/* $Id: ebus.c,v 1.64 2001/11/08 04:41:33 davem Exp $ * ebus.c: PCI to EBus bridge device. * * Copyright (C) 1997 Eddie C. Dost (ecd@skynet.be) * Copyright (C) 1999 David S. Miller (davem@redhat.com) */ #include <linux/config.h> #include <linux/module.h> #include <linux/kernel.h> #include <linux/types.h> #include <linux/init.h> #include <linux/slab.h> #include <linux/string.h> #include <asm/system.h> #include <asm/page.h> #include <asm/pbm.h> #include <asm/ebus.h> #include <asm/oplib.h> #include <asm/bpp.h> #include <asm/irq.h> /* EBUS dma library. */ #define EBDMA_CSR 0x00UL /* Control/Status */ #define EBDMA_ADDR 0x04UL /* DMA Address */ #define EBDMA_COUNT 0x08UL /* DMA Count */ #define EBDMA_CSR_INT_PEND 0x00000001 #define EBDMA_CSR_ERR_PEND 0x00000002 #define EBDMA_CSR_DRAIN 0x00000004 #define EBDMA_CSR_INT_EN 0x00000010 #define EBDMA_CSR_RESET 0x00000080 #define EBDMA_CSR_WRITE 0x00000100 #define EBDMA_CSR_EN_DMA 0x00000200 #define EBDMA_CSR_CYC_PEND 0x00000400 #define EBDMA_CSR_DIAG_RD_DONE 0x00000800 #define EBDMA_CSR_DIAG_WR_DONE 0x00001000 #define EBDMA_CSR_EN_CNT 0x00002000 #define EBDMA_CSR_TC 0x00004000 #define EBDMA_CSR_DIS_CSR_DRN 0x00010000 #define EBDMA_CSR_BURST_SZ_MASK 0x000c0000 #define EBDMA_CSR_BURST_SZ_1 0x00080000 #define EBDMA_CSR_BURST_SZ_4 0x00000000 #define EBDMA_CSR_BURST_SZ_8 0x00040000 #define EBDMA_CSR_BURST_SZ_16 0x000c0000 #define EBDMA_CSR_DIAG_EN 0x00100000 #define EBDMA_CSR_DIS_ERR_PEND 0x00400000 #define EBDMA_CSR_TCI_DIS 0x00800000 #define EBDMA_CSR_EN_NEXT 0x01000000 #define EBDMA_CSR_DMA_ON 0x02000000 #define EBDMA_CSR_A_LOADED 0x04000000 #define EBDMA_CSR_NA_LOADED 0x08000000 #define EBDMA_CSR_DEV_ID_MASK 0xf0000000 #define EBUS_DMA_RESET_TIMEOUT 10000 static void __ebus_dma_reset(struct ebus_dma_info *p) { int i; u32 val = 0; writel(EBDMA_CSR_RESET, p->regs + EBDMA_CSR); for (i = EBUS_DMA_RESET_TIMEOUT; i > 0; i--) { val = readl(p->regs + EBDMA_CSR); if (!(val & (EBDMA_CSR_DRAIN | EBDMA_CSR_CYC_PEND))) break; udelay(10); } } static void ebus_dma_irq(int irq, void *dev_id, struct pt_regs *regs) { struct ebus_dma_info *p = dev_id; unsigned long flags; u32 csr; spin_lock_irqsave(&p->lock, flags); csr = readl(p->regs + EBDMA_CSR); writel(csr, p->regs + EBDMA_CSR); spin_unlock_irqrestore(&p->lock, flags); if (csr & EBDMA_CSR_ERR_PEND) { printk(KERN_CRIT "ebus_dma(%s): DMA error!\n", p->name); p->callback(p, EBUS_DMA_EVENT_ERROR, p->client_cookie); } else if (csr & EBDMA_CSR_INT_PEND) { p->callback(p, (csr & EBDMA_CSR_TC) ? EBUS_DMA_EVENT_DMA : EBUS_DMA_EVENT_DEVICE, p->client_cookie); } } int ebus_dma_register(struct ebus_dma_info *p) { if (!p->regs) return -EINVAL; if (p->flags & ~(EBUS_DMA_FLAG_USE_EBDMA_HANDLER)) return -EINVAL; if ((p->flags & EBUS_DMA_FLAG_USE_EBDMA_HANDLER) && !p->callback) return -EINVAL; if (!strlen(p->name)) return -EINVAL; __ebus_dma_reset(p); return 0; } EXPORT_SYMBOL(ebus_dma_register); int ebus_dma_irq_enable(struct ebus_dma_info *p, int on) { unsigned long flags; u32 csr; if (on) { if (p->flags & EBUS_DMA_FLAG_USE_EBDMA_HANDLER) { if (request_irq(p->irq, ebus_dma_irq, SA_SHIRQ, p->name, p)) return -EBUSY; } spin_lock_irqsave(&p->lock, flags); csr = readl(p->regs + EBDMA_CSR); csr |= EBDMA_CSR_INT_EN; writel(csr, p->regs + EBDMA_CSR); spin_unlock_irqrestore(&p->lock, flags); } else { spin_lock_irqsave(&p->lock, flags); csr = readl(p->regs + EBDMA_CSR); csr &= ~EBDMA_CSR_INT_EN; writel(csr, p->regs + EBDMA_CSR); spin_unlock_irqrestore(&p->lock, flags); if (p->flags & EBUS_DMA_FLAG_USE_EBDMA_HANDLER) { free_irq(p->irq, p); } } return 0; } EXPORT_SYMBOL(ebus_dma_irq_enable); void ebus_dma_unregister(struct ebus_dma_info *p) { unsigned long flags; u32 csr; int irq_on = 0; spin_lock_irqsave(&p->lock, flags); csr = readl(p->regs + EBDMA_CSR); if (csr & EBDMA_CSR_INT_EN) { csr &= ~EBDMA_CSR_INT_EN; writel(csr, p->regs + EBDMA_CSR); irq_on = 1; } spin_unlock_irqrestore(&p->lock, flags); if (irq_on) free_irq(p->irq, p); } EXPORT_SYMBOL(ebus_dma_unregister); int ebus_dma_request(struct ebus_dma_info *p, dma_addr_t bus_addr, size_t len) { unsigned long flags; u32 csr; int err; if (len >= (1 << 24)) return -EINVAL; spin_lock_irqsave(&p->lock, flags); csr = readl(p->regs + EBDMA_CSR); err = -EINVAL; if (!(csr & EBDMA_CSR_EN_DMA)) goto out; err = -EBUSY; if (csr & EBDMA_CSR_NA_LOADED) goto out; writel(len, p->regs + EBDMA_COUNT); writel(bus_addr, p->regs + EBDMA_ADDR); err = 0; out: spin_unlock_irqrestore(&p->lock, flags); return err; } EXPORT_SYMBOL(ebus_dma_request); void ebus_dma_prepare(struct ebus_dma_info *p, int write) { unsigned long flags; spin_lock_irqsave(&p->lock, flags); __ebus_dma_reset(p); writel(EBDMA_CSR_INT_EN | ((write) ? EBDMA_CSR_WRITE : 0) | EBDMA_CSR_EN_CNT | EBDMA_CSR_BURST_SZ_16 | EBDMA_CSR_EN_NEXT, p->regs + EBDMA_CSR); spin_unlock_irqrestore(&p->lock, flags); } EXPORT_SYMBOL(ebus_dma_prepare); unsigned int ebus_dma_residue(struct ebus_dma_info *p) { return readl(p->regs + EBDMA_COUNT); } EXPORT_SYMBOL(ebus_dma_residue); unsigned int ebus_dma_addr(struct ebus_dma_info *p) { return readl(p->regs + EBDMA_ADDR); } EXPORT_SYMBOL(ebus_dma_addr); void ebus_dma_enable(struct ebus_dma_info *p, int on) { unsigned long flags; u32 csr; spin_lock_irqsave(&p->lock, flags); csr = readl(p->regs + EBDMA_CSR); if (on) csr |= EBDMA_CSR_EN_DMA; else csr &= ~EBDMA_CSR_EN_DMA; writel(csr, p->regs + EBDMA_CSR); spin_unlock_irqrestore(&p->lock, flags); } EXPORT_SYMBOL(ebus_dma_enable); struct linux_ebus *ebus_chain = 0; #ifdef CONFIG_SUN_AUXIO extern void auxio_probe(void); #endif static inline void *ebus_alloc(size_t size) { void *mem; mem = kmalloc(size, GFP_ATOMIC); if (!mem) panic("ebus_alloc: out of memory"); memset((char *)mem, 0, size); return mem; } static void __init ebus_ranges_init(struct linux_ebus *ebus) { int success; ebus->num_ebus_ranges = 0; success = prom_getproperty(ebus->prom_node, "ranges", (char *)ebus->ebus_ranges, sizeof(ebus->ebus_ranges)); if (success != -1) ebus->num_ebus_ranges = (success/sizeof(struct linux_prom_ebus_ranges)); } static void __init ebus_intmap_init(struct linux_ebus *ebus) { int success; ebus->num_ebus_intmap = 0; success = prom_getproperty(ebus->prom_node, "interrupt-map", (char *)ebus->ebus_intmap, sizeof(ebus->ebus_intmap)); if (success == -1) return; ebus->num_ebus_intmap = (success/sizeof(struct linux_prom_ebus_intmap)); success = prom_getproperty(ebus->prom_node, "interrupt-map-mask", (char *)&ebus->ebus_intmask, sizeof(ebus->ebus_intmask)); if (success == -1) { prom_printf("%s: can't get interrupt-map-mask\n", __FUNCTION__); prom_halt(); } } int __init ebus_intmap_match(struct linux_ebus *ebus, struct linux_prom_registers *reg, int *interrupt) { unsigned int hi, lo, irq; int i; if (!ebus->num_ebus_intmap) return 0; hi = reg->which_io & ebus->ebus_intmask.phys_hi; lo = reg->phys_addr & ebus->ebus_intmask.phys_lo; irq = *interrupt & ebus->ebus_intmask.interrupt; for (i = 0; i < ebus->num_ebus_intmap; i++) { if ((ebus->ebus_intmap[i].phys_hi == hi) && (ebus->ebus_intmap[i].phys_lo == lo) && (ebus->ebus_intmap[i].interrupt == irq)) { *interrupt = ebus->ebus_intmap[i].cinterrupt; return 0; } } return -1; } void __init fill_ebus_child(int node, struct linux_prom_registers *preg, struct linux_ebus_child *dev, int non_standard_regs) { int regs[PROMREG_MAX]; int irqs[PROMREG_MAX]; int i, len; dev->prom_node = node; prom_getstring(node, "name", dev->prom_name, sizeof(dev->prom_name)); printk(" (%s)", dev->prom_name); len = prom_getproperty(node, "reg", (void *)regs, sizeof(regs)); dev->num_addrs = len / sizeof(regs[0]); if (non_standard_regs) { /* This is to handle reg properties which are not * in the parent relative format. One example are * children of the i2c device on CompactPCI systems. * * So, for such devices we just record the property * raw in the child resources. */ for (i = 0; i < dev->num_addrs; i++) dev->resource[i].start = regs[i]; } else { for (i = 0; i < dev->num_addrs; i++) { int rnum = regs[i]; if (rnum >= dev->parent->num_addrs) { prom_printf("UGH: property for %s was %d, need < %d\n", dev->prom_name, len, dev->parent->num_addrs); panic(__FUNCTION__); } dev->resource[i].start = dev->parent->resource[i].start; dev->resource[i].end = dev->parent->resource[i].end; dev->resource[i].flags = IORESOURCE_MEM; dev->resource[i].name = dev->prom_name; } } for (i = 0; i < PROMINTR_MAX; i++) dev->irqs[i] = PCI_IRQ_NONE; len = prom_getproperty(node, "interrupts", (char *)&irqs, sizeof(irqs)); if ((len == -1) || (len == 0)) { dev->num_irqs = 0; /* * Oh, well, some PROMs don't export interrupts * property to children of EBus devices... * * Be smart about PS/2 keyboard and mouse. */ if (!strcmp(dev->parent->prom_name, "8042")) { if (!strcmp(dev->prom_name, "kb_ps2")) { dev->num_irqs = 1; dev->irqs[0] = dev->parent->irqs[0]; } else { dev->num_irqs = 1; dev->irqs[0] = dev->parent->irqs[1]; } } } else { dev->num_irqs = len / sizeof(irqs[0]); for (i = 0; i < dev->num_irqs; i++) { struct pci_pbm_info *pbm = dev->bus->parent; struct pci_controller_info *p = pbm->parent; if (ebus_intmap_match(dev->bus, preg, &irqs[i]) != -1) { dev->irqs[i] = p->irq_build(pbm, dev->bus->self, irqs[i]); } else { /* If we get a bogus interrupt property, just * record the raw value instead of punting. */ dev->irqs[i] = irqs[i]; } } } } static int __init child_regs_nonstandard(struct linux_ebus_device *dev) { if (!strcmp(dev->prom_name, "i2c")) return 1; return 0; } void __init fill_ebus_device(int node, struct linux_ebus_device *dev) { struct linux_prom_registers regs[PROMREG_MAX]; struct linux_ebus_child *child; int irqs[PROMINTR_MAX]; int i, n, len; dev->prom_node = node; prom_getstring(node, "name", dev->prom_name, sizeof(dev->prom_name)); printk(" [%s", dev->prom_name); len = prom_getproperty(node, "reg", (void *)regs, sizeof(regs)); if (len == -1) { dev->num_addrs = 0; goto probe_interrupts; } if (len % sizeof(struct linux_prom_registers)) { prom_printf("UGH: proplen for %s was %d, need multiple of %d\n", dev->prom_name, len, (int)sizeof(struct linux_prom_registers)); prom_halt(); } dev->num_addrs = len / sizeof(struct linux_prom_registers); for (i = 0; i < dev->num_addrs; i++) { /* XXX Learn how to interpret ebus ranges... -DaveM */ if (regs[i].which_io >= 0x10) n = (regs[i].which_io - 0x10) >> 2; else n = regs[i].which_io; dev->resource[i].start = dev->bus->self->resource[n].start; dev->resource[i].start += (unsigned long)regs[i].phys_addr; dev->resource[i].end = (dev->resource[i].start + (unsigned long)regs[i].reg_size - 1UL); dev->resource[i].flags = IORESOURCE_MEM; dev->resource[i].name = dev->prom_name; request_resource(&dev->bus->self->resource[n], &dev->resource[i]); } probe_interrupts: for (i = 0; i < PROMINTR_MAX; i++) dev->irqs[i] = PCI_IRQ_NONE; len = prom_getproperty(node, "interrupts", (char *)&irqs, sizeof(irqs)); if ((len == -1) || (len == 0)) { dev->num_irqs = 0; } else { dev->num_irqs = len / sizeof(irqs[0]); for (i = 0; i < dev->num_irqs; i++) { struct pci_pbm_info *pbm = dev->bus->parent; struct pci_controller_info *p = pbm->parent; if (ebus_intmap_match(dev->bus, ®s[0], &irqs[i]) != -1) { dev->irqs[i] = p->irq_build(pbm, dev->bus->self, irqs[i]); } else { /* If we get a bogus interrupt property, just * record the raw value instead of punting. */ dev->irqs[i] = irqs[i]; } } } if ((node = prom_getchild(node))) { printk(" ->"); dev->children = ebus_alloc(sizeof(struct linux_ebus_child)); child = dev->children; child->next = 0; child->parent = dev; child->bus = dev->bus; fill_ebus_child(node, ®s[0], child, child_regs_nonstandard(dev)); while ((node = prom_getsibling(node))) { child->next = ebus_alloc(sizeof(struct linux_ebus_child)); child = child->next; child->next = 0; child->parent = dev; child->bus = dev->bus; fill_ebus_child(node, ®s[0], child, child_regs_nonstandard(dev)); } } printk("]"); } static struct pci_dev *find_next_ebus(struct pci_dev *start, int *is_rio_p) { struct pci_dev *pdev = start; do { pdev = pci_find_device(PCI_VENDOR_ID_SUN, PCI_ANY_ID, pdev); if (pdev && (pdev->device == PCI_DEVICE_ID_SUN_EBUS || pdev->device == PCI_DEVICE_ID_SUN_RIO_EBUS)) break; } while (pdev != NULL); if (pdev && (pdev->device == PCI_DEVICE_ID_SUN_RIO_EBUS)) *is_rio_p = 1; else *is_rio_p = 0; return pdev; } void __init ebus_init(void) { struct pci_pbm_info *pbm; struct linux_ebus_device *dev; struct linux_ebus *ebus; struct pci_dev *pdev; struct pcidev_cookie *cookie; int nd, ebusnd, is_rio; int num_ebus = 0; if (!pci_present()) return; pdev = find_next_ebus(NULL, &is_rio); if (!pdev) { printk("ebus: No EBus's found.\n"); return; } cookie = pdev->sysdata; ebusnd = cookie->prom_node; ebus_chain = ebus = ebus_alloc(sizeof(struct linux_ebus)); ebus->next = 0; ebus->is_rio = is_rio; while (ebusnd) { /* SUNW,pci-qfe uses four empty ebuses on it. I think we should not consider them here, as they have half of the properties this code expects and once we do PCI hot-plug, we'd have to tweak with the ebus_chain in the runtime after initialization. -jj */ if (!prom_getchild (ebusnd)) { pdev = find_next_ebus(pdev, &is_rio); if (!pdev) { if (ebus == ebus_chain) { ebus_chain = NULL; printk("ebus: No EBus's found.\n"); return; } break; } ebus->is_rio = is_rio; cookie = pdev->sysdata; ebusnd = cookie->prom_node; continue; } printk("ebus%d:", num_ebus); prom_getstring(ebusnd, "name", ebus->prom_name, sizeof(ebus->prom_name)); ebus->index = num_ebus; ebus->prom_node = ebusnd; ebus->self = pdev; ebus->parent = pbm = cookie->pbm; ebus_ranges_init(ebus); ebus_intmap_init(ebus); nd = prom_getchild(ebusnd); if (!nd) goto next_ebus; ebus->devices = ebus_alloc(sizeof(struct linux_ebus_device)); dev = ebus->devices; dev->next = 0; dev->children = 0; dev->bus = ebus; fill_ebus_device(nd, dev); while ((nd = prom_getsibling(nd))) { dev->next = ebus_alloc(sizeof(struct linux_ebus_device)); dev = dev->next; dev->next = 0; dev->children = 0; dev->bus = ebus; fill_ebus_device(nd, dev); } next_ebus: printk("\n"); pdev = find_next_ebus(pdev, &is_rio); if (!pdev) break; cookie = pdev->sysdata; ebusnd = cookie->prom_node; ebus->next = ebus_alloc(sizeof(struct linux_ebus)); ebus = ebus->next; ebus->next = 0; ebus->is_rio = is_rio; ++num_ebus; } #ifdef CONFIG_SUN_AUXIO auxio_probe(); #endif }