/* * BRIEF MODULE DESCRIPTION * Au1000 interrupt routines. * * Copyright 2001 MontaVista Software Inc. * Author: MontaVista Software, Inc. * ppopov@mvista.com or source@mvista.com * * This program is free software; you can redistribute it and/or modify it * under the terms of the GNU General Public License as published by the * Free Software Foundation; either version 2 of the License, or (at your * option) any later version. * * THIS SOFTWARE IS PROVIDED ``AS IS'' AND ANY EXPRESS OR IMPLIED * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN * NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF * USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON * ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. * * You should have received a copy of the GNU General Public License along * with this program; if not, write to the Free Software Foundation, Inc., * 675 Mass Ave, Cambridge, MA 02139, USA. */ #include <linux/config.h> #include <linux/errno.h> #include <linux/init.h> #include <linux/irq.h> #include <linux/kernel_stat.h> #include <linux/module.h> #include <linux/signal.h> #include <linux/sched.h> #include <linux/types.h> #include <linux/interrupt.h> #include <linux/ioport.h> #include <linux/timex.h> #include <linux/slab.h> #include <linux/random.h> #include <linux/delay.h> #include <linux/bitops.h> #include <asm/bootinfo.h> #include <asm/io.h> #include <asm/mipsregs.h> #include <asm/system.h> #include <asm/mach-au1x00/au1000.h> #ifdef CONFIG_MIPS_PB1000 #include <asm/mach-pb1x00/pb1000.h> #endif #undef DEBUG_IRQ #ifdef DEBUG_IRQ /* note: prints function name for you */ #define DPRINTK(fmt, args...) printk("%s: " fmt, __FUNCTION__ , ## args) #else #define DPRINTK(fmt, args...) #endif #define EXT_INTC0_REQ0 2 /* IP 2 */ #define EXT_INTC0_REQ1 3 /* IP 3 */ #define EXT_INTC1_REQ0 4 /* IP 4 */ #define EXT_INTC1_REQ1 5 /* IP 5 */ #define MIPS_TIMER_IP 7 /* IP 7 */ extern asmlinkage void au1000_IRQ(void); extern void set_debug_traps(void); extern irq_cpustat_t irq_stat [NR_CPUS]; static void setup_local_irq(unsigned int irq, int type, int int_req); static unsigned int startup_irq(unsigned int irq); static void end_irq(unsigned int irq_nr); static inline void mask_and_ack_level_irq(unsigned int irq_nr); static inline void mask_and_ack_rise_edge_irq(unsigned int irq_nr); static inline void mask_and_ack_fall_edge_irq(unsigned int irq_nr); static inline void mask_and_ack_either_edge_irq(unsigned int irq_nr); inline void local_enable_irq(unsigned int irq_nr); inline void local_disable_irq(unsigned int irq_nr); void (*board_init_irq)(void); #ifdef CONFIG_PM extern void counter0_irq(int irq, void *dev_id, struct pt_regs *regs); #endif static DEFINE_SPINLOCK(irq_lock); static unsigned int startup_irq(unsigned int irq_nr) { local_enable_irq(irq_nr); return 0; } static void shutdown_irq(unsigned int irq_nr) { local_disable_irq(irq_nr); return; } inline void local_enable_irq(unsigned int irq_nr) { if (irq_nr > AU1000_LAST_INTC0_INT) { au_writel(1<<(irq_nr-32), IC1_MASKSET); au_writel(1<<(irq_nr-32), IC1_WAKESET); } else { au_writel(1<<irq_nr, IC0_MASKSET); au_writel(1<<irq_nr, IC0_WAKESET); } au_sync(); } inline void local_disable_irq(unsigned int irq_nr) { if (irq_nr > AU1000_LAST_INTC0_INT) { au_writel(1<<(irq_nr-32), IC1_MASKCLR); au_writel(1<<(irq_nr-32), IC1_WAKECLR); } else { au_writel(1<<irq_nr, IC0_MASKCLR); au_writel(1<<irq_nr, IC0_WAKECLR); } au_sync(); } static inline void mask_and_ack_rise_edge_irq(unsigned int irq_nr) { if (irq_nr > AU1000_LAST_INTC0_INT) { au_writel(1<<(irq_nr-32), IC1_RISINGCLR); au_writel(1<<(irq_nr-32), IC1_MASKCLR); } else { au_writel(1<<irq_nr, IC0_RISINGCLR); au_writel(1<<irq_nr, IC0_MASKCLR); } au_sync(); } static inline void mask_and_ack_fall_edge_irq(unsigned int irq_nr) { if (irq_nr > AU1000_LAST_INTC0_INT) { au_writel(1<<(irq_nr-32), IC1_FALLINGCLR); au_writel(1<<(irq_nr-32), IC1_MASKCLR); } else { au_writel(1<<irq_nr, IC0_FALLINGCLR); au_writel(1<<irq_nr, IC0_MASKCLR); } au_sync(); } static inline void mask_and_ack_either_edge_irq(unsigned int irq_nr) { /* This may assume that we don't get interrupts from * both edges at once, or if we do, that we don't care. */ if (irq_nr > AU1000_LAST_INTC0_INT) { au_writel(1<<(irq_nr-32), IC1_FALLINGCLR); au_writel(1<<(irq_nr-32), IC1_RISINGCLR); au_writel(1<<(irq_nr-32), IC1_MASKCLR); } else { au_writel(1<<irq_nr, IC0_FALLINGCLR); au_writel(1<<irq_nr, IC0_RISINGCLR); au_writel(1<<irq_nr, IC0_MASKCLR); } au_sync(); } static inline void mask_and_ack_level_irq(unsigned int irq_nr) { local_disable_irq(irq_nr); au_sync(); #if defined(CONFIG_MIPS_PB1000) if (irq_nr == AU1000_GPIO_15) { au_writel(0x8000, PB1000_MDR); /* ack int */ au_sync(); } #endif return; } static void end_irq(unsigned int irq_nr) { if (!(irq_desc[irq_nr].status & (IRQ_DISABLED|IRQ_INPROGRESS))) { local_enable_irq(irq_nr); } #if defined(CONFIG_MIPS_PB1000) if (irq_nr == AU1000_GPIO_15) { au_writel(0x4000, PB1000_MDR); /* enable int */ au_sync(); } #endif } unsigned long save_local_and_disable(int controller) { int i; unsigned long flags, mask; spin_lock_irqsave(&irq_lock, flags); if (controller) { mask = au_readl(IC1_MASKSET); for (i=32; i<64; i++) { local_disable_irq(i); } } else { mask = au_readl(IC0_MASKSET); for (i=0; i<32; i++) { local_disable_irq(i); } } spin_unlock_irqrestore(&irq_lock, flags); return mask; } void restore_local_and_enable(int controller, unsigned long mask) { int i; unsigned long flags, new_mask; spin_lock_irqsave(&irq_lock, flags); for (i=0; i<32; i++) { if (mask & (1<<i)) { if (controller) local_enable_irq(i+32); else local_enable_irq(i); } } if (controller) new_mask = au_readl(IC1_MASKSET); else new_mask = au_readl(IC0_MASKSET); spin_unlock_irqrestore(&irq_lock, flags); } static struct hw_interrupt_type rise_edge_irq_type = { .typename = "Au1000 Rise Edge", .startup = startup_irq, .shutdown = shutdown_irq, .enable = local_enable_irq, .disable = local_disable_irq, .ack = mask_and_ack_rise_edge_irq, .end = end_irq, }; static struct hw_interrupt_type fall_edge_irq_type = { .typename = "Au1000 Fall Edge", .startup = startup_irq, .shutdown = shutdown_irq, .enable = local_enable_irq, .disable = local_disable_irq, .ack = mask_and_ack_fall_edge_irq, .end = end_irq, }; static struct hw_interrupt_type either_edge_irq_type = { .typename = "Au1000 Rise or Fall Edge", .startup = startup_irq, .shutdown = shutdown_irq, .enable = local_enable_irq, .disable = local_disable_irq, .ack = mask_and_ack_either_edge_irq, .end = end_irq, }; static struct hw_interrupt_type level_irq_type = { .typename = "Au1000 Level", .startup = startup_irq, .shutdown = shutdown_irq, .enable = local_enable_irq, .disable = local_disable_irq, .ack = mask_and_ack_level_irq, .end = end_irq, }; #ifdef CONFIG_PM void startup_match20_interrupt(void (*handler)(int, void *, struct pt_regs *)) { static struct irqaction action; /* This is a big problem.... since we didn't use request_irq when kernel/irq.c calls probe_irq_xxx this interrupt will be probed for usage. This will end up disabling the device :( Give it a bogus "action" pointer -- this will keep it from getting auto-probed! By setting the status to match that of request_irq() we can avoid it. --cgray */ action.dev_id = handler; action.flags = 0; action.mask = 0; action.name = "Au1xxx TOY"; action.handler = handler; action.next = NULL; irq_desc[AU1000_TOY_MATCH2_INT].action = &action; irq_desc[AU1000_TOY_MATCH2_INT].status &= ~(IRQ_DISABLED | IRQ_AUTODETECT | IRQ_WAITING | IRQ_INPROGRESS); local_enable_irq(AU1000_TOY_MATCH2_INT); } #endif static void setup_local_irq(unsigned int irq_nr, int type, int int_req) { if (irq_nr > AU1000_MAX_INTR) return; /* Config2[n], Config1[n], Config0[n] */ if (irq_nr > AU1000_LAST_INTC0_INT) { switch (type) { case INTC_INT_RISE_EDGE: /* 0:0:1 */ au_writel(1<<(irq_nr-32), IC1_CFG2CLR); au_writel(1<<(irq_nr-32), IC1_CFG1CLR); au_writel(1<<(irq_nr-32), IC1_CFG0SET); irq_desc[irq_nr].handler = &rise_edge_irq_type; break; case INTC_INT_FALL_EDGE: /* 0:1:0 */ au_writel(1<<(irq_nr-32), IC1_CFG2CLR); au_writel(1<<(irq_nr-32), IC1_CFG1SET); au_writel(1<<(irq_nr-32), IC1_CFG0CLR); irq_desc[irq_nr].handler = &fall_edge_irq_type; break; case INTC_INT_RISE_AND_FALL_EDGE: /* 0:1:1 */ au_writel(1<<(irq_nr-32), IC1_CFG2CLR); au_writel(1<<(irq_nr-32), IC1_CFG1SET); au_writel(1<<(irq_nr-32), IC1_CFG0SET); irq_desc[irq_nr].handler = &either_edge_irq_type; break; case INTC_INT_HIGH_LEVEL: /* 1:0:1 */ au_writel(1<<(irq_nr-32), IC1_CFG2SET); au_writel(1<<(irq_nr-32), IC1_CFG1CLR); au_writel(1<<(irq_nr-32), IC1_CFG0SET); irq_desc[irq_nr].handler = &level_irq_type; break; case INTC_INT_LOW_LEVEL: /* 1:1:0 */ au_writel(1<<(irq_nr-32), IC1_CFG2SET); au_writel(1<<(irq_nr-32), IC1_CFG1SET); au_writel(1<<(irq_nr-32), IC1_CFG0CLR); irq_desc[irq_nr].handler = &level_irq_type; break; case INTC_INT_DISABLED: /* 0:0:0 */ au_writel(1<<(irq_nr-32), IC1_CFG0CLR); au_writel(1<<(irq_nr-32), IC1_CFG1CLR); au_writel(1<<(irq_nr-32), IC1_CFG2CLR); break; default: /* disable the interrupt */ printk("unexpected int type %d (irq %d)\n", type, irq_nr); au_writel(1<<(irq_nr-32), IC1_CFG0CLR); au_writel(1<<(irq_nr-32), IC1_CFG1CLR); au_writel(1<<(irq_nr-32), IC1_CFG2CLR); return; } if (int_req) /* assign to interrupt request 1 */ au_writel(1<<(irq_nr-32), IC1_ASSIGNCLR); else /* assign to interrupt request 0 */ au_writel(1<<(irq_nr-32), IC1_ASSIGNSET); au_writel(1<<(irq_nr-32), IC1_SRCSET); au_writel(1<<(irq_nr-32), IC1_MASKCLR); au_writel(1<<(irq_nr-32), IC1_WAKECLR); } else { switch (type) { case INTC_INT_RISE_EDGE: /* 0:0:1 */ au_writel(1<<irq_nr, IC0_CFG2CLR); au_writel(1<<irq_nr, IC0_CFG1CLR); au_writel(1<<irq_nr, IC0_CFG0SET); irq_desc[irq_nr].handler = &rise_edge_irq_type; break; case INTC_INT_FALL_EDGE: /* 0:1:0 */ au_writel(1<<irq_nr, IC0_CFG2CLR); au_writel(1<<irq_nr, IC0_CFG1SET); au_writel(1<<irq_nr, IC0_CFG0CLR); irq_desc[irq_nr].handler = &fall_edge_irq_type; break; case INTC_INT_RISE_AND_FALL_EDGE: /* 0:1:1 */ au_writel(1<<irq_nr, IC0_CFG2CLR); au_writel(1<<irq_nr, IC0_CFG1SET); au_writel(1<<irq_nr, IC0_CFG0SET); irq_desc[irq_nr].handler = &either_edge_irq_type; break; case INTC_INT_HIGH_LEVEL: /* 1:0:1 */ au_writel(1<<irq_nr, IC0_CFG2SET); au_writel(1<<irq_nr, IC0_CFG1CLR); au_writel(1<<irq_nr, IC0_CFG0SET); irq_desc[irq_nr].handler = &level_irq_type; break; case INTC_INT_LOW_LEVEL: /* 1:1:0 */ au_writel(1<<irq_nr, IC0_CFG2SET); au_writel(1<<irq_nr, IC0_CFG1SET); au_writel(1<<irq_nr, IC0_CFG0CLR); irq_desc[irq_nr].handler = &level_irq_type; break; case INTC_INT_DISABLED: /* 0:0:0 */ au_writel(1<<irq_nr, IC0_CFG0CLR); au_writel(1<<irq_nr, IC0_CFG1CLR); au_writel(1<<irq_nr, IC0_CFG2CLR); break; default: /* disable the interrupt */ printk("unexpected int type %d (irq %d)\n", type, irq_nr); au_writel(1<<irq_nr, IC0_CFG0CLR); au_writel(1<<irq_nr, IC0_CFG1CLR); au_writel(1<<irq_nr, IC0_CFG2CLR); return; } if (int_req) /* assign to interrupt request 1 */ au_writel(1<<irq_nr, IC0_ASSIGNCLR); else /* assign to interrupt request 0 */ au_writel(1<<irq_nr, IC0_ASSIGNSET); au_writel(1<<irq_nr, IC0_SRCSET); au_writel(1<<irq_nr, IC0_MASKCLR); au_writel(1<<irq_nr, IC0_WAKECLR); } au_sync(); } void __init arch_init_irq(void) { int i; unsigned long cp0_status; au1xxx_irq_map_t *imp; extern au1xxx_irq_map_t au1xxx_irq_map[]; extern au1xxx_irq_map_t au1xxx_ic0_map[]; extern int au1xxx_nr_irqs; extern int au1xxx_ic0_nr_irqs; cp0_status = read_c0_status(); memset(irq_desc, 0, sizeof(irq_desc)); set_except_vector(0, au1000_IRQ); /* Initialize interrupt controllers to a safe state. */ au_writel(0xffffffff, IC0_CFG0CLR); au_writel(0xffffffff, IC0_CFG1CLR); au_writel(0xffffffff, IC0_CFG2CLR); au_writel(0xffffffff, IC0_MASKCLR); au_writel(0xffffffff, IC0_ASSIGNSET); au_writel(0xffffffff, IC0_WAKECLR); au_writel(0xffffffff, IC0_SRCSET); au_writel(0xffffffff, IC0_FALLINGCLR); au_writel(0xffffffff, IC0_RISINGCLR); au_writel(0x00000000, IC0_TESTBIT); au_writel(0xffffffff, IC1_CFG0CLR); au_writel(0xffffffff, IC1_CFG1CLR); au_writel(0xffffffff, IC1_CFG2CLR); au_writel(0xffffffff, IC1_MASKCLR); au_writel(0xffffffff, IC1_ASSIGNSET); au_writel(0xffffffff, IC1_WAKECLR); au_writel(0xffffffff, IC1_SRCSET); au_writel(0xffffffff, IC1_FALLINGCLR); au_writel(0xffffffff, IC1_RISINGCLR); au_writel(0x00000000, IC1_TESTBIT); /* Initialize IC0, which is fixed per processor. */ imp = au1xxx_ic0_map; for (i=0; i<au1xxx_ic0_nr_irqs; i++) { setup_local_irq(imp->im_irq, imp->im_type, imp->im_request); imp++; } /* Now set up the irq mapping for the board. */ imp = au1xxx_irq_map; for (i=0; i<au1xxx_nr_irqs; i++) { setup_local_irq(imp->im_irq, imp->im_type, imp->im_request); imp++; } set_c0_status(ALLINTS); /* Board specific IRQ initialization. */ if (board_init_irq) (*board_init_irq)(); } /* * Interrupts are nested. Even if an interrupt handler is registered * as "fast", we might get another interrupt before we return from * intcX_reqX_irqdispatch(). */ void intc0_req0_irqdispatch(struct pt_regs *regs) { int irq = 0; static unsigned long intc0_req0 = 0; intc0_req0 |= au_readl(IC0_REQ0INT); if (!intc0_req0) return; #ifdef AU1000_USB_DEV_REQ_INT /* * Because of the tight timing of SETUP token to reply * transactions, the USB devices-side packet complete * interrupt needs the highest priority. */ if ((intc0_req0 & (1<<AU1000_USB_DEV_REQ_INT))) { intc0_req0 &= ~(1<<AU1000_USB_DEV_REQ_INT); do_IRQ(AU1000_USB_DEV_REQ_INT, regs); return; } #endif irq = au_ffs(intc0_req0) - 1; intc0_req0 &= ~(1<<irq); do_IRQ(irq, regs); } void intc0_req1_irqdispatch(struct pt_regs *regs) { int irq = 0; static unsigned long intc0_req1 = 0; intc0_req1 |= au_readl(IC0_REQ1INT); if (!intc0_req1) return; irq = au_ffs(intc0_req1) - 1; intc0_req1 &= ~(1<<irq); do_IRQ(irq, regs); } /* * Interrupt Controller 1: * interrupts 32 - 63 */ void intc1_req0_irqdispatch(struct pt_regs *regs) { int irq = 0; static unsigned long intc1_req0 = 0; intc1_req0 |= au_readl(IC1_REQ0INT); if (!intc1_req0) return; irq = au_ffs(intc1_req0) - 1; intc1_req0 &= ~(1<<irq); irq += 32; do_IRQ(irq, regs); } void intc1_req1_irqdispatch(struct pt_regs *regs) { int irq = 0; static unsigned long intc1_req1 = 0; intc1_req1 |= au_readl(IC1_REQ1INT); if (!intc1_req1) return; irq = au_ffs(intc1_req1) - 1; intc1_req1 &= ~(1<<irq); irq += 32; do_IRQ(irq, regs); } #ifdef CONFIG_PM /* Save/restore the interrupt controller state. * Called from the save/restore core registers as part of the * au_sleep function in power.c.....maybe I should just pm_register() * them instead? */ static uint sleep_intctl_config0[2]; static uint sleep_intctl_config1[2]; static uint sleep_intctl_config2[2]; static uint sleep_intctl_src[2]; static uint sleep_intctl_assign[2]; static uint sleep_intctl_wake[2]; static uint sleep_intctl_mask[2]; void save_au1xxx_intctl(void) { sleep_intctl_config0[0] = au_readl(IC0_CFG0RD); sleep_intctl_config1[0] = au_readl(IC0_CFG1RD); sleep_intctl_config2[0] = au_readl(IC0_CFG2RD); sleep_intctl_src[0] = au_readl(IC0_SRCRD); sleep_intctl_assign[0] = au_readl(IC0_ASSIGNRD); sleep_intctl_wake[0] = au_readl(IC0_WAKERD); sleep_intctl_mask[0] = au_readl(IC0_MASKRD); sleep_intctl_config0[1] = au_readl(IC1_CFG0RD); sleep_intctl_config1[1] = au_readl(IC1_CFG1RD); sleep_intctl_config2[1] = au_readl(IC1_CFG2RD); sleep_intctl_src[1] = au_readl(IC1_SRCRD); sleep_intctl_assign[1] = au_readl(IC1_ASSIGNRD); sleep_intctl_wake[1] = au_readl(IC1_WAKERD); sleep_intctl_mask[1] = au_readl(IC1_MASKRD); } /* For most restore operations, we clear the entire register and * then set the bits we found during the save. */ void restore_au1xxx_intctl(void) { au_writel(0xffffffff, IC0_MASKCLR); au_sync(); au_writel(0xffffffff, IC0_CFG0CLR); au_sync(); au_writel(sleep_intctl_config0[0], IC0_CFG0SET); au_sync(); au_writel(0xffffffff, IC0_CFG1CLR); au_sync(); au_writel(sleep_intctl_config1[0], IC0_CFG1SET); au_sync(); au_writel(0xffffffff, IC0_CFG2CLR); au_sync(); au_writel(sleep_intctl_config2[0], IC0_CFG2SET); au_sync(); au_writel(0xffffffff, IC0_SRCCLR); au_sync(); au_writel(sleep_intctl_src[0], IC0_SRCSET); au_sync(); au_writel(0xffffffff, IC0_ASSIGNCLR); au_sync(); au_writel(sleep_intctl_assign[0], IC0_ASSIGNSET); au_sync(); au_writel(0xffffffff, IC0_WAKECLR); au_sync(); au_writel(sleep_intctl_wake[0], IC0_WAKESET); au_sync(); au_writel(0xffffffff, IC0_RISINGCLR); au_sync(); au_writel(0xffffffff, IC0_FALLINGCLR); au_sync(); au_writel(0x00000000, IC0_TESTBIT); au_sync(); au_writel(0xffffffff, IC1_MASKCLR); au_sync(); au_writel(0xffffffff, IC1_CFG0CLR); au_sync(); au_writel(sleep_intctl_config0[1], IC1_CFG0SET); au_sync(); au_writel(0xffffffff, IC1_CFG1CLR); au_sync(); au_writel(sleep_intctl_config1[1], IC1_CFG1SET); au_sync(); au_writel(0xffffffff, IC1_CFG2CLR); au_sync(); au_writel(sleep_intctl_config2[1], IC1_CFG2SET); au_sync(); au_writel(0xffffffff, IC1_SRCCLR); au_sync(); au_writel(sleep_intctl_src[1], IC1_SRCSET); au_sync(); au_writel(0xffffffff, IC1_ASSIGNCLR); au_sync(); au_writel(sleep_intctl_assign[1], IC1_ASSIGNSET); au_sync(); au_writel(0xffffffff, IC1_WAKECLR); au_sync(); au_writel(sleep_intctl_wake[1], IC1_WAKESET); au_sync(); au_writel(0xffffffff, IC1_RISINGCLR); au_sync(); au_writel(0xffffffff, IC1_FALLINGCLR); au_sync(); au_writel(0x00000000, IC1_TESTBIT); au_sync(); au_writel(sleep_intctl_mask[1], IC1_MASKSET); au_sync(); au_writel(sleep_intctl_mask[0], IC0_MASKSET); au_sync(); } #endif /* CONFIG_PM */