/* * arch/ppc/kernel/process.c * * Derived from "arch/i386/kernel/process.c" * Copyright (C) 1995 Linus Torvalds * * Updated and modified by Cort Dougan (cort@cs.nmt.edu) and * Paul Mackerras (paulus@cs.anu.edu.au) * * PowerPC version * Copyright (C) 1995-1996 Gary Thomas (gdt@linuxppc.org) * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License * as published by the Free Software Foundation; either version * 2 of the License, or (at your option) any later version. * */ #include <linux/config.h> #include <linux/errno.h> #include <linux/sched.h> #include <linux/kernel.h> #include <linux/mm.h> #include <linux/smp.h> #include <linux/smp_lock.h> #include <linux/stddef.h> #include <linux/unistd.h> #include <linux/ptrace.h> #include <linux/slab.h> #include <linux/user.h> #include <linux/elf.h> #include <linux/init.h> #include <linux/prctl.h> #include <linux/init_task.h> #include <linux/module.h> #include <linux/kallsyms.h> #include <asm/pgtable.h> #include <asm/uaccess.h> #include <asm/system.h> #include <asm/io.h> #include <asm/processor.h> #include <asm/mmu.h> #include <asm/prom.h> #include <asm/hardirq.h> #ifdef CONFIG_PPC_ISERIES #include <asm/iSeries/Paca.h> #endif int dump_fpu(struct pt_regs *regs, elf_fpregset_t *fpregs); extern unsigned long _get_SP(void); struct task_struct *last_task_used_math = NULL; struct task_struct *last_task_used_altivec = NULL; static struct fs_struct init_fs = INIT_FS; static struct files_struct init_files = INIT_FILES; static struct signal_struct init_signals = INIT_SIGNALS(init_signals); struct mm_struct init_mm = INIT_MM(init_mm); /* this is 8kB-aligned so we can get to the thread_info struct at the base of it from the stack pointer with 1 integer instruction. */ union thread_union init_thread_union __attribute__((__section__(".data.init_task"))) = { INIT_THREAD_INFO(init_task) }; /* initial task structure */ struct task_struct init_task = INIT_TASK(init_task); /* only used to get secondary processor up */ struct task_struct *current_set[NR_CPUS] = {&init_task, }; static void show_tsk_stack(struct task_struct *tsk, unsigned long sp); #undef SHOW_TASK_SWITCHES #undef CHECK_STACK #if defined(CHECK_STACK) unsigned long kernel_stack_top(struct task_struct *tsk) { return ((unsigned long)tsk) + sizeof(union task_union); } unsigned long task_top(struct task_struct *tsk) { return ((unsigned long)tsk) + sizeof(struct task_struct); } /* check to make sure the kernel stack is healthy */ int check_stack(struct task_struct *tsk) { unsigned long stack_top = kernel_stack_top(tsk); unsigned long tsk_top = task_top(tsk); int ret = 0; #if 0 /* check thread magic */ if ( tsk->thread.magic != THREAD_MAGIC ) { ret |= 1; printk("thread.magic bad: %08x\n", tsk->thread.magic); } #endif if ( !tsk ) printk("check_stack(): tsk bad tsk %p\n",tsk); /* check if stored ksp is bad */ if ( (tsk->thread.ksp > stack_top) || (tsk->thread.ksp < tsk_top) ) { printk("stack out of bounds: %s/%d\n" " tsk_top %08lx ksp %08lx stack_top %08lx\n", tsk->comm,tsk->pid, tsk_top, tsk->thread.ksp, stack_top); ret |= 2; } /* check if stack ptr RIGHT NOW is bad */ if ( (tsk == current) && ((_get_SP() > stack_top ) || (_get_SP() < tsk_top)) ) { printk("current stack ptr out of bounds: %s/%d\n" " tsk_top %08lx sp %08lx stack_top %08lx\n", current->comm,current->pid, tsk_top, _get_SP(), stack_top); ret |= 4; } #if 0 /* check amount of free stack */ for ( i = (unsigned long *)task_top(tsk) ; i < kernel_stack_top(tsk) ; i++ ) { if ( !i ) printk("check_stack(): i = %p\n", i); if ( *i != 0 ) { /* only notify if it's less than 900 bytes */ if ( (i - (unsigned long *)task_top(tsk)) < 900 ) printk("%d bytes free on stack\n", i - task_top(tsk)); break; } } #endif if (ret) { panic("bad kernel stack"); } return(ret); } #endif /* defined(CHECK_STACK) */ #ifdef CONFIG_ALTIVEC int dump_altivec(struct pt_regs *regs, elf_vrregset_t *vrregs) { if (regs->msr & MSR_VEC) giveup_altivec(current); memcpy(vrregs, ¤t->thread.vr[0], sizeof(*vrregs)); return 1; } void enable_kernel_altivec(void) { #ifdef CONFIG_SMP if (current->thread.regs && (current->thread.regs->msr & MSR_VEC)) giveup_altivec(current); else giveup_altivec(NULL); /* just enable AltiVec for kernel - force */ #else giveup_altivec(last_task_used_altivec); #endif /* __SMP __ */ } #endif /* CONFIG_ALTIVEC */ void enable_kernel_fp(void) { #ifdef CONFIG_SMP if (current->thread.regs && (current->thread.regs->msr & MSR_FP)) giveup_fpu(current); else giveup_fpu(NULL); /* just enables FP for kernel */ #else giveup_fpu(last_task_used_math); #endif /* CONFIG_SMP */ } int dump_fpu(struct pt_regs *regs, elf_fpregset_t *fpregs) { if (regs->msr & MSR_FP) giveup_fpu(current); memcpy(fpregs, ¤t->thread.fpr[0], sizeof(*fpregs)); return 1; } void __switch_to(struct task_struct *prev, struct task_struct *new) { struct thread_struct *new_thread, *old_thread; unsigned long s; local_irq_save(s); #if CHECK_STACK check_stack(prev); check_stack(new); #endif #ifdef CONFIG_SMP /* avoid complexity of lazy save/restore of fpu * by just saving it every time we switch out if * this task used the fpu during the last quantum. * * If it tries to use the fpu again, it'll trap and * reload its fp regs. So we don't have to do a restore * every switch, just a save. * -- Cort */ if (prev->thread.regs && (prev->thread.regs->msr & MSR_FP)) giveup_fpu(prev); #ifdef CONFIG_ALTIVEC /* * If the previous thread used altivec in the last quantum * (thus changing altivec regs) then save them. * We used to check the VRSAVE register but not all apps * set it, so we don't rely on it now (and in fact we need * to save & restore VSCR even if VRSAVE == 0). -- paulus * * On SMP we always save/restore altivec regs just to avoid the * complexity of changing processors. * -- Cort */ if ((prev->thread.regs && (prev->thread.regs->msr & MSR_VEC))) giveup_altivec(prev); #endif /* CONFIG_ALTIVEC */ #endif /* CONFIG_SMP */ /* Avoid the trap. On smp this this never happens since * we don't set last_task_used_altivec -- Cort */ if (new->thread.regs && last_task_used_altivec == new) new->thread.regs->msr |= MSR_VEC; new_thread = &new->thread; old_thread = ¤t->thread; _switch(old_thread, new_thread); local_irq_restore(s); } void show_regs(struct pt_regs * regs) { int i, trap; printk("NIP: %08lX LR: %08lX SP: %08lX REGS: %p TRAP: %04lx %s\n", regs->nip, regs->link, regs->gpr[1], regs, regs->trap, print_tainted()); printk("MSR: %08lx EE: %01x PR: %01x FP: %01x ME: %01x IR/DR: %01x%01x\n", regs->msr, regs->msr&MSR_EE ? 1 : 0, regs->msr&MSR_PR ? 1 : 0, regs->msr & MSR_FP ? 1 : 0,regs->msr&MSR_ME ? 1 : 0, regs->msr&MSR_IR ? 1 : 0, regs->msr&MSR_DR ? 1 : 0); trap = TRAP(regs); if (trap == 0x300 || trap == 0x600) printk("DAR: %08lX, DSISR: %08lX\n", regs->dar, regs->dsisr); printk("TASK = %p[%d] '%s' ", current, current->pid, current->comm); printk("Last syscall: %ld ", current->thread.last_syscall); #if defined(CONFIG_4xx) && defined(DCRN_PLB0_BEAR) printk("\nPLB0: bear= 0x%8.8x acr= 0x%8.8x besr= 0x%8.8x\n", mfdcr(DCRN_PLB0_BEAR), mfdcr(DCRN_PLB0_ACR), mfdcr(DCRN_PLB0_BESR)); #endif #if defined(CONFIG_4xx) && defined(DCRN_POB0_BEAR) printk("PLB0 to OPB: bear= 0x%8.8x besr0= 0x%8.8x besr1= 0x%8.8x\n", mfdcr(DCRN_POB0_BEAR), mfdcr(DCRN_POB0_BESR0), mfdcr(DCRN_POB0_BESR1)); #endif #ifdef CONFIG_SMP printk(" CPU: %d", smp_processor_id()); #endif /* CONFIG_SMP */ for (i = 0; i < 32; i++) { long r; if ((i % 8) == 0) printk("\n" KERN_INFO "GPR%02d: ", i); if (__get_user(r, ®s->gpr[i])) break; printk("%08lX ", r); if (i == 12 && !FULL_REGS(regs)) break; } printk("\n"); show_tsk_stack(current, regs->gpr[1]); } void exit_thread(void) { if (last_task_used_math == current) last_task_used_math = NULL; if (last_task_used_altivec == current) last_task_used_altivec = NULL; } void flush_thread(void) { if (last_task_used_math == current) last_task_used_math = NULL; if (last_task_used_altivec == current) last_task_used_altivec = NULL; } void release_thread(struct task_struct *t) { } /* * Copy a thread.. */ int copy_thread(int nr, unsigned long clone_flags, unsigned long usp, unsigned long unused, struct task_struct *p, struct pt_regs *regs) { struct pt_regs *childregs, *kregs; extern void ret_from_fork(void); unsigned long sp = (unsigned long)p->thread_info + THREAD_SIZE; unsigned long childframe; p->user_tid = NULL; CHECK_FULL_REGS(regs); /* Copy registers */ sp -= sizeof(struct pt_regs); childregs = (struct pt_regs *) sp; *childregs = *regs; if ((childregs->msr & MSR_PR) == 0) { /* for kernel thread, set `current' and stackptr in new task */ childregs->gpr[1] = sp + sizeof(struct pt_regs); childregs->gpr[2] = (unsigned long) p; p->thread.regs = NULL; /* no user register state */ } else p->thread.regs = childregs; childregs->gpr[3] = 0; /* Result from fork() */ sp -= STACK_FRAME_OVERHEAD; childframe = sp; /* * The way this works is that at some point in the future * some task will call _switch to switch to the new task. * That will pop off the stack frame created below and start * the new task running at ret_from_fork. The new task will * do some house keeping and then return from the fork or clone * system call, using the stack frame created above. */ sp -= sizeof(struct pt_regs); kregs = (struct pt_regs *) sp; sp -= STACK_FRAME_OVERHEAD; p->thread.ksp = sp; kregs->nip = (unsigned long)ret_from_fork; #ifdef CONFIG_PPC_ISERIES kregs->softEnable = ((struct Paca *)mfspr(SPRG1))->xProcEnabled; #endif /* * copy fpu info - assume lazy