Fix for

   Bug#36345 Test 'func_misc' fails on RHAS3 x86_64
and a second similar problem within this test found
during experimenting.
parent e2ff8580
...@@ -104,41 +104,76 @@ t1 CREATE TABLE `t1` ( ...@@ -104,41 +104,76 @@ t1 CREATE TABLE `t1` (
`length(uuid())` int(10) NOT NULL DEFAULT '0' `length(uuid())` int(10) NOT NULL DEFAULT '0'
) ENGINE=MyISAM DEFAULT CHARSET=latin1 ) ENGINE=MyISAM DEFAULT CHARSET=latin1
drop table t1; drop table t1;
create table t1 (a timestamp default '2005-05-05 01:01:01', create table t1 (id int,
a timestamp default '2005-05-05 01:01:01',
b timestamp default '2005-05-05 01:01:01'); b timestamp default '2005-05-05 01:01:01');
insert into t1 set a = now(); insert into t1 set id = 1,a = now();
select sleep(3); select sleep(3);
sleep(3) sleep(3)
0 0
update t1 set b = now(); update t1 set b = now() where id = 1;
select timediff(b, a) >= '00:00:03' from t1; insert into t1 set id = 2,a = now();
timediff(b, a) >= '00:00:03' select sleep(3);
sleep(3)
0
update t1 set b = now() where id = 2;
select count(*) >= 1 from t1
where timediff(b, a) between '00:00:03' and '00:00:07';
count(*) >= 1
1 1
drop table t1; drop table t1;
set global query_cache_size=1355776; SET @@global.query_cache_size = 1024 * 64;
create table t1 (a int); SELECT 1 as some_value, sleep(1);
insert into t1 values (1),(1),(1); some_value sleep(1)
create table t2 (a datetime default null, b datetime default null); 1 0
insert into t2 set a = now(); SELECT <Qcache_queries_in_cache_before> = <Qcache_queries_in_cache_before>
select a from t1 where sleep(1); AS "Was the query not cached (= expectation)?";
a Was the query not cached (= expectation)?
update t2 set b = now() where b is null;
insert into t2 set a = now();
select a from t1 where sleep(a);
a
update t2 set b = now() where b is null;
insert into t2 set a = now();
select a from t1 where sleep(1);
a
update t2 set b = now() where b is null;
select timediff(b, a) >= '00:00:03' from t2;
timediff(b, a) >= '00:00:03'
1
1 1
DROP TEMPORARY TABLE IF EXISTS proclist_history;
DROP TABLE IF EXISTS t1;
CREATE TEMPORARY TABLE proclist_history AS
SELECT 'Bug 1' AS test, 0 AS attempt, NOW() AS observation_time, state, time
FROM information_schema.processlist WHERE 1 = 0;
CREATE TABLE t1 (f1 BIGINT);
INSERT INTO t1 VALUES (1);
INSERT INTO t1 VALUES (1);
INSERT INTO t1 VALUES (1);
INSERT INTO t1 VALUES (1);
SET @sleep_time_per_result_row = 1;
----- establish connection con1 (user = root) -----
SET @sleep_time_per_result_row = 1;
Qcache_queries_in_cache: 0
# Send query with send, pull server responses later
SELECT sleep(@sleep_time_per_result_row) FROM t1;
----- switch to connection default (user = root) -----
----- switch to connection con1 (user = root) -----
# Pull server responses of last query
sleep(@sleep_time_per_result_row)
0
0
0
0
----- switch to connection con1 (user = root) -----
# Send query with send, pull server responses later
SELECT sleep(@sleep_time_per_result_row) FROM t1;
----- switch to connection default (user = root) -----
SELECT COUNT(*) FROM information_schema.processlist
WHERE info = 'SELECT sleep(@sleep_time_per_result_row) FROM t1'
AND state = 'User sleep';
COUNT(*)
1 1
drop table t2; ----- switch to connection con1 (user = root) -----
drop table t1; # Pull server responses of last query
set global query_cache_size=default; sleep(@sleep_time_per_result_row)
0
0
0
0
----- switch to connection default and close connection con1 -----
SET @@global.query_cache_size = default;
DROP TABLE t1;
DROP TEMPORARY TABLE proclist_history;
create table t1 select INET_ATON('255.255.0.1') as `a`; create table t1 select INET_ATON('255.255.0.1') as `a`;
show create table t1; show create table t1;
Table Create Table Table Create Table
......
...@@ -105,34 +105,293 @@ drop table t1; ...@@ -105,34 +105,293 @@ drop table t1;
# #
# Bug #6760: Add SLEEP() function # Bug #6760: Add SLEEP() function
# #
create table t1 (a timestamp default '2005-05-05 01:01:01', # Note (mleich):
# --------------
# The experiments around
# Bug#36345 Test 'func_misc' fails on RHAS3 x86_64
# showed that the original test for Bug#6760 produced false alarms in case
# of parallel system time decreases. It was therefore modified.
# Solution:
# We run the test two times and assume a pass if at least one attempt
# is successful. The disadvantage is that a parallel "unnatural" increase of
# system time (set time via ntpd etc.) is able to hide a wrong working SLEEP
# function. This is no problem because
# - such changes of the system are rare
# - there is an extreme high probability that either the following test
# or the frequent runs of the current test on the current testing box or
# other boxes catch a wrong working SLEEP function.
create table t1 (id int,
a timestamp default '2005-05-05 01:01:01',
b timestamp default '2005-05-05 01:01:01'); b timestamp default '2005-05-05 01:01:01');
insert into t1 set a = now(); insert into t1 set id = 1,a = now();
select sleep(3); select sleep(3);
update t1 set b = now(); update t1 set b = now() where id = 1;
select timediff(b, a) >= '00:00:03' from t1; insert into t1 set id = 2,a = now();
select sleep(3);
update t1 set b = now() where id = 2;
# Check that the timediff caused by the length of the sleep is not plain wrong.
# We can have delays in statement processing of 1 - 2 seconds on
# an overloaded testing box.
# Minimum (= ideal) real timediff = '00:00:03'
# Maximum acceptable real timediff = '00:00:07'
select count(*) >= 1 from t1
where timediff(b, a) between '00:00:03' and '00:00:07';
drop table t1; drop table t1;
# ################################################################################
# Bug #12689: SLEEP() gets incorrectly cached/optimized-away # Bug #12689: SLEEP() gets incorrectly cached/optimized-away
# #
set global query_cache_size=1355776; # Description from bug report (slightly modified)
create table t1 (a int); # ===============================================
insert into t1 values (1),(1),(1); # Bug 1 (happened all time):
create table t2 (a datetime default null, b datetime default null); # SELECT * FROM t1 WHERE SLEEP(1) will only result in a sleep of 1
insert into t2 set a = now(); # second, regardless of the number of rows in t1.
select a from t1 where sleep(1); # Bug 2 (happened all time):
update t2 set b = now() where b is null; # Such a query will also get cached by the query cache, but should not.
insert into t2 set a = now(); #
select a from t1 where sleep(a); # Notes (mleich, May 2008)
update t2 set b = now() where b is null; # ========================
insert into t2 set a = now(); # 1. The testcase for this bug had to be reimplemented because of
select a from t1 where sleep(1); # Bug#36345 Test 'func_misc' fails on RHAS3 x86_64
update t2 set b = now() where b is null; # - Bad effect: We did not reach the expected time differences.
select timediff(b, a) >= '00:00:03' from t2; # - Experiments showed that for example a parallel change of the system
drop table t2; # time (decrease of time value) like via ntpd provokes this effect.
drop table t1; #
set global query_cache_size=default; # It is a clear error within the setup of the testing environment if
# tests relying on derivates of the system time can meet parallel
# manipulations of this time. Covering these weaknesses by workarounds
# within the tests is often not perfect doable at all and costs
# significant development and/or runtime per test.
#
# Results of experiments with/without manipulation of system time:
# ----------------------------------------------------------------
# Definition: Predicted_cumulative_sleep_time =
# #_of_result_rows * sleep_time_per_result_row
# processlist.time refers to the session in state 'User sleep'
#
# 1. Total (real sleep time) ~= predicted_cumulative_sleep_time !!
# 2. processlist.time behaves "synchronous" to system time and NOW() and
# shows also the "jumps" caused by system time manipulations
# 3. processlist.time is unsigned, the next value below 0 is ~ 4G
# 4. Current processlist.time ~= current real sleep time
# if the system time was not manipulated
#
# 2. How to reveal the absence of Bug 1:
#
# The state of a session within the PROCESSLIST changes to 'User sleep'
# if the sessions runs a statement containing the sleep function and the
# processing of the statement is just within the phase where the sleep
# is done.
#
# As soon as the "Real" time where the session is in state 'User sleep'
# exceeds the sleep_time_per_result_row we can be sure that the execution
# of the query slept more time than needed for just one row.
#
# "Real" time in state 'User sleep' > sleep_time_per_result_row
#
# Estimation 1:
# -------------
# n = how often we observed the session is in state 'User sleep'
#
# "Real" time in state 'User sleep'
# = (n - 1) * sleep_time_in_loop
# + time needed for the execution of the statements within the loop
# (includes the time waiting for getting resources like CPU etc.
# which si significant in case of high load on testing box)
#
# (n - 1) * sleep_time_in_loop >= sleep_time_per_result_row
#
# n >= sleep_time_per_result_row / sleep_time_in_loop + 1
#
# Simplification taking truncation of values etc. into account:
# n >= sleep_time_per_result_row / sleep_time_in_loop + 2
#
# We cannot have met Bug 1 if
# n >= sleep_time_per_result_row / sleep_time_in_loop + 2
# is fulfilled.
# But there is a significant risk that a run on an overloaded box
# does not reach the estimated limit.
#
# Estimation 2:
# -------------
# processlist.time should show how long a session is within the current
# state. I verified by experimenting that this value is not reset per
# row of the the result set.
#
# "Real" time in state 'User sleep'
# >= highest observed value of processlist.time
#
# We cannot have met Bug 1 if
# highest observed value of processlist.time > sleep_time_per_result_row
# is fulfilled.
# Unfortunately processlist.time is no more reliable in case of parallel
# changes of the system time.
#
# Final solution:
# ---------------
# Run a subtest with "judging" based on estimation 1. If the limit is not
# reached, assume that we suffered from high load and try estimation 2.
# If estimation 2 gets cheated by parallel increase of system time
# assume that later runs on the same box or other boxes will show if
# Bug#12689 occured again.
#
# 3. How to reveal the absence of Bug 2:
# - By checking the behaviour during second execution:
# We run the same statement again and meet the session at least once in
# state 'User sleep'.
# - By checking secondary information (query cache statistics)
# The first execution of the statment must not cause that
# Qcache_queries_in_cache is incremented.
#
# 4. We do not run
# --source include/have_query_cache.inc
# at the beginning of this script because we want that this script is not
# skipped if the query cache is disabled. This means the detection of wrongly
# cached queries is in such cases without real effect.
#
# 5. Thanks to Davi for excellent hints and ideas.
#
################################################################################
# 1. For Bug 2: Qcache_queries_in_cache must be not incremented if a query with
# sleep was first time executed.
SET @@global.query_cache_size = 1024 * 64;
let $Qcache_queries_in_cache_before =
query_get_value(SHOW STATUS LIKE 'Qcache_queries_in_cache', Value, 1);
SELECT 1 as some_value, sleep(1);
let $Qcache_queries_in_cache_after =
query_get_value(SHOW STATUS LIKE 'Qcache_queries_in_cache', Value, 1);
# Show that the query with sleep was not cached via query cache statistics.
--replace_result $Qcache_queries_in_cache_before <Qcache_queries_in_cache_before> $Qcache_queries_in_cache_after <Qcache_queries_in_cache_after>
eval SELECT $Qcache_queries_in_cache_before = $Qcache_queries_in_cache_after
AS "Was the query not cached (= expectation)?";
#
# 2. For Bug 1: Estimation 1
# Real sleep time must exceed the sleep time for just one row.
#
let $sleep_time_per_result_row = 1;
let $row_count = 4;
--disable_warnings
DROP TEMPORARY TABLE IF EXISTS proclist_history;
DROP TABLE IF EXISTS t1;
--enable_warnings
CREATE TEMPORARY TABLE proclist_history AS
SELECT 'Bug 1' AS test, 0 AS attempt, NOW() AS observation_time, state, time
FROM information_schema.processlist WHERE 1 = 0;
CREATE TABLE t1 (f1 BIGINT);
let $num = $row_count;
while ($num)
{
INSERT INTO t1 VALUES (1);
dec $num;
}
eval SET @sleep_time_per_result_row = $sleep_time_per_result_row;
let $sleep_command = SELECT sleep(@sleep_time_per_result_row) FROM t1;
# Set wait_timeout to a useful small value.
let $wait_timeout= `SELECT $row_count * $sleep_time_per_result_row + 5`;
let $wait_condition =
SELECT COUNT(*) >= @sleep_time_per_result_row / 0.1 + 2
FROM proclist_history WHERE test = 'Bug 1';
--echo ----- establish connection con1 (user = root) -----
connect (con1,localhost,root,,);
eval SET @sleep_time_per_result_row = $sleep_time_per_result_row;
let $Qcache_queries_in_cache_before =
query_get_value(SHOW STATUS LIKE 'Qcache_queries_in_cache', Value, 1);
--echo Qcache_queries_in_cache: $Qcache_queries_in_cache_before
--echo # Send query with send, pull server responses later
send;
eval $sleep_command;
#
--echo ----- switch to connection default (user = root) -----
connection default;
#
--disable_query_log
let $wait_counter= `SELECT $wait_timeout * 10`;
let $wait_condition_reps= 0;
while ($wait_counter)
{
let $success= `$wait_condition`;
inc $wait_condition_reps;
eval
INSERT INTO proclist_history
( test, attempt, observation_time, state, time)
SELECT 'Bug 1', $wait_condition_reps, NOW(), state, time
FROM information_schema.processlist
WHERE info = '$sleep_command';
if ($success)
{
let $wait_counter= 0;
}
if (!$success)
{
real_sleep 0.1;
dec $wait_counter;
}
}
--enable_query_log
if (!$success)
{
# Estimation 1 had no success - We are most probably on a testing box
# running under high load.
# Try Estimation 2:
let $success = `SELECT MAX(time) > @sleep_time_per_result_row
FROM proclist_history WHERE test = 'Bug 1'`;
}
if (!$success)
{
--echo # ------------------------------------------------------------
--echo # The check for
--echo # Bug#12689: SLEEP() gets incorrectly cached/optimized-away
--echo # failed. None of both estimations are fulfilled.
--echo #
--echo # Dumping debug information
--echo #
--echo # Estimation 1:
eval $wait_condition;
--echo # ------------------------------------------------------------
--echo # Estimation 2:
SELECT MAX(time) > @sleep_time_per_result_row
FROM proclist_history WHERE test = 'Bug 1';
--echo # ------------------------------------------------------------
SELECT attempt, observation_time, state, time FROM proclist_history
WHERE test = 'Bug 1' ORDER BY attempt;
--echo # ------------------------------------------------------------
}
--echo ----- switch to connection con1 (user = root) -----
connection con1;
--echo # Pull server responses of last query
reap;
#
# 3. For Bug 2: A second execution of the same statement must again show
# the session in state 'User sleep'.
--echo ----- switch to connection con1 (user = root) -----
connection con1;
--echo # Send query with send, pull server responses later
send;
eval $sleep_command;
#
--echo ----- switch to connection default (user = root) -----
connection default;
let $wait_condition = SELECT COUNT(*) FROM information_schema.processlist
WHERE info = '$sleep_command'
AND state = 'User sleep';
--source include/wait_condition.inc
# Simply show that we reached the expected state.
eval $wait_condition;
--echo ----- switch to connection con1 (user = root) -----
connection con1;
--echo # Pull server responses of last query
reap;
--echo ----- switch to connection default and close connection con1 -----
connection default;
disconnect con1;
SET @@global.query_cache_size = default;
DROP TABLE t1;
DROP TEMPORARY TABLE proclist_history;
# #
# Bug #21466: INET_ATON() returns signed, not unsigned # Bug #21466: INET_ATON() returns signed, not unsigned
......
Markdown is supported
0%
or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment