*tlbp, vma, start, start + block); start += block; zap_bytes -= block; if ((long)zap_bytes > 0) continue; if (need_resched()) { tlb_finish_mmu(*tlbp, tlb_start, start); cond_resched_lock(&mm->page_table_lock); *tlbp = tlb_gather_mmu(mm, 0); tlb_start_valid = 0; } zap_bytes = ZAP_BLOCK_SIZE; } if (vma->vm_next && vma->vm_next->vm_start < vma->vm_end) printk("%s: VMA list is not sorted correctly!\n", __FUNCTION__); } return ret; } /** * zap_page_range - remove user pages in a given range * @vma: vm_area_struct holding the applicable pages * @address: starting address of pages to zap * @size: number of bytes to zap */ void zap_page_range(struct vm_area_struct *vma, unsigned long address, unsigned long size) { struct mm_struct *mm = vma->vm_mm; struct mmu_gather *tlb; unsigned long end = address + size; unsigned long nr_accounted = 0; might_sleep(); if (is_vm_hugetlb_page(vma)) { zap_hugepage_range(vma, address, size); return; } lru_add_drain(); spin_lock(&mm->page_table_lock); tlb = tlb_gather_mmu(mm, 0); unmap_vmas(&tlb, mm, vma, address, end, &nr_accounted); tlb_finish_mmu(tlb, address, end); spin_unlock(&mm->page_table_lock); } /* * Do a quick page-table lookup for a single page. * mm->page_table_lock must be held. */ struct page * follow_page(struct mm_struct *mm, unsigned long address, int write) { pgd_t *pgd; pmd_t *pmd; pte_t *ptep, pte; unsigned long pfn; struct vm_area_struct *vma; vma = hugepage_vma(mm, address); if (vma) return follow_huge_addr(mm, vma, address, write); pgd = pgd_offset(mm, address); if (pgd_none(*pgd) || pgd_bad(*pgd)) goto out; pmd = pmd_offset(pgd, address); if (pmd_none(*pmd)) goto out; if (pmd_huge(*pmd)) return follow_huge_pmd(mm, address, pmd, write); if (pmd_bad(*pmd)) goto out; ptep = pte_offset_map(pmd, address); if (!ptep) goto out; pte = *ptep; pte_unmap(ptep); if (pte_present(pte)) { if (!write || (pte_write(pte) && pte_dirty(pte))) { pfn = pte_pfn(pte); if (pfn_valid(pfn)) { struct page *page = pfn_to_page(pfn); mark_page_accessed(page); return page; } } } out: return NULL; } /* * Given a physical address, is there a useful struct page pointing to * it? This may become more complex in the future if we start dealing * with IO-aperture pages for direct-IO. */ static inline struct page *get_page_map(struct page *page) { if (!pfn_valid(page_to_pfn(page))) return 0; return page; } int get_user_pages(struct task_struct *tsk, struct mm_struct *mm, unsigned long start, int len, int write, int force, struct page **pages, struct vm_area_struct **vmas) { int i; unsigned int flags; /* * Require read or write permissions. * If 'force' is set, we only require the "MAY" flags. */ flags = write ? (VM_WRITE | VM_MAYWRITE) : (VM_READ | VM_MAYREAD); flags &= force ? (VM_MAYREAD | VM_MAYWRITE) : (VM_READ | VM_WRITE); i = 0; do { struct vm_area_struct * vma; vma = find_extend_vma(mm, start); #ifdef FIXADDR_USER_START if (!vma && start >= FIXADDR_USER_START && start < FIXADDR_USER_END) { static struct vm_area_struct fixmap_vma = { /* Catch users - if there are any valid ones, we can make this be "&init_mm" or something. */ .vm_mm = NULL, .vm_start = FIXADDR_USER_START, .vm_end = FIXADDR_USER_END, .vm_page_prot = PAGE_READONLY, .vm_flags = VM_READ | VM_EXEC, }; unsigned long pg = start & PAGE_MASK; pgd_t *pgd; pmd_t *pmd; pte_t *pte; if (write) /* user fixmap pages are read-only */ return i ? : -EFAULT; pgd = pgd_offset_k(pg); if (!pgd) return i ? : -EFAULT; pmd = pmd_offset(pgd, pg); if (!pmd) return i ? : -EFAULT; pte = pte_offset_kernel(pmd, pg); if (!pte || !pte_present(*pte)) return i ? : -EFAULT; if (pages) { pages[i] = pte_page(*pte); get_page(pages[i]); } if (vmas) vmas[i] = &fixmap_vma; i++; start += PAGE_SIZE; len--; continue; } #endif if (!vma || (pages && (vma->vm_flags & VM_IO)) || !(flags & vma->vm_flags)) return i ? : -EFAULT; if (is_vm_hugetlb_page(vma)) { i = follow_hugetlb_page(mm, vma, pages, vmas, &start, &len, i); continue; } spin_lock(&mm->page_table_lock); do { struct page *map; while (!(map = follow_page(mm, start, write))) { spin_unlock(&mm->page_table_lock); switch (handle_mm_fault(mm,vma,start,write)) { case VM_FAULT_MINOR: tsk->min_flt++; break; case VM_FAULT_MAJOR: tsk->maj_flt++; break; case VM_FAULT_SIGBUS: return i ? i : -EFAULT; case VM_FAULT_OOM: return i ? i : -ENOMEM; default: BUG(); } spin_lock(&mm->page_table_lock); } if (pages) { pages[i] = get_page_map(map); if (!pages[i]) { spin_unlock(&mm->page_table_lock); while (i--) page_cache_release(pages[i]); i = -EFAULT; goto out; } flush_dcache_page(pages[i]); if (!PageReserved(pages[i])) page_cache_get(pages[i]); } if (vmas) vmas[i] = vma; i++; start += PAGE_SIZE; len--; } while(len && start < vma->vm_end); spin_unlock(&mm->page_table_lock); } while(len); out: return i; } static void zeromap_pte_range(pte_t * pte, unsigned long address, unsigned long size, pgprot_t prot) { unsigned long end; address &= ~PMD_MASK; end = address + size; if (end > PMD_SIZE) end = PMD_SIZE; do { pte_t zero_pte = pte_wrprotect(mk_pte(ZERO_PAGE(address), prot)); BUG_ON(!pte_none(*pte)); set_pte(pte, zero_pte); address += PAGE_SIZE; pte++; } while (address && (address < end)); } static inline int zeromap_pmd_range(struct mm_struct *mm, pmd_t * pmd, unsigned long address, unsigned long size, pgprot_t prot) { unsigned long base, end; base = address & PGDIR_MASK; address &= ~PGDIR_MASK; end = address + size; if (end > PGDIR_SIZE) end = PGDIR_SIZE; do { pte_t * pte = pte_alloc_map(mm, pmd, base + address); if (!pte) return -ENOMEM; zeromap_pte_range(pte, base + address, end - address, prot); pte_unmap(pte); address = (address + PMD_SIZE) & PMD_MASK; pmd++; } while (address && (address < end)); return 0; } int zeromap_page_range(struct vm_area_struct *vma, unsigned long address, unsigned long size, pgprot_t prot) { int error = 0; pgd_t * dir; unsigned long beg = address; unsigned long end = address + size; struct mm_struct *mm = vma->vm_mm; dir = pgd_offset(mm, address); flush_cache_range(vma, beg, end); if (address >= end) BUG(); spin_lock(&mm->page_table_lock); do { pmd_t *pmd = pmd_alloc(mm, dir, address); error = -ENOMEM; if (!pmd) break; error = zeromap_pmd_range(mm, pmd, address, end - address, prot); if (error) break; address = (address + PGDIR_SIZE) & PGDIR_MASK; dir++; } while (address && (address < end)); flush_tlb_range(vma, beg, end); spin_unlock(&mm->page_table_lock); return error; } /* * maps a range of physical memory into the requested pages. the old * mappings are removed. any references to nonexistent pages results * in null mappings (currently treated as "copy-on-access") */ static inline void remap_pte_range(pte_t * pte, unsigned long address, unsigned long size, unsigned long phys_addr, pgprot_t prot) { unsigned long end; unsigned long pfn; address &= ~PMD_MASK; end = address + size; if (end > PMD_SIZE) end = PMD_SIZE; pfn = phys_addr >> PAGE_SHIFT; do { BUG_ON(!pte_none(*pte)); if (!pfn_valid(pfn) || PageReserved(pfn_to_page(pfn))) set_pte(pte, pfn_pte(pfn, prot)); address += PAGE_SIZE; pfn++; pte++; } while (address && (address < end)); } static inline int remap_pmd_range(struct mm_struct *mm, pmd_t * pmd, unsigned long address, unsigned long size, unsigned long phys_addr, pgprot_t prot) { unsigned long base, end; base = address & PGDIR_MASK; address &= ~PGDIR_MASK; end = address + size; if (end > PGDIR_SIZE) end = PGDIR_SIZE; phys_addr -= address; do { pte_t * pte = pte_alloc_map(mm, pmd, base + address); if (!pte) return -ENOMEM; remap_pte_range(pte, base + address, end - address, address + phys_addr, prot); pte_unmap(pte); address = (address + PMD_SIZE) & PMD_MASK; pmd++; } while (address && (address < end)); return 0; } /* Note: this is only safe if the mm semaphore is held when called. */ int remap_page_range(struct vm_area_struct *vma, unsigned long from, unsigned long phys_addr, unsigned long size, pgprot_t prot) { int error = 0; pgd_t * dir; unsigned long beg = from; unsigned long end = from + size; struct mm_struct *mm = vma->vm_mm; phys_addr -= from; dir = pgd_offset(mm, from); flush_cache_range(vma, beg, end); if (from >= end) BUG(); spin_lock(&mm->page_table_lock); do { pmd_t *pmd = pmd_alloc(mm, dir, from); error = -ENOMEM; if (!pmd) break; error = remap_pmd_range(mm, pmd, from, end - from, phys_addr + from, prot); if (error) break; from = (from + PGDIR_SIZE) & PGDIR_MASK; dir++; } while (from && (from < end)); flush_tlb_range(vma, beg, end); spin_unlock(&mm->page_table_lock); return error; } /* * Establish a new mapping: * - flush the old one * - update the page tables * - inform the TLB about the new one * * We hold the mm semaphore for reading and vma->vm_mm->page_table_lock */ static inline void establish_pte(struct vm_area_struct * vma, unsigned long address, pte_t *page_table, pte_t entry) { set_pte(page_table, entry); flush_tlb_page(vma, address); update_mmu_cache(vma, address, entry); } /* * We hold the mm semaphore for reading and vma->vm_mm->page_table_lock */ static inline void break_cow(struct vm_area_struct * vma, struct page * new_page, unsigned long address, pte_t *page_table) { flush_cache_page(vma, address); establish_pte(vma, address, page_table, pte_mkwrite(pte_mkdirty(mk_pte(new_page, vma->vm_page_prot)))); } /* * This routine handles present pages, when users try to write * to a shared page. It is done by copying the page to a new address * and decrementing the shared-page counter for the old page. * * Goto-purists beware: the only reason for goto's here is that it results * in better assembly code.. The "default" path will see no jumps at all. * * Note that this routine assumes that the protection checks have been * done by the caller (the low-level page fault routine in most cases). * Thus we can safely just mark it writable once we've done any necessary * COW. * * We also mark the page dirty at this point even though the page will * change only once the write actually happens. This avoids a few races, * and potentially makes it more efficient. * * We hold the mm semaphore and the page_table_lock on entry and exit * with the page_table_lock released. */ static int do_wp_page(struct mm_struct *mm, struct vm_area_struct * vma, unsigned long address, pte_t *page_table, pmd_t *pmd, pte_t pte) { struct page *old_page, *new_page; unsigned long pfn = pte_pfn(pte); struct pte_chain *pte_chain = NULL; int ret; if (unlikely(!pfn_valid(pfn))) { /* * This should really halt the system so it can be debugged or * at least the kernel stops what it's doing before it corrupts * data, but for the moment just pretend this is OOM. */ pte_unmap(page_table); printk(KERN_ERR "do_wp_page: bogus page at address %08lx\n", address); goto oom; } old_page = pfn_to_page(pfn); if (!TestSetPageLocked(old_page)) { int reuse = can_share_swap_page(old_page); unlock_page(old_page); if (reuse) { flush_cache_page(vma, address); establish_pte(vma, address, page_table, pte_mkyoung(pte_mkdirty(pte_mkwrite(pte)))); pte_unmap(page_table); ret = VM_FAULT_MINOR; goto out; } } pte_unmap(page_table); /* * Ok, we need to copy. Oh, well.. */ page_cache_get(old_page); spin_unlock(&mm->page_table_lock); pte_chain = pte_chain_alloc(GFP_KERNEL); if (!pte_chain) goto no_mem; new_page = alloc_page(GFP_HIGHUSER); if (!new_page) goto no_mem; copy_cow_page(old_page,new_page,address); /* * Re-check the pte - we dropped the lock */ spin_lock(&mm->page_table_lock); page_table = pte_offset_map(pmd, address); if (pte_same(*page_table, pte)) { if (PageReserved(old_page)) ++mm->rss; page_remove_rmap(old_page, page_table); break_cow(vma, new_page, address, page_table); pte_chain = page_add_rmap(new_page, page_table, pte_chain); lru_cache_add_active(new_page); /* Free the old page.. */ new_page = old_page; } pte_unmap(page_table); page_cache_release(new_page); page_cache_release(old_page); ret = VM_FAULT_MINOR; goto out; no_mem: page_cache_release(old_page); oom: ret = VM_FAULT_OOM; out: spin_unlock(&mm->page_table_lock); pte_chain_free(pte_chain); return ret; } /* * Helper function for invalidate_mmap_range(). * Both hba and hlen are page numbers in PAGE_SIZE units. * An hlen of zero blows away the entire portion file after hba. */ static void invalidate_mmap_range_list(struct list_head *head, unsigned long const hba, unsigned long const hlen) { struct list_head *curr; unsigned long hea; /* last page of hole. */ unsigned long vba; unsigned long vea; /* last page of corresponding uva hole. */ struct vm_area_struct *vp; unsigned long zba; unsigned long zea; hea = hba + hlen - 1; /* avoid overflow. */ if (hea < hba) hea = ULONG_MAX; list_for_each(curr, head) { vp = list_entry(curr, struct vm_area_struct, shared); vba = vp->vm_pgoff; vea = vba + ((vp->vm_end - vp->vm_start) >> PAGE_SHIFT) - 1; if (hea < vba || vea < hba) continue; /* Mapping disjoint from hole. */ zba = (hba <= vba) ? vba : hba; zea = (vea <= hea) ? vea : hea; zap_page_range(vp, ((zba - vba) << PAGE_SHIFT) + vp->vm_start, (zea - zba + 1) << PAGE_SHIFT); } } /** * invalidate_mmap_range - invalidate the portion of all mmaps * in the specified address_space corresponding to the specified * page range in the underlying file. * @address_space: the address space containing mmaps to be invalidated. * @holebegin: byte in first page to invalidate, relative to the start of * the underlying file. This will be rounded down to a PAGE_SIZE * boundary. Note that this is different from vmtruncate(), which * must keep the partial page. In contrast, we must get rid of * partial pages. * @holelen: size of prospective hole in bytes. This will be rounded * up to a PAGE_SIZE boundary. A holelen of zero truncates to the * end of the file. */ void invalidate_mmap_range(struct address_space *mapping, loff_t const holebegin, loff_t const holelen) { unsigned long hba = holebegin >> PAGE_SHIFT; unsigned long hlen = (holelen + PAGE_SIZE - 1) >> PAGE_SHIFT; /* Check for overflow. */ if (sizeof(holelen) > sizeof(hlen)) { long long holeend = (holebegin + holelen + PAGE_SIZE - 1) >> PAGE_SHIFT; if (holeend & ~(long long)ULONG_MAX) hlen = ULONG_MAX - hba + 1; } down(&mapping->i_shared_sem); /* Protect against page fault */ atomic_inc(&mapping->truncate_count); if (unlikely(!list_empty(&mapping->i_mmap))) invalidate_mmap_range_list(&mapping->i_mmap, hba, hlen); if (unlikely(!list_empty(&mapping->i_mmap_shared))) invalidate_mmap_range_list(&mapping->i_mmap_shared, hba, hlen); up(&mapping->i_shared_sem); } EXPORT_SYMBOL_GPL(invalidate_mmap_range); /* * Handle all mappings that got truncated by a "truncate()" * system call. * * NOTE! We have to be ready to update the memory sharing * between the file and the memory map for a potential last * incomplete page. Ugly, but necessary. */ int vmtruncate(struct inode * inode, loff_t offset) { struct address_space *mapping = inode->i_mapping; unsigned long limit; if (inode->i_size < offset) goto do_expand; i_size_write(inode, offset); invalidate_mmap_range(mapping, offset + PAGE_SIZE - 1, 0); truncate_inode_pages(mapping, offset); goto out_truncate; do_expand: limit = current->rlim[RLIMIT_FSIZE].rlim_cur; if (limit != RLIM_INFINITY && offset > limit) goto out_sig; if (offset > inode->i_sb->s_maxbytes) goto out; i_size_write(inode, offset); out_truncate: if (inode->i_op && inode->i_op->truncate) inode->i_op->truncate(inode); return 0; out_sig: send_sig(SIGXFSZ, current, 0); out: return -EFBIG; } /* * Primitive swap readahead code. We simply read an aligned block of * (1 << page_cluster) entries in the swap area. This method is chosen * because it doesn't cost us any seek time. We also make sure to queue * the 'original' request together with the readahead ones... */ void swapin_readahead(swp_entry_t entry) { int i, num; struct page *new_page; unsigned long offset; /* * Get the number of handles we should do readahead io to. */ num = valid_swaphandles(entry, &offset); for (i = 0; i < num; offset++, i++) { /* Ok, do the async read-ahead now */ new_page = read_swap_cache_async(swp_entry(swp_type(entry), offset)); if (!new_page) break; page_cache_release(new_page); } lru_add_drain(); /* Push any new pages onto the LRU now */ } /* * We hold the mm semaphore and the page_table_lock on entry and * should release the pagetable lock on exit.. */ static int do_swap_page(struct mm_struct * mm, struct vm_area_struct * vma, unsigned long address, pte_t *page_table, pmd_t *pmd, pte_t orig_pte, int write_access) { struct page *page; swp_entry_t entry = pte_to_swp_entry(orig_pte); pte_t pte; int ret = VM_FAULT_MINOR; struct pte_chain *pte_chain = NULL; pte_unmap(page_table); spin_unlock(&mm->page_table_lock); page = lookup_swap_cache(entry); if (!page) { swapin_readahead(entry); page = read_swap_cache_async(entry); if (!page) { /* * Back out if somebody else faulted in this pte while * we released the page table lock. */ spin_lock(&mm->page_table_lock); page_table = pte_offset_map(pmd, address); if (pte_same(*page_table, orig_pte)) ret = VM_FAULT_OOM; else ret = VM_FAULT_MINOR; pte_unmap(page_table); spin_unlock(&mm->page_table_lock); goto out; } /* Had to read the page from swap area: Major fault */ ret = VM_FAULT_MAJOR; inc_page_state(pgmajfault); } mark_page_accessed(page); pte_chain = pte_chain_alloc(GFP_KERNEL); if (!pte_chain) { ret = -ENOMEM; goto out; } lock_page(page); /* * Back out if somebody else faulted in this pte while we * released the page table lock. */ spin_lock(&mm->page_table_lock); page_table = pte_offset_map(pmd, address); if (!pte_same(*page_table, orig_pte)) { pte_unmap(page_table); spin_unlock(&mm->page_table_lock); unlock_page(page); page_cache_release(page); ret = VM_FAULT_MINOR; goto out; } /* The page isn't present yet, go ahead with the fault. */ swap_free(entry); if (vm_swap_full()) remove_exclusive_swap_page(page); mm->rss++; pte = mk_pte(page, vma->vm_page_prot); if (write_access && can_share_swap_page(page)) pte = pte_mkdirty(pte_mkwrite(pte)); unlock_page(page); flush_icache_page(vma, page); set_pte(page_table, pte); pte_chain = page_add_rmap(page, page_table, pte_chain); /* No need to invalidate - it was non-present before */ update_mmu_cache(vma, address, pte); pte_unmap(page_table); spin_unlock(&mm->page_table_lock); out: pte_chain_free(pte_chain); return ret; } /* * We are called with the MM semaphore and page_table_lock * spinlock held to protect against concurrent faults in * multithreaded programs. */ static int do_anonymous_page(struct mm_struct *mm, struct vm_area_struct *vma, pte_t *page_table, pmd_t *pmd, int write_access, unsigned long addr) { pte_t entry; struct page * page = ZERO_PAGE(addr); struct pte_chain *pte_chain; int ret; pte_chain = pte_chain_alloc(GFP_ATOMIC); if (!pte_chain) { pte_unmap(page_table); spin_unlock(&mm->page_table_lock); pte_chain = pte_chain_alloc(GFP_KERNEL); if (!pte_chain) goto no_mem; spin_lock(&mm->page_table_lock); page_table = pte_offset_map(pmd, addr); } /* Read-only mapping of ZERO_PAGE. */ entry = pte_wrprotect(mk_pte(ZERO_PAGE(addr), vma->vm_page_prot)); /* ..except if it's a write access */ if (write_access) { /* Allocate our own private page. */ pte_unmap(page_table); spin_unlock(&mm->page_table_lock); page = alloc_page(GFP_HIGHUSER); if (!page) goto no_mem; clear_user_highpage(page, addr); spin_lock(&mm->page_table_lock); page_table = pte_offset_map(pmd, addr); if (!pte_none(*page_table)) { pte_unmap(page_table); page_cache_release(page); spin_unlock(&mm->page_table_lock); ret = VM_FAULT_MINOR; goto out; } mm->rss++; entry = pte_mkwrite(pte_mkdirty(mk_pte(page, vma->vm_page_prot))); lru_cache_add_active(page); mark_page_accessed(page); } set_pte(page_table, entry); /* ignores ZERO_PAGE */ pte_chain = page_add_rmap(page, page_table, pte_chain); pte_unmap(page_table); /* No need to invalidate - it was non-present before */ update_mmu_cache(vma, addr, entry); spin_unlock(&mm->page_table_lock); ret = VM_FAULT_MINOR; goto out; no_mem: ret = VM_FAULT_OOM; out: pte_chain_free(pte_chain); return ret; } /* * do_no_page() tries to create a new page mapping. It aggressively * tries to share with existing pages, but makes a separate copy if * the "write_access" parameter is true in order to avoid the next * page fault. * * As this is called only for pages that do not currently exist, we * do not need to flush old virtual caches or the TLB. * * This is called with the MM semaphore held and the page table * spinlock held. Exit with the spinlock released. */ static int do_no_page(struct mm_struct *mm, struct vm_area_struct *vma, unsigned long address, int write_access, pte_t *page_table, pmd_t *pmd) { struct page * new_page; struct address_space *mapping = NULL; pte_t entry; struct pte_chain *pte_chain; int sequence = 0; int ret; if (!vma->vm_ops || !vma->vm_ops->nopage) return do_anonymous_page(mm, vma, page_table, pmd, write_access, address); pte_unmap(page_table); spin_unlock(&mm->page_table_lock); if (vma->vm_file) { mapping = vma->vm_file->f_dentry->d_inode->i_mapping; sequence = atomic_read(&mapping->truncate_count); } smp_rmb(); /* Prevent CPU from reordering lock-free ->nopage() */ retry: new_page = vma->vm_ops->nopage(vma, address & PAGE_MASK, 0); /* no page was available -- either SIGBUS or OOM */ if (new_page == NOPAGE_SIGBUS) return VM_FAULT_SIGBUS; if (new_page == NOPAGE_OOM) return VM_FAULT_OOM; pte_chain = pte_chain_alloc(GFP_KERNEL); if (!pte_chain) goto oom; /* * Should we do an early C-O-W break? */ if (write_access && !(vma->vm_flags & VM_SHARED)) { struct page * page = alloc_page(GFP_HIGHUSER); if (!page) { page_cache_release(new_page); goto oom; } copy_user_highpage(page, new_page, address); page_cache_release(new_page); lru_cache_add_active(page); new_page = page; } spin_lock(&mm->page_table_lock); /* * For a file-backed vma, someone could have truncated or otherwise * invalidated this page. If invalidate_mmap_range got called, * retry getting the page. */ if (mapping && (unlikely(sequence != atomic_read(&mapping->truncate_count)))) { sequence = atomic_read(&mapping->truncate_count); spin_unlock(&mm->page_table_lock); page_cache_release(new_page); goto retry; } page_table = pte_offset_map(pmd, address); /* * This silly early PAGE_DIRTY setting removes a race * due to the bad i386 page protection. But it's valid * for other architectures too. * * Note that if write_access is true, we either now have * an exclusive copy of the page, or this is a shared mapping, * so we can make it writable and dirty to avoid having to * handle that later. */ /* Only go through if we didn't race with anybody else... */ if (pte_none(*page_table)) { if (!PageReserved(new_page)) ++mm->rss; flush_icache_page(vma, new_page); entry = mk_pte(new_page, vma->vm_page_prot); if (write_access) entry = pte_mkwrite(pte_mkdirty(entry)); set_pte(page_table, entry); pte_chain = page_add_rmap(new_page, page_table, pte_chain); pte_unmap(page_table); } else { /* One of our sibling threads was faster, back out. */ pte_unmap(page_table); page_cache_release(new_page); spin_unlock(&mm->page_table_lock); ret = VM_FAULT_MINOR; goto out; } /* no need to invalidate: a not-present page shouldn't be cached */ update_mmu_cache(vma, address, entry); spin_unlock(&mm->page_table_lock); ret = VM_FAULT_MAJOR; goto out; oom: ret = VM_FAULT_OOM; out: pte_chain_free(pte_chain); return ret; } /* * Fault of a previously existing named mapping. Repopulate the pte * from the encoded file_pte if possible. This enables swappable * nonlinear vmas. */ static int do_file_page(struct mm_struct * mm, struct vm_area_struct * vma, unsigned long address, int write_access, pte_t *pte, pmd_t *pmd) { unsigned long pgoff; int err; BUG_ON(!vma->vm_ops || !vma->vm_ops->nopage); /* * Fall back to the linear mapping if the fs does not support * ->populate: */ if (!vma->vm_ops || !vma->vm_ops->populate || (write_access && !(vma->vm_flags & VM_SHARED))) { pte_clear(pte); return do_no_page(mm, vma, address, write_access, pte, pmd); } pgoff = pte_to_pgoff(*pte); pte_unmap(pte); spin_unlock(&mm->page_table_lock); err = vma->vm_ops->populate(vma, address & PAGE_MASK, PAGE_SIZE, vma->vm_page_prot, pgoff, 0); if (err == -ENOMEM) return VM_FAULT_OOM; if (err) return VM_FAULT_SIGBUS; return VM_FAULT_MAJOR; } /* * These routines also need to handle stuff like marking pages dirty * and/or accessed for architectures that don't do it in hardware (most * RISC architectures). The early dirtying is also good on the i386. * * There is also a hook called "update_mmu_cache()" that architectures * with external mmu caches can use to update those (ie the Sparc or * PowerPC hashed page tables that act as extended TLBs). * * Note the "page_table_lock". It is to protect against kswapd removing * pages from under us. Note that kswapd only ever _removes_ pages, never * adds them. As such, once we have noticed that the page is not present, * we can drop the lock early. * * The adding of pages is protected by the MM semaphore (which we hold), * so we don't need to worry about a page being suddenly been added into * our VM. * * We enter with the pagetable spinlock held, we are supposed to * release it when done. */ static inline int handle_pte_fault(struct mm_struct *mm, struct vm_area_struct * vma, unsigned long address, int write_access, pte_t *pte, pmd_t *pmd) { pte_t entry; entry = *pte; if (!pte_present(entry)) { /* * If it truly wasn't present, we know that kswapd * and the PTE updates will not touch it later. So * drop the lock. */ if (pte_none(entry)) return do_no_page(mm, vma, address, write_access, pte, pmd); if (pte_file(entry)) return do_file_page(mm, vma, address, write_access, pte, pmd); return do_swap_page(mm, vma, address, pte, pmd, entry, write_access); } if (write_access) { if (!pte_write(entry)) return do_wp_page(mm, vma, address, pte, pmd, entry); entry = pte_mkdirty(entry); } entry = pte_mkyoung(entry); establish_pte(vma, address, pte, entry); pte_unmap(pte); spin_unlock(&mm->page_table_lock); return VM_FAULT_MINOR; } /* * By the time we get here, we already hold the mm semaphore */ int handle_mm_fault(struct mm_struct *mm, struct vm_area_struct * vma, unsigned long address, int write_access) { pgd_t *pgd; pmd_t *pmd; __set_current_state(TASK_RUNNING); pgd = pgd_offset(mm, address); inc_page_state(pgfault); if (is_vm_hugetlb_page(vma)) return VM_FAULT_SIGBUS; /* mapping truncation does this. */ /* * We need the page table lock to synchronize with kswapd * and the SMP-safe atomic PTE updates. */ spin_lock(&mm->page_table_lock); pmd = pmd_alloc(mm, pgd, address); if (pmd) { pte_t * pte = pte_alloc_map(mm, pmd, address); if (pte) return handle_pte_fault(mm, vma, address, write_access, pte, pmd); } spin_unlock(&mm->page_table_lock); return VM_FAULT_OOM; } /* * Allocate page middle directory. * * We've already handled the fast-path in-line, and we own the * page table lock. * * On a two-level page table, this ends up actually being entirely * optimized away. */ pmd_t *__pmd_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address) { pmd_t *new; spin_unlock(&mm->page_table_lock); new = pmd_alloc_one(mm, address); spin_lock(&mm->page_table_lock); if (!new) return NULL; /* * Because we dropped the lock, we should re-check the * entry, as somebody else could have populated it.. */ if (pgd_present(*pgd)) { pmd_free(new); goto out; } pgd_populate(mm, pgd, new); out: return pmd_offset(pgd, address); } int make_pages_present(unsigned long addr, unsigned long end) { int ret, len, write; struct vm_area_struct * vma; vma = find_vma(current->mm, addr); write = (vma->vm_flags & VM_WRITE) != 0; if (addr >= end) BUG(); if (end > vma->vm_end) BUG(); len = (end+PAGE_SIZE-1)/PAGE_SIZE-addr/PAGE_SIZE; ret = get_user_pages(current, current->mm, addr, len, write, 0, NULL, NULL); return ret == len ? 0 : -1; } /* * Map a vmalloc()-space virtual address to the physical page. */ struct page * vmalloc_to_page(void * vmalloc_addr) { unsigned long addr = (unsigned long) vmalloc_addr; struct page *page = NULL; pgd_t *pgd = pgd_offset_k(addr); pmd_t *pmd; pte_t *ptep, pte; if (!pgd_none(*pgd)) { pmd = pmd_offset(pgd, addr); if (!pmd_none(*pmd)) { preempt_disable(); ptep = pte_offset_map(pmd, addr); pte = *ptep; if (pte_present(pte)) page = pte_page(pte); pte_unmap(ptep); preempt_enable(); } } return page; }