fpu switch now always * -- Cort */ if (regs->msr & MSR_FP) { giveup_fpu(current); childregs->msr &= ~(MSR_FP | MSR_FE0 | MSR_FE1); } memcpy(&p->thread.fpr, ¤t->thread.fpr, sizeof(p->thread.fpr)); p->thread.fpscr = current->thread.fpscr; #ifdef CONFIG_ALTIVEC /* * copy altiVec info - assume lazy altiVec switch * - kumar */ if (regs->msr & MSR_VEC) giveup_altivec(current); memcpy(&p->thread.vr, ¤t->thread.vr, sizeof(p->thread.vr)); p->thread.vscr = current->thread.vscr; childregs->msr &= ~MSR_VEC; #endif /* CONFIG_ALTIVEC */ p->thread.last_syscall = -1; return 0; } /* * Set up a thread for executing a new program */ void start_thread(struct pt_regs *regs, unsigned long nip, unsigned long sp) { set_fs(USER_DS); memset(regs->gpr, 0, sizeof(regs->gpr)); regs->ctr = 0; regs->link = 0; regs->xer = 0; regs->ccr = 0; regs->nip = nip; regs->gpr[1] = sp; regs->msr = MSR_USER; if (last_task_used_math == current) last_task_used_math = 0; if (last_task_used_altivec == current) last_task_used_altivec = 0; memset(current->thread.fpr, 0, sizeof(current->thread.fpr)); current->thread.fpscr = 0; #ifdef CONFIG_ALTIVEC memset(current->thread.vr, 0, sizeof(current->thread.vr)); memset(¤t->thread.vscr, 0, sizeof(current->thread.vscr)); current->thread.vrsave = 0; #endif /* CONFIG_ALTIVEC */ } int set_fpexc_mode(struct task_struct *tsk, unsigned int val) { struct pt_regs *regs = tsk->thread.regs; if (val > PR_FP_EXC_PRECISE) return -EINVAL; tsk->thread.fpexc_mode = __pack_fe01(val); if (regs != NULL && (regs->msr & MSR_FP) != 0) regs->msr = (regs->msr & ~(MSR_FE0|MSR_FE1)) | tsk->thread.fpexc_mode; return 0; } int get_fpexc_mode(struct task_struct *tsk, unsigned long adr) { unsigned int val; val = __unpack_fe01(tsk->thread.fpexc_mode); return put_user(val, (unsigned int *) adr); } int sys_clone(int p1, int p2, int p3, int p4, int p5, int p6, struct pt_regs *regs) { struct task_struct *p; CHECK_FULL_REGS(regs); if ((p1 & (CLONE_SETTID | CLONE_CLEARTID)) == 0) p3 = 0; p = do_fork(p1 & ~CLONE_IDLETASK, p2, regs, 0, (int *)p3); return IS_ERR(p) ? PTR_ERR(p) : p->pid; } int sys_fork(int p1, int p2, int p3, int p4, int p5, int p6, struct pt_regs *regs) { struct task_struct *p; CHECK_FULL_REGS(regs); p = do_fork(SIGCHLD, regs->gpr[1], regs, 0, NULL); return IS_ERR(p) ? PTR_ERR(p) : p->pid; } int sys_vfork(int p1, int p2, int p3, int p4, int p5, int p6, struct pt_regs *regs) { struct task_struct *p; CHECK_FULL_REGS(regs); p = do_fork(CLONE_VFORK | CLONE_VM | SIGCHLD, regs->gpr[1], regs, 0, NULL); return IS_ERR(p) ? PTR_ERR(p) : p->pid; } int sys_execve(unsigned long a0, unsigned long a1, unsigned long a2, unsigned long a3, unsigned long a4, unsigned long a5, struct pt_regs *regs) { int error; char * filename; filename = getname((char *) a0); error = PTR_ERR(filename); if (IS_ERR(filename)) goto out; if (regs->msr & MSR_FP) giveup_fpu(current); #ifdef CONFIG_ALTIVEC if (regs->msr & MSR_VEC) giveup_altivec(current); #endif /* CONFIG_ALTIVEC */ error = do_execve(filename, (char **) a1, (char **) a2, regs); if (error == 0) current->ptrace &= ~PT_DTRACE; putname(filename); out: return error; } void show_trace_task(struct task_struct *tsk) { show_tsk_stack(tsk, tsk->thread.ksp); } void dump_stack(void) { show_tsk_stack(current, _get_SP()); } static void show_tsk_stack(struct task_struct *tsk, unsigned long sp) { unsigned long stack_top, prev_sp, ret; int count = 0; unsigned long next_exc = 0; struct pt_regs *regs; extern char ret_from_except, ret_from_except_full, ret_from_syscall; if (tsk == NULL) return; prev_sp = (unsigned long) (tsk->thread_info + 1); stack_top = (unsigned long) tsk->thread_info + THREAD_SIZE; while (count < 16 && sp > prev_sp && sp < stack_top && (sp & 3) == 0) { if (count == 0) { printk("Call trace:"); #if CONFIG_KALLSYMS printk("\n"); #endif } else { if (next_exc) { ret = next_exc; next_exc = 0; } else ret = *(unsigned long *)(sp + 4); printk(" [%08lx] ", ret); #if CONFIG_KALLSYMS print_symbol("%s", ret); printk("\n"); #endif if (ret == (unsigned long) &ret_from_except || ret == (unsigned long) &ret_from_except_full || ret == (unsigned long) &ret_from_syscall) { /* sp + 16 points to an exception frame */ regs = (struct pt_regs *) (sp + 16); if (sp + 16 + sizeof(*regs) <= stack_top) next_exc = regs->nip; } } ++count; sp = *(unsigned long *)sp; } #if !CONFIG_KALLSYMS if (count > 0) printk("\n"); #endif } #if 0 /* * Low level print for debugging - Cort */ int __init ll_printk(const char *fmt, ...) { va_list args; char buf[256]; int i; va_start(args, fmt); i=vsprintf(buf,fmt,args); ll_puts(buf); va_end(args); return i; } int lines = 24, cols = 80; int orig_x = 0, orig_y = 0; void puthex(unsigned long val) { unsigned char buf[10]; int i; for (i = 7; i >= 0; i--) { buf[i] = "0123456789ABCDEF"[val & 0x0F]; val >>= 4; } buf[8] = '\0'; prom_print(buf); } void __init ll_puts(const char *s) { int x,y; char *vidmem = (char *)/*(_ISA_MEM_BASE + 0xB8000) */0xD00B8000; char c; extern int mem_init_done; if ( mem_init_done ) /* assume this means we can printk */ { printk(s); return; } #if 0 if ( have_of ) { prom_print(s); return; } #endif /* * can't ll_puts on chrp without openfirmware yet. * vidmem just needs to be setup for it. * -- Cort */ if ( _machine != _MACH_prep ) return; x = orig_x; y = orig_y; while ( ( c = *s++ ) != '\0' ) { if ( c == '\n' ) { x = 0; if ( ++y >= lines ) { /*scroll();*/ /*y--;*/ y = 0; } } else { vidmem [ ( x + cols * y ) * 2 ] = c; if ( ++x >= cols ) { x = 0; if ( ++y >= lines ) { /*scroll();*/ /*y--;*/ y = 0; } } } } orig_x = x; orig_y = y; } #endif /* * These bracket the sleeping functions.. */ extern void scheduling_functions_start_here(void); extern void scheduling_functions_end_here(void); #define first_sched ((unsigned long) scheduling_functions_start_here) #define last_sched ((unsigned long) scheduling_functions_end_here) unsigned long get_wchan(struct task_struct *p) { unsigned long ip, sp; unsigned long stack_page = (unsigned long) p->thread_info; int count = 0; if (!p || p == current || p->state == TASK_RUNNING) return 0; sp = p->thread.ksp; do { sp = *(unsigned long *)sp; if (sp < stack_page || sp >= stack_page + 8188) return 0; if (count > 0) { ip = *(unsigned long *)(sp + 4); if (ip < first_sched || ip >= last_sched) return ip; } } while (count++ < 16); return 0; }