Commit 40573588 authored by John Esmet's avatar John Esmet

FT-304 Move the blocktable into its own class, fix tests.

parent 36a5eadb
...@@ -105,10 +105,10 @@ ftnode_get_key_and_fullhash( ...@@ -105,10 +105,10 @@ ftnode_get_key_and_fullhash(
void* extra) void* extra)
{ {
FT ft = (FT) extra; FT ft = (FT) extra;
BLOCKNUM name; BLOCKNUM blocknum;
toku_allocate_blocknum(ft->blocktable, &name, ft); ft->blocktable.allocate_blocknum(&blocknum, ft);
*cachekey = name; *cachekey = blocknum;
*fullhash = toku_cachetable_hash(ft->cf, name); *fullhash = toku_cachetable_hash(ft->cf, blocknum);
} }
void void
...@@ -116,7 +116,7 @@ cachetable_put_empty_node_with_dep_nodes( ...@@ -116,7 +116,7 @@ cachetable_put_empty_node_with_dep_nodes(
FT ft, FT ft,
uint32_t num_dependent_nodes, uint32_t num_dependent_nodes,
FTNODE* dependent_nodes, FTNODE* dependent_nodes,
BLOCKNUM* name, //output BLOCKNUM* blocknum, //output
uint32_t* fullhash, //output uint32_t* fullhash, //output
FTNODE* result) FTNODE* result)
{ {
...@@ -138,7 +138,7 @@ cachetable_put_empty_node_with_dep_nodes( ...@@ -138,7 +138,7 @@ cachetable_put_empty_node_with_dep_nodes(
num_dependent_nodes, num_dependent_nodes,
dependent_pairs, dependent_pairs,
dependent_dirty_bits, dependent_dirty_bits,
name, blocknum,
fullhash, fullhash,
toku_ftnode_save_ct_pair); toku_ftnode_save_ct_pair);
*result = new_node; *result = new_node;
...@@ -154,13 +154,13 @@ create_new_ftnode_with_dep_nodes( ...@@ -154,13 +154,13 @@ create_new_ftnode_with_dep_nodes(
FTNODE* dependent_nodes) FTNODE* dependent_nodes)
{ {
uint32_t fullhash = 0; uint32_t fullhash = 0;
BLOCKNUM name; BLOCKNUM blocknum;
cachetable_put_empty_node_with_dep_nodes( cachetable_put_empty_node_with_dep_nodes(
ft, ft,
num_dependent_nodes, num_dependent_nodes,
dependent_nodes, dependent_nodes,
&name, &blocknum,
&fullhash, &fullhash,
result); result);
...@@ -171,7 +171,7 @@ create_new_ftnode_with_dep_nodes( ...@@ -171,7 +171,7 @@ create_new_ftnode_with_dep_nodes(
toku_initialize_empty_ftnode( toku_initialize_empty_ftnode(
*result, *result,
name, blocknum,
height, height,
n_children, n_children,
ft->h->layout_version, ft->h->layout_version,
......
...@@ -1338,7 +1338,7 @@ maybe_merge_pinned_nodes( ...@@ -1338,7 +1338,7 @@ maybe_merge_pinned_nodes(
static void merge_remove_key_callback(BLOCKNUM *bp, bool for_checkpoint, void *extra) { static void merge_remove_key_callback(BLOCKNUM *bp, bool for_checkpoint, void *extra) {
FT ft = (FT) extra; FT ft = (FT) extra;
toku_free_blocknum(ft->blocktable, bp, ft, for_checkpoint); ft->blocktable.free_blocknum(bp, ft, for_checkpoint);
} }
// //
...@@ -1517,7 +1517,7 @@ void toku_ft_flush_some_child(FT ft, FTNODE parent, struct flusher_advice *fa) ...@@ -1517,7 +1517,7 @@ void toku_ft_flush_some_child(FT ft, FTNODE parent, struct flusher_advice *fa)
// get the child into memory // get the child into memory
BLOCKNUM targetchild = BP_BLOCKNUM(parent, childnum); BLOCKNUM targetchild = BP_BLOCKNUM(parent, childnum);
toku_verify_blocknum_allocated(ft->blocktable, targetchild); ft->blocktable.verify_blocknum_allocated(targetchild);
uint32_t childfullhash = compute_child_fullhash(ft->cf, parent, childnum); uint32_t childfullhash = compute_child_fullhash(ft->cf, parent, childnum);
FTNODE child; FTNODE child;
struct ftnode_fetch_extra bfe; struct ftnode_fetch_extra bfe;
......
...@@ -101,6 +101,7 @@ PATENT RIGHTS GRANT: ...@@ -101,6 +101,7 @@ PATENT RIGHTS GRANT:
#include "ft/ft.h" #include "ft/ft.h"
#include "ft/ft-ops.h" #include "ft/ft-ops.h"
#include "ft/node.h" #include "ft/node.h"
#include "ft/serialize/block_table.h"
#include "ft/txn/rollback.h" #include "ft/txn/rollback.h"
// Symbol TOKUDB_REVISION is not defined by fractal-tree makefiles, so // Symbol TOKUDB_REVISION is not defined by fractal-tree makefiles, so
...@@ -111,7 +112,6 @@ PATENT RIGHTS GRANT: ...@@ -111,7 +112,6 @@ PATENT RIGHTS GRANT:
#error #error
#endif #endif
struct block_table;
struct ft_search; struct ft_search;
enum { FT_DEFAULT_FANOUT = 16 }; enum { FT_DEFAULT_FANOUT = 16 };
...@@ -225,7 +225,7 @@ struct ft { ...@@ -225,7 +225,7 @@ struct ft {
// These are not read-only: // These are not read-only:
// protected by blocktable lock // protected by blocktable lock
struct block_table *blocktable; struct block_table blocktable;
// protected by atomic builtins // protected by atomic builtins
STAT64INFO_S in_memory_stats; STAT64INFO_S in_memory_stats;
......
...@@ -1927,7 +1927,7 @@ static void push_something_in_subtree( ...@@ -1927,7 +1927,7 @@ static void push_something_in_subtree(
{ {
const BLOCKNUM child_blocknum = BP_BLOCKNUM(subtree_root, childnum); const BLOCKNUM child_blocknum = BP_BLOCKNUM(subtree_root, childnum);
toku_verify_blocknum_allocated(ft->blocktable, child_blocknum); ft->blocktable.verify_blocknum_allocated(child_blocknum);
const uint32_t child_fullhash = toku_cachetable_hash(ft->cf, child_blocknum); const uint32_t child_fullhash = toku_cachetable_hash(ft->cf, child_blocknum);
FTNODE child; FTNODE child;
...@@ -3088,10 +3088,11 @@ ft_handle_open(FT_HANDLE ft_h, const char *fname_in_env, int is_create, int only ...@@ -3088,10 +3088,11 @@ ft_handle_open(FT_HANDLE ft_h, const char *fname_in_env, int is_create, int only
toku_txn_maybe_note_ft(txn, ft); toku_txn_maybe_note_ft(txn, ft);
} }
//Opening an ft may restore to previous checkpoint. Truncate if necessary. // Opening an ft may restore to previous checkpoint.
// Truncate if necessary.
{ {
int fd = toku_cachefile_get_fd (ft->cf); int fd = toku_cachefile_get_fd (ft->cf);
toku_maybe_truncate_file_on_open(ft->blocktable, fd); ft->blocktable.maybe_truncate_file_on_open(fd);
} }
r = 0; r = 0;
...@@ -4528,17 +4529,15 @@ toku_dump_ftnode (FILE *file, FT_HANDLE ft_handle, BLOCKNUM blocknum, int depth, ...@@ -4528,17 +4529,15 @@ toku_dump_ftnode (FILE *file, FT_HANDLE ft_handle, BLOCKNUM blocknum, int depth,
return result; return result;
} }
int toku_dump_ft (FILE *f, FT_HANDLE ft_handle) { int toku_dump_ft(FILE *f, FT_HANDLE ft_handle) {
int r; FT ft = ft_handle->ft;
assert(ft_handle->ft); invariant_notnull(ft);
toku_dump_translation_table(f, ft_handle->ft->blocktable); ft->blocktable.dump_translation_table(f);
{
uint32_t fullhash = 0; uint32_t fullhash = 0;
CACHEKEY root_key; CACHEKEY root_key;
toku_calculate_root_offset_pointer(ft_handle->ft, &root_key, &fullhash); toku_calculate_root_offset_pointer(ft_handle->ft, &root_key, &fullhash);
r = toku_dump_ftnode(f, ft_handle, root_key, 0, 0, 0); return toku_dump_ftnode(f, ft_handle, root_key, 0, 0, 0);
}
return r;
} }
int toku_ft_layer_init(void) { int toku_ft_layer_init(void) {
...@@ -4630,18 +4629,15 @@ void toku_ft_unlink(FT_HANDLE handle) { ...@@ -4630,18 +4629,15 @@ void toku_ft_unlink(FT_HANDLE handle) {
toku_cachefile_unlink_on_close(cf); toku_cachefile_unlink_on_close(cf);
} }
int int toku_ft_get_fragmentation(FT_HANDLE ft_handle, TOKU_DB_FRAGMENTATION report) {
toku_ft_get_fragmentation(FT_HANDLE ft_handle, TOKU_DB_FRAGMENTATION report) {
int r;
int fd = toku_cachefile_get_fd(ft_handle->ft->cf); int fd = toku_cachefile_get_fd(ft_handle->ft->cf);
toku_ft_lock(ft_handle->ft); toku_ft_lock(ft_handle->ft);
int64_t file_size; int64_t file_size;
r = toku_os_get_file_size(fd, &file_size); int r = toku_os_get_file_size(fd, &file_size);
if (r==0) { if (r == 0) {
report->file_size_bytes = file_size; report->file_size_bytes = file_size;
toku_block_table_get_fragmentation_unlocked(ft_handle->ft->blocktable, report); ft_handle->ft->blocktable.get_fragmentation_unlocked(report);
} }
toku_ft_unlock(ft_handle->ft); toku_ft_unlock(ft_handle->ft);
return r; return r;
......
...@@ -121,7 +121,7 @@ ft_destroy(FT ft) { ...@@ -121,7 +121,7 @@ ft_destroy(FT ft) {
//header and checkpoint_header have same Blocktable pointer //header and checkpoint_header have same Blocktable pointer
//cannot destroy since it is still in use by CURRENT //cannot destroy since it is still in use by CURRENT
assert(ft->h->type == FT_CURRENT); assert(ft->h->type == FT_CURRENT);
toku_blocktable_destroy(&ft->blocktable); ft->blocktable.destroy();
ft->cmp.destroy(); ft->cmp.destroy();
toku_destroy_dbt(&ft->descriptor.dbt); toku_destroy_dbt(&ft->descriptor.dbt);
toku_destroy_dbt(&ft->cmp_descriptor.dbt); toku_destroy_dbt(&ft->cmp_descriptor.dbt);
...@@ -203,7 +203,7 @@ static void ft_begin_checkpoint (LSN checkpoint_lsn, void *header_v) { ...@@ -203,7 +203,7 @@ static void ft_begin_checkpoint (LSN checkpoint_lsn, void *header_v) {
assert(ft->checkpoint_header == NULL); assert(ft->checkpoint_header == NULL);
ft_copy_for_checkpoint_unlocked(ft, checkpoint_lsn); ft_copy_for_checkpoint_unlocked(ft, checkpoint_lsn);
ft->h->dirty = 0; // this is only place this bit is cleared (in currentheader) ft->h->dirty = 0; // this is only place this bit is cleared (in currentheader)
toku_block_translation_note_start_checkpoint_unlocked(ft->blocktable); ft->blocktable.note_start_checkpoint_unlocked();
toku_ft_unlock (ft); toku_ft_unlock (ft);
} }
...@@ -239,8 +239,6 @@ ft_hack_highest_unused_msn_for_upgrade_for_checkpoint(FT ft) { ...@@ -239,8 +239,6 @@ ft_hack_highest_unused_msn_for_upgrade_for_checkpoint(FT ft) {
static void ft_checkpoint (CACHEFILE cf, int fd, void *header_v) { static void ft_checkpoint (CACHEFILE cf, int fd, void *header_v) {
FT ft = (FT) header_v; FT ft = (FT) header_v;
FT_HEADER ch = ft->checkpoint_header; FT_HEADER ch = ft->checkpoint_header;
//printf("%s:%d allocated_limit=%lu writing queue to %lu\n", __FILE__, __LINE__,
// block_allocator_allocated_limit(h->block_allocator), h->unused_blocks.b*h->nodesize);
assert(ch); assert(ch);
assert(ch->type == FT_CHECKPOINT_INPROGRESS); assert(ch->type == FT_CHECKPOINT_INPROGRESS);
if (ch->dirty) { // this is only place this bit is tested (in checkpoint_header) if (ch->dirty) { // this is only place this bit is tested (in checkpoint_header)
...@@ -255,16 +253,15 @@ static void ft_checkpoint (CACHEFILE cf, int fd, void *header_v) { ...@@ -255,16 +253,15 @@ static void ft_checkpoint (CACHEFILE cf, int fd, void *header_v) {
ft_hack_highest_unused_msn_for_upgrade_for_checkpoint(ft); ft_hack_highest_unused_msn_for_upgrade_for_checkpoint(ft);
// write translation and header to disk (or at least to OS internal buffer) // write translation and header to disk (or at least to OS internal buffer)
toku_serialize_ft_to(fd, ch, ft->blocktable, ft->cf); toku_serialize_ft_to(fd, ch, &ft->blocktable, ft->cf);
ch->dirty = 0; // this is only place this bit is cleared (in checkpoint_header) ch->dirty = 0; // this is only place this bit is cleared (in checkpoint_header)
// fsync the cachefile // fsync the cachefile
toku_cachefile_fsync(cf); toku_cachefile_fsync(cf);
ft->h->checkpoint_count++; // checkpoint succeeded, next checkpoint will save to alternate header location ft->h->checkpoint_count++; // checkpoint succeeded, next checkpoint will save to alternate header location
ft->h->checkpoint_lsn = ch->checkpoint_lsn; //Header updated. ft->h->checkpoint_lsn = ch->checkpoint_lsn; //Header updated.
} } else {
else { ft->blocktable.note_skipped_checkpoint();
toku_block_translation_note_skipped_checkpoint(ft->blocktable);
} }
} }
...@@ -272,14 +269,12 @@ static void ft_checkpoint (CACHEFILE cf, int fd, void *header_v) { ...@@ -272,14 +269,12 @@ static void ft_checkpoint (CACHEFILE cf, int fd, void *header_v) {
// free unused disk space // free unused disk space
// (i.e. tell BlockAllocator to liberate blocks used by previous checkpoint). // (i.e. tell BlockAllocator to liberate blocks used by previous checkpoint).
// Must have access to fd (protected) // Must have access to fd (protected)
static void ft_end_checkpoint (CACHEFILE UU(cachefile), int fd, void *header_v) { static void ft_end_checkpoint(CACHEFILE UU(cf), int fd, void *header_v) {
FT ft = (FT) header_v; FT ft = (FT) header_v;
assert(ft->h->type == FT_CURRENT); assert(ft->h->type == FT_CURRENT);
toku_block_translation_note_end_checkpoint(ft->blocktable, fd); ft->blocktable.note_end_checkpoint(fd);
if (ft->checkpoint_header) {
toku_free(ft->checkpoint_header); toku_free(ft->checkpoint_header);
ft->checkpoint_header = NULL; ft->checkpoint_header = nullptr;
}
} }
// maps to cf->close_userdata // maps to cf->close_userdata
...@@ -407,7 +402,7 @@ static void ft_init(FT ft, FT_OPTIONS options, CACHEFILE cf) { ...@@ -407,7 +402,7 @@ static void ft_init(FT ft, FT_OPTIONS options, CACHEFILE cf) {
ft_note_pin_by_checkpoint, ft_note_pin_by_checkpoint,
ft_note_unpin_by_checkpoint); ft_note_unpin_by_checkpoint);
toku_block_verify_no_free_blocknums(ft->blocktable); ft->blocktable.verify_no_free_blocknums();
} }
...@@ -456,8 +451,8 @@ void toku_ft_create(FT *ftp, FT_OPTIONS options, CACHEFILE cf, TOKUTXN txn) { ...@@ -456,8 +451,8 @@ void toku_ft_create(FT *ftp, FT_OPTIONS options, CACHEFILE cf, TOKUTXN txn) {
toku_ft_init_reflock(ft); toku_ft_init_reflock(ft);
// Assign blocknum for root block, also dirty the header // Assign blocknum for root block, also dirty the header
toku_blocktable_create_new(&ft->blocktable); ft->blocktable.create();
toku_allocate_blocknum(ft->blocktable, &ft->h->root_blocknum, ft); ft->blocktable.allocate_blocknum(&ft->h->root_blocknum, ft);
ft_init(ft, options, cf); ft_init(ft, options, cf);
...@@ -875,14 +870,13 @@ toku_ft_stat64 (FT ft, struct ftstat64_s *s) { ...@@ -875,14 +870,13 @@ toku_ft_stat64 (FT ft, struct ftstat64_s *s) {
s->verify_time_sec = ft->h->time_of_last_verification; s->verify_time_sec = ft->h->time_of_last_verification;
} }
void void toku_ft_get_fractal_tree_info64(FT ft, struct ftinfo64 *info) {
toku_ft_get_fractal_tree_info64(FT ft, struct ftinfo64 *s) { ft->blocktable.get_info64(info);
toku_blocktable_get_info64(ft->blocktable, s);
} }
int toku_ft_iterate_fractal_tree_block_map(FT ft, int (*iter)(uint64_t,int64_t,int64_t,int64_t,int64_t,void*), void *iter_extra) { int toku_ft_iterate_fractal_tree_block_map(FT ft, int (*iter)(uint64_t,int64_t,int64_t,int64_t,int64_t,void*), void *iter_extra) {
uint64_t this_checkpoint_count = ft->h->checkpoint_count; uint64_t this_checkpoint_count = ft->h->checkpoint_count;
return toku_blocktable_iterate_translation_tables(ft->blocktable, this_checkpoint_count, iter, iter_extra); return ft->blocktable.iterate_translation_tables(this_checkpoint_count, iter, iter_extra);
} }
void void
...@@ -908,7 +902,7 @@ toku_ft_update_descriptor_with_fd(FT ft, DESCRIPTOR desc, int fd) { ...@@ -908,7 +902,7 @@ toku_ft_update_descriptor_with_fd(FT ft, DESCRIPTOR desc, int fd) {
// make space for the new descriptor and write it out to disk // make space for the new descriptor and write it out to disk
DISKOFF offset, size; DISKOFF offset, size;
size = toku_serialize_descriptor_size(desc) + 4; size = toku_serialize_descriptor_size(desc) + 4;
toku_realloc_descriptor_on_disk(ft->blocktable, size, &offset, ft, fd); ft->blocktable.realloc_descriptor_on_disk(size, &offset, ft, fd);
toku_serialize_descriptor_contents_to_fd(fd, desc, offset); toku_serialize_descriptor_contents_to_fd(fd, desc, offset);
// cleanup the old descriptor and set the in-memory descriptor to the new one // cleanup the old descriptor and set the in-memory descriptor to the new one
...@@ -1086,7 +1080,7 @@ void toku_ft_get_garbage(FT ft, uint64_t *total_space, uint64_t *used_space) { ...@@ -1086,7 +1080,7 @@ void toku_ft_get_garbage(FT ft, uint64_t *total_space, uint64_t *used_space) {
.total_space = 0, .total_space = 0,
.used_space = 0 .used_space = 0
}; };
toku_blocktable_iterate(ft->blocktable, TRANSLATION_CHECKPOINTED, garbage_helper, &info, true, true); ft->blocktable.iterate(block_table::TRANSLATION_CHECKPOINTED, garbage_helper, &info, true, true);
*total_space = info.total_space; *total_space = info.total_space;
*used_space = info.used_space; *used_space = info.used_space;
} }
......
...@@ -111,6 +111,9 @@ void toku_ft_destroy_reflock(FT ft); ...@@ -111,6 +111,9 @@ void toku_ft_destroy_reflock(FT ft);
void toku_ft_grab_reflock(FT ft); void toku_ft_grab_reflock(FT ft);
void toku_ft_release_reflock(FT ft); void toku_ft_release_reflock(FT ft);
void toku_ft_lock(struct ft *ft);
void toku_ft_unlock(struct ft *ft);
void toku_ft_create(FT *ftp, FT_OPTIONS options, CACHEFILE cf, TOKUTXN txn); void toku_ft_create(FT *ftp, FT_OPTIONS options, CACHEFILE cf, TOKUTXN txn);
void toku_ft_free (FT ft); void toku_ft_free (FT ft);
......
...@@ -269,32 +269,30 @@ bool toku_logger_rollback_is_open (TOKULOGGER logger) { ...@@ -269,32 +269,30 @@ bool toku_logger_rollback_is_open (TOKULOGGER logger) {
#define MAX_CACHED_ROLLBACK_NODES 4096 #define MAX_CACHED_ROLLBACK_NODES 4096
void void toku_logger_initialize_rollback_cache(TOKULOGGER logger, FT ft) {
toku_logger_initialize_rollback_cache(TOKULOGGER logger, FT ft) { ft->blocktable.free_unused_blocknums(ft->h->root_blocknum);
toku_free_unused_blocknums(ft->blocktable, ft->h->root_blocknum);
logger->rollback_cache.init(MAX_CACHED_ROLLBACK_NODES); logger->rollback_cache.init(MAX_CACHED_ROLLBACK_NODES);
} }
int int toku_logger_open_rollback(TOKULOGGER logger, CACHETABLE cachetable, bool create) {
toku_logger_open_rollback(TOKULOGGER logger, CACHETABLE cachetable, bool create) {
assert(logger->is_open); assert(logger->is_open);
assert(!logger->rollback_cachefile); assert(!logger->rollback_cachefile);
FT_HANDLE t = NULL; // Note, there is no DB associated with this FT. FT_HANDLE ft_handle = nullptr; // Note, there is no DB associated with this FT.
toku_ft_handle_create(&t); toku_ft_handle_create(&ft_handle);
int r = toku_ft_handle_open(t, toku_product_name_strings.rollback_cachefile, create, create, cachetable, nullptr); int r = toku_ft_handle_open(ft_handle, toku_product_name_strings.rollback_cachefile, create, create, cachetable, nullptr);
if (r == 0) { if (r == 0) {
logger->rollback_cachefile = t->ft->cf; FT ft = ft_handle->ft;
toku_logger_initialize_rollback_cache(logger, t->ft); logger->rollback_cachefile = ft->cf;
toku_logger_initialize_rollback_cache(logger, ft_handle->ft);
//Verify it is empty
//Must have no data blocks (rollback logs or otherwise). // Verify it is empty
toku_block_verify_no_data_blocks_except_root(t->ft->blocktable, t->ft->h->root_blocknum); // Must have no data blocks (rollback logs or otherwise).
bool is_empty; ft->blocktable.verify_no_data_blocks_except_root(ft->h->root_blocknum);
is_empty = toku_ft_is_empty_fast(t); bool is_empty = toku_ft_is_empty_fast(ft_handle);
assert(is_empty); assert(is_empty);
} else { } else {
toku_ft_handle_close(t); toku_ft_handle_close(ft_handle);
} }
return r; return r;
} }
...@@ -314,9 +312,9 @@ void toku_logger_close_rollback_check_empty(TOKULOGGER logger, bool clean_shutdo ...@@ -314,9 +312,9 @@ void toku_logger_close_rollback_check_empty(TOKULOGGER logger, bool clean_shutdo
if (clean_shutdown) { if (clean_shutdown) {
//Verify it is safe to close it. //Verify it is safe to close it.
assert(!ft->h->dirty); //Must not be dirty. assert(!ft->h->dirty); //Must not be dirty.
toku_free_unused_blocknums(ft->blocktable, ft->h->root_blocknum); ft->blocktable.free_unused_blocknums(ft->h->root_blocknum);
//Must have no data blocks (rollback logs or otherwise). // Must have no data blocks (rollback logs or otherwise).
toku_block_verify_no_data_blocks_except_root(ft->blocktable, ft->h->root_blocknum); ft->blocktable.verify_no_data_blocks_except_root(ft->h->root_blocknum);
assert(!ft->h->dirty); assert(!ft->h->dirty);
} else { } else {
ft->h->dirty = 0; ft->h->dirty = 0;
......
...@@ -114,7 +114,7 @@ static inline bool ba_trace_enabled() { ...@@ -114,7 +114,7 @@ static inline bool ba_trace_enabled() {
#endif #endif
} }
void block_allocator::create(uint64_t reserve_at_beginning, uint64_t alignment) { void block_allocator::_create_internal(uint64_t reserve_at_beginning, uint64_t alignment) {
// the alignment must be at least 512 and aligned with 512 to work with direct I/O // the alignment must be at least 512 and aligned with 512 to work with direct I/O
assert(alignment >= 512 && (alignment % 512) == 0); assert(alignment >= 512 && (alignment % 512) == 0);
...@@ -127,7 +127,10 @@ void block_allocator::create(uint64_t reserve_at_beginning, uint64_t alignment) ...@@ -127,7 +127,10 @@ void block_allocator::create(uint64_t reserve_at_beginning, uint64_t alignment)
_strategy = BA_STRATEGY_FIRST_FIT; _strategy = BA_STRATEGY_FIRST_FIT;
VALIDATE(); VALIDATE();
}
void block_allocator::create(uint64_t reserve_at_beginning, uint64_t alignment) {
_create_internal(reserve_at_beginning, alignment);
if (ba_trace_enabled()) { if (ba_trace_enabled()) {
fprintf(stderr, "ba_trace_create %p\n", this); fprintf(stderr, "ba_trace_create %p\n", this);
} }
...@@ -161,41 +164,6 @@ void block_allocator::grow_blocks_array() { ...@@ -161,41 +164,6 @@ void block_allocator::grow_blocks_array() {
grow_blocks_array_by(1); grow_blocks_array_by(1);
} }
void block_allocator::merge_blockpairs_into(uint64_t d, struct blockpair dst[],
uint64_t s, const struct blockpair src[])
{
uint64_t tail = d+s;
while (d > 0 && s > 0) {
struct blockpair *dp = &dst[d - 1];
struct blockpair const *sp = &src[s - 1];
struct blockpair *tp = &dst[tail - 1];
assert(tail > 0);
if (dp->offset > sp->offset) {
*tp = *dp;
d--;
tail--;
} else {
*tp = *sp;
s--;
tail--;
}
}
while (d > 0) {
struct blockpair *dp = &dst[d - 1];
struct blockpair *tp = &dst[tail - 1];
*tp = *dp;
d--;
tail--;
}
while (s > 0) {
struct blockpair const *sp = &src[s - 1];
struct blockpair *tp = &dst[tail - 1];
*tp = *sp;
s--;
tail--;
}
}
int block_allocator::compare_blockpairs(const void *av, const void *bv) { int block_allocator::compare_blockpairs(const void *av, const void *bv) {
const struct blockpair *a = (const struct blockpair *) av; const struct blockpair *a = (const struct blockpair *) av;
const struct blockpair *b = (const struct blockpair *) bv; const struct blockpair *b = (const struct blockpair *) bv;
...@@ -208,30 +176,25 @@ int block_allocator::compare_blockpairs(const void *av, const void *bv) { ...@@ -208,30 +176,25 @@ int block_allocator::compare_blockpairs(const void *av, const void *bv) {
} }
} }
// See the documentation in block_allocator.h void block_allocator::create_from_blockpairs(uint64_t reserve_at_beginning, uint64_t alignment,
void block_allocator::alloc_blocks_at(uint64_t n_blocks, struct blockpair pairs[]) { struct blockpair *pairs, uint64_t n_blocks) {
VALIDATE(); _create_internal(reserve_at_beginning, alignment);
qsort(pairs, n_blocks, sizeof(*pairs), compare_blockpairs);
for (uint64_t i = 0; i < n_blocks; i++) { for (uint64_t i = 0; i < _n_blocks; i++) {
assert(pairs[i].offset >= _reserve_at_beginning);
assert(pairs[i].offset % _alignment == 0);
_n_bytes_in_use += pairs[i].size;
// Allocator does not support size 0 blocks. See block_allocator_free_block. // Allocator does not support size 0 blocks. See block_allocator_free_block.
invariant(pairs[i].size > 0); invariant(pairs[i].size > 0);
invariant(pairs[i].offset >= _reserve_at_beginning);
invariant(pairs[i].offset % _alignment == 0);
_n_bytes_in_use += pairs[i].size;
} }
grow_blocks_array_by(n_blocks); _n_blocks = n_blocks;
merge_blockpairs_into(_n_blocks, _blocks_array, n_blocks, pairs);
_n_blocks += n_blocks;
VALIDATE();
}
void block_allocator::alloc_block_at(uint64_t size, uint64_t offset) { grow_blocks_array_by(_n_blocks);
struct blockpair p(offset, size); memcpy(_blocks_array, pairs, _n_blocks * sizeof(struct blockpair));
qsort(_blocks_array, _n_blocks, sizeof(struct blockpair), compare_blockpairs);
// Just do a linear search for the block. VALIDATE();
// This data structure is a sorted array (no gaps or anything), so the search isn't really making this any slower than the insertion.
// To speed up the insertion when opening a file, we provide the block_allocator_alloc_blocks_at function.
alloc_blocks_at(1, &p);
} }
// Effect: align a value by rounding up. // Effect: align a value by rounding up.
......
...@@ -128,6 +128,14 @@ class block_allocator { ...@@ -128,6 +128,14 @@ class block_allocator {
BA_STRATEGY_FIRST_FIT = 1 BA_STRATEGY_FIRST_FIT = 1
}; };
struct blockpair {
uint64_t offset;
uint64_t size;
blockpair(uint64_t o, uint64_t s) :
offset(o), size(s) {
}
};
// Effect: Create a block allocator, in which the first RESERVE_AT_BEGINNING bytes are not put into a block. // Effect: Create a block allocator, in which the first RESERVE_AT_BEGINNING bytes are not put into a block.
// The default allocation strategy is first fit (BA_STRATEGY_FIRST_FIT) // The default allocation strategy is first fit (BA_STRATEGY_FIRST_FIT)
// All blocks be start on a multiple of ALIGNMENT. // All blocks be start on a multiple of ALIGNMENT.
...@@ -137,6 +145,19 @@ class block_allocator { ...@@ -137,6 +145,19 @@ class block_allocator {
// alignment (IN) Block alignment. // alignment (IN) Block alignment.
void create(uint64_t reserve_at_beginning, uint64_t alignment); void create(uint64_t reserve_at_beginning, uint64_t alignment);
// Effect: Create a block allocator, in which the first RESERVE_AT_BEGINNING bytes are not put into a block.
// The default allocation strategy is first fit (BA_STRATEGY_FIRST_FIT)
// The allocator is initialized to contain `n_blocks' of blockpairs, taken from `pairs'
// All blocks be start on a multiple of ALIGNMENT.
// Aborts if we run out of memory.
// Parameters
// pairs, unowned array of pairs to copy
// n_blocks, Size of pairs array
// reserve_at_beginning (IN) Size of reserved block at beginning. This size does not have to be aligned.
// alignment (IN) Block alignment.
void create_from_blockpairs(uint64_t reserve_at_beginning, uint64_t alignment,
struct blockpair *pairs, uint64_t n_blocks);
// Effect: Destroy this block allocator // Effect: Destroy this block allocator
void destroy(); void destroy();
...@@ -144,35 +165,10 @@ class block_allocator { ...@@ -144,35 +165,10 @@ class block_allocator {
// Requires: No other threads are operating on this block allocator // Requires: No other threads are operating on this block allocator
void set_strategy(enum allocation_strategy strategy); void set_strategy(enum allocation_strategy strategy);
// Effect: Allocate a block of the specified size at a particular offset.
// Aborts if anything goes wrong.
// The performance of this function may be as bad as Theta(N), where N is the number of blocks currently in use.
// Usage note: To allocate several blocks (e.g., when opening a FT), use block_allocator_alloc_blocks_at().
// Requires: The resulting block may not overlap any other allocated block.
// And the offset must be a multiple of the block alignment.
// Parameters:
// size (IN): The size of the block.
// offset (IN): The location of the block.
void alloc_block_at(uint64_t size, uint64_t offset);
struct blockpair {
uint64_t offset;
uint64_t size;
blockpair(uint64_t o, uint64_t s) :
offset(o), size(s) {
}
};
// Effect: Take pairs in any order, and add them all, as if we did block_allocator_alloc_block() on each pair.
// This should run in time O(N + M log M) where N is the number of blocks in ba, and M is the number of new blocks.
// Modifies: pairs (sorts them).
void alloc_blocks_at(uint64_t n_blocks, blockpair *pairs);
// Effect: Allocate a block of the specified size at an address chosen by the allocator. // Effect: Allocate a block of the specified size at an address chosen by the allocator.
// Aborts if anything goes wrong. // Aborts if anything goes wrong.
// The block address will be a multiple of the alignment. // The block address will be a multiple of the alignment.
// Parameters: // Parameters:
// ba (IN/OUT): The block allocator. (Modifies ba.)
// size (IN): The size of the block. (The size does not have to be aligned.) // size (IN): The size of the block. (The size does not have to be aligned.)
// offset (OUT): The location of the block. // offset (OUT): The location of the block.
void alloc_block(uint64_t size, uint64_t *offset); void alloc_block(uint64_t size, uint64_t *offset);
...@@ -180,14 +176,12 @@ class block_allocator { ...@@ -180,14 +176,12 @@ class block_allocator {
// Effect: Free the block at offset. // Effect: Free the block at offset.
// Requires: There must be a block currently allocated at that offset. // Requires: There must be a block currently allocated at that offset.
// Parameters: // Parameters:
// ba (IN/OUT): The block allocator. (Modifies ba.)
// offset (IN): The offset of the block. // offset (IN): The offset of the block.
void free_block(uint64_t offset); void free_block(uint64_t offset);
// Effect: Return the size of the block that starts at offset. // Effect: Return the size of the block that starts at offset.
// Requires: There must be a block currently allocated at that offset. // Requires: There must be a block currently allocated at that offset.
// Parameters: // Parameters:
// ba (IN/OUT): The block allocator. (Modifies ba.)
// offset (IN): The offset of the block. // offset (IN): The offset of the block.
uint64_t block_size(uint64_t offset); uint64_t block_size(uint64_t offset);
...@@ -221,18 +215,8 @@ class block_allocator { ...@@ -221,18 +215,8 @@ class block_allocator {
// report->checkpoint_bytes_additional is ignored on return // report->checkpoint_bytes_additional is ignored on return
void get_statistics(TOKU_DB_FRAGMENTATION report); void get_statistics(TOKU_DB_FRAGMENTATION report);
// Effect: Merge dst[d] and src[s] into dst[d+s], merging in place.
// Initially dst and src hold sorted arrays (sorted by increasing offset).
// Finally dst contains all d+s elements sorted in order.
// Requires:
// dst and src are sorted.
// dst must be large enough (sizeof(dst) >= d && sizeof(src) >= s)
// No blocks may overlap.
// Rationale: This is exposed so it can be tested by a glass box tester.
static void merge_blockpairs_into(uint64_t d, struct blockpair dst[],
uint64_t s, const struct blockpair src[]);
private: private:
void _create_internal(uint64_t reserve_at_beginning, uint64_t alignment);
void grow_blocks_array_by(uint64_t n_to_add); void grow_blocks_array_by(uint64_t n_to_add);
void grow_blocks_array(); void grow_blocks_array();
int64_t find_block(uint64_t offset); int64_t find_block(uint64_t offset);
......
This diff is collapsed.
This diff is collapsed.
...@@ -161,12 +161,12 @@ deserialize_descriptor_from_rbuf(struct rbuf *rb, DESCRIPTOR desc, int layout_ve ...@@ -161,12 +161,12 @@ deserialize_descriptor_from_rbuf(struct rbuf *rb, DESCRIPTOR desc, int layout_ve
} }
static int static int
deserialize_descriptor_from(int fd, BLOCK_TABLE bt, DESCRIPTOR desc, int layout_version) { deserialize_descriptor_from(int fd, block_table *bt, DESCRIPTOR desc, int layout_version) {
int r = 0; int r = 0;
DISKOFF offset; DISKOFF offset;
DISKOFF size; DISKOFF size;
unsigned char *dbuf = NULL; unsigned char *dbuf = nullptr;
toku_get_descriptor_offset_size(bt, &offset, &size); bt->get_descriptor_offset_size(&offset, &size);
memset(desc, 0, sizeof(*desc)); memset(desc, 0, sizeof(*desc));
if (size > 0) { if (size > 0) {
lazy_assert(size>=4); //4 for checksum lazy_assert(size>=4); //4 for checksum
...@@ -274,8 +274,7 @@ int deserialize_ft_versioned(int fd, struct rbuf *rb, FT *ftp, uint32_t version) ...@@ -274,8 +274,7 @@ int deserialize_ft_versioned(int fd, struct rbuf *rb, FT *ftp, uint32_t version)
assert(readsz <= (ssize_t)size_to_read); assert(readsz <= (ssize_t)size_to_read);
} }
// Create table and read in data. // Create table and read in data.
r = toku_blocktable_create_from_buffer(fd, r = ft->blocktable.create_from_buffer(fd,
&ft->blocktable,
translation_address_on_disk, translation_address_on_disk,
translation_size_on_disk, translation_size_on_disk,
tbuf); tbuf);
...@@ -426,7 +425,7 @@ int deserialize_ft_versioned(int fd, struct rbuf *rb, FT *ftp, uint32_t version) ...@@ -426,7 +425,7 @@ int deserialize_ft_versioned(int fd, struct rbuf *rb, FT *ftp, uint32_t version)
} }
invariant((uint32_t) ft->layout_version_read_from_disk == version); invariant((uint32_t) ft->layout_version_read_from_disk == version);
r = deserialize_descriptor_from(fd, ft->blocktable, &ft->descriptor, version); r = deserialize_descriptor_from(fd, &ft->blocktable, &ft->descriptor, version);
if (r != 0) { if (r != 0) {
goto exit; goto exit;
} }
...@@ -804,18 +803,20 @@ void toku_serialize_ft_to_wbuf ( ...@@ -804,18 +803,20 @@ void toku_serialize_ft_to_wbuf (
lazy_assert(wbuf->ndone == wbuf->size); lazy_assert(wbuf->ndone == wbuf->size);
} }
void toku_serialize_ft_to (int fd, FT_HEADER h, BLOCK_TABLE blocktable, CACHEFILE cf) { void toku_serialize_ft_to(int fd, FT_HEADER h, block_table *bt, CACHEFILE cf) {
lazy_assert(h->type==FT_CHECKPOINT_INPROGRESS); lazy_assert(h->type==FT_CHECKPOINT_INPROGRESS);
struct wbuf w_translation; struct wbuf w_translation;
int64_t size_translation; int64_t size_translation;
int64_t address_translation; int64_t address_translation;
//Must serialize translation first, to get address,size for header. // Must serialize translation first, to get address,size for header.
toku_serialize_translation_to_wbuf(blocktable, fd, &w_translation, bt->serialize_translation_to_wbuf(fd, &w_translation,
&address_translation, &address_translation,
&size_translation); &size_translation);
assert(size_translation == w_translation.ndone); // the bytes written are the size assert(size_translation == w_translation.ndone);
assert(w_translation.size % 512 == 0); // the number of bytes available in the buffer is 0 mod 512, and those last bytes are all initialized.
// the number of bytes available in the buffer is 0 mod 512, and those last bytes are all initialized.
assert(w_translation.size % 512 == 0);
struct wbuf w_main; struct wbuf w_main;
size_t size_main = toku_serialize_ft_size(h); size_t size_main = toku_serialize_ft_size(h);
......
...@@ -845,7 +845,7 @@ toku_serialize_ftnode_to (int fd, BLOCKNUM blocknum, FTNODE node, FTNODE_DISK_DA ...@@ -845,7 +845,7 @@ toku_serialize_ftnode_to (int fd, BLOCKNUM blocknum, FTNODE node, FTNODE_DISK_DA
invariant(blocknum.b>=0); invariant(blocknum.b>=0);
DISKOFF offset; DISKOFF offset;
toku_blocknum_realloc_on_disk(ft->blocktable, blocknum, n_to_write, &offset, ft->blocktable.realloc_on_disk(blocknum, n_to_write, &offset,
ft, fd, for_checkpoint); //dirties h ft, fd, for_checkpoint); //dirties h
tokutime_t t0 = toku_time_now(); tokutime_t t0 = toku_time_now();
...@@ -1085,7 +1085,7 @@ void read_block_from_fd_into_rbuf( ...@@ -1085,7 +1085,7 @@ void read_block_from_fd_into_rbuf(
{ {
// get the file offset and block size for the block // get the file offset and block size for the block
DISKOFF offset, size; DISKOFF offset, size;
toku_translate_blocknum_to_offset_size(ft->blocktable, blocknum, &offset, &size); ft->blocktable.translate_blocknum_to_offset_size(blocknum, &offset, &size);
DISKOFF size_aligned = roundup_to_multiple(512, size); DISKOFF size_aligned = roundup_to_multiple(512, size);
uint8_t *XMALLOC_N_ALIGNED(512, size_aligned, raw_block); uint8_t *XMALLOC_N_ALIGNED(512, size_aligned, raw_block);
rbuf_init(rb, raw_block, size); rbuf_init(rb, raw_block, size);
...@@ -1101,11 +1101,12 @@ static const int read_header_heuristic_max = 32*1024; ...@@ -1101,11 +1101,12 @@ static const int read_header_heuristic_max = 32*1024;
#define MIN(a,b) (((a)>(b)) ? (b) : (a)) #define MIN(a,b) (((a)>(b)) ? (b) : (a))
#endif #endif
static void read_ftnode_header_from_fd_into_rbuf_if_small_enough (int fd, BLOCKNUM blocknum, FT ft, struct rbuf *rb, struct ftnode_fetch_extra *bfe)
// Effect: If the header part of the node is small enough, then read it into the rbuf. The rbuf will be allocated to be big enough in any case. // Effect: If the header part of the node is small enough, then read it into the rbuf. The rbuf will be allocated to be big enough in any case.
{ static void read_ftnode_header_from_fd_into_rbuf_if_small_enough(int fd, BLOCKNUM blocknum,
FT ft, struct rbuf *rb,
struct ftnode_fetch_extra *bfe) {
DISKOFF offset, size; DISKOFF offset, size;
toku_translate_blocknum_to_offset_size(ft->blocktable, blocknum, &offset, &size); ft->blocktable.translate_blocknum_to_offset_size(blocknum, &offset, &size);
DISKOFF read_size = roundup_to_multiple(512, MIN(read_header_heuristic_max, size)); DISKOFF read_size = roundup_to_multiple(512, MIN(read_header_heuristic_max, size));
uint8_t *XMALLOC_N_ALIGNED(512, roundup_to_multiple(512, size), raw_block); uint8_t *XMALLOC_N_ALIGNED(512, roundup_to_multiple(512, size), raw_block);
rbuf_init(rb, raw_block, read_size); rbuf_init(rb, raw_block, read_size);
...@@ -1937,10 +1938,8 @@ deserialize_and_upgrade_ftnode(FTNODE node, ...@@ -1937,10 +1938,8 @@ deserialize_and_upgrade_ftnode(FTNODE node,
// we read the different sub-sections. // we read the different sub-sections.
// get the file offset and block size for the block // get the file offset and block size for the block
DISKOFF offset, size; DISKOFF offset, size;
toku_translate_blocknum_to_offset_size(bfe->ft->blocktable, bfe->ft->blocktable.translate_blocknum_to_offset_size(blocknum, &offset, &size);
blocknum,
&offset,
&size);
struct rbuf rb; struct rbuf rb;
r = read_and_decompress_block_from_fd_into_rbuf(fd, r = read_and_decompress_block_from_fd_into_rbuf(fd,
blocknum, blocknum,
...@@ -2218,16 +2217,13 @@ toku_deserialize_bp_from_disk(FTNODE node, FTNODE_DISK_DATA ndd, int childnum, i ...@@ -2218,16 +2217,13 @@ toku_deserialize_bp_from_disk(FTNODE node, FTNODE_DISK_DATA ndd, int childnum, i
// //
// get the file offset and block size for the block // get the file offset and block size for the block
DISKOFF node_offset, total_node_disk_size; DISKOFF node_offset, total_node_disk_size;
toku_translate_blocknum_to_offset_size( bfe->ft->blocktable.translate_blocknum_to_offset_size(node->blocknum, &node_offset, &total_node_disk_size);
bfe->ft->blocktable,
node->blocknum,
&node_offset,
&total_node_disk_size
);
uint32_t curr_offset = BP_START(ndd, childnum); uint32_t curr_offset = BP_START(ndd, childnum);
uint32_t curr_size = BP_SIZE (ndd, childnum); uint32_t curr_size = BP_SIZE (ndd, childnum);
struct rbuf rb = {.buf = NULL, .size = 0, .ndone = 0};
struct rbuf rb;
rbuf_init(&rb, nullptr, 0);
uint32_t pad_at_beginning = (node_offset+curr_offset)%512; uint32_t pad_at_beginning = (node_offset+curr_offset)%512;
uint32_t padded_size = roundup_to_multiple(512, pad_at_beginning + curr_size); uint32_t padded_size = roundup_to_multiple(512, pad_at_beginning + curr_size);
...@@ -2530,20 +2526,22 @@ toku_serialize_rollback_log_to (int fd, ROLLBACK_LOG_NODE log, SERIALIZED_ROLLBA ...@@ -2530,20 +2526,22 @@ toku_serialize_rollback_log_to (int fd, ROLLBACK_LOG_NODE log, SERIALIZED_ROLLBA
serialized_log = &serialized_local; serialized_log = &serialized_local;
toku_serialize_rollback_log_to_memory_uncompressed(log, serialized_log); toku_serialize_rollback_log_to_memory_uncompressed(log, serialized_log);
} }
BLOCKNUM blocknum = serialized_log->blocknum; BLOCKNUM blocknum = serialized_log->blocknum;
invariant(blocknum.b >= 0);
//Compress and malloc buffer to write // Compress and malloc buffer to write
serialize_uncompressed_block_to_memory(serialized_log->data, serialize_uncompressed_block_to_memory(serialized_log->data,
serialized_log->n_sub_blocks, serialized_log->sub_block, serialized_log->n_sub_blocks,
ft->h->compression_method, &n_to_write, &compressed_buf); serialized_log->sub_block,
ft->h->compression_method,
&n_to_write, &compressed_buf);
{ // Dirties the ft
lazy_assert(blocknum.b>=0);
DISKOFF offset; DISKOFF offset;
toku_blocknum_realloc_on_disk(ft->blocktable, blocknum, n_to_write, &offset, ft->blocktable.realloc_on_disk(blocknum, n_to_write, &offset,
ft, fd, for_checkpoint); //dirties h ft, fd, for_checkpoint);
toku_os_full_pwrite(fd, compressed_buf, n_to_write, offset); toku_os_full_pwrite(fd, compressed_buf, n_to_write, offset);
}
toku_free(compressed_buf); toku_free(compressed_buf);
if (!is_serialized) { if (!is_serialized) {
toku_static_serialized_rollback_log_destroy(&serialized_local); toku_static_serialized_rollback_log_destroy(&serialized_local);
...@@ -2803,16 +2801,19 @@ read_and_decompress_block_from_fd_into_rbuf(int fd, BLOCKNUM blocknum, ...@@ -2803,16 +2801,19 @@ read_and_decompress_block_from_fd_into_rbuf(int fd, BLOCKNUM blocknum,
return r; return r;
} }
// Read rollback log node from file into struct. Perform version upgrade if necessary. // Read rollback log node from file into struct.
int // Perform version upgrade if necessary.
toku_deserialize_rollback_log_from (int fd, BLOCKNUM blocknum, ROLLBACK_LOG_NODE *logp, FT ft) { int toku_deserialize_rollback_log_from(int fd, BLOCKNUM blocknum, ROLLBACK_LOG_NODE *logp, FT ft) {
int layout_version = 0; int layout_version = 0;
int r; int r;
struct rbuf rb = {.buf = NULL, .size = 0, .ndone = 0};
struct rbuf rb;
rbuf_init(&rb, nullptr, 0);
// get the file offset and block size for the block // get the file offset and block size for the block
DISKOFF offset, size; DISKOFF offset, size;
toku_translate_blocknum_to_offset_size(ft->blocktable, blocknum, &offset, &size); ft->blocktable.translate_blocknum_to_offset_size(blocknum, &offset, &size);
// if the size is 0, then the blocknum is unused // if the size is 0, then the blocknum is unused
if (size == 0) { if (size == 0) {
// blocknum is unused, just create an empty one and get out // blocknum is unused, just create an empty one and get out
...@@ -2838,7 +2839,9 @@ toku_deserialize_rollback_log_from (int fd, BLOCKNUM blocknum, ROLLBACK_LOG_NODE ...@@ -2838,7 +2839,9 @@ toku_deserialize_rollback_log_from (int fd, BLOCKNUM blocknum, ROLLBACK_LOG_NODE
r = deserialize_rollback_log_from_rbuf_versioned(layout_version, blocknum, logp, &rb); r = deserialize_rollback_log_from_rbuf_versioned(layout_version, blocknum, logp, &rb);
cleanup: cleanup:
if (rb.buf) toku_free(rb.buf); if (rb.buf) {
toku_free(rb.buf);
}
return r; return r;
} }
......
...@@ -90,12 +90,6 @@ PATENT RIGHTS GRANT: ...@@ -90,12 +90,6 @@ PATENT RIGHTS GRANT:
#include "test.h" #include "test.h"
static void ba_alloc_at(block_allocator *ba, uint64_t size, uint64_t offset) {
ba->validate();
ba->alloc_block_at(size * 512, offset * 512);
ba->validate();
}
static void ba_alloc(block_allocator *ba, uint64_t size, uint64_t *answer) { static void ba_alloc(block_allocator *ba, uint64_t size, uint64_t *answer) {
ba->validate(); ba->validate();
uint64_t actual_answer; uint64_t actual_answer;
...@@ -133,28 +127,8 @@ static void ...@@ -133,28 +127,8 @@ static void
test_ba0 (void) { test_ba0 (void) {
block_allocator allocator; block_allocator allocator;
block_allocator *ba = &allocator; block_allocator *ba = &allocator;
uint64_t b0, b1;
ba->create(100*512, 1*512); ba->create(100*512, 1*512);
assert(ba->allocated_limit()==100*512); assert(ba->allocated_limit()==100*512);
ba_alloc_at(ba, 50, 100);
assert(ba->allocated_limit()==150*512);
ba_alloc_at(ba, 25, 150);
ba_alloc (ba, 10, &b0);
ba_check_l (ba, 0, 0, 100);
ba_check_l (ba, 1, 100, 50);
ba_check_l (ba, 2, 150, 25);
ba_check_l (ba, 3, b0, 10);
ba_check_none (ba, 4);
assert(b0==175);
ba_free(ba, 150);
ba_alloc_at(ba, 10, 150);
ba_alloc(ba, 10, &b0);
assert(b0==160);
ba_alloc(ba, 10, &b0);
ba_alloc(ba, 113, &b1);
assert(113*512==ba->block_size(b1 *512));
assert(10 *512==ba->block_size(b0 *512));
assert(50 *512==ba->block_size(100*512));
uint64_t b2, b3, b4, b5, b6, b7; uint64_t b2, b3, b4, b5, b6, b7;
ba_alloc(ba, 100, &b2); ba_alloc(ba, 100, &b2);
......
...@@ -422,22 +422,22 @@ test_prefetching(void) { ...@@ -422,22 +422,22 @@ test_prefetching(void) {
16); 16);
ft_h->cmp.create(int64_key_cmp, nullptr); ft_h->cmp.create(int64_key_cmp, nullptr);
ft->ft = ft_h; ft->ft = ft_h;
toku_blocktable_create_new(&ft_h->blocktable); ft_h->blocktable.create();
{ int r_truncate = ftruncate(fd, 0); CKERR(r_truncate); } { int r_truncate = ftruncate(fd, 0); CKERR(r_truncate); }
//Want to use block #20 //Want to use block #20
BLOCKNUM b = make_blocknum(0); BLOCKNUM b = make_blocknum(0);
while (b.b < 20) { while (b.b < 20) {
toku_allocate_blocknum(ft_h->blocktable, &b, ft_h); ft_h->blocktable.allocate_blocknum(&b, ft_h);
} }
assert(b.b == 20); assert(b.b == 20);
{ {
DISKOFF offset; DISKOFF offset;
DISKOFF size; DISKOFF size;
toku_blocknum_realloc_on_disk(ft_h->blocktable, b, 100, &offset, ft_h, fd, false); ft_h->blocktable.realloc_on_disk(b, 100, &offset, ft_h, fd, false);
assert(offset==(DISKOFF)block_allocator::BLOCK_ALLOCATOR_TOTAL_HEADER_RESERVE); assert(offset==(DISKOFF)block_allocator::BLOCK_ALLOCATOR_TOTAL_HEADER_RESERVE);
toku_translate_blocknum_to_offset_size(ft_h->blocktable, b, &offset, &size); ft_h->blocktable.translate_blocknum_to_offset_size(b, &offset, &size);
assert(offset == (DISKOFF)block_allocator::BLOCK_ALLOCATOR_TOTAL_HEADER_RESERVE); assert(offset == (DISKOFF)block_allocator::BLOCK_ALLOCATOR_TOTAL_HEADER_RESERVE);
assert(size == 100); assert(size == 100);
} }
...@@ -450,8 +450,8 @@ test_prefetching(void) { ...@@ -450,8 +450,8 @@ test_prefetching(void) {
toku_destroy_ftnode_internals(&sn); toku_destroy_ftnode_internals(&sn);
toku_block_free(ft_h->blocktable, block_allocator::BLOCK_ALLOCATOR_TOTAL_HEADER_RESERVE); ft_h->blocktable.block_free(block_allocator::BLOCK_ALLOCATOR_TOTAL_HEADER_RESERVE);
toku_blocktable_destroy(&ft_h->blocktable); ft_h->blocktable.destroy();
ft_h->cmp.destroy(); ft_h->cmp.destroy();
toku_free(ft_h->h); toku_free(ft_h->h);
toku_free(ft_h); toku_free(ft_h);
......
...@@ -358,22 +358,22 @@ test_serialize_nonleaf(void) { ...@@ -358,22 +358,22 @@ test_serialize_nonleaf(void) {
ft_h->cmp.create(string_key_cmp, nullptr); ft_h->cmp.create(string_key_cmp, nullptr);
ft->ft = ft_h; ft->ft = ft_h;
toku_blocktable_create_new(&ft_h->blocktable); ft_h->blocktable.create();
{ int r_truncate = ftruncate(fd, 0); CKERR(r_truncate); } { int r_truncate = ftruncate(fd, 0); CKERR(r_truncate); }
//Want to use block #20 //Want to use block #20
BLOCKNUM b = make_blocknum(0); BLOCKNUM b = make_blocknum(0);
while (b.b < 20) { while (b.b < 20) {
toku_allocate_blocknum(ft_h->blocktable, &b, ft_h); ft_h->blocktable.allocate_blocknum(&b, ft_h);
} }
assert(b.b == 20); assert(b.b == 20);
{ {
DISKOFF offset; DISKOFF offset;
DISKOFF size; DISKOFF size;
toku_blocknum_realloc_on_disk(ft_h->blocktable, b, 100, &offset, ft_h, fd, false); ft_h->blocktable.realloc_on_disk(b, 100, &offset, ft_h, fd, false);
assert(offset==(DISKOFF)block_allocator::BLOCK_ALLOCATOR_TOTAL_HEADER_RESERVE); assert(offset==(DISKOFF)block_allocator::BLOCK_ALLOCATOR_TOTAL_HEADER_RESERVE);
toku_translate_blocknum_to_offset_size(ft_h->blocktable, b, &offset, &size); ft_h->blocktable.translate_blocknum_to_offset_size(b, &offset, &size);
assert(offset == (DISKOFF)block_allocator::BLOCK_ALLOCATOR_TOTAL_HEADER_RESERVE); assert(offset == (DISKOFF)block_allocator::BLOCK_ALLOCATOR_TOTAL_HEADER_RESERVE);
assert(size == 100); assert(size == 100);
} }
...@@ -387,8 +387,8 @@ test_serialize_nonleaf(void) { ...@@ -387,8 +387,8 @@ test_serialize_nonleaf(void) {
toku_destroy_ftnode_internals(&sn); toku_destroy_ftnode_internals(&sn);
toku_free(ndd); toku_free(ndd);
toku_block_free(ft_h->blocktable, block_allocator::BLOCK_ALLOCATOR_TOTAL_HEADER_RESERVE); ft_h->blocktable.block_free(block_allocator::BLOCK_ALLOCATOR_TOTAL_HEADER_RESERVE);
toku_blocktable_destroy(&ft_h->blocktable); ft_h->blocktable.destroy();
toku_free(ft_h->h); toku_free(ft_h->h);
ft_h->cmp.destroy(); ft_h->cmp.destroy();
toku_free(ft_h); toku_free(ft_h);
...@@ -438,22 +438,22 @@ test_serialize_leaf(void) { ...@@ -438,22 +438,22 @@ test_serialize_leaf(void) {
16); 16);
ft->ft = ft_h; ft->ft = ft_h;
toku_blocktable_create_new(&ft_h->blocktable); ft_h->blocktable.create();
{ int r_truncate = ftruncate(fd, 0); CKERR(r_truncate); } { int r_truncate = ftruncate(fd, 0); CKERR(r_truncate); }
//Want to use block #20 //Want to use block #20
BLOCKNUM b = make_blocknum(0); BLOCKNUM b = make_blocknum(0);
while (b.b < 20) { while (b.b < 20) {
toku_allocate_blocknum(ft_h->blocktable, &b, ft_h); ft_h->blocktable.allocate_blocknum(&b, ft_h);
} }
assert(b.b == 20); assert(b.b == 20);
{ {
DISKOFF offset; DISKOFF offset;
DISKOFF size; DISKOFF size;
toku_blocknum_realloc_on_disk(ft_h->blocktable, b, 100, &offset, ft_h, fd, false); ft_h->blocktable.realloc_on_disk(b, 100, &offset, ft_h, fd, false);
assert(offset==(DISKOFF)block_allocator::BLOCK_ALLOCATOR_TOTAL_HEADER_RESERVE); assert(offset==(DISKOFF)block_allocator::BLOCK_ALLOCATOR_TOTAL_HEADER_RESERVE);
toku_translate_blocknum_to_offset_size(ft_h->blocktable, b, &offset, &size); ft_h->blocktable.translate_blocknum_to_offset_size(b, &offset, &size);
assert(offset == (DISKOFF)block_allocator::BLOCK_ALLOCATOR_TOTAL_HEADER_RESERVE); assert(offset == (DISKOFF)block_allocator::BLOCK_ALLOCATOR_TOTAL_HEADER_RESERVE);
assert(size == 100); assert(size == 100);
} }
...@@ -466,8 +466,8 @@ test_serialize_leaf(void) { ...@@ -466,8 +466,8 @@ test_serialize_leaf(void) {
toku_destroy_ftnode_internals(&sn); toku_destroy_ftnode_internals(&sn);
toku_block_free(ft_h->blocktable, block_allocator::BLOCK_ALLOCATOR_TOTAL_HEADER_RESERVE); ft_h->blocktable.block_free(block_allocator::BLOCK_ALLOCATOR_TOTAL_HEADER_RESERVE);
toku_blocktable_destroy(&ft_h->blocktable); ft_h->blocktable.destroy();
toku_free(ft_h->h); toku_free(ft_h->h);
toku_free(ft_h); toku_free(ft_h);
toku_free(ft); toku_free(ft);
......
...@@ -198,22 +198,22 @@ test_serialize_leaf(int valsize, int nelts, double entropy, int ser_runs, int de ...@@ -198,22 +198,22 @@ test_serialize_leaf(int valsize, int nelts, double entropy, int ser_runs, int de
ft_h->cmp.create(long_key_cmp, nullptr); ft_h->cmp.create(long_key_cmp, nullptr);
ft->ft = ft_h; ft->ft = ft_h;
toku_blocktable_create_new(&ft_h->blocktable); ft_h->blocktable.create();
{ int r_truncate = ftruncate(fd, 0); CKERR(r_truncate); } { int r_truncate = ftruncate(fd, 0); CKERR(r_truncate); }
//Want to use block #20 //Want to use block #20
BLOCKNUM b = make_blocknum(0); BLOCKNUM b = make_blocknum(0);
while (b.b < 20) { while (b.b < 20) {
toku_allocate_blocknum(ft_h->blocktable, &b, ft_h); ft_h->blocktable.allocate_blocknum(&b, ft_h);
} }
assert(b.b == 20); assert(b.b == 20);
{ {
DISKOFF offset; DISKOFF offset;
DISKOFF size; DISKOFF size;
toku_blocknum_realloc_on_disk(ft_h->blocktable, b, 100, &offset, ft_h, fd, false); ft_h->blocktable.realloc_on_disk(b, 100, &offset, ft_h, fd, false);
assert(offset==(DISKOFF)block_allocator::BLOCK_ALLOCATOR_TOTAL_HEADER_RESERVE); assert(offset==(DISKOFF)block_allocator::BLOCK_ALLOCATOR_TOTAL_HEADER_RESERVE);
toku_translate_blocknum_to_offset_size(ft_h->blocktable, b, &offset, &size); ft_h->blocktable.translate_blocknum_to_offset_size(b, &offset, &size);
assert(offset == (DISKOFF)block_allocator::BLOCK_ALLOCATOR_TOTAL_HEADER_RESERVE); assert(offset == (DISKOFF)block_allocator::BLOCK_ALLOCATOR_TOTAL_HEADER_RESERVE);
assert(size == 100); assert(size == 100);
} }
...@@ -277,8 +277,8 @@ test_serialize_leaf(int valsize, int nelts, double entropy, int ser_runs, int de ...@@ -277,8 +277,8 @@ test_serialize_leaf(int valsize, int nelts, double entropy, int ser_runs, int de
toku_ftnode_free(&sn); toku_ftnode_free(&sn);
toku_block_free(ft_h->blocktable, block_allocator::BLOCK_ALLOCATOR_TOTAL_HEADER_RESERVE); ft_h->blocktable.block_free(block_allocator::BLOCK_ALLOCATOR_TOTAL_HEADER_RESERVE);
toku_blocktable_destroy(&ft_h->blocktable); ft_h->blocktable.destroy();
ft_h->cmp.destroy(); ft_h->cmp.destroy();
toku_free(ft_h->h); toku_free(ft_h->h);
toku_free(ft_h); toku_free(ft_h);
...@@ -361,22 +361,22 @@ test_serialize_nonleaf(int valsize, int nelts, double entropy, int ser_runs, int ...@@ -361,22 +361,22 @@ test_serialize_nonleaf(int valsize, int nelts, double entropy, int ser_runs, int
ft_h->cmp.create(long_key_cmp, nullptr); ft_h->cmp.create(long_key_cmp, nullptr);
ft->ft = ft_h; ft->ft = ft_h;
toku_blocktable_create_new(&ft_h->blocktable); ft_h->blocktable.create();
{ int r_truncate = ftruncate(fd, 0); CKERR(r_truncate); } { int r_truncate = ftruncate(fd, 0); CKERR(r_truncate); }
//Want to use block #20 //Want to use block #20
BLOCKNUM b = make_blocknum(0); BLOCKNUM b = make_blocknum(0);
while (b.b < 20) { while (b.b < 20) {
toku_allocate_blocknum(ft_h->blocktable, &b, ft_h); ft_h->blocktable.allocate_blocknum(&b, ft_h);
} }
assert(b.b == 20); assert(b.b == 20);
{ {
DISKOFF offset; DISKOFF offset;
DISKOFF size; DISKOFF size;
toku_blocknum_realloc_on_disk(ft_h->blocktable, b, 100, &offset, ft_h, fd, false); ft_h->blocktable.realloc_on_disk(b, 100, &offset, ft_h, fd, false);
assert(offset==(DISKOFF)block_allocator::BLOCK_ALLOCATOR_TOTAL_HEADER_RESERVE); assert(offset==(DISKOFF)block_allocator::BLOCK_ALLOCATOR_TOTAL_HEADER_RESERVE);
toku_translate_blocknum_to_offset_size(ft_h->blocktable, b, &offset, &size); ft_h->blocktable.translate_blocknum_to_offset_size(b, &offset, &size);
assert(offset == (DISKOFF)block_allocator::BLOCK_ALLOCATOR_TOTAL_HEADER_RESERVE); assert(offset == (DISKOFF)block_allocator::BLOCK_ALLOCATOR_TOTAL_HEADER_RESERVE);
assert(size == 100); assert(size == 100);
} }
...@@ -412,8 +412,8 @@ test_serialize_nonleaf(int valsize, int nelts, double entropy, int ser_runs, int ...@@ -412,8 +412,8 @@ test_serialize_nonleaf(int valsize, int nelts, double entropy, int ser_runs, int
toku_ftnode_free(&dn); toku_ftnode_free(&dn);
toku_destroy_ftnode_internals(&sn); toku_destroy_ftnode_internals(&sn);
toku_block_free(ft_h->blocktable, block_allocator::BLOCK_ALLOCATOR_TOTAL_HEADER_RESERVE); ft_h->blocktable.block_free(block_allocator::BLOCK_ALLOCATOR_TOTAL_HEADER_RESERVE);
toku_blocktable_destroy(&ft_h->blocktable); ft_h->blocktable.destroy();
toku_free(ft_h->h); toku_free(ft_h->h);
ft_h->cmp.destroy(); ft_h->cmp.destroy();
toku_free(ft_h); toku_free(ft_h);
......
This diff is collapsed.
/* -*- mode: C++; c-basic-offset: 4; indent-tabs-mode: nil -*- */
// vim: ft=cpp:expandtab:ts=8:sw=4:softtabstop=4:
#ident "$Id$"
/*
COPYING CONDITIONS NOTICE:
This program is free software; you can redistribute it and/or modify
it under the terms of version 2 of the GNU General Public License as
published by the Free Software Foundation, and provided that the
following conditions are met:
* Redistributions of source code must retain this COPYING
CONDITIONS NOTICE, the COPYRIGHT NOTICE (below), the
DISCLAIMER (below), the UNIVERSITY PATENT NOTICE (below), the
PATENT MARKING NOTICE (below), and the PATENT RIGHTS
GRANT (below).
* Redistributions in binary form must reproduce this COPYING
CONDITIONS NOTICE, the COPYRIGHT NOTICE (below), the
DISCLAIMER (below), the UNIVERSITY PATENT NOTICE (below), the
PATENT MARKING NOTICE (below), and the PATENT RIGHTS
GRANT (below) in the documentation and/or other materials
provided with the distribution.
You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA
02110-1301, USA.
COPYRIGHT NOTICE:
TokuDB, Tokutek Fractal Tree Indexing Library.
Copyright (C) 2007-2013 Tokutek, Inc.
DISCLAIMER:
This program is distributed in the hope that it will be useful, but
WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
General Public License for more details.
UNIVERSITY PATENT NOTICE:
The technology is licensed by the Massachusetts Institute of
Technology, Rutgers State University of New Jersey, and the Research
Foundation of State University of New York at Stony Brook under
United States of America Serial No. 11/760379 and to the patents
and/or patent applications resulting from it.
PATENT MARKING NOTICE:
This software is covered by US Patent No. 8,185,551.
This software is covered by US Patent No. 8,489,638.
PATENT RIGHTS GRANT:
"THIS IMPLEMENTATION" means the copyrightable works distributed by
Tokutek as part of the Fractal Tree project.
"PATENT CLAIMS" means the claims of patents that are owned or
licensable by Tokutek, both currently or in the future; and that in
the absence of this license would be infringed by THIS
IMPLEMENTATION or by using or running THIS IMPLEMENTATION.
"PATENT CHALLENGE" shall mean a challenge to the validity,
patentability, enforceability and/or non-infringement of any of the
PATENT CLAIMS or otherwise opposing any of the PATENT CLAIMS.
Tokutek hereby grants to you, for the term and geographical scope of
the PATENT CLAIMS, a non-exclusive, no-charge, royalty-free,
irrevocable (except as stated in this section) patent license to
make, have made, use, offer to sell, sell, import, transfer, and
otherwise run, modify, and propagate the contents of THIS
IMPLEMENTATION, where such license applies only to the PATENT
CLAIMS. This grant does not include claims that would be infringed
only as a consequence of further modifications of THIS
IMPLEMENTATION. If you or your agent or licensee institute or order
or agree to the institution of patent litigation against any entity
(including a cross-claim or counterclaim in a lawsuit) alleging that
THIS IMPLEMENTATION constitutes direct or contributory patent
infringement, or inducement of patent infringement, then any rights
granted to you under this License shall terminate as of the date
such litigation is filed. If you or your agent or exclusive
licensee institute or order or agree to the institution of a PATENT
CHALLENGE, then Tokutek may terminate any rights granted to you
under this License.
*/
#ident "Copyright (c) 2009-2013 Tokutek Inc. All rights reserved."
#include "ft/serialize/block_allocator.h"
#include <memory.h>
#include <assert.h>
// Test the merger.
int verbose = 0;
static void
print_array (uint64_t n, const struct block_allocator::blockpair a[/*n*/]) {
printf("{");
for (uint64_t i=0; i<n; i++) printf(" %016lx", (long)a[i].offset);
printf("}\n");
}
static int
compare_blockpairs (const void *av, const void *bv) {
const struct block_allocator::blockpair *CAST_FROM_VOIDP(a, av);
const struct block_allocator::blockpair *CAST_FROM_VOIDP(b, bv);
if (a->offset < b->offset) return -1;
if (a->offset > b->offset) return +1;
return 0;
}
static void
test_merge (uint64_t an, const struct block_allocator::blockpair a[/*an*/],
uint64_t bn, const struct block_allocator::blockpair b[/*bn*/]) {
if (verbose>1) { printf("a:"); print_array(an, a); }
if (verbose>1) { printf("b:"); print_array(bn, b); }
struct block_allocator::blockpair *MALLOC_N(an+bn, q);
struct block_allocator::blockpair *MALLOC_N(an+bn, m);
if (q==0 || m==0) {
fprintf(stderr, "malloc failed, continuing\n");
goto malloc_failed;
}
for (uint64_t i=0; i<an; i++) {
q[i] = m[i] = a[i];
}
for (uint64_t i=0; i<bn; i++) {
q[an+i] = b[i];
}
if (verbose) printf("qsort\n");
qsort(q, an+bn, sizeof(*q), compare_blockpairs);
if (verbose>1) { printf("q:"); print_array(an+bn, q); }
if (verbose) printf("merge\n");
block_allocator::merge_blockpairs_into(an, m, bn, b);
if (verbose) printf("compare\n");
if (verbose>1) { printf("m:"); print_array(an+bn, m); }
for (uint64_t i=0; i<an+bn; i++) {
assert(q[i].offset == m[i].offset);
}
malloc_failed:
toku_free(q);
toku_free(m);
}
static uint64_t
compute_a (uint64_t i, int mode) {
if (mode==0) return (((uint64_t)random()) << 32) + i;
if (mode==1) return 2*i;
if (mode==2) return i;
if (mode==3) return (1LL<<50) + i;
abort();
}
static uint64_t
compute_b (uint64_t i, int mode) {
if (mode==0) return (((uint64_t)random()) << 32) + i;
if (mode==1) return 2*i+1;
if (mode==2) return (1LL<<50) + i;
if (mode==3) return i;
abort();
}
static void
test_merge_n_m (uint64_t n, uint64_t m, int mode)
{
struct block_allocator::blockpair *MALLOC_N(n, na);
struct block_allocator::blockpair *MALLOC_N(m, ma);
if (na==0 || ma==0) {
fprintf(stderr, "malloc failed, continuing\n");
goto malloc_failed;
}
if (verbose) printf("Filling a[%" PRIu64 "]\n", n);
for (uint64_t i=0; i<n; i++) {
na[i].offset = compute_a(i, mode);
}
if (verbose) printf("Filling b[%" PRIu64 "]\n", m);
for (uint64_t i=0; i<m; i++) {
if (verbose && i % (1+m/10) == 0) { printf("."); fflush(stdout); }
ma[i].offset = compute_b(i, mode);
}
qsort(na, n, sizeof(*na), compare_blockpairs);
qsort(ma, m, sizeof(*ma), compare_blockpairs);
if (verbose) fprintf(stderr, "\ntest_merge\n");
test_merge(n, na, m, ma);
malloc_failed:
toku_free(na);
toku_free(ma);
}
static void
test_big_merge (void) {
uint64_t G = 1024LL * 1024LL * 1024LL;
if (toku_os_get_phys_memory_size() < 40 * G) {
fprintf(stderr, "Skipping big merge because there is only %4.1fGiB physical memory\n", toku_os_get_phys_memory_size()/(1024.0*1024.0*1024.0));
} else {
uint64_t twoG = 2*G;
uint64_t an = twoG;
uint64_t bn = 1;
struct block_allocator::blockpair *MALLOC_N(an+bn, a);
struct block_allocator::blockpair *MALLOC_N(bn, b);
if (a == nullptr) {
fprintf(stderr, "%s:%u malloc failed, continuing\n", __FUNCTION__, __LINE__);
goto malloc_failed;
}
if (b == nullptr) {
fprintf(stderr, "%s:%u malloc failed, continuing\n", __FUNCTION__, __LINE__);
goto malloc_failed;
}
assert(a);
assert(b);
for (uint64_t i=0; i<an; i++) a[i].offset=i+1;
b[0].offset = 0;
block_allocator::merge_blockpairs_into(an, a, bn, b);
for (uint64_t i=0; i<an+bn; i++) assert(a[i].offset == i);
malloc_failed:
toku_free(a);
toku_free(b);
}
}
int main (int argc __attribute__((__unused__)), char *argv[] __attribute__((__unused__))) {
test_merge_n_m(4, 4, 0);
test_merge_n_m(16, 16, 0);
test_merge_n_m(0, 100, 0);
test_merge_n_m(100, 0, 0);
test_merge_n_m(1000000, 1000000, 0);
// Cannot run this on my laptop, or even on pointy
#if 0
uint64_t too_big = 1024LL * 1024LL * 1024LL * 2;
test_merge_n_m(too_big, too_big);
test_merge_n_m(1, too_big, 0);
#endif
test_big_merge();
return 0;
}
...@@ -126,8 +126,7 @@ toku_rollback_flush_unused_log( ...@@ -126,8 +126,7 @@ toku_rollback_flush_unused_log(
{ {
if (write_me) { if (write_me) {
DISKOFF offset; DISKOFF offset;
toku_blocknum_realloc_on_disk(ft->blocktable, logname, 0, &offset, ft->blocktable.realloc_on_disk(logname, 0, &offset, ft, fd, for_checkpoint);
ft, fd, for_checkpoint);
} }
if (!keep_me && !is_clone) { if (!keep_me && !is_clone) {
toku_free(log); toku_free(log);
......
...@@ -98,7 +98,7 @@ PATENT RIGHTS GRANT: ...@@ -98,7 +98,7 @@ PATENT RIGHTS GRANT:
static void rollback_unpin_remove_callback(CACHEKEY* cachekey, bool for_checkpoint, void* extra) { static void rollback_unpin_remove_callback(CACHEKEY* cachekey, bool for_checkpoint, void* extra) {
FT CAST_FROM_VOIDP(ft, extra); FT CAST_FROM_VOIDP(ft, extra);
toku_free_blocknum(ft->blocktable, cachekey, ft, for_checkpoint); ft->blocktable.free_blocknum(cachekey, ft, for_checkpoint);
} }
void toku_rollback_log_unpin_and_remove(TOKUTXN txn, ROLLBACK_LOG_NODE log) { void toku_rollback_log_unpin_and_remove(TOKUTXN txn, ROLLBACK_LOG_NODE log) {
...@@ -216,7 +216,7 @@ static void rollback_log_create ( ...@@ -216,7 +216,7 @@ static void rollback_log_create (
CACHEFILE cf = txn->logger->rollback_cachefile; CACHEFILE cf = txn->logger->rollback_cachefile;
FT CAST_FROM_VOIDP(ft, toku_cachefile_get_userdata(cf)); FT CAST_FROM_VOIDP(ft, toku_cachefile_get_userdata(cf));
rollback_initialize_for_txn(log, txn, previous); rollback_initialize_for_txn(log, txn, previous);
toku_allocate_blocknum(ft->blocktable, &log->blocknum, ft); ft->blocktable.allocate_blocknum(&log->blocknum, ft);
const uint32_t hash = toku_cachetable_hash(ft->cf, log->blocknum); const uint32_t hash = toku_cachetable_hash(ft->cf, log->blocknum);
*result = log; *result = log;
toku_cachetable_put(cf, log->blocknum, hash, toku_cachetable_put(cf, log->blocknum, hash,
......
...@@ -412,10 +412,8 @@ check_block(BLOCKNUM blocknum, int64_t UU(blocksize), int64_t UU(address), void ...@@ -412,10 +412,8 @@ check_block(BLOCKNUM blocknum, int64_t UU(blocksize), int64_t UU(address), void
// Passes our check_block() function to be called as we iterate over // Passes our check_block() function to be called as we iterate over
// the block table. This will print any interesting failures and // the block table. This will print any interesting failures and
// update us on our progress. // update us on our progress.
static void static void check_block_table(int fd, block_table *bt, struct ft *h) {
check_block_table(int fd, BLOCK_TABLE bt, struct ft *h) int64_t num_blocks = bt->get_blocks_in_use_unlocked();
{
int64_t num_blocks = toku_block_get_blocks_in_use_unlocked(bt);
printf("Starting verification of checkpoint containing"); printf("Starting verification of checkpoint containing");
printf(" %" PRId64 " blocks.\n", num_blocks); printf(" %" PRId64 " blocks.\n", num_blocks);
fflush(stdout); fflush(stdout);
...@@ -425,9 +423,7 @@ check_block_table(int fd, BLOCK_TABLE bt, struct ft *h) ...@@ -425,9 +423,7 @@ check_block_table(int fd, BLOCK_TABLE bt, struct ft *h)
.blocks_failed = 0, .blocks_failed = 0,
.total_blocks = num_blocks, .total_blocks = num_blocks,
.h = h }; .h = h };
int r = 0; int r = bt->iterate(block_table::TRANSLATION_CURRENT,
r = toku_blocktable_iterate(bt,
TRANSLATION_CURRENT,
check_block, check_block,
&extra, &extra,
true, true,
...@@ -493,11 +489,11 @@ main(int argc, char const * const argv[]) ...@@ -493,11 +489,11 @@ main(int argc, char const * const argv[])
// walk over the block table and check blocks // walk over the block table and check blocks
if (h1) { if (h1) {
printf("Checking dictionary from header 1.\n"); printf("Checking dictionary from header 1.\n");
check_block_table(dictfd, h1->blocktable, h1); check_block_table(dictfd, &h1->blocktable, h1);
} }
if (h2) { if (h2) {
printf("Checking dictionary from header 2.\n"); printf("Checking dictionary from header 2.\n");
check_block_table(dictfd, h2->blocktable, h2); check_block_table(dictfd, &h2->blocktable, h2);
} }
if (h1 == NULL && h2 == NULL) { if (h1 == NULL && h2 == NULL) {
printf("Both headers have a corruption and could not be used.\n"); printf("Both headers have a corruption and could not be used.\n");
......
...@@ -237,7 +237,7 @@ static void dump_node(int fd, BLOCKNUM blocknum, FT ft) { ...@@ -237,7 +237,7 @@ static void dump_node(int fd, BLOCKNUM blocknum, FT ft) {
assert(n!=0); assert(n!=0);
printf("ftnode\n"); printf("ftnode\n");
DISKOFF disksize, diskoffset; DISKOFF disksize, diskoffset;
toku_translate_blocknum_to_offset_size(ft->blocktable, blocknum, &diskoffset, &disksize); ft->blocktable.translate_blocknum_to_offset_size(blocknum, &diskoffset, &disksize);
printf(" diskoffset =%" PRId64 "\n", diskoffset); printf(" diskoffset =%" PRId64 "\n", diskoffset);
printf(" disksize =%" PRId64 "\n", disksize); printf(" disksize =%" PRId64 "\n", disksize);
printf(" serialize_size =%u\n", toku_serialize_ftnode_size(n)); printf(" serialize_size =%u\n", toku_serialize_ftnode_size(n));
...@@ -334,13 +334,13 @@ static void dump_node(int fd, BLOCKNUM blocknum, FT ft) { ...@@ -334,13 +334,13 @@ static void dump_node(int fd, BLOCKNUM blocknum, FT ft) {
} }
static void dump_block_translation(FT ft, uint64_t offset) { static void dump_block_translation(FT ft, uint64_t offset) {
toku_blocknum_dump_translation(ft->blocktable, make_blocknum(offset)); ft->blocktable.blocknum_dump_translation(make_blocknum(offset));
} }
static void dump_fragmentation(int UU(f), FT ft, int tsv) { static void dump_fragmentation(int UU(f), FT ft, int tsv) {
int64_t used_space; int64_t used_space;
int64_t total_space; int64_t total_space;
toku_blocktable_internal_fragmentation(ft->blocktable, &total_space, &used_space); ft->blocktable.internal_fragmentation(&total_space, &used_space);
int64_t fragsizes = total_space - used_space; int64_t fragsizes = total_space - used_space;
if (tsv) { if (tsv) {
...@@ -386,7 +386,7 @@ static void dump_nodesizes(int fd, FT ft) { ...@@ -386,7 +386,7 @@ static void dump_nodesizes(int fd, FT ft) {
memset(&info, 0, sizeof(info)); memset(&info, 0, sizeof(info));
info.fd = fd; info.fd = fd;
info.ft = ft; info.ft = ft;
toku_blocktable_iterate(ft->blocktable, TRANSLATION_CHECKPOINTED, ft->blocktable.iterate(block_table::TRANSLATION_CHECKPOINTED,
nodesizes_helper, &info, true, true); nodesizes_helper, &info, true, true);
printf("leafblocks\t%" PRIu64 "\n", info.leafblocks); printf("leafblocks\t%" PRIu64 "\n", info.leafblocks);
printf("blocksizes\t%" PRIu64 "\n", info.blocksizes); printf("blocksizes\t%" PRIu64 "\n", info.blocksizes);
...@@ -476,7 +476,7 @@ static void verify_block(unsigned char *cp, uint64_t file_offset, uint64_t size) ...@@ -476,7 +476,7 @@ static void verify_block(unsigned char *cp, uint64_t file_offset, uint64_t size)
static void dump_block(int fd, BLOCKNUM blocknum, FT ft) { static void dump_block(int fd, BLOCKNUM blocknum, FT ft) {
DISKOFF offset, size; DISKOFF offset, size;
toku_translate_blocknum_to_offset_size(ft->blocktable, blocknum, &offset, &size); ft->blocktable.translate_blocknum_to_offset_size(blocknum, &offset, &size);
printf("%" PRId64 " at %" PRId64 " size %" PRId64 "\n", blocknum.b, offset, size); printf("%" PRId64 " at %" PRId64 " size %" PRId64 "\n", blocknum.b, offset, size);
unsigned char *CAST_FROM_VOIDP(vp, toku_malloc(size)); unsigned char *CAST_FROM_VOIDP(vp, toku_malloc(size));
...@@ -688,21 +688,21 @@ int main (int argc, const char *const argv[]) { ...@@ -688,21 +688,21 @@ int main (int argc, const char *const argv[]) {
dump_fragmentation(fd, ft, do_tsv); dump_fragmentation(fd, ft, do_tsv);
} }
if (do_translation_table) { if (do_translation_table) {
toku_dump_translation_table_pretty(stdout, ft->blocktable); ft->blocktable.dump_translation_table_pretty(stdout);
} }
if (do_garbage) { if (do_garbage) {
dump_garbage_stats(fd, ft); dump_garbage_stats(fd, ft);
} }
if (!do_header && !do_rootnode && !do_fragmentation && !do_translation_table && !do_garbage) { if (!do_header && !do_rootnode && !do_fragmentation && !do_translation_table && !do_garbage) {
printf("Block translation:"); printf("Block translation:");
toku_dump_translation_table(stdout, ft->blocktable); ft->blocktable.dump_translation_table(stdout);
dump_header(ft); dump_header(ft);
struct __dump_node_extra info; struct __dump_node_extra info;
info.fd = fd; info.fd = fd;
info.ft = ft; info.ft = ft;
toku_blocktable_iterate(ft->blocktable, TRANSLATION_CHECKPOINTED, ft->blocktable.iterate(block_table::TRANSLATION_CHECKPOINTED,
dump_node_wrapper, &info, true, true); dump_node_wrapper, &info, true, true);
} }
} }
......
Markdown is supported
0%
or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment