Commit c1e9f320 authored by Yoni Fogel's avatar Yoni Fogel

Addresses #596

Made changes to Bradley's proposed .h file pursuant to comments.

git-svn-id: file:///svn/tokudb@3519 c7de825b-a66e-492c-adef-691d508d4ae1
parent 196c76bd
#if !defined(OM_H)
#define OM_H
#if !defined(OMT_H)
#define OMT_H
#ident "Copyright (c) 2007 Tokutek Inc. All rights reserved."
// Order Maintenance Array (OMA)
// Order Maintenance Array (OMT)
//
// Maintains a collection of totally ordered values, where each value has an integer weight.
// The OMA is a mutable datatype.
// The OMT is a mutable datatype.
//
// The Abstraction:
//
// An OMA is a vector of values, $V$, where $|V|$ is the length of the vector.
// An OMT is a vector of values, $V$, where $|V|$ is the length of the vector.
// The vector is numbered from $0$ to $|V|-1$.
// Each value has a weight. The weight of the $i$th element is denoted $w(V_i)$.
//
// We can create a new OMA, which is the empty vector.
// We can create a new OMT, which is the empty vector.
//
// We can insert a new element $x$ into slot $i$, changing $V$ into $V'$ where
// $|V'|=1+|V|$ and
......@@ -38,12 +38,12 @@
//
// When looking up a value using a Heaviside function, we get the value and its index.
//
// We can also split an OMA into two OMAs, splitting the weight of the values evenly.
// We can also split an OMT into two OMTs, splitting the weight of the values evenly.
// Find a value $j$ such that the values to the left of $j$ have about the same total weight as the values to the right of $j$.
// The resulting two OMAs contain the values to the left of $j$ and the values to the right of $j$ respectively.
// All of the values from the original OMA go into one of the new OMAs.
// The resulting two OMTs contain the values to the left of $j$ and the values to the right of $j$ respectively.
// All of the values from the original OMT go into one of the new OMTs.
// If the weights of the values don't split exactly evenly, then the implementation has the freedom to choose whether
// the new left OMA or the new right OMA is larger.
// the new left OMT or the new right OMT is larger.
//
// Performance:
// Insertion and deletion should run with $O(\log |V|)$ time and $O(\log |V|)$ calls to the Heaviside function.
......@@ -51,52 +51,72 @@
//
// The programming API:
typedef struct value *OMAVALUE; // A slight improvement over using void*.
typedef struct oma *OMA;
typedef struct value *OMTVALUE; // A slight improvement over using void*.
typedef struct oma *OMT;
int toku_oma_create (OMA *omap);
// Effect: Create an empty OMA. Stores it in *omap.
int toku_oma_create (OMT *omap);
// Effect: Create an empty OMT. Stores it in *omap.
// Requires: omap != NULL
// Returns:
// 0 success
// ENOMEM out of memory (and doesn't modify *omap)
// Performance: constant time.
int toku_oma_create_from_sorted_array(OMA* omap, OMAVALUE *values, u_int32_t numvalues);
// Effect: Create a OMA containing values. The number of values is in numvalues.
// Stores the new OMA in *omap.
int toku_oma_create_from_sorted_array(OMT* omap, OMTVALUE *values, u_int32_t numvalues);
// Effect: Create a OMT containing values. The number of values is in numvalues.
// Stores the new OMT in *omap.
// Requires: omap != NULL
// Requires: values != NULL
// Returns:
// 0 success
// ENOMEM out of memory (and doesn't modify *omap)
// Performance: time=O(numvalues)
void toku_oma_destroy(OMA *omap);
// Effect: Destroy an OMA, freeing all its memory.
// Does not free the OMAVALUEs stored in the OMA.
// Rational: Normally to insert N values takes O(N lg N) amortized time.
// If the N values are known in advance, are sorted, and
// the structure is empty, we can batch insert them much faster.
// Hack: Can be temporarily implemented in O(numvalues * lg numvalues)
// by wrapping toku_oma_create and repeated toku_oma_insert_at
// until we have time to implement properly.
void toku_oma_destroy(OMT *omap);
// Effect: Destroy an OMT, freeing all its memory.
// Does not free the OMTVALUEs stored in the OMT.
// Those values may be freed before or after calling toku_oma_destroy.
// Also sets *omap=NULL.
// Requires: omap != NULL
// Requires: *omap != NULL
// Rationale: The usage is to do something like
// toku_oma_destroy(&s->oma);
// and now s->oma will have a NULL pointer instead of a dangling freed pointer.
// Rationale: Returns no values since free() cannot fail.
// Rationale: Does not free the OMTVALUEs to reduce complexity.
// Performance: time=O(toku_oma_size(*omap))
u_int32_t toku_oma_size(OMA V);
u_int32_t toku_oma_size(OMT V);
// Effect: return |V|.
// Requires: V != NULL
// Performance: time=O(1)
int toku_oma_iterate(OMA oma, int (*f)(OMAVALUE, u_int32_t, void*), void*v);
int toku_oma_iterate(OMT oma, int (*f)(OMTVALUE, u_int32_t, void*), void*v);
// Effect: Iterate over the values of the oma, from left to right, calling f on each value.
// The second argument passed to f is the index of the value.
// The third argument passed to f is v.
// The indices run from 0 (inclusive) to toku_oma_size(oma) (exclusive).
// Requires: oma != NULL
// Requires: f != NULL
// Returns:
// If f ever returns nonzero, then the iteration stops, and the value returned by f is returned by toku_oma_iterate.
// If f always returns zero, then toku_oma_iterate returns 0.
// Requires: Don't modify oma while running. (E.g., f may not insert or delete values form oma.)
// Performance: time=O(i+\log N) where i is the number of times f is called, and N is the number of elements in oma.
// Rational: Although the functional iterator requires defining another function (as opposed to C++ style iterator), it is much easier to read.
int toku_oma_insert_at(OMA oma, OMAVALUE value, u_int32_t index);
// Effect: Insert value into the position at index, moving everything to the right up one slot.
int toku_oma_insert_at(OMT oma, OMTVALUE value, u_int32_t index);
// Effect: Increases indexes of all items at slot >= index by 1.
// Insert value into the position at index.
// Requires: oma != NULL
// Requires: value != NULL
//
// Returns:
// 0 success
// ERANGE if index>toku_oma_size(oma)
......@@ -105,63 +125,90 @@ int toku_oma_insert_at(OMA oma, OMAVALUE value, u_int32_t index);
// Performance: time=O(\log N) amortized time.
// Rationale: Some future implementation may be O(\log N) worst-case time, but O(\log N) amortized is good enough for now.
int toku_oma_insert(OMA oma, OMAVALUE value, int(*h)(OMAVALUE, void*v), void *v, u_int32_t* index);
// Effect: Insert value into the OMA.
int toku_oma_insert(OMT oma, OMTVALUE value, int(*h)(OMTVALUE, void*v), void *v, u_int32_t* index);
// Effect: Insert value into the OMT.
// If there is some i such that $h(V_i, v)=0$ then returns DB_KEYEXIST.
// Otherwise, let i be the minimum value such that $h(V_i, v)>0$. Then this has the same effect as
// oma_insert_at(tree, vlaue, i);
// Otherwise, let i be the minimum value such that $h(V_i, v)>0$.
// If no such i exists, then let i be |V|
// Then this has the same effect as
// oma_insert_at(tree, value, i);
// i is stored in *index
// Requires: oma != NULL
// Requires: value != NULL
// Requires: index != NULL
// Requires: The signum of h must be monotonically increasing.
// Returns:
// 0 success
// DB_KEYEXIST the key is present (h was equal to zero for some value)
// ENOMEM
// On nonzero return, oma is unchanged.
// On nonzero non-DB_KEYEXIST return, *index is unchanged.
// Performance: time=O(\log N) amortized.
// Rationale: Some future implementation may be O(\log N) worst-case time, but O(\log N) amortized is good enough for now.
int toku_oma_delete_at(OMA oma, u_int32_t index);
int toku_oma_delete_at(OMT oma, u_int32_t index);
// Effect: Delete the item in slot index.
// Decreases indexes of all items at slot >= index by 1.
// Requires: oma != NULL
// Returns
// 0 success
// ERANGE if index out of range
// ENOMEM
// ERANGE if index>=toku_oma_size(oma)
// On error, oma is unchanged.
// Rationale: To delete an item, first find its index using toku_oma_find, then delete it.
// Performance: time=O(\log N) amortized.
int toku_oma_find_index (OMA V, u_int32_t i, VALUE *v);
int toku_oma_find_index (OMT V, u_int32_t i, VALUE *v);
// Effect: Set *v=V_i
// Returns 0 on success
// ERANGE if i out of range (and doesn't modify v)
// Requires: oma != NULL
// Requires: v != NULL
// Returns
// 0 success
// ERANGE if i out of range
// On nonzero return, *v is unchanged.
// Performance: time=O(\log N)
int toku_oma_find(OMA V, int (*h)(VALUE, void*extra), void*extra, int direction, VALUE *value, u_int32_t *index);
int toku_oma_find(OMT V, int (*h)(VALUE, void*extra), void*extra, int direction, VALUE *value, u_int32_t *index);
// Effect:
// If direction==0 then find the smallest i such that h(V_i,extra)==0.
// If direction>0 then find the smallest i such that h(V_i,extra)>0.
// If direction<0 then find the largest i such that h(V_i,extra)<0.
// If no such vlaue is found, then return DB_NOTFOUND,
// otherwise return 0 and set *value=V_i and set *index=i.
// If direction >0 then find the smallest i such that h(V_i,extra)>0.
// If direction <0 then find the largest i such that h(V_i,extra)<0.
// store V_i in *value
// store i in *index
// Requires: V != NULL
// Requires: h != NULL
// Requires: value != NULL
// Requires: index != NULL
// Returns
// 0 success
// DB_NOTFOUND no such value is found.
// On nonzero return, *value and *index are unchanged.
// Performance: time=O(\log N)
int toku_oma_split_at(OMA oma, OMA *newoma, u_itn32_t index);
// Effect: Create a new OMA, storing it in *newoma.
int toku_oma_split_at(OMT oma, OMT *newoma, u_int32_t index);
// Effect: Create a new OMT, storing it in *newoma.
// The values to the right of index (starting at index) are moved to *newoma.
// Returns 0 on success,
// ERANGE if index out of range
// Requires: oma != NULL
// Requires: newoma != NULL
// Returns
// 0 success,
// ERANGE if index >= toku_oma_size(oma)
// ENOMEM
// On nonzero return, oma and *newoma are unmodified.
// Performance: time=O(n)
// Rationale: We don't need a split-evenly operation. We need to split items so that their total sizes
// are even, and other similar splitting criteria. It's easy to split evenly by calling toku_oma_size(), and dividing by two.
int toku_oma_merge(OMA leftoma, OMA rightoma, OMA *newoma);
int toku_oma_merge(OMT leftoma, OMT rightoma, OMT *newoma);
// Effect: Appends leftoma and rightoma to produce a new oma.
// Sets *newoma to the new oma.
// leftoma and rightoma are left unchanged.
// Requires: leftoma != NULL
// Requires: rightoma != NULL
// Requires: newoma != NULL
// Returns 0 on success
// ENOMEM on out of memory.
// On error, nothing is modified.
// Performance: time=O(n) is acceptable, but one can imagine implementations that are O(\log n) worst-case.
#endif /* #ifndef OM_H */
\ No newline at end of file
#endif /* #ifndef OMT_H */
Markdown is supported
0%
or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment