/* Copyright (C) 2000,2004 MySQL AB & MySQL Finland AB & TCX DataKonsult AB This program is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program; if not, write to the Free Software Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA */ /* Definitions for parameters to do with handler-routines */ #ifdef USE_PRAGMA_INTERFACE #pragma interface /* gcc class implementation */ #endif #include <ft_global.h> #include <keycache.h> #ifndef NO_HASH #define NO_HASH /* Not yet implemented */ #endif #define USING_TRANSACTIONS // the following is for checking tables #define HA_ADMIN_ALREADY_DONE 1 #define HA_ADMIN_OK 0 #define HA_ADMIN_NOT_IMPLEMENTED -1 #define HA_ADMIN_FAILED -2 #define HA_ADMIN_CORRUPT -3 #define HA_ADMIN_INTERNAL_ERROR -4 #define HA_ADMIN_INVALID -5 #define HA_ADMIN_REJECT -6 #define HA_ADMIN_TRY_ALTER -7 #define HA_ADMIN_WRONG_CHECKSUM -8 #define HA_ADMIN_NOT_BASE_TABLE -9 /* Bits in table_flags() to show what database can do */ /* Can switch index during the scan with ::rnd_same() - not used yet. see mi_rsame/heap_rsame/myrg_rsame */ #define HA_READ_RND_SAME (1 << 0) #define HA_TABLE_SCAN_ON_INDEX (1 << 2) /* No separate data/index file */ #define HA_REC_NOT_IN_SEQ (1 << 3) /* ha_info don't return recnumber; It returns a position to ha_r_rnd */ #define HA_CAN_GEOMETRY (1 << 4) /* Reading keys in random order is as fast as reading keys in sort order (Used in records.cc to decide if we should use a record cache and by filesort to decide if we should sort key + data or key + pointer-to-row */ #define HA_FAST_KEY_READ (1 << 5) #define HA_NULL_IN_KEY (1 << 7) /* One can have keys with NULL */ #define HA_DUPP_POS (1 << 8) /* ha_position() gives dup row */ #define HA_NO_BLOBS (1 << 9) /* Doesn't support blobs */ #define HA_CAN_INDEX_BLOBS (1 << 10) #define HA_AUTO_PART_KEY (1 << 11) /* auto-increment in multi-part key */ #define HA_REQUIRE_PRIMARY_KEY (1 << 12) /* .. and can't create a hidden one */ #define HA_NOT_EXACT_COUNT (1 << 13) /* INSERT_DELAYED only works with handlers that uses MySQL internal table level locks */ #define HA_CAN_INSERT_DELAYED (1 << 14) #define HA_PRIMARY_KEY_IN_READ_INDEX (1 << 15) /* If HA_PRIMARY_KEY_ALLOW_RANDOM_ACCESS is set, it means that the engine can do this: the position of an arbitrary record can be retrieved using position() when the table has a primary key, effectively allowing random access on the table based on a given record. */ #define HA_PRIMARY_KEY_ALLOW_RANDOM_ACCESS (1 << 16) #define HA_NOT_DELETE_WITH_CACHE (1 << 18) #define HA_NO_PREFIX_CHAR_KEYS (1 << 20) #define HA_CAN_FULLTEXT (1 << 21) #define HA_CAN_SQL_HANDLER (1 << 22) #define HA_NO_AUTO_INCREMENT (1 << 23) #define HA_HAS_CHECKSUM (1 << 24) /* Table data are stored in separate files (for lower_case_table_names) */ #define HA_FILE_BASED (1 << 26) #define HA_NO_VARCHAR (1 << 27) #define HA_CAN_BIT_FIELD (1 << 28) /* supports bit fields */ #define HA_NEED_READ_RANGE_BUFFER (1 << 29) /* for read_multi_range */ #define HA_ANY_INDEX_MAY_BE_UNIQUE (1 << 30) #define HA_NO_COPY_ON_ALTER (1 << 31) /* Flags for partition handlers */ #define HA_CAN_PARTITION (1 << 0) /* Partition support */ #define HA_CAN_UPDATE_PARTITION_KEY (1 << 1) #define HA_CAN_PARTITION_UNIQUE (1 << 2) /* bits in index_flags(index_number) for what you can do with index */ #define HA_READ_NEXT 1 /* TODO really use this flag */ #define HA_READ_PREV 2 /* supports ::index_prev */ #define HA_READ_ORDER 4 /* index_next/prev follow sort order */ #define HA_READ_RANGE 8 /* can find all records in a range */ #define HA_ONLY_WHOLE_INDEX 16 /* Can't use part key searches */ #define HA_KEYREAD_ONLY 64 /* Support HA_EXTRA_KEYREAD */ /* bits in alter_table_flags */ #define HA_ONLINE_ADD_EMPTY_PARTITION 1 #define HA_ONLINE_DROP_PARTITION 2 /* Index scan will not return records in rowid order. Not guaranteed to be set for unordered (e.g. HASH) indexes. */ #define HA_KEY_SCAN_NOT_ROR 128 /* operations for disable/enable indexes */ #define HA_KEY_SWITCH_NONUNIQ 0 #define HA_KEY_SWITCH_ALL 1 #define HA_KEY_SWITCH_NONUNIQ_SAVE 2 #define HA_KEY_SWITCH_ALL_SAVE 3 /* Note: the following includes binlog and closing 0. so: innodb + bdb + ndb + binlog + myisam + myisammrg + archive + example + csv + heap + blackhole + federated + 0 (yes, the sum is deliberately inaccurate) */ #define MAX_HA 15 /* Bits in index_ddl_flags(KEY *wanted_index) for what ddl you can do with index If none is set, the wanted type of index is not supported by the handler at all. See WorkLog 1563. */ #define HA_DDL_SUPPORT 1 /* Supported by handler */ #define HA_DDL_WITH_LOCK 2 /* Can create/drop with locked table */ #define HA_DDL_ONLINE 4 /* Can create/drop without lock */ /* Parameters for open() (in register form->filestat) HA_GET_INFO does an implicit HA_ABORT_IF_LOCKED */ #define HA_OPEN_KEYFILE 1 #define HA_OPEN_RNDFILE 2 #define HA_GET_INDEX 4 #define HA_GET_INFO 8 /* do a ha_info() after open */ #define HA_READ_ONLY 16 /* File opened as readonly */ /* Try readonly if can't open with read and write */ #define HA_TRY_READ_ONLY 32 #define HA_WAIT_IF_LOCKED 64 /* Wait if locked on open */ #define HA_ABORT_IF_LOCKED 128 /* skip if locked on open.*/ #define HA_BLOCK_LOCK 256 /* unlock when reading some records */ #define HA_OPEN_TEMPORARY 512 /* Errors on write which is recoverable (Key exist) */ #define HA_WRITE_SKIP 121 /* Duplicate key on write */ #define HA_READ_CHECK 123 /* Update with is recoverable */ #define HA_CANT_DO_THAT 131 /* Databasehandler can't do it */ /* Some key definitions */ #define HA_KEY_NULL_LENGTH 1 #define HA_KEY_BLOB_LENGTH 2 #define HA_LEX_CREATE_TMP_TABLE 1 #define HA_LEX_CREATE_IF_NOT_EXISTS 2 #define HA_OPTION_NO_CHECKSUM (1L << 17) #define HA_OPTION_NO_DELAY_KEY_WRITE (1L << 18) #define HA_MAX_REC_LENGTH 65535 /* Table caching type */ #define HA_CACHE_TBL_NONTRANSACT 0 #define HA_CACHE_TBL_NOCACHE 1 #define HA_CACHE_TBL_ASKTRANSACT 2 #define HA_CACHE_TBL_TRANSACT 4 /* Options of START TRANSACTION statement (and later of SET TRANSACTION stmt) */ #define MYSQL_START_TRANS_OPT_WITH_CONS_SNAPSHOT 1 enum legacy_db_type { DB_TYPE_UNKNOWN=0,DB_TYPE_DIAB_ISAM=1, DB_TYPE_HASH,DB_TYPE_MISAM,DB_TYPE_PISAM, DB_TYPE_RMS_ISAM, DB_TYPE_HEAP, DB_TYPE_ISAM, DB_TYPE_MRG_ISAM, DB_TYPE_MYISAM, DB_TYPE_MRG_MYISAM, DB_TYPE_BERKELEY_DB, DB_TYPE_INNODB, DB_TYPE_GEMINI, DB_TYPE_NDBCLUSTER, DB_TYPE_EXAMPLE_DB, DB_TYPE_ARCHIVE_DB, DB_TYPE_CSV_DB, DB_TYPE_FEDERATED_DB, DB_TYPE_BLACKHOLE_DB, DB_TYPE_PARTITION_DB, DB_TYPE_BINLOG, DB_TYPE_DEFAULT=127 // Must be last }; enum row_type { ROW_TYPE_NOT_USED=-1, ROW_TYPE_DEFAULT, ROW_TYPE_FIXED, ROW_TYPE_DYNAMIC, ROW_TYPE_COMPRESSED, ROW_TYPE_REDUNDANT, ROW_TYPE_COMPACT }; /* struct to hold information about the table that should be created */ /* Bits in used_fields */ #define HA_CREATE_USED_AUTO (1L << 0) #define HA_CREATE_USED_RAID (1L << 1) #define HA_CREATE_USED_UNION (1L << 2) #define HA_CREATE_USED_INSERT_METHOD (1L << 3) #define HA_CREATE_USED_MIN_ROWS (1L << 4) #define HA_CREATE_USED_MAX_ROWS (1L << 5) #define HA_CREATE_USED_AVG_ROW_LENGTH (1L << 6) #define HA_CREATE_USED_PACK_KEYS (1L << 7) #define HA_CREATE_USED_CHARSET (1L << 8) #define HA_CREATE_USED_DEFAULT_CHARSET (1L << 9) #define HA_CREATE_USED_DATADIR (1L << 10) #define HA_CREATE_USED_INDEXDIR (1L << 11) #define HA_CREATE_USED_ENGINE (1L << 12) #define HA_CREATE_USED_CHECKSUM (1L << 13) #define HA_CREATE_USED_DELAY_KEY_WRITE (1L << 14) #define HA_CREATE_USED_ROW_FORMAT (1L << 15) #define HA_CREATE_USED_COMMENT (1L << 16) #define HA_CREATE_USED_PASSWORD (1L << 17) #define HA_CREATE_USED_CONNECTION (1L << 18) typedef ulonglong my_xid; // this line is the same as in log_event.h #define MYSQL_XID_PREFIX "MySQLXid" #define MYSQL_XID_PREFIX_LEN 8 // must be a multiple of 8 #define MYSQL_XID_OFFSET (MYSQL_XID_PREFIX_LEN+sizeof(server_id)) #define MYSQL_XID_GTRID_LEN (MYSQL_XID_OFFSET+sizeof(my_xid)) #define XIDDATASIZE 128 #define MAXGTRIDSIZE 64 #define MAXBQUALSIZE 64 #define COMPATIBLE_DATA_YES 0 #define COMPATIBLE_DATA_NO 1 struct xid_t { long formatID; long gtrid_length; long bqual_length; char data[XIDDATASIZE]; // not \0-terminated ! bool eq(struct xid_t *xid) { return eq(xid->gtrid_length, xid->bqual_length, xid->data); } bool eq(long g, long b, const char *d) { return g == gtrid_length && b == bqual_length && !memcmp(d, data, g+b); } void set(struct xid_t *xid) { memcpy(this, xid, xid->length()); } void set(long f, const char *g, long gl, const char *b, long bl) { formatID= f; memcpy(data, g, gtrid_length= gl); memcpy(data+gl, b, bqual_length= bl); } void set(ulonglong xid) { my_xid tmp; formatID= 1; set(MYSQL_XID_PREFIX_LEN, 0, MYSQL_XID_PREFIX); memcpy(data+MYSQL_XID_PREFIX_LEN, &server_id, sizeof(server_id)); tmp= xid; memcpy(data+MYSQL_XID_OFFSET, &tmp, sizeof(tmp)); gtrid_length=MYSQL_XID_GTRID_LEN; } void set(long g, long b, const char *d) { formatID= 1; gtrid_length= g; bqual_length= b; memcpy(data, d, g+b); } bool is_null() { return formatID == -1; } void null() { formatID= -1; } my_xid quick_get_my_xid() { my_xid tmp; memcpy(&tmp, data+MYSQL_XID_OFFSET, sizeof(tmp)); return tmp; } my_xid get_my_xid() { return gtrid_length == MYSQL_XID_GTRID_LEN && bqual_length == 0 && !memcmp(data+MYSQL_XID_PREFIX_LEN, &server_id, sizeof(server_id)) && !memcmp(data, MYSQL_XID_PREFIX, MYSQL_XID_PREFIX_LEN) ? quick_get_my_xid() : 0; } uint length() { return sizeof(formatID)+sizeof(gtrid_length)+sizeof(bqual_length)+ gtrid_length+bqual_length; } byte *key() { return (byte *)>rid_length; } uint key_length() { return sizeof(gtrid_length)+sizeof(bqual_length)+gtrid_length+bqual_length; } }; typedef struct xid_t XID; /* for recover() handlerton call */ #define MIN_XID_LIST_SIZE 128 #ifdef SAFEMALLOC #define MAX_XID_LIST_SIZE 256 #else #define MAX_XID_LIST_SIZE (1024*128) #endif /* The handler for a table type. Will be included in the TABLE structure */ struct st_table; typedef struct st_table TABLE; typedef struct st_table_share TABLE_SHARE; struct st_foreign_key_info; typedef struct st_foreign_key_info FOREIGN_KEY_INFO; typedef bool (stat_print_fn)(THD *thd, const char *type, uint type_len, const char *file, uint file_len, const char *status, uint status_len); enum ha_stat_type { HA_ENGINE_STATUS, HA_ENGINE_LOGS, HA_ENGINE_MUTEX }; /* handlerton is a singleton structure - one instance per storage engine - to provide access to storage engine functionality that works on the "global" level (unlike handler class that works on a per-table basis) usually handlerton instance is defined statically in ha_xxx.cc as static handlerton { ... } xxx_hton; savepoint_*, prepare, recover, and *_by_xid pointers can be 0. */ typedef struct { /* handlerton structure version */ const int interface_version; #define MYSQL_HANDLERTON_INTERFACE_VERSION 0x0000 /* storage engine name as it should be printed to a user */ const char *name; /* Historical marker for if the engine is available of not */ SHOW_COMP_OPTION state; /* A comment used by SHOW to describe an engine. */ const char *comment; /* Historical number used for frm file to determine the correct storage engine. This is going away and new engines will just use "name" for this. */ enum legacy_db_type db_type; /* Method that initizlizes a storage engine */ bool (*init)(); /* each storage engine has it's own memory area (actually a pointer) in the thd, for storing per-connection information. It is accessed as thd->ha_data[xxx_hton.slot] slot number is initialized by MySQL after xxx_init() is called. */ uint slot; /* to store per-savepoint data storage engine is provided with an area of a requested size (0 is ok here). savepoint_offset must be initialized statically to the size of the needed memory to store per-savepoint information. After xxx_init it is changed to be an offset to savepoint storage area and need not be used by storage engine. see binlog_hton and binlog_savepoint_set/rollback for an example. */ uint savepoint_offset; /* handlerton methods: close_connection is only called if thd->ha_data[xxx_hton.slot] is non-zero, so even if you don't need this storage area - set it to something, so that MySQL would know this storage engine was accessed in this connection */ int (*close_connection)(THD *thd); /* sv points to an uninitialized storage area of requested size (see savepoint_offset description) */ int (*savepoint_set)(THD *thd, void *sv); /* sv points to a storage area, that was earlier passed to the savepoint_set call */ int (*savepoint_rollback)(THD *thd, void *sv); int (*savepoint_release)(THD *thd, void *sv); /* 'all' is true if it's a real commit, that makes persistent changes 'all' is false if it's not in fact a commit but an end of the statement that is part of the transaction. NOTE 'all' is also false in auto-commit mode where 'end of statement' and 'real commit' mean the same event. */ int (*commit)(THD *thd, bool all); int (*rollback)(THD *thd, bool all); int (*prepare)(THD *thd, bool all); int (*recover)(XID *xid_list, uint len); int (*commit_by_xid)(XID *xid); int (*rollback_by_xid)(XID *xid); void *(*create_cursor_read_view)(); void (*set_cursor_read_view)(void *); void (*close_cursor_read_view)(void *); handler *(*create)(TABLE_SHARE *table); void (*drop_database)(char* path); int (*panic)(enum ha_panic_function flag); int (*start_consistent_snapshot)(THD *thd); bool (*flush_logs)(); bool (*show_status)(THD *thd, stat_print_fn *print, enum ha_stat_type stat); uint32 flags; /* global handler flags */ } handlerton; extern const handlerton default_hton; struct show_table_alias_st { const char *alias; enum legacy_db_type type; }; /* Possible flags of a handlerton */ #define HTON_NO_FLAGS 0 #define HTON_CLOSE_CURSORS_AT_COMMIT (1 << 0) #define HTON_ALTER_NOT_SUPPORTED (1 << 1) //Engine does not support alter #define HTON_CAN_RECREATE (1 << 2) //Delete all is used fro truncate #define HTON_HIDDEN (1 << 3) //Engine does not appear in lists #define HTON_FLUSH_AFTER_RENAME (1 << 4) #define HTON_NOT_USER_SELECTABLE (1 << 5) typedef struct st_thd_trans { /* number of entries in the ht[] */ uint nht; /* true is not all entries in the ht[] support 2pc */ bool no_2pc; /* storage engines that registered themselves for this transaction */ handlerton *ht[MAX_HA]; } THD_TRANS; enum enum_tx_isolation { ISO_READ_UNCOMMITTED, ISO_READ_COMMITTED, ISO_REPEATABLE_READ, ISO_SERIALIZABLE}; enum ndb_distribution { ND_KEYHASH= 0, ND_LINHASH= 1 }; typedef struct { uint32 start_part; uint32 end_part; bool use_bit_array; } part_id_range; /** * An enum and a struct to handle partitioning and subpartitioning. */ enum partition_type { NOT_A_PARTITION= 0, RANGE_PARTITION, HASH_PARTITION, LIST_PARTITION }; enum partition_state { PART_NORMAL= 0, PART_IS_DROPPED= 1, PART_TO_BE_DROPPED= 2, PART_DROPPING= 3, PART_IS_ADDED= 4, PART_ADDING= 5, PART_ADDED= 6 }; #define UNDEF_NODEGROUP 65535 class Item; class partition_element :public Sql_alloc { public: List<partition_element> subpartitions; List<longlong> list_val_list; ulonglong part_max_rows; ulonglong part_min_rows; char *partition_name; char *tablespace_name; longlong range_value; char* part_comment; char* data_file_name; char* index_file_name; handlerton *engine_type; enum partition_state part_state; uint16 nodegroup_id; partition_element() : part_max_rows(0), part_min_rows(0), partition_name(NULL), tablespace_name(NULL), range_value(0), part_comment(NULL), data_file_name(NULL), index_file_name(NULL), engine_type(NULL),part_state(PART_NORMAL), nodegroup_id(UNDEF_NODEGROUP) { subpartitions.empty(); list_val_list.empty(); } ~partition_element() {} }; typedef struct { longlong list_value; uint partition_id; } LIST_PART_ENTRY; class partition_info; typedef bool (*get_part_id_func)(partition_info *part_info, uint32 *part_id); typedef uint32 (*get_subpart_id_func)(partition_info *part_info); struct st_partition_iter; #define NOT_A_PARTITION_ID ((uint32)-1) /* A "Get next" function for partition iterator. SYNOPSIS partition_iter_func() part_iter Partition iterator, you call only "iter.get_next(&iter)" RETURN NOT_A_PARTITION_ID if there are no more partitions. [sub]partition_id of the next partition */ typedef uint32 (*partition_iter_func)(st_partition_iter* part_iter); /* Partition set iterator. Used to enumerate a set of [sub]partitions obtained in partition interval analysis (see get_partitions_in_range_iter). For the user, the only meaningful field is get_next, which may be used as follows: part_iterator.get_next(&part_iterator); Initialization is done by any of the following calls: - get_partitions_in_range_iter-type function call - init_single_partition_iterator() - init_all_partitions_iterator() Cleanup is not needed. */ typedef struct st_partition_iter { partition_iter_func get_next; union { struct { uint32 start_part_num; uint32 end_part_num; }; struct { longlong start_val; longlong end_val; }; bool null_returned; }; partition_info *part_info; } PARTITION_ITERATOR; /* Get an iterator for set of partitions that match given field-space interval SYNOPSIS get_partitions_in_range_iter() part_info Partitioning info is_subpart min_val Left edge, field value in opt_range_key format. max_val Right edge, field value in opt_range_key format. flags Some combination of NEAR_MIN, NEAR_MAX, NO_MIN_RANGE, NO_MAX_RANGE. part_iter Iterator structure to be initialized DESCRIPTION Functions with this signature are used to perform "Partitioning Interval Analysis". This analysis is applicable for any type of [sub]partitioning by some function of a single fieldX. The idea is as follows: Given an interval "const1 <=? fieldX <=? const2", find a set of partitions that may contain records with value of fieldX within the given interval. The min_val, max_val and flags parameters specify the interval. The set of partitions is returned by initializing an iterator in *part_iter NOTES There are currently two functions of this type: - get_part_iter_for_interval_via_walking - get_part_iter_for_interval_via_mapping RETURN 0 - No matching partitions, iterator not initialized 1 - Some partitions would match, iterator intialized for traversing them -1 - All partitions would match, iterator not initialized */ typedef int (*get_partitions_in_range_iter)(partition_info *part_info, bool is_subpart, byte *min_val, byte *max_val, uint flags, PARTITION_ITERATOR *part_iter); /* Initialize the iterator to return a single partition with given part_id */ inline void init_single_partition_iterator(uint32 part_id, PARTITION_ITERATOR *part_iter); /* Initialize the iterator to enumerate all partitions */ inline void init_all_partitions_iterator(partition_info *part_info, PARTITION_ITERATOR *part_iter); class partition_info : public Sql_alloc { public: /* * Here comes a set of definitions needed for partitioned table handlers. */ List<partition_element> partitions; List<partition_element> temp_partitions; List<char> part_field_list; List<char> subpart_field_list; /* If there is no subpartitioning, use only this func to get partition ids. If there is subpartitioning, use the this func to get partition id when you have both partition and subpartition fields. */ get_part_id_func get_partition_id; /* Get partition id when we don't have subpartition fields */ get_part_id_func get_part_partition_id; /* Get subpartition id when we have don't have partition fields by we do have subpartition ids. Mikael said that for given constant tuple {subpart_field1, ..., subpart_fieldN} the subpartition id will be the same in all subpartitions */ get_subpart_id_func get_subpartition_id; /* NULL-terminated array of fields used in partitioned expression */ Field **part_field_array; /* NULL-terminated array of fields used in subpartitioned expression */ Field **subpart_field_array; /* Array of all fields used in partition and subpartition expression, without duplicates, NULL-terminated. */ Field **full_part_field_array; Item *part_expr; Item *subpart_expr; Item *item_free_list; /* A bitmap of partitions used by the current query. Usage pattern: * The handler->extra(HA_EXTRA_RESET) call at query start/end sets all partitions to be unused. * Before index/rnd_init(), partition pruning code sets the bits for used partitions. */ MY_BITMAP used_partitions; union { longlong *range_int_array; LIST_PART_ENTRY *list_array; }; /******************************************** * INTERVAL ANALYSIS ********************************************/ /* Partitioning interval analysis function for partitioning, or NULL if interval analysis is not supported for this kind of partitioning. */ get_partitions_in_range_iter get_part_iter_for_interval; /* Partitioning interval analysis function for subpartitioning, or NULL if interval analysis is not supported for this kind of partitioning. */ get_partitions_in_range_iter get_subpart_iter_for_interval; /* Valid iff get_part_iter_for_interval=get_part_iter_for_interval_via_walking: controls how we'll process "field < C" and "field > C" intervals. If the partitioning function F is strictly increasing, then for any x, y "x < y" => "F(x) < F(y)" (*), i.e. when we get interval "field < C" we can perform partition pruning on the equivalent "F(field) < F(C)". If the partitioning function not strictly increasing (it is simply increasing), then instead of (*) we get "x < y" => "F(x) <= F(y)" i.e. for interval "field < C" we can perform partition pruning for "F(field) <= F(C)". */ bool range_analysis_include_bounds; /******************************************** * INTERVAL ANALYSIS ENDS ********************************************/ char* part_info_string; char *part_func_string; char *subpart_func_string; partition_element *curr_part_elem; partition_element *current_partition; /* These key_map's are used for Partitioning to enable quick decisions on whether we can derive more information about which partition to scan just by looking at what index is used. */ key_map all_fields_in_PF, all_fields_in_PPF, all_fields_in_SPF; key_map some_fields_in_PF; handlerton *default_engine_type; Item_result part_result_type; partition_type part_type; partition_type subpart_type; uint part_info_len; uint part_func_len; uint subpart_func_len; uint no_parts; uint no_subparts; uint count_curr_parts; uint count_curr_subparts; uint part_error_code; uint no_list_values; uint no_part_fields; uint no_subpart_fields; uint no_full_part_fields; uint16 linear_hash_mask; bool use_default_partitions; bool use_default_subpartitions; bool defined_max_value; bool list_of_part_fields; bool list_of_subpart_fields; bool linear_hash_ind; partition_info() : get_partition_id(NULL), get_part_partition_id(NULL), get_subpartition_id(NULL), part_field_array(NULL), subpart_field_array(NULL), full_part_field_array(NULL), part_expr(NULL), subpart_expr(NULL), item_free_list(NULL), list_array(NULL), part_info_string(NULL), part_func_string(NULL), subpart_func_string(NULL), curr_part_elem(NULL), current_partition(NULL), default_engine_type(NULL), part_result_type(INT_RESULT), part_type(NOT_A_PARTITION), subpart_type(NOT_A_PARTITION), part_info_len(0), part_func_len(0), subpart_func_len(0), no_parts(0), no_subparts(0), count_curr_parts(0), count_curr_subparts(0), part_error_code(0), no_list_values(0), no_part_fields(0), no_subpart_fields(0), no_full_part_fields(0), linear_hash_mask(0), use_default_partitions(TRUE), use_default_subpartitions(TRUE), defined_max_value(FALSE), list_of_part_fields(FALSE), list_of_subpart_fields(FALSE), linear_hash_ind(FALSE) { all_fields_in_PF.clear_all(); all_fields_in_PPF.clear_all(); all_fields_in_SPF.clear_all(); some_fields_in_PF.clear_all(); partitions.empty(); temp_partitions.empty(); part_field_list.empty(); subpart_field_list.empty(); } ~partition_info() {} }; #ifdef WITH_PARTITION_STORAGE_ENGINE uint32 get_next_partition_id_range(struct st_partition_iter* part_iter); inline void init_single_partition_iterator(uint32 part_id, PARTITION_ITERATOR *part_iter) { part_iter->start_part_num= part_id; part_iter->end_part_num= part_id+1; part_iter->get_next= get_next_partition_id_range; } inline void init_all_partitions_iterator(partition_info *part_info, PARTITION_ITERATOR *part_iter) { part_iter->start_part_num= 0; part_iter->end_part_num= part_info->no_parts; part_iter->get_next= get_next_partition_id_range; } /* Answers the question if subpartitioning is used for a certain table SYNOPSIS is_sub_partitioned() part_info A reference to the partition_info struct RETURN VALUE Returns true if subpartitioning used and false otherwise DESCRIPTION A routine to check for subpartitioning for improved readability of code */ inline bool is_sub_partitioned(partition_info *part_info) { return (part_info->subpart_type == NOT_A_PARTITION ? FALSE : TRUE); } /* Returns the total number of partitions on the leaf level. SYNOPSIS get_tot_partitions() part_info A reference to the partition_info struct RETURN VALUE Returns the number of partitions DESCRIPTION A routine to check for number of partitions for improved readability of code */ inline uint get_tot_partitions(partition_info *part_info) { return part_info->no_parts * (is_sub_partitioned(part_info) ? part_info->no_subparts : 1); } #endif typedef struct st_ha_create_information { CHARSET_INFO *table_charset, *default_table_charset; LEX_STRING connect_string; const char *comment,*password; const char *data_file_name, *index_file_name; const char *alias; ulonglong max_rows,min_rows; ulonglong auto_increment_value; ulong table_options; ulong avg_row_length; ulong raid_chunksize; ulong used_fields; SQL_LIST merge_list; handlerton *db_type; enum row_type row_type; uint null_bits; /* NULL bits at start of record */ uint options; /* OR of HA_CREATE_ options */ uint raid_type,raid_chunks; uint merge_insert_method; uint extra_size; /* length of extra data segment */ bool table_existed; /* 1 in create if table existed */ bool frm_only; /* 1 if no ha_create_table() */ bool varchar; /* 1 if table has a VARCHAR */ } HA_CREATE_INFO; typedef struct st_savepoint SAVEPOINT; extern ulong savepoint_alloc_size; /* Forward declaration for condition pushdown to storage engine */ typedef class Item COND; typedef struct st_ha_check_opt { ulong sort_buffer_size; uint flags; /* isam layer flags (e.g. for myisamchk) */ uint sql_flags; /* sql layer flags - for something myisamchk cannot do */ KEY_CACHE *key_cache; /* new key cache when changing key cache */ void init(); } HA_CHECK_OPT; #ifdef WITH_PARTITION_STORAGE_ENGINE bool is_partition_in_list(char *part_name, List<char> list_part_names); bool is_partitions_in_table(partition_info *new_part_info, partition_info *old_part_info); bool check_reorganise_list(partition_info *new_part_info, partition_info *old_part_info, List<char> list_part_names); bool set_up_defaults_for_partitioning(partition_info *part_info, handler *file, ulonglong max_rows, uint start_no); handler *get_ha_partition(partition_info *part_info); int get_parts_for_update(const byte *old_data, byte *new_data, const byte *rec0, partition_info *part_info, uint32 *old_part_id, uint32 *new_part_id); int get_part_for_delete(const byte *buf, const byte *rec0, partition_info *part_info, uint32 *part_id); bool check_partition_info(partition_info *part_info,handlerton *eng_type, handler *file, ulonglong max_rows); bool fix_partition_func(THD *thd, const char *name, TABLE *table); char *generate_partition_syntax(partition_info *part_info, uint *buf_length, bool use_sql_alloc, bool add_default_info); bool partition_key_modified(TABLE *table, List<Item> &fields); void get_partition_set(const TABLE *table, byte *buf, const uint index, const key_range *key_spec, part_id_range *part_spec); void get_full_part_id_from_key(const TABLE *table, byte *buf, KEY *key_info, const key_range *key_spec, part_id_range *part_spec); bool mysql_unpack_partition(THD *thd, const uchar *part_buf, uint part_info_len, TABLE *table, handlerton *default_db_type); void make_used_partitions_str(partition_info *part_info, String *parts_str); uint32 get_list_array_idx_for_endpoint(partition_info *part_info, bool left_endpoint, bool include_endpoint); uint32 get_partition_id_range_for_endpoint(partition_info *part_info, bool left_endpoint, bool include_endpoint); #endif /* This is a buffer area that the handler can use to store rows. 'end_of_used_area' should be kept updated after calls to read-functions so that other parts of the code can use the remaining area (until next read calls is issued). */ typedef struct st_handler_buffer { const byte *buffer; /* Buffer one can start using */ const byte *buffer_end; /* End of buffer */ byte *end_of_used_area; /* End of area that was used by handler */ } HANDLER_BUFFER; class handler :public Sql_alloc { #ifdef WITH_PARTITION_STORAGE_ENGINE friend class ha_partition; #endif protected: struct st_table_share *table_share; /* The table definition */ struct st_table *table; /* The current open table */ virtual int index_init(uint idx, bool sorted) { active_index=idx; return 0; } virtual int index_end() { active_index=MAX_KEY; return 0; } /* rnd_init() can be called two times without rnd_end() in between (it only makes sense if scan=1). then the second call should prepare for the new table scan (e.g if rnd_init allocates the cursor, second call should position it to the start of the table, no need to deallocate and allocate it again */ virtual int rnd_init(bool scan) =0; virtual int rnd_end() { return 0; } private: virtual int reset() { return extra(HA_EXTRA_RESET); } public: const handlerton *ht; /* storage engine of this handler */ byte *ref; /* Pointer to current row */ byte *dupp_ref; /* Pointer to dupp row */ ulonglong data_file_length; /* Length off data file */ ulonglong max_data_file_length; /* Length off data file */ ulonglong index_file_length; ulonglong max_index_file_length; ulonglong delete_length; /* Free bytes */ ulonglong auto_increment_value; ha_rows records; /* Records in table */ ha_rows deleted; /* Deleted records */ ulong raid_chunksize; ulong mean_rec_length; /* physical reclength */ time_t create_time; /* When table was created */ time_t check_time; time_t update_time; /* The following are for read_multi_range */ bool multi_range_sorted; KEY_MULTI_RANGE *multi_range_curr; KEY_MULTI_RANGE *multi_range_end; HANDLER_BUFFER *multi_range_buffer; /* The following are for read_range() */ key_range save_end_range, *end_range; KEY_PART_INFO *range_key_part; int key_compare_result_on_equal; bool eq_range; uint errkey; /* Last dup key */ uint sortkey, key_used_on_scan; uint active_index; /* Length of ref (1-8 or the clustered key length) */ uint ref_length; uint block_size; /* index block size */ uint raid_type,raid_chunks; FT_INFO *ft_handler; enum {NONE=0, INDEX, RND} inited; bool auto_increment_column_changed; bool implicit_emptied; /* Can be !=0 only if HEAP */ const COND *pushed_cond; MY_BITMAP *read_set; MY_BITMAP *write_set; handler(const handlerton *ht_arg, TABLE_SHARE *share_arg) :table_share(share_arg), ht(ht_arg), ref(0), data_file_length(0), max_data_file_length(0), index_file_length(0), delete_length(0), auto_increment_value(0), records(0), deleted(0), mean_rec_length(0), create_time(0), check_time(0), update_time(0), key_used_on_scan(MAX_KEY), active_index(MAX_KEY), ref_length(sizeof(my_off_t)), block_size(0), raid_type(0), ft_handler(0), inited(NONE), implicit_emptied(0), pushed_cond(NULL) {} virtual ~handler(void) { /* TODO: DBUG_ASSERT(inited == NONE); */ } virtual int ha_initialise(); int ha_open(TABLE *table, const char *name, int mode, int test_if_locked); bool update_auto_increment(); virtual void print_error(int error, myf errflag); virtual bool get_error_message(int error, String *buf); uint get_dup_key(int error); void change_table_ptr(TABLE *table_arg, TABLE_SHARE *share) { table= table_arg; table_share= share; } virtual double scan_time() { return ulonglong2double(data_file_length) / IO_SIZE + 2; } virtual double read_time(uint index, uint ranges, ha_rows rows) { return rows2double(ranges+rows); } virtual const key_map *keys_to_use_for_scanning() { return &key_map_empty; } virtual bool has_transactions(){ return 0;} virtual uint extra_rec_buf_length() const { return 0; } /* Return upper bound of current number of records in the table (max. of how many records one will retrieve when doing a full table scan) If upper bound is not known, HA_POS_ERROR should be returned as a max possible upper bound. */ virtual ha_rows estimate_rows_upper_bound() { return records+EXTRA_RECORDS; } /* Get the row type from the storage engine. If this method returns ROW_TYPE_NOT_USED, the information in HA_CREATE_INFO should be used. */ virtual enum row_type get_row_type() const { return ROW_TYPE_NOT_USED; } virtual const char *index_type(uint key_number) { DBUG_ASSERT(0); return "";} int ha_index_init(uint idx, bool sorted) { DBUG_ENTER("ha_index_init"); DBUG_ASSERT(inited==NONE); inited=INDEX; DBUG_RETURN(index_init(idx, sorted)); } int ha_index_end() { DBUG_ENTER("ha_index_end"); DBUG_ASSERT(inited==INDEX); inited=NONE; DBUG_RETURN(index_end()); } int ha_rnd_init(bool scan) { DBUG_ENTER("ha_rnd_init"); DBUG_ASSERT(inited==NONE || (inited==RND && scan)); inited=RND; DBUG_RETURN(rnd_init(scan)); } int ha_rnd_end() { DBUG_ENTER("ha_rnd_end"); DBUG_ASSERT(inited==RND); inited=NONE; DBUG_RETURN(rnd_end()); } int ha_reset() { DBUG_ENTER("ha_reset"); ha_clear_all_set(); DBUG_RETURN(reset()); } /* this is necessary in many places, e.g. in HANDLER command */ int ha_index_or_rnd_end() { return inited == INDEX ? ha_index_end() : inited == RND ? ha_rnd_end() : 0; } /* These are a set of routines used to enable handlers to only read/write partial lists of the fields in the table. The bit vector is maintained by the server part and is used by the handler at calls to read/write data in the table. It replaces the use of query id's for this purpose. The benefit is that the handler can also set bits in the read/write set if it has special needs and it is also easy for other parts of the server to interact with the handler (e.g. the replication part for row-level logging). The routines are all part of the general handler and are not possible to override by a handler. A handler can however set/reset bits by calling these routines. The methods ha_retrieve_all_cols and ha_retrieve_all_pk are made virtual to handle InnoDB specifics. If InnoDB doesn't need the extra parameters HA_EXTRA_RETRIEVE_ALL_COLS and HA_EXTRA_RETRIEVE_PRIMARY_KEY anymore then these methods need not be virtual anymore. */ virtual int ha_retrieve_all_cols(); virtual int ha_retrieve_all_pk(); void ha_set_all_bits_in_read_set() { DBUG_ENTER("ha_set_all_bits_in_read_set"); bitmap_set_all(read_set); DBUG_VOID_RETURN; } void ha_set_all_bits_in_write_set() { DBUG_ENTER("ha_set_all_bits_in_write_set"); bitmap_set_all(write_set); DBUG_VOID_RETURN; } void ha_set_bit_in_read_set(uint fieldnr) { DBUG_ENTER("ha_set_bit_in_read_set"); DBUG_PRINT("info", ("fieldnr = %d", fieldnr)); bitmap_set_bit(read_set, fieldnr); DBUG_VOID_RETURN; } void ha_clear_bit_in_read_set(uint fieldnr) { DBUG_ENTER("ha_clear_bit_in_read_set"); DBUG_PRINT("info", ("fieldnr = %d", fieldnr)); bitmap_clear_bit(read_set, fieldnr); DBUG_VOID_RETURN; } void ha_set_bit_in_write_set(uint fieldnr) { DBUG_ENTER("ha_set_bit_in_write_set"); DBUG_PRINT("info", ("fieldnr = %d", fieldnr)); bitmap_set_bit(write_set, fieldnr); DBUG_VOID_RETURN; } void ha_clear_bit_in_write_set(uint fieldnr) { DBUG_ENTER("ha_clear_bit_in_write_set"); DBUG_PRINT("info", ("fieldnr = %d", fieldnr)); bitmap_clear_bit(write_set, fieldnr); DBUG_VOID_RETURN; } void ha_set_bit_in_rw_set(uint fieldnr, bool write_op) { DBUG_ENTER("ha_set_bit_in_rw_set"); DBUG_PRINT("info", ("Set bit %u in read set", fieldnr)); bitmap_set_bit(read_set, fieldnr); if (!write_op) { DBUG_VOID_RETURN; } else { DBUG_PRINT("info", ("Set bit %u in read and write set", fieldnr)); bitmap_set_bit(write_set, fieldnr); } DBUG_VOID_RETURN; } bool ha_get_bit_in_read_set(uint fieldnr) { bool bit_set=bitmap_is_set(read_set,fieldnr); DBUG_ENTER("ha_get_bit_in_read_set"); DBUG_PRINT("info", ("bit %u = %u", fieldnr, bit_set)); DBUG_RETURN(bit_set); } bool ha_get_bit_in_write_set(uint fieldnr) { bool bit_set=bitmap_is_set(write_set,fieldnr); DBUG_ENTER("ha_get_bit_in_write_set"); DBUG_PRINT("info", ("bit %u = %u", fieldnr, bit_set)); DBUG_RETURN(bit_set); } bool ha_get_all_bit_in_read_set() { bool all_bits_set= bitmap_is_set_all(read_set); DBUG_ENTER("ha_get_all_bit_in_read_set"); DBUG_PRINT("info", ("all bits set = %u", all_bits_set)); DBUG_RETURN(all_bits_set); } bool ha_get_all_bit_in_read_clear() { bool all_bits_set= bitmap_is_clear_all(read_set); DBUG_ENTER("ha_get_all_bit_in_read_clear"); DBUG_PRINT("info", ("all bits clear = %u", all_bits_set)); DBUG_RETURN(all_bits_set); } bool ha_get_all_bit_in_write_set() { bool all_bits_set= bitmap_is_set_all(write_set); DBUG_ENTER("ha_get_all_bit_in_write_set"); DBUG_PRINT("info", ("all bits set = %u", all_bits_set)); DBUG_RETURN(all_bits_set); } bool ha_get_all_bit_in_write_clear() { bool all_bits_set= bitmap_is_clear_all(write_set); DBUG_ENTER("ha_get_all_bit_in_write_clear"); DBUG_PRINT("info", ("all bits clear = %u", all_bits_set)); DBUG_RETURN(all_bits_set); } void ha_set_primary_key_in_read_set(); int ha_allocate_read_write_set(ulong no_fields); void ha_clear_all_set(); uint get_index(void) const { return active_index; } virtual int open(const char *name, int mode, uint test_if_locked)=0; virtual int close(void)=0; virtual int ha_write_row(byte * buf); virtual int ha_update_row(const byte * old_data, byte * new_data); virtual int ha_delete_row(const byte * buf); /* SYNOPSIS start_bulk_update() RETURN 0 Bulk update used by handler 1 Bulk update not used, normal operation used */ virtual bool start_bulk_update() { return 1; } /* SYNOPSIS start_bulk_delete() RETURN 0 Bulk delete used by handler 1 Bulk delete not used, normal operation used */ virtual bool start_bulk_delete() { return 1; } /* SYNOPSIS This method is similar to update_row, however the handler doesn't need to execute the updates at this point in time. The handler can be certain that another call to bulk_update_row will occur OR a call to exec_bulk_update before the set of updates in this query is concluded. bulk_update_row() old_data Old record new_data New record dup_key_found Number of duplicate keys found RETURN 0 Bulk delete used by handler 1 Bulk delete not used, normal operation used */ virtual int bulk_update_row(const byte *old_data, byte *new_data, uint *dup_key_found) { DBUG_ASSERT(FALSE); return HA_ERR_WRONG_COMMAND; } /* SYNOPSIS After this call all outstanding updates must be performed. The number of duplicate key errors are reported in the duplicate key parameter. It is allowed to continue to the batched update after this call, the handler has to wait until end_bulk_update with changing state. exec_bulk_update() dup_key_found Number of duplicate keys found RETURN 0 Success >0 Error code */ virtual int exec_bulk_update(uint *dup_key_found) { DBUG_ASSERT(FALSE); return HA_ERR_WRONG_COMMAND; } /* SYNOPSIS Perform any needed clean-up, no outstanding updates are there at the moment. end_bulk_update() RETURN Nothing */ virtual void end_bulk_update() { return; } /* SYNOPSIS Execute all outstanding deletes and close down the bulk delete. end_bulk_delete() RETURN 0 Success >0 Error code */ virtual int end_bulk_delete() { DBUG_ASSERT(FALSE); return HA_ERR_WRONG_COMMAND; } virtual int index_read(byte * buf, const byte * key, uint key_len, enum ha_rkey_function find_flag) { return HA_ERR_WRONG_COMMAND; } virtual int index_read_idx(byte * buf, uint index, const byte * key, uint key_len, enum ha_rkey_function find_flag); virtual int index_next(byte * buf) { return HA_ERR_WRONG_COMMAND; } virtual int index_prev(byte * buf) { return HA_ERR_WRONG_COMMAND; } virtual int index_first(byte * buf) { return HA_ERR_WRONG_COMMAND; } virtual int index_last(byte * buf) { return HA_ERR_WRONG_COMMAND; } virtual int index_next_same(byte *buf, const byte *key, uint keylen); virtual int index_read_last(byte * buf, const byte * key, uint key_len) { return (my_errno=HA_ERR_WRONG_COMMAND); } virtual int read_multi_range_first(KEY_MULTI_RANGE **found_range_p, KEY_MULTI_RANGE *ranges, uint range_count, bool sorted, HANDLER_BUFFER *buffer); virtual int read_multi_range_next(KEY_MULTI_RANGE **found_range_p); virtual int read_range_first(const key_range *start_key, const key_range *end_key, bool eq_range, bool sorted); virtual int read_range_next(); int compare_key(key_range *range); virtual int ft_init() { return HA_ERR_WRONG_COMMAND; } void ft_end() { ft_handler=NULL; } virtual FT_INFO *ft_init_ext(uint flags, uint inx,String *key) { return NULL; } virtual int ft_read(byte *buf) { return HA_ERR_WRONG_COMMAND; } virtual int rnd_next(byte *buf)=0; virtual int rnd_pos(byte * buf, byte *pos)=0; virtual int read_first_row(byte *buf, uint primary_key); /* The following function is only needed for tables that may be temporary tables during joins */ virtual int restart_rnd_next(byte *buf, byte *pos) { return HA_ERR_WRONG_COMMAND; } virtual int rnd_same(byte *buf, uint inx) { return HA_ERR_WRONG_COMMAND; } virtual ha_rows records_in_range(uint inx, key_range *min_key, key_range *max_key) { return (ha_rows) 10; } virtual void position(const byte *record)=0; virtual void info(uint)=0; // see my_base.h for full description virtual int extra(enum ha_extra_function operation) { return 0; } virtual int extra_opt(enum ha_extra_function operation, ulong cache_size) { return extra(operation); } virtual int external_lock(THD *thd, int lock_type) { return 0; } /* In an UPDATE or DELETE, if the row under the cursor was locked by another transaction, and the engine used an optimistic read of the last committed row value under the cursor, then the engine returns 1 from this function. MySQL must NOT try to update this optimistic value. If the optimistic value does not match the WHERE condition, MySQL can decide to skip over this row. Currently only works for InnoDB. This can be used to avoid unnecessary lock waits. If this method returns nonzero, it will also signal the storage engine that the next read will be a locking re-read of the row. */ virtual bool was_semi_consistent_read() { return 0; } /* Tell the engine whether it should avoid unnecessary lock waits. If yes, in an UPDATE or DELETE, if the row under the cursor was locked by another transaction, the engine may try an optimistic read of the last committed row value under the cursor. */ virtual void try_semi_consistent_read(bool) {} virtual void unlock_row() {} virtual int start_stmt(THD *thd, thr_lock_type lock_type) {return 0;} /* This is called to delete all rows in a table If the handler don't support this, then this function will return HA_ERR_WRONG_COMMAND and MySQL will delete the rows one by one. */ virtual int delete_all_rows() { return (my_errno=HA_ERR_WRONG_COMMAND); } virtual ulonglong get_auto_increment(); virtual void restore_auto_increment(); /* Reset the auto-increment counter to the given value, i.e. the next row inserted will get the given value. This is called e.g. after TRUNCATE is emulated by doing a 'DELETE FROM t'. HA_ERR_WRONG_COMMAND is returned by storage engines that don't support this operation. */ virtual int reset_auto_increment(ulonglong value) { return HA_ERR_WRONG_COMMAND; } virtual void update_create_info(HA_CREATE_INFO *create_info) {} /* admin commands - called from mysql_admin_table */ virtual int check(THD* thd, HA_CHECK_OPT* check_opt) { return HA_ADMIN_NOT_IMPLEMENTED; } virtual int backup(THD* thd, HA_CHECK_OPT* check_opt) { return HA_ADMIN_NOT_IMPLEMENTED; } /* restore assumes .frm file must exist, and that generate_table() has been called; It will just copy the data file and run repair. */ virtual int restore(THD* thd, HA_CHECK_OPT* check_opt) { return HA_ADMIN_NOT_IMPLEMENTED; } virtual int repair(THD* thd, HA_CHECK_OPT* check_opt) { return HA_ADMIN_NOT_IMPLEMENTED; } virtual int optimize(THD* thd, HA_CHECK_OPT* check_opt) { return HA_ADMIN_NOT_IMPLEMENTED; } virtual int analyze(THD* thd, HA_CHECK_OPT* check_opt) { return HA_ADMIN_NOT_IMPLEMENTED; } virtual int assign_to_keycache(THD* thd, HA_CHECK_OPT* check_opt) { return HA_ADMIN_NOT_IMPLEMENTED; } virtual int preload_keys(THD* thd, HA_CHECK_OPT* check_opt) { return HA_ADMIN_NOT_IMPLEMENTED; } /* end of the list of admin commands */ virtual bool check_and_repair(THD *thd) { return HA_ERR_WRONG_COMMAND; } virtual int dump(THD* thd, int fd = -1) { return HA_ERR_WRONG_COMMAND; } virtual int disable_indexes(uint mode) { return HA_ERR_WRONG_COMMAND; } virtual int enable_indexes(uint mode) { return HA_ERR_WRONG_COMMAND; } virtual int indexes_are_disabled(void) {return 0;} virtual void start_bulk_insert(ha_rows rows) {} virtual int end_bulk_insert() {return 0; } virtual int discard_or_import_tablespace(my_bool discard) {return HA_ERR_WRONG_COMMAND;} virtual int net_read_dump(NET* net) { return HA_ERR_WRONG_COMMAND; } virtual char *update_table_comment(const char * comment) { return (char*) comment;} virtual void append_create_info(String *packet) {} /* SYNOPSIS is_fk_defined_on_table_or_index() index Index to check if foreign key uses it RETURN VALUE TRUE Foreign key defined on table or index FALSE No foreign key defined DESCRIPTION If index == MAX_KEY then a check for table is made and if index < MAX_KEY then a check is made if the table has foreign keys and if a foreign key uses this index (and thus the index cannot be dropped). */ virtual bool is_fk_defined_on_table_or_index(uint index) { return FALSE; } virtual char* get_foreign_key_create_info() { return(NULL);} /* gets foreign key create string from InnoDB */ /* used in ALTER TABLE; 1 if changing storage engine is allowed */ virtual bool can_switch_engines() { return 1; } /* used in REPLACE; is > 0 if table is referred by a FOREIGN KEY */ virtual int get_foreign_key_list(THD *thd, List<FOREIGN_KEY_INFO> *f_key_list) { return 0; } virtual uint referenced_by_foreign_key() { return 0;} virtual void init_table_handle_for_HANDLER() { return; } /* prepare InnoDB for HANDLER */ virtual void free_foreign_key_create_info(char* str) {} /* The following can be called without an open handler */ virtual const char *table_type() const =0; virtual const char **bas_ext() const =0; virtual ulong table_flags(void) const =0; virtual ulong alter_table_flags(void) const { return 0; } #ifdef WITH_PARTITION_STORAGE_ENGINE virtual ulong partition_flags(void) const { return 0;} virtual int get_default_no_partitions(ulonglong max_rows) { return 1;} virtual void set_part_info(partition_info *part_info) { return; } #endif virtual ulong index_flags(uint idx, uint part, bool all_parts) const =0; virtual ulong index_ddl_flags(KEY *wanted_index) const { return (HA_DDL_SUPPORT); } virtual int add_index(TABLE *table_arg, KEY *key_info, uint num_of_keys) { return (HA_ERR_WRONG_COMMAND); } virtual int drop_index(TABLE *table_arg, uint *key_num, uint num_of_keys) { return (HA_ERR_WRONG_COMMAND); } uint max_record_length() const { return min(HA_MAX_REC_LENGTH, max_supported_record_length()); } uint max_keys() const { return min(MAX_KEY, max_supported_keys()); } uint max_key_parts() const { return min(MAX_REF_PARTS, max_supported_key_parts()); } uint max_key_length() const { return min(MAX_KEY_LENGTH, max_supported_key_length()); } uint max_key_part_length() const { return min(MAX_KEY_LENGTH, max_supported_key_part_length()); } virtual uint max_supported_record_length() const { return HA_MAX_REC_LENGTH; } virtual uint max_supported_keys() const { return 0; } virtual uint max_supported_key_parts() const { return MAX_REF_PARTS; } virtual uint max_supported_key_length() const { return MAX_KEY_LENGTH; } virtual uint max_supported_key_part_length() const { return 255; } virtual uint min_record_length(uint options) const { return 1; } virtual bool low_byte_first() const { return 1; } virtual uint checksum() const { return 0; } virtual bool is_crashed() const { return 0; } virtual bool auto_repair() const { return 0; } /* default rename_table() and delete_table() rename/delete files with a given name and extensions from bas_ext() */ virtual int rename_table(const char *from, const char *to); virtual int delete_table(const char *name); virtual void drop_table(const char *name); virtual int create(const char *name, TABLE *form, HA_CREATE_INFO *info)=0; virtual int create_handler_files(const char *name) { return FALSE;} /* SYNOPSIS drop_partitions() path Complete path of db and table name RETURN VALUE TRUE Failure FALSE Success DESCRIPTION Drop a partition, during this operation no other activity is ongoing in this server on the table. */ virtual int drop_partitions(const char *path) { return HA_ERR_WRONG_COMMAND; } /* lock_count() can be more than one if the table is a MERGE */ virtual uint lock_count(void) const { return 1; } virtual THR_LOCK_DATA **store_lock(THD *thd, THR_LOCK_DATA **to, enum thr_lock_type lock_type)=0; /* Type of table for caching query */ virtual uint8 table_cache_type() { return HA_CACHE_TBL_NONTRANSACT; } /* ask handler about permission to cache table when query is to be cached */ virtual my_bool register_query_cache_table(THD *thd, char *table_key, uint key_length, qc_engine_callback *engine_callback, ulonglong *engine_data) { *engine_callback= 0; return 1; } /* RETURN true Primary key (if there is one) is clustered key covering all fields false otherwise */ virtual bool primary_key_is_clustered() { return FALSE; } virtual int cmp_ref(const byte *ref1, const byte *ref2) { return memcmp(ref1, ref2, ref_length); } /* Condition pushdown to storage engines */ /* Push condition down to the table handler. SYNOPSIS cond_push() cond Condition to be pushed. The condition tree must not be modified by the by the caller. RETURN The 'remainder' condition that caller must use to filter out records. NULL means the handler will not return rows that do not match the passed condition. NOTES The pushed conditions form a stack (from which one can remove the last pushed condition using cond_pop). The table handler filters out rows using (pushed_cond1 AND pushed_cond2 AND ... AND pushed_condN) or less restrictive condition, depending on handler's capabilities. handler->extra(HA_EXTRA_RESET) call empties the condition stack. Calls to rnd_init/rnd_end, index_init/index_end etc do not affect the condition stack. */ virtual const COND *cond_push(const COND *cond) { return cond; }; /* Pop the top condition from the condition stack of the handler instance. SYNOPSIS cond_pop() Pops the top if condition stack, if stack is not empty */ virtual void cond_pop() { return; }; virtual bool check_if_incompatible_data(HA_CREATE_INFO *create_info, uint table_changes) { return COMPATIBLE_DATA_NO; } private: /* Row-level primitives for storage engines. These should be overridden by the storage engine class. To call these methods, use the corresponding 'ha_*' method above. */ friend int ndb_add_binlog_index(THD *, void *); virtual int write_row(byte *buf __attribute__((unused))) { return HA_ERR_WRONG_COMMAND; } virtual int update_row(const byte *old_data __attribute__((unused)), byte *new_data __attribute__((unused))) { return HA_ERR_WRONG_COMMAND; } virtual int delete_row(const byte *buf __attribute__((unused))) { return HA_ERR_WRONG_COMMAND; } }; /* Some extern variables used with handlers */ extern handlerton *sys_table_types[]; extern const char *ha_row_type[]; extern TYPELIB tx_isolation_typelib; extern TYPELIB myisam_stats_method_typelib; extern ulong total_ha, total_ha_2pc; /* Wrapper functions */ #define ha_commit_stmt(thd) (ha_commit_trans((thd), FALSE)) #define ha_rollback_stmt(thd) (ha_rollback_trans((thd), FALSE)) #define ha_commit(thd) (ha_commit_trans((thd), TRUE)) #define ha_rollback(thd) (ha_rollback_trans((thd), TRUE)) /* lookups */ handlerton *ha_resolve_by_name(THD *thd, LEX_STRING *name); handlerton *ha_resolve_by_legacy_type(THD *thd, enum legacy_db_type db_type); const char *ha_get_storage_engine(enum legacy_db_type db_type); handler *get_new_handler(TABLE_SHARE *share, MEM_ROOT *alloc, handlerton *db_type); handlerton *ha_checktype(THD *thd, enum legacy_db_type database_type, bool no_substitute, bool report_error); inline enum legacy_db_type ha_legacy_type(const handlerton *db_type) { return (db_type == NULL) ? DB_TYPE_UNKNOWN : db_type->db_type; } inline const char *ha_resolve_storage_engine_name(const handlerton *db_type) { return db_type == NULL ? "UNKNOWN" : db_type->name; } inline bool ha_check_storage_engine_flag(const handlerton *db_type, uint32 flag) { return db_type == NULL ? FALSE : test(db_type->flags & flag); } inline bool ha_storage_engine_is_enabled(const handlerton *db_type) { return (db_type && db_type->create) ? (db_type->state == SHOW_OPTION_YES) : FALSE; } /* basic stuff */ int ha_init(void); int ha_register_builtin_plugins(); int ha_initialize_handlerton(handlerton *hton); TYPELIB *ha_known_exts(void); int ha_panic(enum ha_panic_function flag); int ha_update_statistics(); void ha_close_connection(THD* thd); bool ha_flush_logs(handlerton *db_type); void ha_drop_database(char* path); int ha_create_table(THD *thd, const char *path, const char *db, const char *table_name, HA_CREATE_INFO *create_info, bool update_create_info); int ha_delete_table(THD *thd, handlerton *db_type, const char *path, const char *db, const char *alias, bool generate_warning); /* statistics and info */ bool ha_show_status(THD *thd, handlerton *db_type, enum ha_stat_type stat); /* discovery */ int ha_create_table_from_engine(THD* thd, const char *db, const char *name); int ha_discover(THD* thd, const char* dbname, const char* name, const void** frmblob, uint* frmlen); int ha_find_files(THD *thd,const char *db,const char *path, const char *wild, bool dir,List<char>* files); int ha_table_exists_in_engine(THD* thd, const char* db, const char* name); /* key cache */ int ha_init_key_cache(const char *name, KEY_CACHE *key_cache); int ha_resize_key_cache(KEY_CACHE *key_cache); int ha_change_key_cache_param(KEY_CACHE *key_cache); int ha_change_key_cache(KEY_CACHE *old_key_cache, KEY_CACHE *new_key_cache); int ha_end_key_cache(KEY_CACHE *key_cache); /* report to InnoDB that control passes to the client */ int ha_release_temporary_latches(THD *thd); /* transactions: interface to handlerton functions */ int ha_start_consistent_snapshot(THD *thd); int ha_commit_or_rollback_by_xid(XID *xid, bool commit); int ha_commit_one_phase(THD *thd, bool all); int ha_rollback_trans(THD *thd, bool all); int ha_prepare(THD *thd); int ha_recover(HASH *commit_list); /* transactions: these functions never call handlerton functions directly */ int ha_commit_trans(THD *thd, bool all); int ha_autocommit_or_rollback(THD *thd, int error); int ha_enable_transaction(THD *thd, bool on); /* savepoints */ int ha_rollback_to_savepoint(THD *thd, SAVEPOINT *sv); int ha_savepoint(THD *thd, SAVEPOINT *sv); int ha_release_savepoint(THD *thd, SAVEPOINT *sv); /* these are called by storage engines */ void trans_register_ha(THD *thd, bool all, handlerton *ht); /* Storage engine has to assume the transaction will end up with 2pc if - there is more than one 2pc-capable storage engine available - in the current transaction 2pc was not disabled yet */ #define trans_need_2pc(thd, all) ((total_ha_2pc > 1) && \ !((all ? &thd->transaction.all : &thd->transaction.stmt)->no_2pc)) /* semi-synchronous replication */ int ha_repl_report_sent_binlog(THD *thd, char *log_file_name, my_off_t end_offset); int ha_repl_report_replication_stop(THD *thd);