Commit cca54d3e authored by Sergei Golubchik's avatar Sergei Golubchik

WL#3064 - waiting threads - wait-for graph and deadlock detection

client/mysqltest.c:
  compiler warnings
configure.in:
  remove old tests for unused programs
  disable the use of gcc built-ins if smp assembler atomics were selected explictily.
  add waiting_threads.o to THREAD_LOBJECTS
include/lf.h:
  replace the end-of-stack pointer with the pointer to the end-of-stack pointer.
  the latter could be stored in THD (mysys_vars) and updated in pool-of-threads
  scheduler.
  constructor/destructor in lf-alloc
include/my_pthread.h:
  shuffle set_timespec/set_timespec_nsec macros a bit to be able to fill
  several timeout structures with only one my_getsystime() call
include/waiting_threads.h:
  waiting threads - wait-for graph and deadlock detection
mysys/Makefile.am:
  add waiting_threads.c
mysys/lf_alloc-pin.c:
  replace the end-of-stack pointer with the pointer to the end-of-stack pointer.
  the latter could be stored in THD (mysys_vars) and updated in pool-of-threads
  scheduler.
  constructor/destructor in lf-alloc
mysys/lf_hash.c:
  constructor/destructor in lf-alloc
mysys/my_thr_init.c:
  remember end-of-stack pointer in the mysys_var
mysys/waiting_threads.c:
  waiting threads - wait-for graph and deadlock detection
storage/maria/ha_maria.cc:
  replace the end-of-stack pointer with the pointer to the end-of-stack pointer.
  the latter could be stored in THD (mysys_vars) and updated in pool-of-threads
  scheduler.
storage/maria/ma_commit.c:
  replace the end-of-stack pointer with the pointer to the end-of-stack pointer.
  the latter could be stored in THD (mysys_vars) and updated in pool-of-threads
  scheduler.
storage/maria/trnman.c:
  replace the end-of-stack pointer with the pointer to the end-of-stack pointer.
  the latter could be stored in THD (mysys_vars) and updated in pool-of-threads
  scheduler.
storage/maria/trnman_public.h:
  replace the end-of-stack pointer with the pointer to the end-of-stack pointer.
  the latter could be stored in THD (mysys_vars) and updated in pool-of-threads
  scheduler.
storage/maria/unittest/trnman-t.c:
  replace the end-of-stack pointer with the pointer to the end-of-stack pointer.
  the latter could be stored in THD (mysys_vars) and updated in pool-of-threads
  scheduler.
unittest/mysys/Makefile.am:
  add waiting_threads-t
unittest/mysys/lf-t.c:
  factor out the common code for multi-threaded stress unit tests
  move lf tests to a separate file
unittest/mysys/my_atomic-t.c:
  factor out the common code for multi-threaded stress unit tests
  move lf tests to a separate file
unittest/mysys/thr_template.c:
  factor out the common code for multi-threaded stress unit tests
unittest/mysys/waiting_threads-t.c:
  wt tests
parent 8848f6bd
......@@ -2815,7 +2815,7 @@ void do_mkdir(struct st_command *command)
int error;
static DYNAMIC_STRING ds_dirname;
const struct command_arg mkdir_args[] = {
"dirname", ARG_STRING, TRUE, &ds_dirname, "Directory to create"
{"dirname", ARG_STRING, TRUE, &ds_dirname, "Directory to create"}
};
DBUG_ENTER("do_mkdir");
......@@ -2845,7 +2845,7 @@ void do_rmdir(struct st_command *command)
int error;
static DYNAMIC_STRING ds_dirname;
const struct command_arg rmdir_args[] = {
"dirname", ARG_STRING, TRUE, &ds_dirname, "Directory to remove"
{ "dirname", ARG_STRING, TRUE, &ds_dirname, "Directory to remove" }
};
DBUG_ENTER("do_rmdir");
......
......@@ -250,8 +250,6 @@ test -z "$INSTALL_SCRIPT" && INSTALL_SCRIPT='${INSTALL_PROGRAM}'
# Not critical since the generated file is distributed
AC_CHECK_PROGS(YACC, ['bison -y -p MYSQL'])
AC_CHECK_PROG(PDFMANUAL, pdftex, manual.pdf)
AC_CHECK_PROG(DVIS, tex, manual.dvi)
#check the return type of sprintf
AC_MSG_CHECKING("return type of sprintf")
......@@ -1726,18 +1724,17 @@ fi
AC_ARG_WITH([atomic-ops],
AC_HELP_STRING([--with-atomic-ops=rwlocks|smp|up],
[Implement atomic operations using pthread rwlocks or atomic CPU
instructions for multi-processor (default) or uniprocessor
configuration]), , [with_atomic_ops=smp])
instructions for multi-processor or uniprocessor
configuration. By default gcc built-in sync functions are used,
if available and 'smp' configuration otherwise.]))
case "$with_atomic_ops" in
"up") AC_DEFINE([MY_ATOMIC_MODE_DUMMY], [1],
[Assume single-CPU mode, no concurrency]) ;;
"rwlocks") AC_DEFINE([MY_ATOMIC_MODE_RWLOCKS], [1],
[Use pthread rwlocks for atomic ops]) ;;
"smp") ;;
*) AC_MSG_ERROR(["$with_atomic_ops" is not a valid value for --with-atomic-ops]) ;;
esac
AC_CACHE_CHECK([whether the compiler provides atomic builtins],
"")
AC_CACHE_CHECK([whether the compiler provides atomic builtins],
[mysql_cv_gcc_atomic_builtins], [AC_TRY_RUN([
int main()
{
......@@ -1752,14 +1749,17 @@ AC_CACHE_CHECK([whether the compiler provides atomic builtins],
return -1;
return 0;
}
], [mysql_cv_gcc_atomic_builtins=yes],
], [mysql_cv_gcc_atomic_builtins=yes_but_disabled],
[mysql_cv_gcc_atomic_builtins=no],
[mysql_cv_gcc_atomic_builtins=no])])
if test "x$mysql_cv_gcc_atomic_builtins" = disabled_xyes; then
if test "x$mysql_cv_gcc_atomic_builtins" = xyes; then
AC_DEFINE(HAVE_GCC_ATOMIC_BUILTINS, 1,
[Define to 1 if compiler provides atomic builtins.])
fi
fi
;;
*) AC_MSG_ERROR(["$with_atomic_ops" is not a valid value for --with-atomic-ops]) ;;
esac
# Force static compilation to avoid linking problems/get more speed
AC_ARG_WITH(mysqld-ldflags,
......@@ -2702,7 +2702,7 @@ then
AC_DEFINE([THREAD], [1],
[Define if you want to have threaded code. This may be undef on client code])
# Avoid _PROGRAMS names
THREAD_LOBJECTS="thr_alarm.o thr_lock.o thr_mutex.o thr_rwlock.o my_pthread.o my_thr_init.o mf_keycache.o"
THREAD_LOBJECTS="thr_alarm.o thr_lock.o thr_mutex.o thr_rwlock.o my_pthread.o my_thr_init.o mf_keycache.o waiting_threads.o"
AC_SUBST(THREAD_LOBJECTS)
server_scripts="mysqld_safe mysql_install_db"
sql_server_dirs="strings mysys dbug extra regex"
......
......@@ -110,7 +110,7 @@ typedef struct {
typedef struct {
void * volatile pin[LF_PINBOX_PINS];
LF_PINBOX *pinbox;
void *stack_ends_here;
void **stack_ends_here;
void *purgatory;
uint32 purgatory_count;
uint32 volatile link;
......@@ -166,8 +166,8 @@ void lf_pinbox_init(LF_PINBOX *pinbox, uint free_ptr_offset,
void lf_pinbox_destroy(LF_PINBOX *pinbox);
lock_wrap(lf_pinbox_get_pins, LF_PINS *,
(LF_PINBOX *pinbox, void *stack_end),
(pinbox, stack_end),
(LF_PINBOX *pinbox),
(pinbox),
&pinbox->pinarray.lock)
lock_wrap_void(lf_pinbox_put_pins,
(LF_PINS *pins),
......@@ -182,15 +182,13 @@ lock_wrap_void(lf_pinbox_free,
memory allocator, lf_alloc-pin.c
*/
struct st_lf_alloc_node {
struct st_lf_alloc_node *next;
};
typedef struct st_lf_allocator {
LF_PINBOX pinbox;
struct st_lf_alloc_node * volatile top;
uchar * volatile top;
uint element_size;
uint32 volatile mallocs;
void (*constructor)(uchar *);
void (*destructor)(uchar *);
} LF_ALLOCATOR;
void lf_alloc_init(LF_ALLOCATOR *allocator, uint size, uint free_ptr_offset);
......@@ -202,8 +200,8 @@ uint lf_alloc_pool_count(LF_ALLOCATOR *allocator);
*/
#define _lf_alloc_free(PINS, PTR) _lf_pinbox_free((PINS), (PTR))
#define lf_alloc_free(PINS, PTR) lf_pinbox_free((PINS), (PTR))
#define _lf_alloc_get_pins(A, ST) _lf_pinbox_get_pins(&(A)->pinbox, (ST))
#define lf_alloc_get_pins(A, ST) lf_pinbox_get_pins(&(A)->pinbox, (ST))
#define _lf_alloc_get_pins(A) _lf_pinbox_get_pins(&(A)->pinbox)
#define lf_alloc_get_pins(A) lf_pinbox_get_pins(&(A)->pinbox)
#define _lf_alloc_put_pins(PINS) _lf_pinbox_put_pins(PINS)
#define lf_alloc_put_pins(PINS) lf_pinbox_put_pins(PINS)
#define lf_alloc_direct_free(ALLOC, ADDR) my_free((uchar*)(ADDR), MYF(0))
......@@ -220,13 +218,17 @@ lock_wrap(lf_alloc_new, void *,
#define LF_HASH_UNIQUE 1
/* lf_hash overhead per element (that is, sizeof(LF_SLIST) */
#define LF_HASH_OVERHEAD (sizeof(int*)*4)
typedef struct {
LF_DYNARRAY array; /* hash itself */
LF_ALLOCATOR alloc; /* allocator for elements */
hash_get_key get_key; /* see HASH */
CHARSET_INFO *charset; /* see HASH */
uint key_offset, key_length; /* see HASH */
uint element_size, flags; /* LF_HASH_UNIQUE, etc */
uint element_size; /* size of memcpy'ed area on insert */
uint flags; /* LF_HASH_UNIQUE, etc */
int32 volatile size; /* size of array */
int32 volatile count; /* number of elements in the hash */
} LF_HASH;
......@@ -242,8 +244,8 @@ int lf_hash_delete(LF_HASH *hash, LF_PINS *pins, const void *key, uint keylen);
shortcut macros to access underlying pinbox functions from an LF_HASH
see _lf_pinbox_get_pins() and _lf_pinbox_put_pins()
*/
#define _lf_hash_get_pins(HASH, ST) _lf_alloc_get_pins(&(HASH)->alloc, (ST))
#define lf_hash_get_pins(HASH, ST) lf_alloc_get_pins(&(HASH)->alloc, (ST))
#define _lf_hash_get_pins(HASH) _lf_alloc_get_pins(&(HASH)->alloc)
#define lf_hash_get_pins(HASH) lf_alloc_get_pins(&(HASH)->alloc)
#define _lf_hash_put_pins(PINS) _lf_pinbox_put_pins(PINS)
#define lf_hash_put_pins(PINS) lf_pinbox_put_pins(PINS)
#define lf_hash_search_unpin(PINS) lf_unpin((PINS), 2)
......
......@@ -79,25 +79,27 @@ typedef void * (__cdecl *pthread_handler)(void *);
so it can be used directly as a 64 bit value. The value
stored is in 100ns units.
*/
union ft64 {
union ft64 {
FILETIME ft;
__int64 i64;
};
};
struct timespec {
union ft64 tv;
/* The max timeout value in millisecond for pthread_cond_timedwait */
long max_timeout_msec;
};
#define set_timespec(ABSTIME,SEC) { \
GetSystemTimeAsFileTime(&((ABSTIME).tv.ft)); \
(ABSTIME).tv.i64+= (__int64)(SEC)*10000000; \
(ABSTIME).max_timeout_msec= (long)((SEC)*1000); \
}
#define set_timespec_nsec(ABSTIME,NSEC) { \
GetSystemTimeAsFileTime(&((ABSTIME).tv.ft)); \
(ABSTIME).tv.i64+= (__int64)(NSEC)/100; \
#define set_timespec_time_nsec(ABSTIME,TIME,NSEC) do { \
(ABSTIME).tv.i64= (TIME)+(__int64)(NSEC)/100; \
(ABSTIME).max_timeout_msec= (long)((NSEC)/1000000); \
}
} while(0)
#define set_timespec_nsec(ABSTIME,NSEC) do { \
union ft64 tv; \
GetSystemTimeAsFileTime(&tv.ft); \
set_timespec_time_nsec((ABSTIME), tv.i64, (NSEC)) \
} while(0)
void win_pthread_init(void);
int win_pthread_setspecific(void *A,void *B,uint length);
......@@ -416,43 +418,32 @@ int my_pthread_mutex_trylock(pthread_mutex_t *mutex);
for calculating an absolute time at which
pthread_cond_timedwait should timeout
*/
#ifdef HAVE_TIMESPEC_TS_SEC
#ifndef set_timespec
#define set_timespec(ABSTIME,SEC) \
{ \
(ABSTIME).ts_sec=time(0) + (time_t) (SEC); \
(ABSTIME).ts_nsec=0; \
}
#endif /* !set_timespec */
#define set_timespec(ABSTIME,SEC) set_timespec_nsec((ABSTIME),(SEC)*1000000000ULL)
#ifndef set_timespec_nsec
#define set_timespec_nsec(ABSTIME,NSEC) \
{ \
ulonglong now= my_getsystime() + (NSEC/100); \
(ABSTIME).ts_sec= (now / ULL(10000000)); \
(ABSTIME).ts_nsec= (now % ULL(10000000) * 100 + ((NSEC) % 100)); \
}
set_timespec_time_nsec((ABSTIME),my_getsystime(),(NSEC))
#endif /* !set_timespec_nsec */
/* adapt for two different flavors of struct timespec */
#ifdef HAVE_TIMESPEC_TS_SEC
#define TV_sec ts_sec
#define TV_nsec ts_nsec
#else
#ifndef set_timespec
#define set_timespec(ABSTIME,SEC) \
{\
struct timeval tv;\
gettimeofday(&tv,0);\
(ABSTIME).tv_sec=tv.tv_sec+(time_t) (SEC);\
(ABSTIME).tv_nsec=tv.tv_usec*1000;\
}
#endif /* !set_timespec */
#ifndef set_timespec_nsec
#define set_timespec_nsec(ABSTIME,NSEC) \
{\
ulonglong now= my_getsystime() + (NSEC/100); \
(ABSTIME).tv_sec= (time_t) (now / ULL(10000000)); \
(ABSTIME).tv_nsec= (long) (now % ULL(10000000) * 100 + ((NSEC) % 100)); \
}
#endif /* !set_timespec_nsec */
#define TV_sec tv_sec
#define TV_nsec tv_nsec
#endif /* HAVE_TIMESPEC_TS_SEC */
/* safe_mutex adds checking to mutex for easier debugging */
#ifndef set_timespec_time_nsec
#define set_timespec_time_nsec(ABSTIME,TIME,NSEC) do { \
ulonglong now= (TIME) + (NSEC/100); \
(ABSTIME).TV_sec= (now / ULL(10000000)); \
(ABSTIME).TV_nsec= (now % ULL(10000000) * 100 + ((NSEC) % 100)); \
} while(0)
#endif /* !set_timespec_time_nsec */
/* safe_mutex adds checking to mutex for easier debugging */
#if defined(__NETWARE__) && !defined(SAFE_MUTEX_DETECT_DESTROY)
#define SAFE_MUTEX_DETECT_DESTROY
......@@ -692,6 +683,7 @@ struct st_my_thread_var
struct st_my_thread_var *next,**prev;
void *opt_info;
uint lock_type; /* used by conditional release the queue */
void *stack_ends_here;
#ifndef DBUG_OFF
void *dbug;
char name[THREAD_NAME_SIZE+1];
......
/* Copyright (C) 2008 MySQL AB
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; version 2 of the License.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA */
#include <my_global.h>
#include <my_sys.h>
#include <lf.h>
typedef struct st_wt_resource_id WT_RESOURCE_ID;
typedef struct st_wt_resource_type {
int (*compare)(void *a, void *b);
const void *(*make_key)(WT_RESOURCE_ID *id, uint *len);
} WT_RESOURCE_TYPE;
struct st_wt_resource_id {
WT_RESOURCE_TYPE *type;
union {
void *ptr;
ulonglong num;
} value;
};
extern uint wt_timeout_short, wt_deadlock_search_depth_short;
extern uint wt_timeout_long, wt_deadlock_search_depth_long;
#define WT_WAIT_STATS 24
#define WT_CYCLE_STATS 32
extern ulonglong wt_wait_table[WT_WAIT_STATS];
extern uint32 wt_wait_stats[WT_WAIT_STATS+1];
extern uint32 wt_cycle_stats[2][WT_CYCLE_STATS+1];
extern uint32 wt_success_stats;
/*
'lock' protects 'owners', 'state', and 'waiter_count'
'id' is read-only
a resource is picked up from a hash in a lock-free manner
it's returned pinned, so it cannot be freed at once
but it may be freed right after the pin is removed
to free a resource it should be
1. have no owners
2. have no waiters
two ways to access a resource:
1. find it in a hash
- it's returned pinned.
a) take a lock in exclusive mode
b) check the state, it should be ACTIVE
c) unpin
2. by a direct reference
- could only used if a resource cannot be freed
e.g. accessing a resource by thd->waiting_for is safe,
a resource cannot be freed as there's a thread waiting for it
*/
typedef struct st_wt_resource {
WT_RESOURCE_ID id;
uint waiter_count;
enum { ACTIVE, FREE } state;
#ifndef DBUG_OFF
pthread_mutex_t *mutex;
#endif
/*
before the 'lock' all elements are mutable, after - immutable
in the sense that lf_hash_insert() won't memcpy() over them.
See wt_init().
*/
pthread_rwlock_t lock;
pthread_cond_t cond;
DYNAMIC_ARRAY owners;
} WT_RESOURCE;
typedef struct st_wt_thd {
/*
XXX
there's no protection (mutex) against concurrent access of
the dynarray below. it is assumed that a caller will have it
automatically (not to protect this array but to protect its
own - caller's - data structures, and we'll get it for free.
If not, we'll need to add a mutex
*/
DYNAMIC_ARRAY my_resources;
/*
'waiting_for' is modified under waiting_for->lock, and only by thd itself
'waiting_for' is read lock-free (using pinning protocol), but a thd object
can read its own 'waiting_for' without any locks or tricks.
*/
WT_RESOURCE *waiting_for;
LF_PINS *pins;
/*
weight relates to the desirability of a transaction being killed if it's
part of a deadlock. In a deadlock situation transactions with lower weights
are killed first.
Examples of using the weight to implement different selection strategies:
1. Latest
Keep all weights equal.
2. Random
Assight weights at random.
(variant: modify a weight randomly before every lock request)
3. Youngest
Set weight to -NOW()
4. Minimum locks
count locks granted in your lock manager, store the value as a weight
5. Minimum work
depends on the definition of "work". For example, store the number
of rows modifies in this transaction (or a length of REDO log for a
transaction) as a weight.
It is only statistically relevant and is not protected by any locks.
*/
ulong volatile weight;
/*
'killed' is indirectly protected by waiting_for->lock -
a killed thread needs to clear its 'waiting_for', and thus needs a lock.
That is a thread needs an exclusive lock to read 'killed' reliably.
But other threads may change 'killed' from 0 to 1, a shared
lock is enough for that.
*/
my_bool volatile killed;
#ifndef DBUG_OFF
const char *name;
#endif
} WT_THD;
#define WT_TIMEOUT ETIMEDOUT
#define WT_OK 0
#define WT_DEADLOCK -1
#define WT_DEPTH_EXCEEDED -2
void wt_init(void);
void wt_end(void);
void wt_thd_init(WT_THD *);
void wt_thd_destroy(WT_THD *);
int wt_thd_will_wait_for(WT_THD *, WT_THD *, WT_RESOURCE_ID *);
int wt_thd_dontwait(WT_THD *);
int wt_thd_cond_timedwait(WT_THD *, pthread_mutex_t *);
void wt_thd_release(WT_THD *, WT_RESOURCE_ID *);
#define wt_thd_release_all(THD) wt_thd_release((THD), 0)
int wt_resource_id_memcmp(void *, void *);
......@@ -58,7 +58,7 @@ libmysys_a_SOURCES = my_init.c my_getwd.c mf_getdate.c my_mmap.c \
my_windac.c my_access.c base64.c my_libwrap.c \
wqueue.c
EXTRA_DIST = thr_alarm.c thr_lock.c my_pthread.c my_thr_init.c \
thr_mutex.c thr_rwlock.c \
thr_mutex.c thr_rwlock.c waiting_threads.c \
CMakeLists.txt mf_soundex.c \
my_conio.c my_wincond.c my_winthread.c
libmysys_a_LIBADD = @THREAD_LOBJECTS@
......
......@@ -96,11 +96,10 @@
versioning a pointer - because we use an array, a pointer to pins is 16 bit,
upper 16 bits are used for a version.
It is assumed that pins belong to a thread and are not transferable
between threads (LF_PINS::stack_ends_here being a primary reason
It is assumed that pins belong to a THD and are not transferable
between THD's (LF_PINS::stack_ends_here being a primary reason
for this limitation).
*/
#include <my_global.h>
#include <my_sys.h>
#include <lf.h>
......@@ -137,10 +136,6 @@ void lf_pinbox_destroy(LF_PINBOX *pinbox)
SYNOPSYS
pinbox -
stack_end - a pointer to the end (top/bottom, depending on the
STACK_DIRECTION) of stack. Used for safe alloca. There's
no safety margin deducted, a caller should take care of it,
if necessary.
DESCRIPTION
get a new LF_PINS structure from a stack of unused pins,
......@@ -150,7 +145,7 @@ void lf_pinbox_destroy(LF_PINBOX *pinbox)
It is assumed that pins belong to a thread and are not transferable
between threads.
*/
LF_PINS *_lf_pinbox_get_pins(LF_PINBOX *pinbox, void *stack_end)
LF_PINS *_lf_pinbox_get_pins(LF_PINBOX *pinbox)
{
uint32 pins, next, top_ver;
LF_PINS *el;
......@@ -194,7 +189,7 @@ LF_PINS *_lf_pinbox_get_pins(LF_PINBOX *pinbox, void *stack_end)
el->link= pins;
el->purgatory_count= 0;
el->pinbox= pinbox;
el->stack_ends_here= stack_end;
el->stack_ends_here= & my_thread_var->stack_ends_here;
return el;
}
......@@ -325,6 +320,9 @@ static int match_pins(LF_PINS *el, void *addr)
#define available_stack_size(CUR,END) (long) ((char*)(END) - (char*)(CUR))
#endif
#define next_node(P, X) (*((uchar **)(((uchar *)(X)) + (P)->free_ptr_offset)))
#define anext_node(X) next_node(&allocator->pinbox, (X))
/*
Scan the purgatory and free everything that can be freed
*/
......@@ -332,7 +330,7 @@ static void _lf_pinbox_real_free(LF_PINS *pins)
{
int npins, alloca_size;
void *list, **addr;
struct st_lf_alloc_node *first, *last= NULL;
uchar *first, *last= NULL;
LF_PINBOX *pinbox= pins->pinbox;
LINT_INIT(first);
......@@ -341,7 +339,7 @@ static void _lf_pinbox_real_free(LF_PINS *pins)
#ifdef HAVE_ALLOCA
alloca_size= sizeof(void *)*LF_PINBOX_PINS*npins;
/* create a sorted list of pinned addresses, to speed up searches */
if (available_stack_size(&pinbox, pins->stack_ends_here) > alloca_size)
if (available_stack_size(&pinbox, *pins->stack_ends_here) > alloca_size)
{
struct st_harvester hv;
addr= (void **) alloca(alloca_size);
......@@ -391,9 +389,9 @@ static void _lf_pinbox_real_free(LF_PINS *pins)
}
/* not pinned - freeing */
if (last)
last= last->next= (struct st_lf_alloc_node *)cur;
last= next_node(pinbox, last)= (uchar *)cur;
else
first= last= (struct st_lf_alloc_node *)cur;
first= last= (uchar *)cur;
continue;
found:
/* pinned - keeping */
......@@ -412,22 +410,22 @@ LF_REQUIRE_PINS(1)
add it back to the allocator stack
DESCRIPTION
'first' and 'last' are the ends of the linked list of st_lf_alloc_node's:
'first' and 'last' are the ends of the linked list of nodes:
first->el->el->....->el->last. Use first==last to free only one element.
*/
static void alloc_free(struct st_lf_alloc_node *first,
struct st_lf_alloc_node volatile *last,
static void alloc_free(uchar *first,
uchar volatile *last,
LF_ALLOCATOR *allocator)
{
/*
we need a union here to access type-punned pointer reliably.
otherwise gcc -fstrict-aliasing will not see 'tmp' changed in the loop
*/
union { struct st_lf_alloc_node * node; void *ptr; } tmp;
union { uchar * node; void *ptr; } tmp;
tmp.node= allocator->top;
do
{
last->next= tmp.node;
anext_node(last)= tmp.node;
} while (!my_atomic_casptr((void **)(char *)&allocator->top,
(void **)&tmp.ptr, first) && LF_BACKOFF);
}
......@@ -452,6 +450,8 @@ void lf_alloc_init(LF_ALLOCATOR *allocator, uint size, uint free_ptr_offset)
allocator->top= 0;
allocator->mallocs= 0;
allocator->element_size= size;
allocator->constructor= 0;
allocator->destructor= 0;
DBUG_ASSERT(size >= sizeof(void*) + free_ptr_offset);
}
......@@ -468,10 +468,12 @@ void lf_alloc_init(LF_ALLOCATOR *allocator, uint size, uint free_ptr_offset)
*/
void lf_alloc_destroy(LF_ALLOCATOR *allocator)
{
struct st_lf_alloc_node *node= allocator->top;
uchar *node= allocator->top;
while (node)
{
struct st_lf_alloc_node *tmp= node->next;
uchar *tmp= anext_node(node);
if (allocator->destructor)
allocator->destructor(node);
my_free((void *)node, MYF(0));
node= tmp;
}
......@@ -489,7 +491,7 @@ void lf_alloc_destroy(LF_ALLOCATOR *allocator)
void *_lf_alloc_new(LF_PINS *pins)
{
LF_ALLOCATOR *allocator= (LF_ALLOCATOR *)(pins->pinbox->free_func_arg);
struct st_lf_alloc_node *node;
uchar *node;
for (;;)
{
do
......@@ -500,6 +502,8 @@ void *_lf_alloc_new(LF_PINS *pins)
if (!node)
{
node= (void *)my_malloc(allocator->element_size, MYF(MY_WME));
if (allocator->constructor)
allocator->constructor(node);
#ifdef MY_LF_EXTRA_DEBUG
if (likely(node != 0))
my_atomic_add32(&allocator->mallocs, 1);
......@@ -507,7 +511,7 @@ void *_lf_alloc_new(LF_PINS *pins)
break;
}
if (my_atomic_casptr((void **)(char *)&allocator->top,
(void *)&node, node->next))
(void *)&node, anext_node(node)))
break;
}
_lf_unpin(pins, 0);
......@@ -523,8 +527,8 @@ void *_lf_alloc_new(LF_PINS *pins)
uint lf_alloc_pool_count(LF_ALLOCATOR *allocator)
{
uint i;
struct st_lf_alloc_node *node;
for (node= allocator->top, i= 0; node; node= node->next, i++)
uchar *node;
for (node= allocator->top, i= 0; node; node= anext_node(node), i++)
/* no op */;
return i;
}
......
......@@ -299,11 +299,22 @@ static int initialize_bucket(LF_HASH *, LF_SLIST * volatile*, uint, LF_PINS *);
/*
Initializes lf_hash, the arguments are compatible with hash_init
@@note element_size sets both the size of allocated memory block for
lf_alloc and a size of memcpy'ed block size in lf_hash_insert. Typically
they are the same, indeed. But LF_HASH::element_size can be decreased
after lf_hash_init, and then lf_alloc will allocate larger block that
lf_hash_insert will copy over. It is desireable if part of the element
is expensive to initialize - for example if there is a mutex or
DYNAMIC_ARRAY. In this case they should be initialize in the
LF_ALLOCATOR::constructor, and lf_hash_insert should not overwrite them.
See wt_init() for example.
*/
void lf_hash_init(LF_HASH *hash, uint element_size, uint flags,
uint key_offset, uint key_length, hash_get_key get_key,
CHARSET_INFO *charset)
{
compile_time_assert(sizeof(LF_SLIST) == LF_HASH_OVERHEAD);
lf_alloc_init(&hash->alloc, sizeof(LF_SLIST)+element_size,
offsetof(LF_SLIST, key));
lf_dynarray_init(&hash->array, sizeof(LF_SLIST *));
......@@ -453,7 +464,7 @@ void *lf_hash_search(LF_HASH *hash, LF_PINS *pins, const void *key, uint keylen)
return found ? found+1 : 0;
}
static const uchar *dummy_key= "";
static const uchar *dummy_key= (uchar*)"";
/*
RETURN
......@@ -473,7 +484,7 @@ static int initialize_bucket(LF_HASH *hash, LF_SLIST * volatile *node,
unlikely(initialize_bucket(hash, el, parent, pins)))
return -1;
dummy->hashnr= my_reverse_bits(bucket) | 0; /* dummy node */
dummy->key= (char*) dummy_key;
dummy->key= dummy_key;
dummy->keylen= 0;
if ((cur= linsert(el, hash->charset, dummy, pins, LF_HASH_UNIQUE)))
{
......
......@@ -290,6 +290,8 @@ my_bool my_thread_init(void)
pthread_mutex_init(&tmp->mutex,MY_MUTEX_INIT_FAST);
pthread_cond_init(&tmp->suspend, NULL);
tmp->stack_ends_here= &tmp + STACK_DIRECTION * my_thread_stack_size;
pthread_mutex_lock(&THR_LOCK_threads);
tmp->id= ++thread_id;
++THR_thread_count;
......
This diff is collapsed.
......@@ -2246,10 +2246,7 @@ int ha_maria::external_lock(THD *thd, int lock_type)
/* Start of new statement */
if (!trn) /* no transaction yet - open it now */
{
trn= trnman_new_trn(& thd->mysys_var->mutex,
& thd->mysys_var->suspend,
thd->thread_stack + STACK_DIRECTION *
(my_thread_stack_size - STACK_MIN_SIZE));
trn= trnman_new_trn(& thd->mysys_var->mutex, & thd->mysys_var->suspend);
if (unlikely(!trn))
DBUG_RETURN(HA_ERR_OUT_OF_MEM);
THD_TRN= trn;
......@@ -2389,10 +2386,7 @@ int ha_maria::implicit_commit(THD *thd)
tables may be under LOCK TABLES, and so they will start the next
statement assuming they have a trn (see ha_maria::start_stmt()).
*/
trn= trnman_new_trn(& thd->mysys_var->mutex,
& thd->mysys_var->suspend,
thd->thread_stack + STACK_DIRECTION *
(my_thread_stack_size - STACK_MIN_SIZE));
trn= trnman_new_trn(& thd->mysys_var->mutex, & thd->mysys_var->suspend);
/* This is just a commit, tables stay locked if they were: */
trnman_reset_locked_tables(trn, locked_tables);
THD_TRN= trn;
......
......@@ -108,9 +108,7 @@ int maria_begin(MARIA_HA *info)
{
TRN *trn;
struct st_my_thread_var *mysys_var= my_thread_var;
trn= trnman_new_trn(&mysys_var->mutex,
&mysys_var->suspend,
(char*) &mysys_var + STACK_DIRECTION *1024*128);
trn= trnman_new_trn(&mysys_var->mutex, &mysys_var->suspend);
if (unlikely(!trn))
DBUG_RETURN(HA_ERR_OUT_OF_MEM);
......
......@@ -260,8 +260,7 @@ static void set_short_trid(TRN *trn)
mutex and cond will be used for lock waits
*/
TRN *trnman_new_trn(pthread_mutex_t *mutex, pthread_cond_t *cond,
void *stack_end)
TRN *trnman_new_trn(pthread_mutex_t *mutex, pthread_cond_t *cond)
{
TRN *trn;
DBUG_ENTER("trnman_new_trn");
......@@ -308,7 +307,7 @@ TRN *trnman_new_trn(pthread_mutex_t *mutex, pthread_cond_t *cond,
}
trnman_allocated_transactions++;
}
trn->pins= lf_hash_get_pins(&trid_to_committed_trn, stack_end);
trn->pins= lf_hash_get_pins(&trid_to_committed_trn);
if (!trn->pins)
{
trnman_free_trn(trn);
......@@ -761,7 +760,7 @@ TRN *trnman_recreate_trn_from_recovery(uint16 shortid, TrID longid)
TrID old_trid_generator= global_trid_generator;
TRN *trn;
DBUG_ASSERT(maria_in_recovery && !maria_multi_threaded);
if (unlikely((trn= trnman_new_trn(NULL, NULL, NULL)) == NULL))
if (unlikely((trn= trnman_new_trn(NULL, NULL)) == NULL))
return NULL;
/* deallocate excessive allocations of trnman_new_trn() */
global_trid_generator= old_trid_generator;
......
......@@ -38,7 +38,7 @@ extern my_bool (*trnman_end_trans_hook)(TRN *trn, my_bool commit,
int trnman_init(TrID);
void trnman_destroy(void);
TRN *trnman_new_trn(pthread_mutex_t *, pthread_cond_t *, void *);
TRN *trnman_new_trn(pthread_mutex_t *, pthread_cond_t *);
my_bool trnman_end_trn(TRN *trn, my_bool commit);
#define trnman_commit_trn(T) trnman_end_trn(T, TRUE)
#define trnman_abort_trn(T) trnman_end_trn(T, FALSE)
......
......@@ -42,6 +42,8 @@ pthread_handler_t test_trnman(void *arg)
pthread_cond_t conds[MAX_ITER];
int m= (*(int *)arg);
my_thread_init();
for (i= 0; i < MAX_ITER; i++)
{
pthread_mutex_init(&mutexes[i], MY_MUTEX_INIT_FAST);
......@@ -54,7 +56,7 @@ pthread_handler_t test_trnman(void *arg)
m-= n= x % MAX_ITER;
for (i= 0; i < n; i++)
{
trn[i]= trnman_new_trn(&mutexes[i], &conds[i], &m + STACK_SIZE);
trn[i]= trnman_new_trn(&mutexes[i], &conds[i]);
if (!trn[i])
{
diag("trnman_new_trn() failed");
......@@ -76,6 +78,8 @@ pthread_handler_t test_trnman(void *arg)
rt_num_threads--;
pthread_mutex_unlock(&rt_mutex);
my_thread_end();
return 0;
}
#undef MAX_ITER
......@@ -114,7 +118,7 @@ void run_test(const char *test, pthread_handler handler, int n, int m)
i= trnman_can_read_from(trn[T1], trid[T2]); \
ok(i == RES, "trn" #T1 " %s read from trn" #T2, i ? "can" : "cannot")
#define start_transaction(T) \
trn[T]= trnman_new_trn(&mutexes[T], &conds[T], &i + STACK_SIZE); \
trn[T]= trnman_new_trn(&mutexes[T], &conds[T]); \
trid[T]= trn[T]->trid
#define commit(T) trnman_commit_trn(trn[T])
#define abort(T) trnman_abort_trn(trn[T])
......@@ -159,7 +163,6 @@ void test_trnman_read_from()
int main(int argc __attribute__((unused)), char **argv)
{
MY_INIT(argv[0]);
my_init();
plan(7);
......
......@@ -16,7 +16,7 @@
INCLUDES = @ZLIB_INCLUDES@ -I$(top_builddir)/include \
-I$(top_srcdir)/include -I$(top_srcdir)/unittest/mytap
noinst_PROGRAMS = bitmap-t base64-t my_atomic-t
noinst_PROGRAMS = bitmap-t base64-t my_atomic-t lf-t waiting_threads-t
LDADD = $(top_builddir)/unittest/mytap/libmytap.a \
$(top_builddir)/mysys/libmysys.a \
......
/* Copyright (C) 2006 MySQL AB
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; version 2 of the License.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA */
#include "thr_template.c"
#include <lf.h>
int32 inserts= 0, N;
LF_ALLOCATOR lf_allocator;
LF_HASH lf_hash;
/*
pin allocator - alloc and release an element in a loop
*/
pthread_handler_t test_lf_pinbox(void *arg)
{
int m= *(int *)arg;
int32 x= 0;
LF_PINS *pins;
my_thread_init();
pins= lf_pinbox_get_pins(&lf_allocator.pinbox);
for (x= ((int)(intptr)(&m)); m ; m--)
{
lf_pinbox_put_pins(pins);
pins= lf_pinbox_get_pins(&lf_allocator.pinbox);
}
lf_pinbox_put_pins(pins);
pthread_mutex_lock(&mutex);
if (!--running_threads) pthread_cond_signal(&cond);
pthread_mutex_unlock(&mutex);
my_thread_end();
return 0;
}
typedef union {
int32 data;
void *not_used;
} TLA;
pthread_handler_t test_lf_alloc(void *arg)
{
int m= (*(int *)arg)/2;
int32 x,y= 0;
LF_PINS *pins;
my_thread_init();
pins= lf_alloc_get_pins(&lf_allocator);
for (x= ((int)(intptr)(&m)); m ; m--)
{
TLA *node1, *node2;
x= (x*m+0x87654321) & INT_MAX32;
node1= (TLA *)lf_alloc_new(pins);
node1->data= x;
y+= node1->data;
node1->data= 0;
node2= (TLA *)lf_alloc_new(pins);
node2->data= x;
y-= node2->data;
node2->data= 0;
lf_alloc_free(pins, node1);
lf_alloc_free(pins, node2);
}
lf_alloc_put_pins(pins);
pthread_mutex_lock(&mutex);
bad+= y;
if (--N == 0)
{
diag("%d mallocs, %d pins in stack",
lf_allocator.mallocs, lf_allocator.pinbox.pins_in_array);
#ifdef MY_LF_EXTRA_DEBUG
bad|= lf_allocator.mallocs - lf_alloc_pool_count(&lf_allocator);
#endif
}
if (!--running_threads) pthread_cond_signal(&cond);
pthread_mutex_unlock(&mutex);
my_thread_end();
return 0;
}
#define N_TLH 1000
pthread_handler_t test_lf_hash(void *arg)
{
int m= (*(int *)arg)/(2*N_TLH);
int32 x,y,z,sum= 0, ins= 0;
LF_PINS *pins;
my_thread_init();
pins= lf_hash_get_pins(&lf_hash);
for (x= ((int)(intptr)(&m)); m ; m--)
{
int i;
y= x;
for (i= 0; i < N_TLH; i++)
{
x= (x*(m+i)+0x87654321) & INT_MAX32;
z= (x<0) ? -x : x;
if (lf_hash_insert(&lf_hash, pins, &z))
{
sum+= z;
ins++;
}
}
for (i= 0; i < N_TLH; i++)
{
y= (y*(m+i)+0x87654321) & INT_MAX32;
z= (y<0) ? -y : y;
if (lf_hash_delete(&lf_hash, pins, (uchar *)&z, sizeof(z)))
sum-= z;
}
}
lf_hash_put_pins(pins);
pthread_mutex_lock(&mutex);
bad+= sum;
inserts+= ins;
if (--N == 0)
{
diag("%d mallocs, %d pins in stack, %d hash size, %d inserts",
lf_hash.alloc.mallocs, lf_hash.alloc.pinbox.pins_in_array,
lf_hash.size, inserts);
bad|= lf_hash.count;
}
if (!--running_threads) pthread_cond_signal(&cond);
pthread_mutex_unlock(&mutex);
my_thread_end();
return 0;
}
void do_tests()
{
plan(4);
lf_alloc_init(&lf_allocator, sizeof(TLA), offsetof(TLA, not_used));
lf_hash_init(&lf_hash, sizeof(int), LF_HASH_UNIQUE, 0, sizeof(int), 0,
&my_charset_bin);
bad= my_atomic_initialize();
ok(!bad, "my_atomic_initialize() returned %d", bad);
test_concurrently("lf_pinbox", test_lf_pinbox, N= THREADS, CYCLES);
test_concurrently("lf_alloc", test_lf_alloc, N= THREADS, CYCLES);
test_concurrently("lf_hash", test_lf_hash, N= THREADS, CYCLES/10);
lf_hash_destroy(&lf_hash);
lf_alloc_destroy(&lf_allocator);
}
......@@ -13,11 +13,7 @@
along with this program; if not, write to the Free Software
Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA */
#include <my_global.h>
#include <my_sys.h>
#include <my_atomic.h>
#include <tap.h>
#include <lf.h>
#include "thr_template.c"
/* at least gcc 3.4.5 and 3.4.6 (but not 3.2.3) on RHEL */
#if __GNUC__ == 3 && __GNUC_MINOR__ == 4
......@@ -26,20 +22,12 @@
#define GCC_BUG_WORKAROUND
#endif
volatile uint32 a32,b32;
volatile int32 c32, N;
volatile uint32 b32;
volatile int32 c32;
my_atomic_rwlock_t rwl;
LF_ALLOCATOR lf_allocator;
LF_HASH lf_hash;
pthread_attr_t thr_attr;
pthread_mutex_t mutex;
pthread_cond_t cond;
uint running_threads;
size_t stacksize= 0;
#define STACK_SIZE (((int)stacksize-2048)*STACK_DIRECTION)
/* add and sub a random number in a loop. Must get 0 at the end */
pthread_handler_t test_atomic_add_handler(void *arg)
pthread_handler_t test_atomic_add(void *arg)
{
int m= (*(int *)arg)/2;
GCC_BUG_WORKAROUND int32 x;
......@@ -47,11 +35,11 @@ pthread_handler_t test_atomic_add_handler(void *arg)
{
x= (x*m+0x87654321) & INT_MAX32;
my_atomic_rwlock_wrlock(&rwl);
my_atomic_add32(&a32, x);
my_atomic_add32(&bad, x);
my_atomic_rwlock_wrunlock(&rwl);
my_atomic_rwlock_wrlock(&rwl);
my_atomic_add32(&a32, -x);
my_atomic_add32(&bad, -x);
my_atomic_rwlock_wrunlock(&rwl);
}
pthread_mutex_lock(&mutex);
......@@ -62,13 +50,13 @@ pthread_handler_t test_atomic_add_handler(void *arg)
/*
1. generate thread number 0..N-1 from b32
2. add it to a32
2. add it to bad
3. swap thread numbers in c32
4. (optionally) one more swap to avoid 0 as a result
5. subtract result from a32
must get 0 in a32 at the end
5. subtract result from bad
must get 0 in bad at the end
*/
pthread_handler_t test_atomic_fas_handler(void *arg)
pthread_handler_t test_atomic_fas(void *arg)
{
int m= *(int *)arg;
int32 x;
......@@ -78,7 +66,7 @@ pthread_handler_t test_atomic_fas_handler(void *arg)
my_atomic_rwlock_wrunlock(&rwl);
my_atomic_rwlock_wrlock(&rwl);
my_atomic_add32(&a32, x);
my_atomic_add32(&bad, x);
my_atomic_rwlock_wrunlock(&rwl);
for (; m ; m--)
......@@ -96,7 +84,7 @@ pthread_handler_t test_atomic_fas_handler(void *arg)
}
my_atomic_rwlock_wrlock(&rwl);
my_atomic_add32(&a32, -x);
my_atomic_add32(&bad, -x);
my_atomic_rwlock_wrunlock(&rwl);
pthread_mutex_lock(&mutex);
......@@ -106,28 +94,28 @@ pthread_handler_t test_atomic_fas_handler(void *arg)
}
/*
same as test_atomic_add_handler, but my_atomic_add32 is emulated with
same as test_atomic_add, but my_atomic_add32 is emulated with
my_atomic_cas32 - notice that the slowdown is proportional to the
number of CPUs
*/
pthread_handler_t test_atomic_cas_handler(void *arg)
pthread_handler_t test_atomic_cas(void *arg)
{
int m= (*(int *)arg)/2, ok= 0;
GCC_BUG_WORKAROUND int32 x, y;
for (x= ((int)(intptr)(&m)); m ; m--)
{
my_atomic_rwlock_wrlock(&rwl);
y= my_atomic_load32(&a32);
y= my_atomic_load32(&bad);
my_atomic_rwlock_wrunlock(&rwl);
x= (x*m+0x87654321) & INT_MAX32;
do {
my_atomic_rwlock_wrlock(&rwl);
ok= my_atomic_cas32(&a32, &y, (uint32)y+x);
ok= my_atomic_cas32(&bad, &y, (uint32)y+x);
my_atomic_rwlock_wrunlock(&rwl);
} while (!ok) ;
do {
my_atomic_rwlock_wrlock(&rwl);
ok= my_atomic_cas32(&a32, &y, y-x);
ok= my_atomic_cas32(&bad, &y, y-x);
my_atomic_rwlock_wrunlock(&rwl);
} while (!ok) ;
}
......@@ -137,212 +125,22 @@ pthread_handler_t test_atomic_cas_handler(void *arg)
return 0;
}
/*
pin allocator - alloc and release an element in a loop
*/
pthread_handler_t test_lf_pinbox(void *arg)
{
int m= *(int *)arg;
int32 x= 0;
LF_PINS *pins;
pins= lf_pinbox_get_pins(&lf_allocator.pinbox, &m + STACK_SIZE);
for (x= ((int)(intptr)(&m)); m ; m--)
{
lf_pinbox_put_pins(pins);
pins= lf_pinbox_get_pins(&lf_allocator.pinbox, &m + STACK_SIZE);
}
lf_pinbox_put_pins(pins);
pthread_mutex_lock(&mutex);
if (!--running_threads) pthread_cond_signal(&cond);
pthread_mutex_unlock(&mutex);
return 0;
}
typedef union {
int32 data;
void *not_used;
} TLA;
pthread_handler_t test_lf_alloc(void *arg)
{
int m= (*(int *)arg)/2;
int32 x,y= 0;
LF_PINS *pins;
pins= lf_alloc_get_pins(&lf_allocator, &m + STACK_SIZE);
for (x= ((int)(intptr)(&m)); m ; m--)
{
TLA *node1, *node2;
x= (x*m+0x87654321) & INT_MAX32;
node1= (TLA *)lf_alloc_new(pins);
node1->data= x;
y+= node1->data;
node1->data= 0;
node2= (TLA *)lf_alloc_new(pins);
node2->data= x;
y-= node2->data;
node2->data= 0;
lf_alloc_free(pins, node1);
lf_alloc_free(pins, node2);
}
lf_alloc_put_pins(pins);
my_atomic_rwlock_wrlock(&rwl);
my_atomic_add32(&a32, y);
if (my_atomic_add32(&N, -1) == 1)
{
diag("%d mallocs, %d pins in stack",
lf_allocator.mallocs, lf_allocator.pinbox.pins_in_array);
#ifdef MY_LF_EXTRA_DEBUG
a32|= lf_allocator.mallocs - lf_alloc_pool_count(&lf_allocator);
#endif
}
my_atomic_rwlock_wrunlock(&rwl);
pthread_mutex_lock(&mutex);
if (!--running_threads) pthread_cond_signal(&cond);
pthread_mutex_unlock(&mutex);
return 0;
}
#define N_TLH 1000
pthread_handler_t test_lf_hash(void *arg)
{
int m= (*(int *)arg)/(2*N_TLH);
int32 x,y,z,sum= 0, ins= 0;
LF_PINS *pins;
pins= lf_hash_get_pins(&lf_hash, &m + STACK_SIZE);
for (x= ((int)(intptr)(&m)); m ; m--)
{
int i;
y= x;
for (i= 0; i < N_TLH; i++)
{
x= (x*(m+i)+0x87654321) & INT_MAX32;
z= (x<0) ? -x : x;
if (lf_hash_insert(&lf_hash, pins, &z))
{
sum+= z;
ins++;
}
}
for (i= 0; i < N_TLH; i++)
{
y= (y*(m+i)+0x87654321) & INT_MAX32;
z= (y<0) ? -y : y;
if (lf_hash_delete(&lf_hash, pins, (uchar *)&z, sizeof(z)))
sum-= z;
}
}
lf_hash_put_pins(pins);
my_atomic_rwlock_wrlock(&rwl);
my_atomic_add32(&a32, sum);
my_atomic_add32(&b32, ins);
if (my_atomic_add32(&N, -1) == 1)
{
diag("%d mallocs, %d pins in stack, %d hash size, %d inserts",
lf_hash.alloc.mallocs, lf_hash.alloc.pinbox.pins_in_array,
lf_hash.size, b32);
a32|= lf_hash.count;
}
my_atomic_rwlock_wrunlock(&rwl);
pthread_mutex_lock(&mutex);
if (!--running_threads) pthread_cond_signal(&cond);
pthread_mutex_unlock(&mutex);
return 0;
}
void test_atomic(const char *test, pthread_handler handler, int n, int m)
void do_tests()
{
pthread_t t;
ulonglong now= my_getsystime();
plan(4);
a32= 0;
b32= 0;
c32= 0;
bad= my_atomic_initialize();
ok(!bad, "my_atomic_initialize() returned %d", bad);
diag("Testing %s with %d threads, %d iterations... ", test, n, m);
for (running_threads= n ; n ; n--)
{
if (pthread_create(&t, &thr_attr, handler, &m) != 0)
{
diag("Could not create thread");
abort();
}
}
pthread_mutex_lock(&mutex);
while (running_threads)
pthread_cond_wait(&cond, &mutex);
pthread_mutex_unlock(&mutex);
now= my_getsystime()-now;
ok(a32 == 0, "tested %s in %g secs (%d)", test, ((double)now)/1e7, a32);
}
int main()
{
int err;
MY_INIT("my_atomic-t.c");
diag("N CPUs: %d, atomic ops: %s", my_getncpus(), MY_ATOMIC_MODE);
err= my_atomic_initialize();
plan(7);
ok(err == 0, "my_atomic_initialize() returned %d", err);
pthread_mutex_init(&mutex, 0);
pthread_cond_init(&cond, 0);
my_atomic_rwlock_init(&rwl);
lf_alloc_init(&lf_allocator, sizeof(TLA), offsetof(TLA, not_used));
lf_hash_init(&lf_hash, sizeof(int), LF_HASH_UNIQUE, 0, sizeof(int), 0,
&my_charset_bin);
pthread_attr_init(&thr_attr);
pthread_attr_setdetachstate(&thr_attr,PTHREAD_CREATE_DETACHED);
#ifdef HAVE_PTHREAD_ATTR_GETSTACKSIZE
pthread_attr_getstacksize(&thr_attr, &stacksize);
if (stacksize == 0)
#endif
stacksize = PTHREAD_STACK_MIN;
#ifdef MY_ATOMIC_MODE_RWLOCKS
#if defined(HPUX11) || defined(__POWERPC__) /* showed to be very slow (scheduler-related) */
#define CYCLES 300
#else
#define CYCLES 3000
#endif
#else
#define CYCLES 300000
#endif
#define THREADS 100
test_atomic("my_atomic_add32", test_atomic_add_handler, THREADS,CYCLES);
test_atomic("my_atomic_fas32", test_atomic_fas_handler, THREADS,CYCLES);
test_atomic("my_atomic_cas32", test_atomic_cas_handler, THREADS,CYCLES);
test_atomic("lf_pinbox", test_lf_pinbox, THREADS,CYCLES);
test_atomic("lf_alloc", test_lf_alloc, THREADS,CYCLES);
test_atomic("lf_hash", test_lf_hash, THREADS,CYCLES/10);
lf_hash_destroy(&lf_hash);
lf_alloc_destroy(&lf_allocator);
b32= c32= 0;
test_concurrently("my_atomic_add32", test_atomic_add, THREADS, CYCLES);
b32= c32= 0;
test_concurrently("my_atomic_fas32", test_atomic_fas, THREADS, CYCLES);
b32= c32= 0;
test_concurrently("my_atomic_cas32", test_atomic_cas, THREADS, CYCLES);
/*
workaround until we know why it crashes randomly on some machine
(BUG#22320).
*/
sleep(2);
pthread_mutex_destroy(&mutex);
pthread_cond_destroy(&cond);
pthread_attr_destroy(&thr_attr);
my_atomic_rwlock_destroy(&rwl);
my_end(0);
return exit_status();
}
/* Copyright (C) 2006 MySQL AB
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; version 2 of the License.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA */
#include <my_global.h>
#include <my_sys.h>
#include <my_atomic.h>
#include <tap.h>
volatile uint32 bad;
pthread_attr_t thr_attr;
pthread_mutex_t mutex;
pthread_cond_t cond;
uint running_threads;
void do_tests();
void test_concurrently(const char *test, pthread_handler handler, int n, int m)
{
pthread_t t;
ulonglong now= my_getsystime();
bad= 0;
diag("Testing %s with %d threads, %d iterations... ", test, n, m);
for (running_threads= n ; n ; n--)
{
if (pthread_create(&t, &thr_attr, handler, &m) != 0)
{
diag("Could not create thread");
abort();
}
}
pthread_mutex_lock(&mutex);
while (running_threads)
pthread_cond_wait(&cond, &mutex);
pthread_mutex_unlock(&mutex);
now= my_getsystime()-now;
ok(!bad, "tested %s in %g secs (%d)", test, ((double)now)/1e7, bad);
}
int main(int argc, char **argv)
{
MY_INIT("thd_template");
if (argv[1] && *argv[1])
DBUG_SET_INITIAL(argv[1]);
pthread_mutex_init(&mutex, 0);
pthread_cond_init(&cond, 0);
pthread_attr_init(&thr_attr);
pthread_attr_setdetachstate(&thr_attr,PTHREAD_CREATE_DETACHED);
#ifdef MY_ATOMIC_MODE_RWLOCKS
#if defined(HPUX11) || defined(__POWERPC__) /* showed to be very slow (scheduler-related) */
#define CYCLES 300
#else
#define CYCLES 3000
#endif
#else
#define CYCLES 3000
#endif
#define THREADS 30
diag("N CPUs: %d, atomic ops: %s", my_getncpus(), MY_ATOMIC_MODE);
do_tests();
/*
workaround until we know why it crashes randomly on some machine
(BUG#22320).
*/
sleep(2);
pthread_mutex_destroy(&mutex);
pthread_cond_destroy(&cond);
pthread_attr_destroy(&thr_attr);
my_end(0);
return exit_status();
}
/* Copyright (C) 2006 MySQL AB
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; version 2 of the License.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA */
#include "thr_template.c"
#include <waiting_threads.h>
#include <m_string.h>
#include <locale.h>
struct test_wt_thd {
WT_THD thd;
pthread_mutex_t lock;
} thds[THREADS];
uint i, cnt;
pthread_mutex_t lock;
#define reset(ARRAY) bzero(ARRAY, sizeof(ARRAY))
enum { LATEST, RANDOM, YOUNGEST, LOCKS } kill_strategy;
WT_RESOURCE_TYPE restype={ wt_resource_id_memcmp, 0};
#define rnd() ((uint)(my_rnd(&rand) * INT_MAX32))
/*
stress test: wait on a random number of random threads.
it always succeeds (unless crashes or hangs).
*/
pthread_handler_t test_wt(void *arg)
{
int m, n, i, id, res;
struct my_rnd_struct rand;
my_thread_init();
pthread_mutex_lock(&lock);
id= cnt++;
pthread_mutex_unlock(&lock);
my_rnd_init(&rand, (ulong)(intptr)&m, id);
if (kill_strategy == YOUNGEST)
thds[id].thd.weight= ~my_getsystime();
if (kill_strategy == LOCKS)
thds[id].thd.weight= 0;
/*
wt_thd_init() is supposed to be called in the thread that will use it.
We didn't do that, and now need to fix the broken object.
*/
thds[id].thd.pins->stack_ends_here= & my_thread_var->stack_ends_here;
#ifndef DBUG_OFF
thds[id].thd.name=my_thread_name();
#endif
for (m= *(int *)arg; m ; m--)
{
WT_RESOURCE_ID resid;
int blockers[THREADS/10], j, k;
bzero(&resid, sizeof(resid));
resid.value.num= id; //rnd() % THREADS;
resid.type= &restype;
res= 0;
for (j= n= (rnd() % THREADS)/10; !res && j >= 0; j--)
{
retry:
i= rnd() % (THREADS-1);
if (i >= id) i++;
#ifndef DBUG_OFF
if (thds[i].thd.name==0)
goto retry;
#endif
for (k=n; k >=j; k--)
if (blockers[k] == i)
goto retry;
blockers[j]= i;
if (kill_strategy == RANDOM)
thds[id].thd.weight= rnd();
pthread_mutex_lock(& thds[i].lock);
res= wt_thd_will_wait_for(& thds[id].thd, & thds[i].thd, &resid);
pthread_mutex_unlock(& thds[i].lock);
}
if (!res)
{
pthread_mutex_lock(&lock);
res= wt_thd_cond_timedwait(& thds[id].thd, &lock);
pthread_mutex_unlock(&lock);
}
if (res)
{
pthread_mutex_lock(& thds[id].lock);
pthread_mutex_lock(&lock);
wt_thd_release_all(& thds[id].thd);
pthread_mutex_unlock(&lock);
pthread_mutex_unlock(& thds[id].lock);
if (kill_strategy == LOCKS)
thds[id].thd.weight= 0;
if (kill_strategy == YOUNGEST)
thds[id].thd.weight= ~my_getsystime();
}
else if (kill_strategy == LOCKS)
thds[id].thd.weight++;
}
pthread_mutex_lock(& thds[id].lock);
pthread_mutex_lock(&lock);
wt_thd_release_all(& thds[id].thd);
pthread_mutex_unlock(&lock);
pthread_mutex_unlock(& thds[id].lock);
#ifndef DBUG_OFF
{
#define DEL "(deleted)"
char *x=malloc(strlen(thds[id].thd.name)+sizeof(DEL)+1);
strxmov(x, thds[id].thd.name, DEL, 0);
thds[id].thd.name=x; /* it's a memory leak, go on, shot me */
}
#endif
pthread_mutex_lock(&mutex);
if (!--running_threads) pthread_cond_signal(&cond);
pthread_mutex_unlock(&mutex);
DBUG_PRINT("wt", ("exiting"));
my_thread_end();
return 0;
}
void do_one_test()
{
double sum, sum0;
#ifndef DBUG_OFF
for (cnt=0; cnt < THREADS; cnt++)
thds[cnt].thd.name=0;
#endif
reset(wt_cycle_stats);
reset(wt_wait_stats);
wt_success_stats=0;
cnt=0;
test_concurrently("waiting_threads", test_wt, THREADS, CYCLES);
sum=sum0=0;
for (cnt=0; cnt < WT_CYCLE_STATS; cnt++)
sum+= wt_cycle_stats[0][cnt] + wt_cycle_stats[1][cnt];
for (cnt=0; cnt < WT_CYCLE_STATS; cnt++)
if (wt_cycle_stats[0][cnt] + wt_cycle_stats[1][cnt] > 0)
{
sum0+=wt_cycle_stats[0][cnt] + wt_cycle_stats[1][cnt];
diag("deadlock cycles of length %2u: %4u %4u %8.2f %%", cnt,
wt_cycle_stats[0][cnt], wt_cycle_stats[1][cnt], 1e2*sum0/sum);
}
diag("depth exceeded: %u %u",
wt_cycle_stats[0][cnt], wt_cycle_stats[1][cnt]);
for (cnt=0; cnt < WT_WAIT_STATS; cnt++)
if (wt_wait_stats[cnt]>0)
diag("deadlock waits up to %7llu us: %5u",
wt_wait_table[cnt], wt_wait_stats[cnt]);
diag("timed out: %u", wt_wait_stats[cnt]);
diag("successes: %u", wt_success_stats);
}
void do_tests()
{
plan(12);
compile_time_assert(THREADS >= 3);
DBUG_PRINT("wt", ("================= initialization ==================="));
bad= my_atomic_initialize();
ok(!bad, "my_atomic_initialize() returned %d", bad);
pthread_mutex_init(&lock, 0);
wt_init();
for (cnt=0; cnt < THREADS; cnt++)
{
wt_thd_init(& thds[cnt].thd);
pthread_mutex_init(& thds[cnt].lock, 0);
}
{
WT_RESOURCE_ID resid[3];
for (i=0; i < 3; i++)
{
bzero(&resid[i], sizeof(resid[i]));
resid[i].value.num= i+1;
resid[i].type= &restype;
}
DBUG_PRINT("wt", ("================= manual test ==================="));
#define ok_wait(X,Y, R) \
ok(wt_thd_will_wait_for(& thds[X].thd, & thds[Y].thd, &resid[R]) == 0, \
"thd[" #X "] will wait for thd[" #Y "]")
#define ok_deadlock(X,Y,R) \
ok(wt_thd_will_wait_for(& thds[X].thd, & thds[Y].thd, &resid[R]) == WT_DEADLOCK, \
"thd[" #X "] will wait for thd[" #Y "] - deadlock")
ok_wait(0,1,0);
ok_wait(0,2,0);
ok_wait(0,3,0);
pthread_mutex_lock(&lock);
bad= wt_thd_cond_timedwait(& thds[0].thd, &lock);
pthread_mutex_unlock(&lock);
ok(bad == ETIMEDOUT, "timeout test returned %d", bad);
ok_wait(0,1,0);
ok_wait(1,2,1);
ok_deadlock(2,0,2);
// FIXME remove wt_thd_dontwait calls below
wt_thd_dontwait(& thds[0].thd);
wt_thd_dontwait(& thds[1].thd);
wt_thd_dontwait(& thds[2].thd);
wt_thd_dontwait(& thds[3].thd);
pthread_mutex_lock(&lock);
wt_thd_release_all(& thds[0].thd);
wt_thd_release_all(& thds[1].thd);
wt_thd_release_all(& thds[2].thd);
wt_thd_release_all(& thds[3].thd);
pthread_mutex_unlock(&lock);
}
wt_deadlock_search_depth_short=6;
wt_timeout_short=1000;
wt_timeout_long= 100;
wt_deadlock_search_depth_long=16;
DBUG_PRINT("wt", ("================= stress test ==================="));
diag("timeout_short=%d us, deadlock_search_depth_short=%d",
wt_timeout_short, wt_deadlock_search_depth_short);
diag("timeout_long=%d us, deadlock_search_depth_long=%d",
wt_timeout_long, wt_deadlock_search_depth_long);
#define test_kill_strategy(X) \
diag("kill strategy: " #X); \
kill_strategy=X; \
do_one_test();
test_kill_strategy(LATEST);
test_kill_strategy(RANDOM);
test_kill_strategy(YOUNGEST);
test_kill_strategy(LOCKS);
DBUG_PRINT("wt", ("================= cleanup ==================="));
pthread_mutex_lock(&lock);
for (cnt=0; cnt < THREADS; cnt++)
{
wt_thd_release_all(& thds[cnt].thd);
wt_thd_destroy(& thds[cnt].thd);
pthread_mutex_destroy(& thds[cnt].lock);
}
pthread_mutex_unlock(&lock);
wt_end();
pthread_mutex_destroy(&lock);
}
Markdown is supported
0%
or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment