Commit 8156d9eb authored by Sergey Petrunya's avatar Sergey Petrunya

MWL#17: Table elimination

- Last fixes

sql/item.cc:
  MWL#17: Table elimination
  - Don't make multiple calls of ::walk(check_column_usage_processor),
    call once and cache the value
sql/item.h:
  MWL#17: Table elimination
  - s/KEYUSE::usable/KEYUSE::type/, more comments
sql/opt_table_elimination.cc:
  MWL#17: Table elimination
  - Don't make multiple calls of ::walk(check_column_usage_processor),
    call once and cache the value
sql/sql_select.cc:
  MWL#17: Table elimination
  - s/KEYUSE::usable/KEYUSE::type/, more comments
sql/sql_select.h:
  MWL#17: Table elimination
  - s/KEYUSE::usable/KEYUSE::type/, more comments
sql/table.h:
  MWL#17: Table elimination
  - Better comments
parent 9fa1bce4
......@@ -1920,10 +1920,6 @@ bool Item_field::check_column_usage_processor(uchar *arg)
{
Field_processor_info* info=(Field_processor_info*)arg;
/* It is ok if this is a column of an allowed table: */
if (used_tables() & ~info->allowed_tables)
return FALSE;
if (field->table == info->table)
{
/* It is not ok to use columns that are not part of the key of interest: */
......@@ -1936,18 +1932,17 @@ bool Item_field::check_column_usage_processor(uchar *arg)
{
if (field->field_index == key->key_part[part].field->field_index)
{
if (part == info->forbidden_part)
return TRUE;
info->needed_key_parts |= key_part_map(1) << part;
break;
}
}
return FALSE;
}
/*
We get here when this refers to a table that's neither the table of
interest, nor one of the allowed tables.
*/
return TRUE;
else
info->used_tables |= this->used_tables();
return FALSE;
}
......
......@@ -1018,11 +1018,14 @@ class Item {
};
/* Data for Item::check_column_usage_processor */
typedef struct
{
table_map allowed_tables;
TABLE *table;
uint keyno;
typedef struct
{
TABLE *table; /* Table of interest */
uint keyno; /* Index of interest */
uint forbidden_part; /* key part which one is not allowed to refer to */
/* [Set by processor] used tables, besides the table of interest */
table_map used_tables;
/* [Set by processor] Parts of index of interest that expression refers to */
uint needed_key_parts;
} Field_processor_info;
......
......@@ -166,9 +166,8 @@ void eliminate_tables(JOIN *join)
DESCRIPTION
RETURN
Number of base tables left after elimination. 0 means everything was
eliminated. Tables that belong to the
children of this join nest are also counted.
Number of children left after elimination. 0 means everything was
eliminated.
// TRUE The entire join list can be eliminated (caller should remove)
// FALSE Otherwise
......@@ -188,7 +187,7 @@ eliminate_tables_for_list(JOIN *join, TABLE **leaves_arr,
table_map tables_used_on_left= 0;
TABLE **cur_table= leaves_arr;
bool children_have_multiple_matches= FALSE;
uint base_tables= 0;
uint remaining_children= 0;
while ((tbl= it++))
{
......@@ -209,8 +208,9 @@ eliminate_tables_for_list(JOIN *join, TABLE **leaves_arr,
{
mark_as_eliminated(join, tbl);
}
else
remaining_children++;
tbl->nested_join->n_tables= n;
base_tables += n;
}
else
{
......@@ -222,7 +222,7 @@ eliminate_tables_for_list(JOIN *join, TABLE **leaves_arr,
mark_as_eliminated(join, tbl);
}
else
base_tables++;
remaining_children++;
}
tables_used_on_left |= tbl->on_expr->used_tables();
children_have_multiple_matches= children_have_multiple_matches ||
......@@ -231,7 +231,7 @@ eliminate_tables_for_list(JOIN *join, TABLE **leaves_arr,
else
{
DBUG_ASSERT(!tbl->nested_join);
base_tables++;
remaining_children++;
}
if (tbl->table)
......@@ -271,10 +271,10 @@ eliminate_tables_for_list(JOIN *join, TABLE **leaves_arr,
This join_list can be eliminated. Signal about this to the caller by
returning number of tables.
*/
base_tables= 0;
remaining_children= 0;
}
}
return base_tables;
return remaining_children;
}
......@@ -330,7 +330,7 @@ static bool table_has_one_match(TABLE *table, table_map bound_tables,
do /* For each keypart and each way to read it */
{
if (keyuse->usable == 1)
if (keyuse->type == KEYUSE_USABLE)
{
if(!(keyuse->used_tables & ~bound_tables) &&
!(keyuse->optimize & KEY_OPTIMIZE_REF_OR_NULL))
......@@ -400,12 +400,56 @@ extra_keyuses_bind_all_keyparts(table_map bound_tables, TABLE *table,
uint n_keyuses, table_map bound_parts)
{
/*
Current implementation needs some keyparts to be already bound to start
inferences:
We need
- some 'unusable' KEYUSE elements to work on
- some keyparts to be already bound to start inferences:
*/
if (n_keyuses && bound_parts)
{
KEY *keyinfo= table->key_info + key_start->key;
KEY *keyinfo= table->key_info + key_start->key;
bool bound_more_parts;
do
{
bound_more_parts= FALSE;
for (KEYUSE *k= key_start; k!=key_end; k++)
{
if (k->type == KEYUSE_UNKNOWN)
{
Field_processor_info fp= {table, k->key, k->keypart, 0, 0};
if (k->val->walk(&Item::check_column_usage_processor, FALSE,
(uchar*)&fp))
k->type= KEYUSE_NO_BIND;
else
{
k->used_tables= fp.used_tables;
k->keypart_map= fp.needed_key_parts;
k->type= KEYUSE_BIND;
}
}
if (k->type == KEYUSE_BIND)
{
/*
If this is a binding keyuse, such that
- all tables it refers to are bound,
- all parts it refers to are bound
- but the key part it binds is not itself bound
*/
if (!(k->used_tables & ~bound_tables) &&
!(k->keypart_map & ~bound_parts) &&
!(bound_parts & key_part_map(1) << k->keypart))
{
bound_parts|= key_part_map(1) << k->keypart;
if (bound_parts == PREV_BITS(key_part_map, keyinfo->key_parts))
return TRUE;
bound_more_parts= TRUE;
}
}
}
} while (bound_more_parts);
}
return FALSE;
#if 0
Keyuse_w_needed_reg *uses;
if (!(uses= (Keyuse_w_needed_reg*)my_alloca(sizeof(Keyuse_w_needed_reg)*
n_keyuses)))
......@@ -450,8 +494,7 @@ extra_keyuses_bind_all_keyparts(table_map bound_tables, TABLE *table,
return TRUE;
}
} while (n_bounded != 0);
}
return FALSE;
#endif
}
......
......@@ -2762,7 +2762,7 @@ make_join_statistics(JOIN *join, TABLE_LIST *tables_arg, COND *conds,
{
start_keyuse=keyuse;
key=keyuse->key;
if (keyuse->usable == 1)
if (keyuse->type == KEYUSE_USABLE)
s->keys.set_bit(key); // QQ: remove this ?
refs=0;
......@@ -2770,8 +2770,8 @@ make_join_statistics(JOIN *join, TABLE_LIST *tables_arg, COND *conds,
eq_part.clear_all();
do
{
if (keyuse->usable==1 && keyuse->val->type() != Item::NULL_ITEM &&
!keyuse->optimize)
if (keyuse->type == KEYUSE_USABLE &&
keyuse->val->type() != Item::NULL_ITEM && !keyuse->optimize)
{
if (!((~found_const_table_map) & keyuse->used_tables))
const_ref.set_bit(keyuse->keypart);
......@@ -2971,7 +2971,7 @@ typedef struct key_field_t {
*/
bool null_rejecting;
bool *cond_guard; /* See KEYUSE::cond_guard */
bool usable; /* See KEYUSE::usable */
enum keyuse_type type; /* See KEYUSE::type */
} KEY_FIELD;
......@@ -3069,7 +3069,7 @@ merge_key_fields(KEY_FIELD *start,KEY_FIELD *new_fields,KEY_FIELD *end,
be, too (TODO: shouldn't that apply to the above
null_rejecting and optimize attributes?)
*/
DBUG_ASSERT(old->usable == new_fields->usable);
DBUG_ASSERT(old->type == new_fields->type);
}
}
else if (old->eq_func && new_fields->eq_func &&
......@@ -3085,12 +3085,13 @@ merge_key_fields(KEY_FIELD *start,KEY_FIELD *new_fields,KEY_FIELD *end,
old->null_rejecting= (old->null_rejecting &&
new_fields->null_rejecting);
// "t.key_col=const" predicates are always usable
DBUG_ASSERT(old->usable && new_fields->usable);
DBUG_ASSERT(old->type == KEYUSE_USABLE &&
new_fields->type == KEYUSE_USABLE);
}
else if (old->eq_func && new_fields->eq_func &&
((new_fields->usable && old->val->const_item() &&
old->val->is_null()) ||
((old->usable && new_fields->val->is_null()))))
((new_fields->type == KEYUSE_USABLE &&
old->val->const_item() && old->val->is_null()) ||
((old->type == KEYUSE_USABLE && new_fields->val->is_null()))))
/* TODO ^ why is the above asymmetric, why const_item()? */
{
/* field = expression OR field IS NULL */
......@@ -3181,9 +3182,6 @@ add_key_field(KEY_FIELD **key_fields,uint and_level, Item_func *cond,
if (!((value[i])->used_tables() & (field->table->map | RAND_TABLE_BIT)))
optimizable=1;
}
// psergey-tbl-elim:
// if (!optimizable)
// return;
if (!(usable_tables & field->table->map))
{
if (!eq_func || (*value)->type() != Item::NULL_ITEM ||
......@@ -3290,7 +3288,7 @@ add_key_field(KEY_FIELD **key_fields,uint and_level, Item_func *cond,
(*key_fields)->val= *value;
(*key_fields)->level= and_level;
(*key_fields)->optimize= exists_optimize;
(*key_fields)->usable= optimizable;
(*key_fields)->type= optimizable? KEYUSE_USABLE : KEYUSE_UNKNOWN;
/*
If the condition has form "tbl.keypart = othertbl.field" and
othertbl.field can be NULL, there will be no matches if othertbl.field
......@@ -3602,12 +3600,7 @@ add_key_part(DYNAMIC_ARRAY *keyuse_array,KEY_FIELD *key_field)
keyuse.optimize= key_field->optimize & KEY_OPTIMIZE_REF_OR_NULL;
keyuse.null_rejecting= key_field->null_rejecting;
keyuse.cond_guard= key_field->cond_guard;
if (!(keyuse.usable= key_field->usable))
{
/* The following will have special meanings: */
keyuse.keypart_map= 0;
keyuse.used_tables= 0;
}
keyuse.type= key_field->type;
VOID(insert_dynamic(keyuse_array,(uchar*) &keyuse));
}
}
......@@ -3674,7 +3667,7 @@ add_ft_keys(DYNAMIC_ARRAY *keyuse_array,
keyuse.used_tables=cond_func->key_item()->used_tables();
keyuse.optimize= 0;
keyuse.keypart_map= 0;
keyuse.usable= 1;
keyuse.type= KEYUSE_USABLE;
VOID(insert_dynamic(keyuse_array,(uchar*) &keyuse));
}
......@@ -3691,8 +3684,10 @@ sort_keyuse(KEYUSE *a,KEYUSE *b)
return (int) (a->keypart - b->keypart);
// Usable ones go before the unusable
if (a->usable != b->usable)
return (int)b->usable - (int)a->usable;
int a_ok= test(a->type == KEYUSE_USABLE);
int b_ok= test(b->type == KEYUSE_USABLE);
if (a_ok != b_ok)
return a_ok? -1 : 1;
// Place const values before other ones
if ((res= test((a->used_tables & ~OUTER_REF_TABLE_BIT)) -
......@@ -3904,7 +3899,7 @@ update_ref_and_keys(THD *thd, DYNAMIC_ARRAY *keyuse,JOIN_TAB *join_tab,
found_eq_constant=0;
for (i=0 ; i < keyuse->elements-1 ; i++,use++)
{
if (use->usable == 1 && !use->used_tables &&
if (use->type == KEYUSE_USABLE && !use->used_tables &&
use->optimize != KEY_OPTIMIZE_REF_OR_NULL)
use->table->const_key_parts[use->key]|= use->keypart_map;
if (use->keypart != FT_KEYPART)
......@@ -3929,7 +3924,7 @@ update_ref_and_keys(THD *thd, DYNAMIC_ARRAY *keyuse,JOIN_TAB *join_tab,
/* Save ptr to first use */
if (!use->table->reginfo.join_tab->keyuse)
use->table->reginfo.join_tab->keyuse=save_pos;
if (use->usable == 1)
if (use->type == KEYUSE_USABLE)
use->table->reginfo.join_tab->checked_keys.set_bit(use->key);
save_pos++;
}
......@@ -3960,7 +3955,7 @@ static void optimize_keyuse(JOIN *join, DYNAMIC_ARRAY *keyuse_array)
To avoid bad matches, we don't make ref_table_rows less than 100.
*/
keyuse->ref_table_rows= ~(ha_rows) 0; // If no ref
if (keyuse->usable == 1 && keyuse->used_tables &
if (keyuse->type == KEYUSE_USABLE && keyuse->used_tables &
(map= (keyuse->used_tables & ~join->const_table_map &
~OUTER_REF_TABLE_BIT)))
{
......@@ -4152,7 +4147,7 @@ best_access_path(JOIN *join,
if 1. expression doesn't refer to forward tables
2. we won't get two ref-or-null's
*/
if (keyuse->usable == 1&&
if (keyuse->type == KEYUSE_USABLE &&
!(remaining_tables & keyuse->used_tables) &&
!(ref_or_null_part && (keyuse->optimize &
KEY_OPTIMIZE_REF_OR_NULL)))
......@@ -5607,7 +5602,8 @@ static bool create_ref_for_key(JOIN *join, JOIN_TAB *j, KEYUSE *org_keyuse,
*/
do
{
if (!(~used_tables & keyuse->used_tables) && keyuse->usable == 1)
if (!(~used_tables & keyuse->used_tables) &&
keyuse->type == KEYUSE_USABLE)
{
if (keyparts == keyuse->keypart &&
!(found_part_ref_or_null & keyuse->optimize))
......@@ -5658,7 +5654,7 @@ static bool create_ref_for_key(JOIN *join, JOIN_TAB *j, KEYUSE *org_keyuse,
for (i=0 ; i < keyparts ; keyuse++,i++)
{
while (keyuse->keypart != i || ((~used_tables) & keyuse->used_tables) ||
!(keyuse->usable == 1))
!(keyuse->type == KEYUSE_USABLE))
{
keyuse++; /* Skip other parts */
}
......@@ -16709,9 +16705,9 @@ static void print_join(THD *thd,
the fact that the first table can't be inner table of an outer join.
*/
DBUG_ASSERT(!eliminated_tables ||
!((*table)->table && ((*table)->table->map & eliminated_tables) ||
(*table)->nested_join && !((*table)->nested_join->used_tables &
~eliminated_tables)));
!(((*table)->table && ((*table)->table->map & eliminated_tables)) ||
((*table)->nested_join && !((*table)->nested_join->used_tables &
~eliminated_tables))));
(*table)->print(thd, eliminated_tables, str, query_type);
TABLE_LIST **end= table + tables->elements;
......
......@@ -33,6 +33,40 @@
#define KEY_OPTIMIZE_EXISTS 1
#define KEY_OPTIMIZE_REF_OR_NULL 2
/* KEYUSE element types */
enum keyuse_type
{
/*
val refers to the same table, this is either KEYUSE_BIND or KEYUSE_NO_BIND
type, we didn't determine which one yet.
*/
KEYUSE_UNKNOWN= 0,
/*
'regular' keyuse, i.e. it represents one of the following
* t.keyXpartY = func(constants, other-tables)
* t.keyXpartY IS NULL
* t.keyXpartY = func(constants, other-tables) OR t.keyXpartY IS NULL
and can be used to construct ref acces
*/
KEYUSE_USABLE,
/*
The keyuse represents a condition in form:
t.uniq_keyXpartY = func(other parts of uniq_keyX)
This can't be used to construct uniq_keyX but we could use it to determine
that the table will produce at most one match.
*/
KEYUSE_BIND,
/*
Keyuse that's not usable for ref access and doesn't meet the criteria of
KEYUSE_BIND. Examples:
t.keyXpartY = func(t.keyXpartY)
t.keyXpartY = func(column of t that's not covered by keyX)
*/
KEYUSE_NO_BIND
};
typedef struct keyuse_t {
TABLE *table;
Item *val; /**< or value if no field */
......@@ -64,7 +98,7 @@ typedef struct keyuse_t {
This equality cannot be used for index access but is useful
for table elimination.
*/
int usable;
enum keyuse_type type;
} KEYUSE;
class store_key;
......
......@@ -1618,7 +1618,8 @@ typedef struct st_nested_join
List<TABLE_LIST> join_list; /* list of elements in the nested join */
/*
Bitmap of tables within this nested join (including those embedded within
its children). Eliminated tables are still in the bitmap */
its children), including tables removed by table elimination.
*/
table_map used_tables;
table_map not_null_tables; /* tables that rejects nulls */
struct st_join_table *first_nested;/* the first nested table in the plan */
......@@ -1628,11 +1629,12 @@ typedef struct st_nested_join
2. check_interleaving_with_nj/restore_prev_nj_state (these are called
by the join optimizer.
Before each use the counters are zeroed by reset_nj_counters.
Meaning, in both cases: number of base tables within this nested join and
its children. Eliminated tables are not counted.
*/
uint counter;
/* Tables left after elimination */
/*
Number of elements in join_list that were not (or contain table(s) that
weren't) removed by table elimination.
*/
uint n_tables;
nested_join_map nj_map; /* Bit used to identify this nested join*/
} NESTED_JOIN;
......
Markdown is supported
0%
or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment