/* Copyright (c) 2000, 2010 Oracle and/or its affiliates. All rights reserved.
   Copyright (c) 2009-2010 Monty Program Ab

   This program is free software; you can redistribute it and/or modify
   it under the terms of the GNU General Public License as published by
   the Free Software Foundation; version 2 of the License.

   This program is distributed in the hope that it will be useful,
   but WITHOUT ANY WARRANTY; without even the implied warranty of
   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
   GNU General Public License for more details.

   You should have received a copy of the GNU General Public License
   along with this program; if not, write to the Free Software
   Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA */

/**
  @file

  @brief
  mysql_select and join optimization


  @defgroup Query_Optimizer  Query Optimizer
  @{
*/

#ifdef USE_PRAGMA_IMPLEMENTATION
#pragma implementation				// gcc: Class implementation
#endif

#include "mysql_priv.h"
#include "sql_select.h"
#include "sql_cursor.h"
#include "opt_subselect.h"

#include <m_ctype.h>
#include <my_bit.h>
#include <hash.h>
#include <ft_global.h>

const char *join_type_str[]={ "UNKNOWN","system","const","eq_ref","ref",
			      "MAYBE_REF","ALL","range","index","fulltext",
			      "ref_or_null","unique_subquery","index_subquery",
                              "index_merge", "hash_ALL", "hash_range",
                              "hash_index", "hash_index_merge" };

const char *copy_to_tmp_table= "Copying to tmp table";

struct st_sargable_param;

static void optimize_keyuse(JOIN *join, DYNAMIC_ARRAY *keyuse_array);
static bool make_join_statistics(JOIN *join, TABLE_LIST *leaves, COND *conds,
				 DYNAMIC_ARRAY *keyuse);
static bool update_ref_and_keys(THD *thd, DYNAMIC_ARRAY *keyuse,
                                JOIN_TAB *join_tab,
                                uint tables, COND *conds,
                                COND_EQUAL *cond_equal,
                                table_map table_map, SELECT_LEX *select_lex,
                                st_sargable_param **sargables);
static int sort_keyuse(KEYUSE *a,KEYUSE *b);
static bool create_ref_for_key(JOIN *join, JOIN_TAB *j, KEYUSE *org_keyuse,
			       table_map used_tables);
bool choose_plan(JOIN *join,table_map join_tables);

void best_access_path(JOIN *join, JOIN_TAB *s, 
                             table_map remaining_tables, uint idx, 
                             bool disable_jbuf, double record_count,
                             POSITION *pos, POSITION *loose_scan_pos);
static void optimize_straight_join(JOIN *join, table_map join_tables);
static bool greedy_search(JOIN *join, table_map remaining_tables,
                             uint depth, uint prune_level);
static bool best_extension_by_limited_search(JOIN *join,
                                             table_map remaining_tables,
                                             uint idx, double record_count,
                                             double read_time, uint depth,
                                             uint prune_level);
static uint determine_search_depth(JOIN* join);
static int join_tab_cmp(const void *dummy, const void* ptr1, const void* ptr2);
static int join_tab_cmp_straight(const void *dummy, const void* ptr1, const void* ptr2);
static int join_tab_cmp_embedded_first(const void *emb, const void* ptr1, const void *ptr2);
/*
  TODO: 'find_best' is here only temporarily until 'greedy_search' is
  tested and approved.
*/
static bool find_best(JOIN *join,table_map rest_tables,uint index,
		      double record_count,double read_time);
static uint cache_record_length(JOIN *join,uint index);
static double prev_record_reads(JOIN *join, uint idx, table_map found_ref);
static bool get_best_combination(JOIN *join);
static store_key *get_store_key(THD *thd,
				KEYUSE *keyuse, table_map used_tables,
				KEY_PART_INFO *key_part, uchar *key_buff,
				uint maybe_null);
static void make_outerjoin_info(JOIN *join);
static Item*
make_cond_after_sjm(Item *root_cond, Item *cond, table_map tables, table_map sjm_tables);
static bool make_join_select(JOIN *join,SQL_SELECT *select,COND *item);
static void revise_cache_usage(JOIN_TAB *join_tab);
static bool make_join_readinfo(JOIN *join, ulonglong options, uint no_jbuf_after);
static bool only_eq_ref_tables(JOIN *join, ORDER *order, table_map tables);
static void update_depend_map(JOIN *join);
static void update_depend_map_for_order(JOIN *join, ORDER *order);
static ORDER *remove_const(JOIN *join,ORDER *first_order,COND *cond,
			   bool change_list, bool *simple_order);
static int return_zero_rows(JOIN *join, select_result *res,TABLE_LIST *tables,
                            List<Item> &fields, bool send_row,
                            ulonglong select_options, const char *info,
                            Item *having);
static COND *build_equal_items(THD *thd, COND *cond,
                               COND_EQUAL *inherited,
                               List<TABLE_LIST> *join_list,
                               COND_EQUAL **cond_equal_ref);
static COND* substitute_for_best_equal_field(COND *cond,
                                             COND_EQUAL *cond_equal,
                                             void *table_join_idx);
static COND *simplify_joins(JOIN *join, List<TABLE_LIST> *join_list,
                            COND *conds, bool top, bool in_sj);
static bool check_interleaving_with_nj(JOIN_TAB *next);
static void restore_prev_nj_state(JOIN_TAB *last);
static uint reset_nj_counters(JOIN *join, List<TABLE_LIST> *join_list);
static uint build_bitmap_for_nested_joins(List<TABLE_LIST> *join_list,
                                          uint first_unused);

static COND *optimize_cond(JOIN *join, COND *conds,
                           List<TABLE_LIST> *join_list,
			   Item::cond_result *cond_value, 
                           COND_EQUAL **cond_equal);
static bool const_expression_in_where(COND *conds,Item *item, Item **comp_item);
static bool create_internal_tmp_table_from_heap2(THD *, TABLE *,
                                     ENGINE_COLUMNDEF *, ENGINE_COLUMNDEF **, 
                                     int, bool, handlerton *, const char *);
static int do_select(JOIN *join,List<Item> *fields,TABLE *tmp_table,
		     Procedure *proc);

static enum_nested_loop_state
evaluate_join_record(JOIN *join, JOIN_TAB *join_tab,
                     int error);
static enum_nested_loop_state
evaluate_null_complemented_join_record(JOIN *join, JOIN_TAB *join_tab);
static enum_nested_loop_state
end_send(JOIN *join, JOIN_TAB *join_tab, bool end_of_records);
enum_nested_loop_state
end_send_group(JOIN *join, JOIN_TAB *join_tab, bool end_of_records);
static enum_nested_loop_state
end_write(JOIN *join, JOIN_TAB *join_tab, bool end_of_records);
static enum_nested_loop_state
end_update(JOIN *join, JOIN_TAB *join_tab, bool end_of_records);
static enum_nested_loop_state
end_unique_update(JOIN *join, JOIN_TAB *join_tab, bool end_of_records);
enum_nested_loop_state
end_write_group(JOIN *join, JOIN_TAB *join_tab, bool end_of_records);

static int test_if_group_changed(List<Cached_item> &list);
static int join_read_const_table(JOIN_TAB *tab, POSITION *pos);
static int join_read_system(JOIN_TAB *tab);
static int join_read_const(JOIN_TAB *tab);
static int join_read_key(JOIN_TAB *tab);
static void join_read_key_unlock_row(st_join_table *tab);
static int join_read_always_key(JOIN_TAB *tab);
static int join_read_last_key(JOIN_TAB *tab);
static int join_no_more_records(READ_RECORD *info);
static int join_read_next(READ_RECORD *info);
static int join_init_quick_read_record(JOIN_TAB *tab);
static int test_if_quick_select(JOIN_TAB *tab);
static bool test_if_use_dynamic_range_scan(JOIN_TAB *join_tab);
static int join_read_first(JOIN_TAB *tab);
static int join_read_next(READ_RECORD *info);
static int join_read_next_same(READ_RECORD *info);
static int join_read_last(JOIN_TAB *tab);
static int join_read_prev_same(READ_RECORD *info);
static int join_read_prev(READ_RECORD *info);
static int join_ft_read_first(JOIN_TAB *tab);
static int join_ft_read_next(READ_RECORD *info);
int join_read_always_key_or_null(JOIN_TAB *tab);
int join_read_next_same_or_null(READ_RECORD *info);
static COND *make_cond_for_table(Item *cond,table_map table,
                                 table_map used_table,
                                 bool exclude_expensive_cond,
                                 bool retain_ref_cond);
static COND *make_cond_for_table_from_pred(Item *root_cond, Item *cond,
                                           table_map tables,
                                           table_map used_table,
                                           bool exclude_expensive_cond,
                                           bool retain_ref_cond);

static Item* part_of_refkey(TABLE *form,Field *field);
uint find_shortest_key(TABLE *table, const key_map *usable_keys);
static bool test_if_skip_sort_order(JOIN_TAB *tab,ORDER *order,
				    ha_rows select_limit, bool no_changes,
                                    const key_map *map);
static bool list_contains_unique_index(TABLE *table,
                          bool (*find_func) (Field *, void *), void *data);
static bool find_field_in_item_list (Field *field, void *data);
static bool find_field_in_order_list (Field *field, void *data);
static int create_sort_index(THD *thd, JOIN *join, ORDER *order,
			     ha_rows filesort_limit, ha_rows select_limit,
                             bool is_order_by);
static int remove_duplicates(JOIN *join,TABLE *entry,List<Item> &fields,
			     Item *having);
static int remove_dup_with_compare(THD *thd, TABLE *entry, Field **field,
				   ulong offset,Item *having);
static int remove_dup_with_hash_index(THD *thd,TABLE *table,
				      uint field_count, Field **first_field,
				      ulong key_length,Item *having);
static bool cmp_buffer_with_ref(THD *thd, TABLE *table, TABLE_REF *tab_ref);
static bool setup_new_fields(THD *thd, List<Item> &fields,
			     List<Item> &all_fields, ORDER *new_order);
static ORDER *create_distinct_group(THD *thd, Item **ref_pointer_array,
                                    ORDER *order, List<Item> &fields,
                                    List<Item> &all_fields,
				    bool *all_order_by_fields_used);
static bool test_if_subpart(ORDER *a,ORDER *b);
static TABLE *get_sort_by_table(ORDER *a,ORDER *b,TABLE_LIST *tables);
static void calc_group_buffer(JOIN *join,ORDER *group);
static bool make_group_fields(JOIN *main_join, JOIN *curr_join);
static bool alloc_group_fields(JOIN *join,ORDER *group);
// Create list for using with tempory table
static bool change_to_use_tmp_fields(THD *thd, Item **ref_pointer_array,
				     List<Item> &new_list1,
				     List<Item> &new_list2,
				     uint elements, List<Item> &items);
// Create list for using with tempory table
static bool change_refs_to_tmp_fields(THD *thd, Item **ref_pointer_array,
				      List<Item> &new_list1,
				      List<Item> &new_list2,
				      uint elements, List<Item> &items);
static void init_tmptable_sum_functions(Item_sum **func);
static void update_tmptable_sum_func(Item_sum **func,TABLE *tmp_table);
static void copy_sum_funcs(Item_sum **func_ptr, Item_sum **end);
static bool add_ref_to_table_cond(THD *thd, JOIN_TAB *join_tab);
static bool setup_sum_funcs(THD *thd, Item_sum **func_ptr);
static bool init_sum_functions(Item_sum **func, Item_sum **end);
static bool update_sum_func(Item_sum **func);
static void select_describe(JOIN *join, bool need_tmp_table,bool need_order,
			    bool distinct, const char *message=NullS);
static void add_group_and_distinct_keys(JOIN *join, JOIN_TAB *join_tab);
void get_partial_join_cost(JOIN *join, uint idx, double *read_time_arg,
                           double *record_count_arg);
static uint make_join_orderinfo(JOIN *join);

Item_equal *find_item_equal(COND_EQUAL *cond_equal, Field *field,
                            bool *inherited_fl);

/**
  This handles SELECT with and without UNION.
*/

bool handle_select(THD *thd, LEX *lex, select_result *result,
                   ulong setup_tables_done_option)
{
  bool res;
  register SELECT_LEX *select_lex = &lex->select_lex;
  DBUG_ENTER("handle_select");

  if (select_lex->master_unit()->is_union() || 
      select_lex->master_unit()->fake_select_lex)
    res= mysql_union(thd, lex, result, &lex->unit, setup_tables_done_option);
  else
  {
    SELECT_LEX_UNIT *unit= &lex->unit;
    unit->set_limit(unit->global_parameters);
    /*
      'options' of mysql_select will be set in JOIN, as far as JOIN for
      every PS/SP execution new, we will not need reset this flag if 
      setup_tables_done_option changed for next rexecution
    */
    res= mysql_select(thd, &select_lex->ref_pointer_array,
		      select_lex->table_list.first,
		      select_lex->with_wild, select_lex->item_list,
		      select_lex->where,
		      select_lex->order_list.elements +
		      select_lex->group_list.elements,
		      select_lex->order_list.first,
		      select_lex->group_list.first,
		      select_lex->having,
		      lex->proc_list.first,
		      select_lex->options | thd->options |
                      setup_tables_done_option,
		      result, unit, select_lex);
  }
  DBUG_PRINT("info",("res: %d  report_error: %d", res,
		     thd->is_error()));
  res|= thd->is_error();
  if (unlikely(res))
    result->abort();

  DBUG_RETURN(res);
}


/*
  Fix fields referenced from inner selects.

  SYNOPSIS
    fix_inner_refs()
    thd               Thread handle
    all_fields        List of all fields used in select
    select            Current select
    ref_pointer_array Array of references to Items used in current select
    group_list        GROUP BY list (is NULL by default)

  DESCRIPTION
    The function serves 3 purposes - adds fields referenced from inner
    selects to the current select list, resolves which class to use
    to access referenced item (Item_ref of Item_direct_ref) and fixes
    references (Item_ref objects) to these fields.

    If a field isn't already in the select list and the ref_pointer_array
    is provided then it is added to the all_fields list and the pointer to
    it is saved in the ref_pointer_array.

    The class to access the outer field is determined by the following rules:
    1. If the outer field isn't used under an aggregate function
      then the Item_ref class should be used.
    2. If the outer field is used under an aggregate function and this
      function is aggregated in the select where the outer field was
      resolved or in some more inner select then the Item_direct_ref
      class should be used.
      It used used also if we are grouping by a subquery that refers
      this outer field.
    The resolution is done here and not at the fix_fields() stage as
    it can be done only after sum functions are fixed and pulled up to
    selects where they are have to be aggregated.
    When the class is chosen it substitutes the original field in the
    Item_outer_ref object.

    After this we proceed with fixing references (Item_outer_ref objects) to
    this field from inner subqueries.

  RETURN
    TRUE  an error occured
    FALSE ok
*/

bool
fix_inner_refs(THD *thd, List<Item> &all_fields, SELECT_LEX *select,
                 Item **ref_pointer_array)
{
  Item_outer_ref *ref;
  bool res= FALSE;
  bool direct_ref= FALSE;

  /*
    Mark the references from  the inner_refs_list that are occurred in
    the group by expressions. Those references will contain direct
    references to the referred fields. The markers are set in 
    the found_in_group_by field of the references from the list.
  */
  List_iterator_fast <Item_outer_ref> ref_it(select->inner_refs_list);
  for (ORDER *group= select->join->group_list; group;  group= group->next)
  {
    (*group->item)->walk(&Item::check_inner_refs_processor,
                         TRUE, (uchar *) &ref_it);
  } 
    
  while ((ref= ref_it++))
  {
    Item *item= ref->outer_ref;
    Item **item_ref= ref->ref;
    Item_ref *new_ref;
    /*
      TODO: this field item already might be present in the select list.
      In this case instead of adding new field item we could use an
      existing one. The change will lead to less operations for copying fields,
      smaller temporary tables and less data passed through filesort.
    */
    if (ref_pointer_array && !ref->found_in_select_list)
    {
      int el= all_fields.elements;
      ref_pointer_array[el]= item;
      /* Add the field item to the select list of the current select. */
      all_fields.push_front(item);
      /*
        If it's needed reset each Item_ref item that refers this field with
        a new reference taken from ref_pointer_array.
      */
      item_ref= ref_pointer_array + el;
    }

    if (ref->in_sum_func)
    {
      Item_sum *sum_func;
      if (ref->in_sum_func->nest_level > select->nest_level)
        direct_ref= TRUE;
      else
      {
        for (sum_func= ref->in_sum_func; sum_func &&
             sum_func->aggr_level >= select->nest_level;
             sum_func= sum_func->in_sum_func)
        {
          if (sum_func->aggr_level == select->nest_level)
          {
            direct_ref= TRUE;
            break;
          }
        }
      }
    }
    else if (ref->found_in_group_by)
      direct_ref= TRUE;

    new_ref= direct_ref ?
              new Item_direct_ref(ref->context, item_ref, ref->table_name,
                          ref->field_name, ref->alias_name_used) :
              new Item_ref(ref->context, item_ref, ref->table_name,
                          ref->field_name, ref->alias_name_used);
    if (!new_ref)
      return TRUE;
    ref->outer_ref= new_ref;
    ref->ref= &ref->outer_ref;

    if (!ref->fixed && ref->fix_fields(thd, 0))
      return TRUE;
    thd->used_tables|= item->used_tables();
  }
  return res;
}

/**
  Function to setup clauses without sum functions.
*/
inline int setup_without_group(THD *thd, Item **ref_pointer_array,
			       TABLE_LIST *tables,
			       TABLE_LIST *leaves,
			       List<Item> &fields,
			       List<Item> &all_fields,
			       COND **conds,
			       ORDER *order,
			       ORDER *group, bool *hidden_group_fields)
{
  int res;
  nesting_map save_allow_sum_func=thd->lex->allow_sum_func ;
  /* 
    Need to save the value, so we can turn off only the new NON_AGG_FIELD
    additions coming from the WHERE
  */
  uint8 saved_flag= thd->lex->current_select->full_group_by_flag;
  DBUG_ENTER("setup_without_group");

  thd->lex->allow_sum_func&= ~(1 << thd->lex->current_select->nest_level);
  res= setup_conds(thd, tables, leaves, conds);

  /* it's not wrong to have non-aggregated columns in a WHERE */
  if (thd->variables.sql_mode & MODE_ONLY_FULL_GROUP_BY)
    thd->lex->current_select->full_group_by_flag= saved_flag |
      (thd->lex->current_select->full_group_by_flag & ~NON_AGG_FIELD_USED);

  thd->lex->allow_sum_func|= 1 << thd->lex->current_select->nest_level;
  res= res || setup_order(thd, ref_pointer_array, tables, fields, all_fields,
                          order);
  thd->lex->allow_sum_func&= ~(1 << thd->lex->current_select->nest_level);
  res= res || setup_group(thd, ref_pointer_array, tables, fields, all_fields,
                          group, hidden_group_fields);
  thd->lex->allow_sum_func= save_allow_sum_func;
  DBUG_RETURN(res);
}

/*****************************************************************************
  Check fields, find best join, do the select and output fields.
  mysql_select assumes that all tables are already opened
*****************************************************************************/


/**
  Prepare of whole select (including sub queries in future).

  @todo
    Add check of calculation of GROUP functions and fields:
    SELECT COUNT(*)+table.col1 from table1;

  @retval
    -1   on error
  @retval
    0   on success
*/
int
JOIN::prepare(Item ***rref_pointer_array,
	      TABLE_LIST *tables_init,
	      uint wild_num, COND *conds_init, uint og_num,
	      ORDER *order_init, ORDER *group_init,
	      Item *having_init,
	      ORDER *proc_param_init, SELECT_LEX *select_lex_arg,
	      SELECT_LEX_UNIT *unit_arg)
{
  DBUG_ENTER("JOIN::prepare");

  // to prevent double initialization on EXPLAIN
  if (optimized)
    DBUG_RETURN(0);

  conds= conds_init;
  order= order_init;
  group_list= group_init;
  having= having_init;
  proc_param= proc_param_init;
  tables_list= tables_init;
  select_lex= select_lex_arg;
  select_lex->join= this;
  join_list= &select_lex->top_join_list;
  union_part= unit_arg->is_union();

  thd->lex->current_select->is_item_list_lookup= 1;
  /*
    If we have already executed SELECT, then it have not sense to prevent
    its table from update (see unique_table())
  */
  if (thd->derived_tables_processing)
    select_lex->exclude_from_table_unique_test= TRUE;

  /* Check that all tables, fields, conds and order are ok */

  if (!(select_options & OPTION_SETUP_TABLES_DONE) &&
      setup_tables_and_check_access(thd, &select_lex->context, join_list,
                                    tables_list, &select_lex->leaf_tables,
                                    FALSE, SELECT_ACL, SELECT_ACL))
      DBUG_RETURN(-1);
 
  TABLE_LIST *table_ptr;
  for (table_ptr= select_lex->leaf_tables;
       table_ptr;
       table_ptr= table_ptr->next_leaf)
    tables++;

  if (setup_wild(thd, tables_list, fields_list, &all_fields, wild_num) ||
      select_lex->setup_ref_array(thd, og_num) ||
      setup_fields(thd, (*rref_pointer_array), fields_list, MARK_COLUMNS_READ,
		   &all_fields, 1) ||
      setup_without_group(thd, (*rref_pointer_array), tables_list,
			  select_lex->leaf_tables, fields_list,
			  all_fields, &conds, order, group_list,
			  &hidden_group_fields))
    DBUG_RETURN(-1);				/* purecov: inspected */

  ref_pointer_array= *rref_pointer_array;
  
  if (having)
  {
    nesting_map save_allow_sum_func= thd->lex->allow_sum_func;
    thd->where="having clause";
    thd->lex->allow_sum_func|= 1 << select_lex_arg->nest_level;
    select_lex->having_fix_field= 1;
    bool having_fix_rc= (!having->fixed &&
			 (having->fix_fields(thd, &having) ||
			  having->check_cols(1)));
    select_lex->having_fix_field= 0;
    if (having_fix_rc || thd->is_error())
      DBUG_RETURN(-1);				/* purecov: inspected */
    thd->lex->allow_sum_func= save_allow_sum_func;
  }
  
  int res= check_and_do_in_subquery_rewrites(this);

  select_lex->fix_prepare_information(thd, &conds, &having);
  
  if (res)
    DBUG_RETURN(res);

  if (order)
  {
    bool real_order= FALSE;
    ORDER *ord;
    for (ord= order; ord; ord= ord->next)
    {
      Item *item= *ord->item;
      /*
        Disregard sort order if there's only 
        zero length NOT NULL fields (e.g. {VAR}CHAR(0) NOT NULL") or
        zero length NOT NULL string functions there.
        Such tuples don't contain any data to sort.
      */
      if (!real_order &&
           /* Not a zero length NOT NULL field */
          ((item->type() != Item::FIELD_ITEM ||
            ((Item_field *) item)->field->maybe_null() ||
            ((Item_field *) item)->field->sort_length()) &&
           /* AND not a zero length NOT NULL string function. */
           (item->type() != Item::FUNC_ITEM ||
            item->maybe_null ||
            item->result_type() != STRING_RESULT ||
            item->max_length)))
        real_order= TRUE;

      if (item->with_sum_func && item->type() != Item::SUM_FUNC_ITEM)
        item->split_sum_func(thd, ref_pointer_array, all_fields);
    }
    if (!real_order)
      order= NULL;
  }

  if (having && having->with_sum_func)
    having->split_sum_func2(thd, ref_pointer_array, all_fields,
                            &having, TRUE);
  if (select_lex->inner_sum_func_list)
  {
    Item_sum *end=select_lex->inner_sum_func_list;
    Item_sum *item_sum= end;  
    do
    { 
      item_sum= item_sum->next;
      item_sum->split_sum_func2(thd, ref_pointer_array,
                                all_fields, item_sum->ref_by, FALSE);
    } while (item_sum != end);
  }

  if (select_lex->inner_refs_list.elements &&
      fix_inner_refs(thd, all_fields, select_lex, ref_pointer_array))
    DBUG_RETURN(-1);

  if (group_list)
  {
    /*
      Because HEAP tables can't index BIT fields we need to use an
      additional hidden field for grouping because later it will be
      converted to a LONG field. Original field will remain of the
      BIT type and will be returned to a client.
    */
    for (ORDER *ord= group_list; ord; ord= ord->next)
    {
      if ((*ord->item)->type() == Item::FIELD_ITEM &&
          (*ord->item)->field_type() == MYSQL_TYPE_BIT)
      {
        Item_field *field= new Item_field(thd, *(Item_field**)ord->item);
        int el= all_fields.elements;
        ref_pointer_array[el]= field;
        all_fields.push_front(field);
        ord->item= ref_pointer_array + el;
      }
    }
  }

  if (setup_ftfuncs(select_lex)) /* should be after having->fix_fields */
    DBUG_RETURN(-1);
  

  /*
    Check if there are references to un-aggregated columns when computing 
    aggregate functions with implicit grouping (there is no GROUP BY).
  */
  if (thd->variables.sql_mode & MODE_ONLY_FULL_GROUP_BY && !group_list &&
      select_lex->full_group_by_flag == (NON_AGG_FIELD_USED | SUM_FUNC_USED))
  {
    my_message(ER_MIX_OF_GROUP_FUNC_AND_FIELDS,
               ER(ER_MIX_OF_GROUP_FUNC_AND_FIELDS), MYF(0));
    DBUG_RETURN(-1);
  }
  {
    /* Caclulate the number of groups */
    send_group_parts= 0;
    for (ORDER *group_tmp= group_list ; group_tmp ; group_tmp= group_tmp->next)
      send_group_parts++;
  }
  
  procedure= setup_procedure(thd, proc_param, result, fields_list, &error);
  if (error)
    goto err;					/* purecov: inspected */
  if (procedure)
  {
    if (setup_new_fields(thd, fields_list, all_fields,
			 procedure->param_fields))
	goto err;				/* purecov: inspected */
    if (procedure->group)
    {
      if (!test_if_subpart(procedure->group,group_list))
      {						/* purecov: inspected */
	my_message(ER_DIFF_GROUPS_PROC, ER(ER_DIFF_GROUPS_PROC),
                   MYF(0));                     /* purecov: inspected */
	goto err;				/* purecov: inspected */
      }
    }
    if (order && (procedure->flags & PROC_NO_SORT))
    {						/* purecov: inspected */
      my_message(ER_ORDER_WITH_PROC, ER(ER_ORDER_WITH_PROC),
                 MYF(0));                       /* purecov: inspected */
      goto err;					/* purecov: inspected */
    }
    if (thd->lex->derived_tables)
    {
      my_error(ER_WRONG_USAGE, MYF(0), "PROCEDURE", 
               thd->lex->derived_tables & DERIVED_VIEW ?
               "view" : "subquery"); 
      goto err;
    }
    if (thd->lex->sql_command != SQLCOM_SELECT)
    {
      my_error(ER_WRONG_USAGE, MYF(0), "PROCEDURE", "non-SELECT");
      goto err;
    }
  }

  if (!procedure && result && result->prepare(fields_list, unit_arg))
    goto err;					/* purecov: inspected */

  /* Init join struct */
  count_field_types(select_lex, &tmp_table_param, all_fields, 0);
  ref_pointer_array_size= all_fields.elements*sizeof(Item*);
  this->group= group_list != 0;
  unit= unit_arg;

  if (tmp_table_param.sum_func_count && !group_list)
    implicit_grouping= TRUE;

#ifdef RESTRICTED_GROUP
  if (implicit_grouping)
  {
    my_message(ER_WRONG_SUM_SELECT,ER(ER_WRONG_SUM_SELECT),MYF(0));
    goto err;
  }
#endif
  if (select_lex->olap == ROLLUP_TYPE && rollup_init())
    goto err;
  if (alloc_func_list())
    goto err;

  DBUG_RETURN(0); // All OK

err:
  delete procedure;				/* purecov: inspected */
  procedure= 0;
  DBUG_RETURN(-1);				/* purecov: inspected */
}


/**
  global select optimisation.

  @note
    error code saved in field 'error'

  @retval
    0   success
  @retval
    1   error
*/

int
JOIN::optimize()
{
  ulonglong select_opts_for_readinfo;
  uint no_jbuf_after;

  DBUG_ENTER("JOIN::optimize");
  // to prevent double initialization on EXPLAIN
  if (optimized)
    DBUG_RETURN(0);
  optimized= 1;

  thd_proc_info(thd, "optimizing");

  set_allowed_join_cache_types();

  /* dump_TABLE_LIST_graph(select_lex, select_lex->leaf_tables); */
  if (convert_join_subqueries_to_semijoins(this))
    DBUG_RETURN(1); /* purecov: inspected */
  /* dump_TABLE_LIST_graph(select_lex, select_lex->leaf_tables); */

  row_limit= ((select_distinct || order || group_list) ? HA_POS_ERROR :
	      unit->select_limit_cnt);
  /* select_limit is used to decide if we are likely to scan the whole table */
  select_limit= unit->select_limit_cnt;
  if (having || (select_options & OPTION_FOUND_ROWS))
    select_limit= HA_POS_ERROR;
  do_send_rows = (unit->select_limit_cnt) ? 1 : 0;
  // Ignore errors of execution if option IGNORE present
  if (thd->lex->ignore)
    thd->lex->current_select->no_error= 1;
#ifdef HAVE_REF_TO_FIELDS			// Not done yet
  /* Add HAVING to WHERE if possible */
  if (having && !group_list && !sum_func_count)
  {
    if (!conds)
    {
      conds= having;
      having= 0;
    }
    else if ((conds=new Item_cond_and(conds,having)))
    {
      /*
        Item_cond_and can't be fixed after creation, so we do not check
        conds->fixed
      */
      conds->fix_fields(thd, &conds);
      conds->change_ref_to_fields(thd, tables_list);
      conds->top_level_item();
      having= 0;
    }
  }
#endif
  SELECT_LEX *sel= thd->lex->current_select;
  if (sel->first_cond_optimization)
  {
    /*
      The following code will allocate the new items in a permanent
      MEMROOT for prepared statements and stored procedures.
    */

    Query_arena *arena= thd->stmt_arena, backup;
    if (arena->is_conventional())
      arena= 0;                                   // For easier test
    else
      thd->set_n_backup_active_arena(arena, &backup);

    sel->first_cond_optimization= 0;

    /* Convert all outer joins to inner joins if possible */
    conds= simplify_joins(this, join_list, conds, TRUE, FALSE);
    build_bitmap_for_nested_joins(join_list, 0);

    sel->prep_where= conds ? conds->copy_andor_structure(thd) : 0;

    if (arena)
      thd->restore_active_arena(arena, &backup);
  }

  conds= optimize_cond(this, conds, join_list, &cond_value, &cond_equal);   
  if (thd->is_error())
  {
    error= 1;
    DBUG_PRINT("error",("Error from optimize_cond"));
    DBUG_RETURN(1);
  }

  {
    having= optimize_cond(this, having, join_list, &having_value, &having_equal);
    if (thd->is_error())
    {
      error= 1;
      DBUG_PRINT("error",("Error from optimize_cond"));
      DBUG_RETURN(1);
    }
    if (select_lex->where)
      select_lex->cond_value= cond_value;
    if (select_lex->having)
      select_lex->having_value= having_value;

    if (cond_value == Item::COND_FALSE || having_value == Item::COND_FALSE || 
        (!unit->select_limit_cnt && !(select_options & OPTION_FOUND_ROWS)))
    {						/* Impossible cond */
      DBUG_PRINT("info", (having_value == Item::COND_FALSE ? 
                            "Impossible HAVING" : "Impossible WHERE"));
      zero_result_cause=  having_value == Item::COND_FALSE ?
                           "Impossible HAVING" : "Impossible WHERE";
      tables= 0;
      error= 0;
      goto setup_subq_exit;
    }
  }

#ifdef WITH_PARTITION_STORAGE_ENGINE
  {
    TABLE_LIST *tbl;
    for (tbl= select_lex->leaf_tables; tbl; tbl= tbl->next_leaf)
    {
      /* 
        If tbl->embedding!=NULL that means that this table is in the inner
        part of the nested outer join, and we can't do partition pruning
        (TODO: check if this limitation can be lifted)
      */
      if (!tbl->embedding)
      {
        Item *prune_cond= tbl->on_expr? tbl->on_expr : conds;
        tbl->table->no_partitions_used= prune_partitions(thd, tbl->table,
	                                                 prune_cond);
      }
    }
  }
#endif

  /* 
     Try to optimize count(*), min() and max() to const fields if
     there is implicit grouping (aggregate functions but no
     group_list). In this case, the result set shall only contain one
     row. 
  */
  if (tables_list && implicit_grouping)
  {
    int res;
    /*
      opt_sum_query() returns HA_ERR_KEY_NOT_FOUND if no rows match
      to the WHERE conditions,
      or 1 if all items were resolved (optimized away),
      or 0, or an error number HA_ERR_...

      If all items were resolved by opt_sum_query, there is no need to
      open any tables.
    */
    if ((res=opt_sum_query(select_lex->leaf_tables, all_fields, conds)))
    {
      if (res == HA_ERR_KEY_NOT_FOUND)
      {
        DBUG_PRINT("info",("No matching min/max row"));
	zero_result_cause= "No matching min/max row";
        tables= 0;
	error=0;
        goto setup_subq_exit;
      }
      if (res > 1)
      {
        error= res;
        DBUG_PRINT("error",("Error from opt_sum_query"));
        DBUG_RETURN(1);
      }
      if (res < 0)
      {
        DBUG_PRINT("info",("No matching min/max row"));
        zero_result_cause= "No matching min/max row";
        tables= 0;
        error=0;
        goto setup_subq_exit;
      }
      DBUG_PRINT("info",("Select tables optimized away"));
      zero_result_cause= "Select tables optimized away";
      tables_list= 0;				// All tables resolved
      const_tables= tables;
      /*
        Extract all table-independent conditions and replace the WHERE
        clause with them. All other conditions were computed by opt_sum_query
        and the MIN/MAX/COUNT function(s) have been replaced by constants,
        so there is no need to compute the whole WHERE clause again.
        Notice that make_cond_for_table() will always succeed to remove all
        computed conditions, because opt_sum_query() is applicable only to
        conjunctions.
        Preserve conditions for EXPLAIN.
      */
      if (conds && !(thd->lex->describe & DESCRIBE_EXTENDED))
      {
        COND *table_independent_conds=
          make_cond_for_table(conds, PSEUDO_TABLE_BITS, 0, FALSE, FALSE);
        DBUG_EXECUTE("where",
                     print_where(table_independent_conds,
                                 "where after opt_sum_query()",
                                 QT_ORDINARY););
        conds= table_independent_conds;
      }
      goto setup_subq_exit;
    }
  }
  if (!tables_list)
  {
    DBUG_PRINT("info",("No tables"));
    error= 0;
    /* Create all structures needed for materialized subquery execution. */
    if (setup_subquery_materialization())
      DBUG_RETURN(1);
    DBUG_RETURN(0);
  }
  error= -1;					// Error is sent to client
  sort_by_table= get_sort_by_table(order, group_list, select_lex->leaf_tables);

  /* Calculate how to do the join */
  thd_proc_info(thd, "statistics");
  if (make_join_statistics(this, select_lex->leaf_tables, conds, &keyuse) ||
      thd->is_fatal_error)
  {
    DBUG_PRINT("error",("Error: make_join_statistics() failed"));
    DBUG_RETURN(1);
  }

  if (rollup.state != ROLLUP::STATE_NONE)
  {
    if (rollup_process_const_fields())
    {
      DBUG_PRINT("error", ("Error: rollup_process_fields() failed"));
      DBUG_RETURN(1);
    }
  }
  else
  {
    /* Remove distinct if only const tables */
    select_distinct= select_distinct && (const_tables != tables);
  }

  thd_proc_info(thd, "preparing");
  if (result->initialize_tables(this))
  {
    DBUG_PRINT("error",("Error: initialize_tables() failed"));
    DBUG_RETURN(1);				// error == -1
  }
  if (const_table_map != found_const_table_map &&
      !(select_options & SELECT_DESCRIBE) &&
      (!conds ||
       !(conds->used_tables() & RAND_TABLE_BIT) ||
       select_lex->master_unit() == &thd->lex->unit)) // upper level SELECT
  {
    zero_result_cause= "no matching row in const table";
    DBUG_PRINT("error",("Error: %s", zero_result_cause));
    error= 0;
    goto setup_subq_exit;
  }
  if (!(thd->options & OPTION_BIG_SELECTS) &&
      best_read > (double) thd->variables.max_join_size &&
      !(select_options & SELECT_DESCRIBE))
  {						/* purecov: inspected */
    my_message(ER_TOO_BIG_SELECT, ER(ER_TOO_BIG_SELECT), MYF(0));
    error= -1;
    DBUG_RETURN(1);
  }
  if (const_tables && !thd->locked_tables &&
      !(select_options & SELECT_NO_UNLOCK))
    mysql_unlock_some_tables(thd, table, const_tables);
  if (!conds && outer_join)
  {
    /* Handle the case where we have an OUTER JOIN without a WHERE */
    conds=new Item_int((longlong) 1,1);	// Always true
  }
  select= make_select(*table, const_table_map,
                      const_table_map, conds, 1, &error);
  if (error)
  {						/* purecov: inspected */
    error= -1;					/* purecov: inspected */
    DBUG_PRINT("error",("Error: make_select() failed"));
    DBUG_RETURN(1);
  }
  
  reset_nj_counters(this, join_list);
  make_outerjoin_info(this);

  /*
    Among the equal fields belonging to the same multiple equality
    choose the one that is to be retrieved first and substitute
    all references to these in where condition for a reference for
    the selected field.
  */
  if (conds)
  {
    conds= substitute_for_best_equal_field(conds, cond_equal, map2table);
    conds->update_used_tables();
    DBUG_EXECUTE("where",
                 print_where(conds,
                             "after substitute_best_equal",
                             QT_ORDINARY););
  }

  /*
    Perform the optimization on fields evaluation mentioned above
    for all on expressions.
  */

  {
    List_iterator<JOIN_TAB_RANGE> it(join_tab_ranges);
    JOIN_TAB_RANGE *jt_range;
    /* For upper level JOIN_TABs, we need to skip the const tables: */
    uint first_tab_offs= const_tables;
    while ((jt_range= it++))
    {
      for (JOIN_TAB *tab= jt_range->start + first_tab_offs;
           tab < jt_range->end; tab++)
      {
        if (*tab->on_expr_ref)
        {
          *tab->on_expr_ref= substitute_for_best_equal_field(*tab->on_expr_ref,
                                                             tab->cond_equal,
                                                             map2table);
          (*tab->on_expr_ref)->update_used_tables();
        }
      }
      /*
        Next jt_range will refer to SJM nest (and not the top-level range). 
        Inside SJM nests, we dont have const tables, so should start from the
        first table:
      */
      first_tab_offs= 0;
    }
  }

  /*
    Perform the optimization on fields evaliation mentioned above
    for all used ref items.
  */
  //for (JOIN_TAB *tab= join_tab + const_tables; tab < join_tab + tables; tab++)
  //{
  {
    List_iterator<JOIN_TAB_RANGE> it(join_tab_ranges);
    JOIN_TAB_RANGE *jt_range;
    uint first_tab_offs= const_tables;
    while ((jt_range= it++))
    {
      for (JOIN_TAB *tab= jt_range->start + first_tab_offs;
           tab < jt_range->end; tab++)
      {
    uint key_copy_index=0;
        for (uint i=0; i < tab->ref.key_parts; i++)
        {
          
          Item **ref_item_ptr= tab->ref.items+i;
          Item *ref_item= *ref_item_ptr;
      if (!ref_item->used_tables() && !(select_options & SELECT_DESCRIBE))
        continue;
          COND_EQUAL *equals= tab->first_inner ? tab->first_inner->cond_equal : 
                                                 cond_equal;
          ref_item= substitute_for_best_equal_field(ref_item, equals, map2table);
          ref_item->update_used_tables();
          if (*ref_item_ptr != ref_item)
          {
            *ref_item_ptr= ref_item;
            Item *item= ref_item->real_item();
        store_key *key_copy= tab->ref.key_copy[key_copy_index];
            if (key_copy->type() == store_key::FIELD_STORE_KEY)
            {
              store_key_field *field_copy= ((store_key_field *)key_copy);
              field_copy->change_source_field((Item_field *) item);
            }
          }
      key_copy_index++;
        }
      }
      first_tab_offs= 0;
    }
  }
  //}

  if (conds && const_table_map != found_const_table_map &&
      (select_options & SELECT_DESCRIBE))
  {
    conds=new Item_int((longlong) 0,1);	// Always false
  }

  if (make_join_select(this, select, conds))
  {
    zero_result_cause=
      "Impossible WHERE noticed after reading const tables";
    goto setup_subq_exit;
  }

  error= -1;					/* if goto err */

  /* Optimize distinct away if possible */
  {
    ORDER *org_order= order;
    order=remove_const(this, order,conds,1, &simple_order);
    if (thd->is_error())
    {
      error= 1;
      DBUG_PRINT("error",("Error from remove_const"));
      DBUG_RETURN(1);
    }

    /*
      If we are using ORDER BY NULL or ORDER BY const_expression,
      return result in any order (even if we are using a GROUP BY)
    */
    if (!order && org_order)
      skip_sort_order= 1;
  }
  /*
     Check if we can optimize away GROUP BY/DISTINCT.
     We can do that if there are no aggregate functions, the
     fields in DISTINCT clause (if present) and/or columns in GROUP BY
     (if present) contain direct references to all key parts of
     an unique index (in whatever order) and if the key parts of the
     unique index cannot contain NULLs.
     Note that the unique keys for DISTINCT and GROUP BY should not
     be the same (as long as they are unique).

     The FROM clause must contain a single non-constant table.
  */
  if (tables - const_tables == 1 && (group_list || select_distinct) &&
      !tmp_table_param.sum_func_count &&
      (!join_tab[const_tables].select ||
       !join_tab[const_tables].select->quick ||
       join_tab[const_tables].select->quick->get_type() != 
       QUICK_SELECT_I::QS_TYPE_GROUP_MIN_MAX))
  {
    if (group_list && rollup.state == ROLLUP::STATE_NONE &&
       list_contains_unique_index(join_tab[const_tables].table,
                                 find_field_in_order_list,
                                 (void *) group_list))
    {
      /*
        We have found that grouping can be removed since groups correspond to
        only one row anyway, but we still have to guarantee correct result
        order. The line below effectively rewrites the query from GROUP BY
        <fields> to ORDER BY <fields>. There are two exceptions:
        - if skip_sort_order is set (see above), then we can simply skip
          GROUP BY;
        - we can only rewrite ORDER BY if the ORDER BY fields are 'compatible'
          with the GROUP BY ones, i.e. either one is a prefix of another.
          We only check if the ORDER BY is a prefix of GROUP BY. In this case
          test_if_subpart() copies the ASC/DESC attributes from the original
          ORDER BY fields.
          If GROUP BY is a prefix of ORDER BY, then it is safe to leave
          'order' as is.
       */
      if (!order || test_if_subpart(group_list, order))
          order= skip_sort_order ? 0 : group_list;
      /*
        If we have an IGNORE INDEX FOR GROUP BY(fields) clause, this must be 
        rewritten to IGNORE INDEX FOR ORDER BY(fields).
      */
      join_tab->table->keys_in_use_for_order_by=
        join_tab->table->keys_in_use_for_group_by;
      group_list= 0;
      group= 0;
    }
    if (select_distinct &&
       list_contains_unique_index(join_tab[const_tables].table,
                                 find_field_in_item_list,
                                 (void *) &fields_list))
    {
      select_distinct= 0;
    }
  }
  if (group_list || tmp_table_param.sum_func_count)
  {
    if (! hidden_group_fields && rollup.state == ROLLUP::STATE_NONE)
      select_distinct=0;
  }
  else if (select_distinct && tables - const_tables == 1 &&
           rollup.state == ROLLUP::STATE_NONE)
  {
    /*
      We are only using one table. In this case we change DISTINCT to a
      GROUP BY query if:
      - The GROUP BY can be done through indexes (no sort) and the ORDER
        BY only uses selected fields.
	(In this case we can later optimize away GROUP BY and ORDER BY)
      - We are scanning the whole table without LIMIT
        This can happen if:
        - We are using CALC_FOUND_ROWS
        - We are using an ORDER BY that can't be optimized away.

      We don't want to use this optimization when we are using LIMIT
      because in this case we can just create a temporary table that
      holds LIMIT rows and stop when this table is full.
    */
    JOIN_TAB *tab= &join_tab[const_tables];
    bool all_order_fields_used;
    if (order)
      skip_sort_order= test_if_skip_sort_order(tab, order, select_limit, 1, 
        &tab->table->keys_in_use_for_order_by);
    if ((group_list=create_distinct_group(thd, select_lex->ref_pointer_array,
                                          order, fields_list, all_fields,
				          &all_order_fields_used)))
    {
      bool skip_group= (skip_sort_order &&
        test_if_skip_sort_order(tab, group_list, select_limit, 1, 
                                &tab->table->keys_in_use_for_group_by) != 0);
      count_field_types(select_lex, &tmp_table_param, all_fields, 0);
      if ((skip_group && all_order_fields_used) ||
	  select_limit == HA_POS_ERROR ||
	  (order && !skip_sort_order))
      {
	/*  Change DISTINCT to GROUP BY */
	select_distinct= 0;
	no_order= !order;
	if (all_order_fields_used)
	{
	  if (order && skip_sort_order)
	  {
	    /*
	      Force MySQL to read the table in sorted order to get result in
	      ORDER BY order.
	    */
	    tmp_table_param.quick_group=0;
	  }
	  order=0;
        }
	group=1;				// For end_write_group
      }
      else
	group_list= 0;
    }
    else if (thd->is_fatal_error)			// End of memory
      DBUG_RETURN(1);
  }
  simple_group= 0;
  {
    ORDER *old_group_list;
    group_list= remove_const(this, (old_group_list= group_list), conds,
                             rollup.state == ROLLUP::STATE_NONE,
			     &simple_group);
    if (thd->is_error())
    {
      error= 1;
      DBUG_PRINT("error",("Error from remove_const"));
      DBUG_RETURN(1);
    }
    if (old_group_list && !group_list)
      select_distinct= 0;
  }
  if (!group_list && group)
  {
    order=0;					// The output has only one row
    simple_order=1;
    select_distinct= 0;                       // No need in distinct for 1 row
    group_optimized_away= 1;
  }

  calc_group_buffer(this, group_list);
  send_group_parts= tmp_table_param.group_parts; /* Save org parts */
  if (procedure && procedure->group)
  {
    group_list= procedure->group= remove_const(this, procedure->group, conds,
					       1, &simple_group);
    if (thd->is_error())
    {
      error= 1;
      DBUG_PRINT("error",("Error from remove_const"));
      DBUG_RETURN(1);
    }   
    calc_group_buffer(this, group_list);
  }

  if (test_if_subpart(group_list, order) ||
      (!group_list && tmp_table_param.sum_func_count))
    order=0;

  // Can't use sort on head table if using join buffering
  if (full_join)
  {
    TABLE *stable= (sort_by_table == (TABLE *) 1 ? 
      join_tab[const_tables].table : sort_by_table);
    /* 
      FORCE INDEX FOR ORDER BY can be used to prevent join buffering when
      sorting on the first table.
    */
    if (!stable || !stable->force_index_order)
    {
      if (group_list)
        simple_group= 0;
      if (order)
        simple_order= 0;
    }
  }

  /*
    Check if we need to create a temporary table.
    This has to be done if all tables are not already read (const tables)
    and one of the following conditions holds:
    - We are using DISTINCT (simple distinct's are already optimized away)
    - We are using an ORDER BY or GROUP BY on fields not in the first table
    - We are using different ORDER BY and GROUP BY orders
    - The user wants us to buffer the result.
    When the WITH ROLLUP modifier is present, we cannot skip temporary table
    creation for the DISTINCT clause just because there are only const tables.
  */
  need_tmp= ((const_tables != tables &&
	     ((select_distinct || !simple_order || !simple_group) ||
	      (group_list && order) ||
	      test(select_options & OPTION_BUFFER_RESULT))) ||
             (rollup.state != ROLLUP::STATE_NONE && select_distinct));

  /*
    If the hint FORCE INDEX FOR ORDER BY/GROUP BY is used for the table
    whose columns are required to be returned in a sorted order, then
    the proper value for no_jbuf_after should be yielded by a call to
    the make_join_orderinfo function.
    Yet the current implementation of FORCE INDEX hints does not
    allow us to do it in a clean manner.
  */
  no_jbuf_after= 1 ? tables : make_join_orderinfo(this);

  select_opts_for_readinfo=
    (select_options & (SELECT_DESCRIBE | SELECT_NO_JOIN_CACHE)) |
    (select_lex->ftfunc_list->elements ?  SELECT_NO_JOIN_CACHE : 0);

  // No cache for MATCH == 'Don't use join buffering when we use MATCH'.
  if (make_join_readinfo(this, select_opts_for_readinfo, no_jbuf_after))
    DBUG_RETURN(1);

  /* Perform FULLTEXT search before all regular searches */
  if (!(select_options & SELECT_DESCRIBE))
    init_ftfuncs(thd, select_lex, test(order));

  /* Create all structures needed for materialized subquery execution. */
  if (setup_subquery_materialization())
    DBUG_RETURN(1);
  
  int res;
  if ((res= rewrite_to_index_subquery_engine(this)) != -1)
    DBUG_RETURN(res);
  if (setup_subquery_caches())
    DBUG_RETURN(-1);

  /*
    Need to tell handlers that to play it safe, it should fetch all
    columns of the primary key of the tables: this is because MySQL may
    build row pointers for the rows, and for all columns of the primary key
    the read set has not necessarily been set by the server code.
  */
  if (need_tmp || select_distinct || group_list || order)
  {
    for (uint i= 0; i < tables; i++)
    {
      if (!(table[i]->map & const_table_map))
        table[i]->prepare_for_position();
    }
  }

  DBUG_EXECUTE("info",TEST_join(this););

  if (const_tables != tables)
  {
    /*
      Because filesort always does a full table scan or a quick range scan
      we must add the removed reference to the select for the table.
      We only need to do this when we have a simple_order or simple_group
      as in other cases the join is done before the sort.
    */
    if ((order || group_list) &&
        join_tab[const_tables].type != JT_ALL &&
        join_tab[const_tables].type != JT_FT &&
        join_tab[const_tables].type != JT_REF_OR_NULL &&
        ((order && simple_order) || (group_list && simple_group)))
    {
      if (add_ref_to_table_cond(thd,&join_tab[const_tables])) {
        DBUG_RETURN(1);
      }
    }
    
    if (!(select_options & SELECT_BIG_RESULT) &&
        ((group_list &&
          (!simple_group ||
           !test_if_skip_sort_order(&join_tab[const_tables], group_list,
                                    unit->select_limit_cnt, 0, 
                                    &join_tab[const_tables].table->
                                    keys_in_use_for_group_by))) ||
         select_distinct) &&
        tmp_table_param.quick_group && !procedure)
    {
      need_tmp=1; simple_order=simple_group=0;	// Force tmp table without sort
    }
    if (order)
    {
      /*
        Do we need a temporary table due to the ORDER BY not being equal to
        the GROUP BY? The call to test_if_skip_sort_order above tests for the
        GROUP BY clause only and hence is not valid in this case. So the
        estimated number of rows to be read from the first table is not valid.
        We clear it here so that it doesn't show up in EXPLAIN.
       */
      if (need_tmp && (select_options & SELECT_DESCRIBE) != 0)
        join_tab[const_tables].limit= 0;
      /*
        Force using of tmp table if sorting by a SP or UDF function due to
        their expensive and probably non-deterministic nature.
      */
      for (ORDER *tmp_order= order; tmp_order ; tmp_order=tmp_order->next)
      {
        Item *item= *tmp_order->item;
        if (item->is_expensive())
        {
          /* Force tmp table without sort */
          need_tmp=1; simple_order=simple_group=0;
          break;
        }
      }
    }
  }

  tmp_having= having;
  if (select_options & SELECT_DESCRIBE)
  {
    error= 0;
    DBUG_RETURN(0);
  }
  having= 0;

  /*
    The loose index scan access method guarantees that all grouping or
    duplicate row elimination (for distinct) is already performed
    during data retrieval, and that all MIN/MAX functions are already
    computed for each group. Thus all MIN/MAX functions should be
    treated as regular functions, and there is no need to perform
    grouping in the main execution loop.
    Notice that currently loose index scan is applicable only for
    single table queries, thus it is sufficient to test only the first
    join_tab element of the plan for its access method.
  */
  if (join_tab->is_using_loose_index_scan())
    tmp_table_param.precomputed_group_by= TRUE;

  /* Create a tmp table if distinct or if the sort is too complicated */
  if (need_tmp)
  {
    DBUG_PRINT("info",("Creating tmp table"));
    thd_proc_info(thd, "Creating tmp table");

    init_items_ref_array();

    tmp_table_param.hidden_field_count= (all_fields.elements -
					 fields_list.elements);
    ORDER *tmp_group= ((!simple_group && !procedure &&
                        !(test_flags & TEST_NO_KEY_GROUP)) ? group_list :
                                                             (ORDER*) 0);
    /*
      Pushing LIMIT to the temporary table creation is not applicable
      when there is ORDER BY or GROUP BY or there is no GROUP BY, but
      there are aggregate functions, because in all these cases we need
      all result rows.
    */
    ha_rows tmp_rows_limit= ((order == 0 || skip_sort_order) &&
                             !tmp_group &&
                             !thd->lex->current_select->with_sum_func) ?
                            select_limit : HA_POS_ERROR;

    if (!(exec_tmp_table1=
	  create_tmp_table(thd, &tmp_table_param, all_fields,
                           tmp_group,
			   group_list ? 0 : select_distinct,
			   group_list && simple_group,
			   select_options,
                           tmp_rows_limit,
			   (char *) "")))
		{
      DBUG_RETURN(1);
    }

    /*
      We don't have to store rows in temp table that doesn't match HAVING if:
      - we are sorting the table and writing complete group rows to the
        temp table.
      - We are using DISTINCT without resolving the distinct as a GROUP BY
        on all columns.
      
      If having is not handled here, it will be checked before the row
      is sent to the client.
    */    
    if (tmp_having && 
	(sort_and_group || (exec_tmp_table1->distinct && !group_list)))
      having= tmp_having;

    /* if group or order on first table, sort first */
    if (group_list && simple_group)
    {
      DBUG_PRINT("info",("Sorting for group"));
      thd_proc_info(thd, "Sorting for group");
      if (create_sort_index(thd, this, group_list,
			    HA_POS_ERROR, HA_POS_ERROR, FALSE) ||
	  alloc_group_fields(this, group_list) ||
          make_sum_func_list(all_fields, fields_list, 1) ||
          setup_sum_funcs(thd, sum_funcs))
      {
        DBUG_RETURN(1);
      }
      group_list=0;
    }
    else
    {
      if (make_sum_func_list(all_fields, fields_list, 0) ||
          setup_sum_funcs(thd, sum_funcs))
      {
        DBUG_RETURN(1);
      }

      if (!group_list && ! exec_tmp_table1->distinct && order && simple_order)
      {
        thd_proc_info(thd, "Sorting for order");
        if (create_sort_index(thd, this, order,
                              HA_POS_ERROR, HA_POS_ERROR, TRUE))
        {
          DBUG_RETURN(1);
        }
        order=0;
      }
    }
    
    /*
      Optimize distinct when used on some of the tables
      SELECT DISTINCT t1.a FROM t1,t2 WHERE t1.b=t2.b
      In this case we can stop scanning t2 when we have found one t1.a
    */

    if (exec_tmp_table1->distinct)
    {
      table_map used_tables= thd->used_tables;
      JOIN_TAB *last_join_tab= join_tab+tables-1;
      do
      {
	if (used_tables & last_join_tab->table->map)
	  break;
	last_join_tab->not_used_in_distinct=1;
      } while (last_join_tab-- != join_tab);
      /* Optimize "select distinct b from t1 order by key_part_1 limit #" */
      if (order && skip_sort_order)
      {
 	/* Should always succeed */
	if (test_if_skip_sort_order(&join_tab[const_tables],
				    order, unit->select_limit_cnt, 0, 
                                    &join_tab[const_tables].table->
                                      keys_in_use_for_order_by))
	  order=0;
      }
    }

    /* If this join belongs to an uncacheable query save the original join */
    if (select_lex->uncacheable && init_save_join_tab())
      DBUG_RETURN(-1);                         /* purecov: inspected */
  }

  error= 0;
  DBUG_RETURN(0);

setup_subq_exit:
  /*
    Even with zero matching rows, subqueries in the HAVING clause may
    need to be evaluated if there are aggregate functions in the
    query. If we have planned to materialize the subquery, we need to
    set it up properly before prematurely leaving optimize().
  */
  if (setup_subquery_materialization())
    DBUG_RETURN(1);
  error= 0;
  DBUG_RETURN(0);
}


/**
  Setup expression caches for subqueries that need them

  @details
  The function wraps correlated subquery expressions that return one value
  into objects of the class Item_cache_wrapper setting up an expression
  cache for each of them. The result values of the subqueries are to be
  cached together with the corresponding sets of the parameters - outer
  references of the subqueries.

  @retval FALSE OK
  @retval TRUE  Error
*/

bool JOIN::setup_subquery_caches()
{
  DBUG_ENTER("JOIN::setup_subquery_caches");

  /*
    We have to check all this condition together because items created in
    one of this clauses can be moved to another one by optimizer
  */
  if (select_lex->expr_cache_may_be_used[IN_WHERE] ||
      select_lex->expr_cache_may_be_used[IN_HAVING] ||
      select_lex->expr_cache_may_be_used[IN_ON] ||
      select_lex->expr_cache_may_be_used[NO_MATTER])
  {
    if (conds)
      conds= conds->transform(&Item::expr_cache_insert_transformer,
                              (uchar*) thd);
    for (JOIN_TAB *tab= first_linear_tab(this, TRUE); 
         tab; 
         tab= next_linear_tab(this, tab, TRUE))
    //for (JOIN_TAB *tab= join_tab + const_tables;
    //     tab < join_tab + tables ;
    //     tab++)
    {
      if (tab->select_cond)
        tab->select_cond=
          tab->select_cond->transform(&Item::expr_cache_insert_transformer,
                                      (uchar*) thd);
      if (tab->cache_select && tab->cache_select->cond)
        tab->cache_select->cond=
          tab->cache_select->
          cond->transform(&Item::expr_cache_insert_transformer,
                          (uchar*) thd);

    }

    if (having)
      having= having->transform(&Item::expr_cache_insert_transformer,
                                (uchar*) thd);
    if (tmp_having)
    {
      DBUG_ASSERT(having == NULL);
      tmp_having= tmp_having->transform(&Item::expr_cache_insert_transformer,
                                        (uchar*) thd);
    }
  }
  if (select_lex->expr_cache_may_be_used[SELECT_LIST] ||
      select_lex->expr_cache_may_be_used[IN_GROUP_BY] ||
      select_lex->expr_cache_may_be_used[NO_MATTER])
  {
    List_iterator<Item> li(all_fields);
    Item *item;
    while ((item= li++))
    {
      Item *new_item=
        item->transform(&Item::expr_cache_insert_transformer, (uchar*) thd);
      if (new_item != item)
      {
        thd->change_item_tree(li.ref(), new_item);
      }
    }
    for (ORDER *group= group_list; group ; group= group->next)
    {
      *group->item=
        (*group->item)->transform(&Item::expr_cache_insert_transformer,
                                  (uchar*) thd);
    }
  }
  if (select_lex->expr_cache_may_be_used[NO_MATTER])
  {
    for (ORDER *ord= order; ord; ord= ord->next)
    {
      *ord->item=
        (*ord->item)->transform(&Item::expr_cache_insert_transformer,
                                (uchar*) thd);
    }
  }
  DBUG_RETURN(FALSE);
}


/**
  Restore values in temporary join.
*/
void JOIN::restore_tmp()
{
  memcpy(tmp_join, this, (size_t) sizeof(JOIN));
}


/*
  Shrink join buffers used for preceding tables to reduce the occupied space

  SYNOPSIS
    shrink_join_buffers()
      jt           table up to which the buffers are to be shrunk
      curr_space   the size of the space used by the buffers for tables 1..jt
      needed_space the size of the space that has to be used by these buffers

  DESCRIPTION
    The function makes an attempt to shrink all join buffers used for the
    tables starting from the first up to jt to reduce the total size of the
    space occupied by the buffers used for tables 1,...,jt  from curr_space
    to needed_space.
    The function assumes that the buffer for the table jt has not been
    allocated yet.

  RETURN
    FALSE     if all buffer have been successfully shrunk
    TRUE      otherwise
*/
  
bool JOIN::shrink_join_buffers(JOIN_TAB *jt, 
                               ulonglong curr_space,
                               ulonglong needed_space)
{
  JOIN_CACHE *cache;
  for (JOIN_TAB *tab= join_tab+const_tables; tab < jt; tab++)
  {
    cache= tab->cache;
    if (cache)
    { 
      size_t buff_size;
      if (needed_space < cache->get_min_join_buffer_size())
        return TRUE;
      if (cache->shrink_join_buffer_in_ratio(curr_space, needed_space))
      { 
        revise_cache_usage(tab);
        return TRUE;
      }
      buff_size= cache->get_join_buffer_size();
      curr_space-= buff_size;
      needed_space-= buff_size;
    }
  }

  cache= jt->cache;
  DBUG_ASSERT(cache);
  if (needed_space < cache->get_min_join_buffer_size())
    return TRUE;
  cache->set_join_buffer_size((size_t)needed_space);
  
  return FALSE;
}


int
JOIN::reinit()
{
  DBUG_ENTER("JOIN::reinit");

  unit->offset_limit_cnt= (ha_rows)(select_lex->offset_limit ?
                                    select_lex->offset_limit->val_uint() :
                                    ULL(0));

  first_record= 0;

  if (exec_tmp_table1)
  {
    exec_tmp_table1->file->extra(HA_EXTRA_RESET_STATE);
    exec_tmp_table1->file->ha_delete_all_rows();
    free_io_cache(exec_tmp_table1);
    filesort_free_buffers(exec_tmp_table1,0);
  }
  if (exec_tmp_table2)
  {
    exec_tmp_table2->file->extra(HA_EXTRA_RESET_STATE);
    exec_tmp_table2->file->ha_delete_all_rows();
    free_io_cache(exec_tmp_table2);
    filesort_free_buffers(exec_tmp_table2,0);
  }
  clear_sj_tmp_tables(this);
  if (items0)
    set_items_ref_array(items0);

  if (join_tab_save)
    memcpy(join_tab, join_tab_save, sizeof(JOIN_TAB) * tables);

  /* need to reset ref access state (see join_read_key) */
  if (join_tab)
    for (uint i= 0; i < tables; i++)
      join_tab[i].ref.key_err= TRUE;

  if (tmp_join)
    restore_tmp();

  /* Reset of sum functions */
  if (sum_funcs)
  {
    Item_sum *func, **func_ptr= sum_funcs;
    while ((func= *(func_ptr++)))
      func->clear();
  }

  if (no_rows_in_result_called)
  {
    /* Reset effect of possible no_rows_in_result() */
    List_iterator_fast<Item> it(fields_list);
    Item *item;
    no_rows_in_result_called= 0;
    while ((item= it++))
      item->restore_to_before_no_rows_in_result();
  }

  if (!(select_options & SELECT_DESCRIBE))
    init_ftfuncs(thd, select_lex, test(order));

  DBUG_RETURN(0);
}

/**
   @brief Save the original join layout
      
   @details Saves the original join layout so it can be reused in 
   re-execution and for EXPLAIN.
             
   @return Operation status
   @retval 0      success.
   @retval 1      error occurred.
*/

bool
JOIN::init_save_join_tab()
{
  if (!(tmp_join= (JOIN*)thd->alloc(sizeof(JOIN))))
    return 1;                                  /* purecov: inspected */
  error= 0;				       // Ensure that tmp_join.error= 0
  restore_tmp();
  return 0;
}


bool
JOIN::save_join_tab()
{
  if (!join_tab_save && select_lex->master_unit()->uncacheable)
  {
    if (!(join_tab_save= (JOIN_TAB*)thd->memdup((uchar*) join_tab,
						sizeof(JOIN_TAB) * tables)))
      return 1;
  }
  return 0;
}


/**
  Exec select.

  @todo
    Note, that create_sort_index calls test_if_skip_sort_order and may
    finally replace sorting with index scan if there is a LIMIT clause in
    the query.  It's never shown in EXPLAIN!

  @todo
    When can we have here thd->net.report_error not zero?
*/
void
JOIN::exec()
{
  List<Item> *columns_list= &fields_list;
  int      tmp_error;
  DBUG_ENTER("JOIN::exec");

  thd_proc_info(thd, "executing");
  error= 0;
  if (procedure)
  {
    procedure_fields_list= fields_list;
    if (procedure->change_columns(procedure_fields_list) ||
	result->prepare(procedure_fields_list, unit))
    {
      thd->limit_found_rows= thd->examined_row_count= 0;
      DBUG_VOID_RETURN;
    }
    columns_list= &procedure_fields_list;
  }
  (void) result->prepare2(); // Currently, this cannot fail.

  if (!tables_list && (tables || !select_lex->with_sum_func))
  {                                           // Only test of functions
    if (select_options & SELECT_DESCRIBE)
      select_describe(this, FALSE, FALSE, FALSE,
		      (zero_result_cause?zero_result_cause:"No tables used"));
    else
    {
      if (result->send_fields(*columns_list,
                              Protocol::SEND_NUM_ROWS | Protocol::SEND_EOF))
      {
        DBUG_VOID_RETURN;
      }
      /*
        We have to test for 'conds' here as the WHERE may not be constant
        even if we don't have any tables for prepared statements or if
        conds uses something like 'rand()'.
        If the HAVING clause is either impossible or always true, then
        JOIN::having is set to NULL by optimize_cond.
        In this case JOIN::exec must check for JOIN::having_value, in the
        same way it checks for JOIN::cond_value.
      */
      if (cond_value != Item::COND_FALSE &&
          having_value != Item::COND_FALSE &&
          (!conds || conds->val_int()) &&
          (!having || having->val_int()))
      {
	if (do_send_rows &&
            (procedure ? (procedure->send_row(procedure_fields_list) ||
             procedure->end_of_records()) : result->send_data(fields_list)))
	  error= 1;
	else
	{
	  error= (int) result->send_eof();
	  send_records= ((select_options & OPTION_FOUND_ROWS) ? 1 :
                         thd->sent_row_count);
	}
      }
      else
      {
	error=(int) result->send_eof();
        send_records= 0;
      }
    }
    /* Single select (without union) always returns 0 or 1 row */
    thd->limit_found_rows= send_records;
    thd->examined_row_count= 0;
    DBUG_VOID_RETURN;
  }
  /*
    Don't reset the found rows count if there're no tables as
    FOUND_ROWS() may be called. Never reset the examined row count here.
    It must be accumulated from all join iterations of all join parts.
  */
  if (tables)
    thd->limit_found_rows= 0;

  if (zero_result_cause)
  {
    (void) return_zero_rows(this, result, select_lex->leaf_tables,
                            *columns_list,
			    send_row_on_empty_set(),
			    select_options,
			    zero_result_cause,
			    having);
    DBUG_VOID_RETURN;
  }

  if ((this->select_lex->options & OPTION_SCHEMA_TABLE) &&
      get_schema_tables_result(this, PROCESSED_BY_JOIN_EXEC))
    DBUG_VOID_RETURN;

  if (select_options & SELECT_DESCRIBE)
  {
    /*
      Check if we managed to optimize ORDER BY away and don't use temporary
      table to resolve ORDER BY: in that case, we only may need to do
      filesort for GROUP BY.
    */
    if (!order && !no_order && (!skip_sort_order || !need_tmp))
    {
      /*
	Reset 'order' to 'group_list' and reinit variables describing
	'order'
      */
      order= group_list;
      simple_order= simple_group;
      skip_sort_order= 0;
    }
    if (order && 
        (order != group_list || !(select_options & SELECT_BIG_RESULT)) &&
	(const_tables == tables ||
 	 ((simple_order || skip_sort_order) &&
	  test_if_skip_sort_order(&join_tab[const_tables], order,
				  select_limit, 0, 
                                  &join_tab[const_tables].table->
                                    keys_in_use_for_query))))
      order=0;
    having= tmp_having;
    select_describe(this, need_tmp,
		    order != 0 && !skip_sort_order,
		    select_distinct,
                    !tables ? "No tables used" : NullS);
    DBUG_VOID_RETURN;
  }

  JOIN *curr_join= this;
  List<Item> *curr_all_fields= &all_fields;
  List<Item> *curr_fields_list= &fields_list;
  TABLE *curr_tmp_table= 0;
  /*
    Initialize examined rows here because the values from all join parts
    must be accumulated in examined_row_count. Hence every join
    iteration must count from zero.
  */
  curr_join->examined_rows= 0;

  /* Create a tmp table if distinct or if the sort is too complicated */
  if (need_tmp)
  {
    if (tmp_join)
    {
      /*
        We are in a non cacheable sub query. Get the saved join structure
        after optimization.
        (curr_join may have been modified during last exection and we need
        to reset it)
      */
      curr_join= tmp_join;
    }
    curr_tmp_table= exec_tmp_table1;

    /* Copy data to the temporary table */
    thd_proc_info(thd, copy_to_tmp_table);
    DBUG_PRINT("info", ("%s", thd->proc_info));
    if (!curr_join->sort_and_group &&
        curr_join->const_tables != curr_join->tables)
    {
      JOIN_TAB *first_tab= curr_join->join_tab + curr_join->const_tables;
      first_tab->sorted= test(first_tab->loosescan_match_tab);
    }
    if ((tmp_error= do_select(curr_join, (List<Item> *) 0, curr_tmp_table, 0)))
    {
      error= tmp_error;
      DBUG_VOID_RETURN;
    }
    curr_tmp_table->file->info(HA_STATUS_VARIABLE);
    
    if (curr_join->having)
      curr_join->having= curr_join->tmp_having= 0; // Allready done
    
    /* Change sum_fields reference to calculated fields in tmp_table */
#ifdef HAVE_valgrind
    if (curr_join != this)
#endif
      curr_join->all_fields= *curr_all_fields;
    if (!items1)
    {
      items1= items0 + all_fields.elements;
      if (sort_and_group || curr_tmp_table->group ||
          tmp_table_param.precomputed_group_by)
      {
	if (change_to_use_tmp_fields(thd, items1,
				     tmp_fields_list1, tmp_all_fields1,
				     fields_list.elements, all_fields))
	  DBUG_VOID_RETURN;
      }
      else
      {
	if (change_refs_to_tmp_fields(thd, items1,
				      tmp_fields_list1, tmp_all_fields1,
				      fields_list.elements, all_fields))
	  DBUG_VOID_RETURN;
      }
#ifdef HAVE_valgrind
      if (curr_join != this)
#endif
      {
        curr_join->tmp_all_fields1= tmp_all_fields1;
        curr_join->tmp_fields_list1= tmp_fields_list1;
      }
      curr_join->items1= items1;
    }
    curr_all_fields= &tmp_all_fields1;
    curr_fields_list= &tmp_fields_list1;
    curr_join->set_items_ref_array(items1);
    
    if (sort_and_group || curr_tmp_table->group)
    {
      curr_join->tmp_table_param.field_count+= 
	curr_join->tmp_table_param.sum_func_count+
	curr_join->tmp_table_param.func_count;
      curr_join->tmp_table_param.sum_func_count= 
	curr_join->tmp_table_param.func_count= 0;
    }
    else
    {
      curr_join->tmp_table_param.field_count+= 
	curr_join->tmp_table_param.func_count;
      curr_join->tmp_table_param.func_count= 0;
    }
    
    // procedure can't be used inside subselect => we do nothing special for it
    if (procedure)
      procedure->update_refs();
    
    if (curr_tmp_table->group)
    {						// Already grouped
      if (!curr_join->order && !curr_join->no_order && !skip_sort_order)
	curr_join->order= curr_join->group_list;  /* order by group */
      curr_join->group_list= 0;
    }
    
    /*
      If we have different sort & group then we must sort the data by group
      and copy it to another tmp table
      This code is also used if we are using distinct something
      we haven't been able to store in the temporary table yet
      like SEC_TO_TIME(SUM(...)).
    */

    if ((curr_join->group_list && (!test_if_subpart(curr_join->group_list,
                                                    curr_join->order) || 
                                   curr_join->select_distinct)) ||
	(curr_join->select_distinct &&
	 curr_join->tmp_table_param.using_indirect_summary_function))
    {					/* Must copy to another table */
      DBUG_PRINT("info",("Creating group table"));
      
      /* Free first data from old join */
      curr_join->join_free();
      if (curr_join->make_simple_join(this, curr_tmp_table))
	DBUG_VOID_RETURN;
      calc_group_buffer(curr_join, group_list);
      count_field_types(select_lex, &curr_join->tmp_table_param,
			curr_join->tmp_all_fields1,
			curr_join->select_distinct && !curr_join->group_list);
      curr_join->tmp_table_param.hidden_field_count= 
	(curr_join->tmp_all_fields1.elements-
	 curr_join->tmp_fields_list1.elements);
      
      
      if (exec_tmp_table2)
	curr_tmp_table= exec_tmp_table2;
      else
      {
	/* group data to new table */

        /*
          If the access method is loose index scan then all MIN/MAX
          functions are precomputed, and should be treated as regular
          functions. See extended comment in JOIN::exec.
        */
        if (curr_join->join_tab->is_using_loose_index_scan())
          curr_join->tmp_table_param.precomputed_group_by= TRUE;

	if (!(curr_tmp_table=
	      exec_tmp_table2= create_tmp_table(thd,
						&curr_join->tmp_table_param,
						*curr_all_fields,
						(ORDER*) 0,
						curr_join->select_distinct && 
						!curr_join->group_list,
						1, curr_join->select_options,
						HA_POS_ERROR,
						(char *) "")))
	  DBUG_VOID_RETURN;
	curr_join->exec_tmp_table2= exec_tmp_table2;
      }
      if (curr_join->group_list)
      {
	thd_proc_info(thd, "Creating sort index");
	if (curr_join->join_tab == join_tab && save_join_tab())
	{
	  DBUG_VOID_RETURN;
	}
	if (create_sort_index(thd, curr_join, curr_join->group_list,
			      HA_POS_ERROR, HA_POS_ERROR, FALSE) ||
	    make_group_fields(this, curr_join))
	{
	  DBUG_VOID_RETURN;
	}
        sortorder= curr_join->sortorder;
      }
      
      thd_proc_info(thd, "Copying to group table");
      DBUG_PRINT("info", ("%s", thd->proc_info));
      tmp_error= -1;
      if (curr_join != this)
      {
	if (sum_funcs2)
	{
	  curr_join->sum_funcs= sum_funcs2;
	  curr_join->sum_funcs_end= sum_funcs_end2; 
	}
	else
	{
	  curr_join->alloc_func_list();
	  sum_funcs2= curr_join->sum_funcs;
	  sum_funcs_end2= curr_join->sum_funcs_end;
	}
      }
      if (curr_join->make_sum_func_list(*curr_all_fields, *curr_fields_list,
					1, TRUE))
        DBUG_VOID_RETURN;
      curr_join->group_list= 0;
      if (!curr_join->sort_and_group &&
          curr_join->const_tables != curr_join->tables)
      {
        JOIN_TAB *first_tab= curr_join->join_tab + curr_join->const_tables;
        first_tab->sorted= test(first_tab->loosescan_match_tab);
      }
      if (setup_sum_funcs(curr_join->thd, curr_join->sum_funcs) ||
	  (tmp_error= do_select(curr_join, (List<Item> *) 0, curr_tmp_table,
				0)))
      {
	error= tmp_error;
	DBUG_VOID_RETURN;
      }
      end_read_record(&curr_join->join_tab->read_record);
      curr_join->const_tables= curr_join->tables; // Mark free for cleanup()
      curr_join->join_tab[0].table= 0;           // Table is freed
      
      // No sum funcs anymore
      if (!items2)
      {
	items2= items1 + all_fields.elements;
	if (change_to_use_tmp_fields(thd, items2,
				     tmp_fields_list2, tmp_all_fields2, 
				     fields_list.elements, tmp_all_fields1))
	  DBUG_VOID_RETURN;
#ifdef HAVE_valgrind
        /*
          Some GCCs use memcpy() for struct assignment, even for x=x.
          GCC bug 19410: http://gcc.gnu.org/bugzilla/show_bug.cgi?id=19410
        */
        if (curr_join != this)
#endif
        {
          curr_join->tmp_fields_list2= tmp_fields_list2;
          curr_join->tmp_all_fields2= tmp_all_fields2;
        }
      }
      curr_fields_list= &curr_join->tmp_fields_list2;
      curr_all_fields= &curr_join->tmp_all_fields2;
      curr_join->set_items_ref_array(items2);
      curr_join->tmp_table_param.field_count+= 
	curr_join->tmp_table_param.sum_func_count;
      curr_join->tmp_table_param.sum_func_count= 0;
    }
    if (curr_tmp_table->distinct)
      curr_join->select_distinct=0;		/* Each row is unique */
    
    curr_join->join_free();			/* Free quick selects */
    if (curr_join->select_distinct && ! curr_join->group_list)
    {
      thd_proc_info(thd, "Removing duplicates");
      if (curr_join->tmp_having)
	curr_join->tmp_having->update_used_tables();
      if (remove_duplicates(curr_join, curr_tmp_table,
			    *curr_fields_list, curr_join->tmp_having))
	DBUG_VOID_RETURN;
      curr_join->tmp_having=0;
      curr_join->select_distinct=0;
    }
    curr_tmp_table->reginfo.lock_type= TL_UNLOCK;
    if (curr_join->make_simple_join(this, curr_tmp_table))
      DBUG_VOID_RETURN;
    calc_group_buffer(curr_join, curr_join->group_list);
    count_field_types(select_lex, &curr_join->tmp_table_param, 
                      *curr_all_fields, 0);
    
  }
  if (procedure)
    count_field_types(select_lex, &curr_join->tmp_table_param, 
                      *curr_all_fields, 0);
  
  if (curr_join->group || curr_join->implicit_grouping ||
      curr_join->tmp_table_param.sum_func_count ||
      (procedure && (procedure->flags & PROC_GROUP)))
  {
    if (make_group_fields(this, curr_join))
    {
      DBUG_VOID_RETURN;
    }
    if (!items3)
    {
      if (!items0)
	init_items_ref_array();
      items3= ref_pointer_array + (all_fields.elements*4);
      setup_copy_fields(thd, &curr_join->tmp_table_param,
			items3, tmp_fields_list3, tmp_all_fields3,
			curr_fields_list->elements, *curr_all_fields);
      tmp_table_param.save_copy_funcs= curr_join->tmp_table_param.copy_funcs;
      tmp_table_param.save_copy_field= curr_join->tmp_table_param.copy_field;
      tmp_table_param.save_copy_field_end=
	curr_join->tmp_table_param.copy_field_end;
#ifdef HAVE_valgrind
      if (curr_join != this)
#endif
      {
        curr_join->tmp_all_fields3= tmp_all_fields3;
        curr_join->tmp_fields_list3= tmp_fields_list3;
      }
    }
    else
    {
      curr_join->tmp_table_param.copy_funcs= tmp_table_param.save_copy_funcs;
      curr_join->tmp_table_param.copy_field= tmp_table_param.save_copy_field;
      curr_join->tmp_table_param.copy_field_end=
	tmp_table_param.save_copy_field_end;
    }
    curr_fields_list= &tmp_fields_list3;
    curr_all_fields= &tmp_all_fields3;
    curr_join->set_items_ref_array(items3);

    if (curr_join->make_sum_func_list(*curr_all_fields, *curr_fields_list,
				      1, TRUE) || 
        setup_sum_funcs(curr_join->thd, curr_join->sum_funcs) ||
        thd->is_fatal_error)
      DBUG_VOID_RETURN;
  }
  if (curr_join->group_list || curr_join->order)
  {
    DBUG_PRINT("info",("Sorting for send_fields"));
    thd_proc_info(thd, "Sorting result");
    /* If we have already done the group, add HAVING to sorted table */
    if (curr_join->tmp_having && ! curr_join->group_list && 
	! curr_join->sort_and_group)
    {
      // Some tables may have been const
      curr_join->tmp_having->update_used_tables();
      JOIN_TAB *curr_table= &curr_join->join_tab[curr_join->const_tables];
      table_map used_tables= (curr_join->const_table_map |
			      curr_table->table->map);

      Item* sort_table_cond= make_cond_for_table(curr_join->tmp_having,
						 used_tables,
						 (table_map)0, FALSE, FALSE);
      if (sort_table_cond)
      {
	if (!curr_table->select)
	  if (!(curr_table->select= new SQL_SELECT))
	    DBUG_VOID_RETURN;
	if (!curr_table->select->cond)
	  curr_table->select->cond= sort_table_cond;
	else
	{
	  if (!(curr_table->select->cond=
		new Item_cond_and(curr_table->select->cond,
				  sort_table_cond)))
	    DBUG_VOID_RETURN;
	  curr_table->select->cond->fix_fields(thd, 0);
	}
        if (curr_table->pre_idx_push_select_cond)
	{
          if (!(curr_table->pre_idx_push_select_cond= 
                new Item_cond_and(curr_table->pre_idx_push_select_cond,
                                  sort_table_cond)))
            DBUG_VOID_RETURN;            
          curr_table->pre_idx_push_select_cond->fix_fields(thd, 0);
        }
        curr_table->set_select_cond(curr_table->select->cond, __LINE__);
	curr_table->select_cond->top_level_item();
	DBUG_EXECUTE("where",print_where(curr_table->select->cond,
					 "select and having",
                                         QT_ORDINARY););
	curr_join->tmp_having= make_cond_for_table(curr_join->tmp_having,
						   ~ (table_map) 0,
						   ~used_tables, FALSE, FALSE);
	DBUG_EXECUTE("where",print_where(curr_join->tmp_having,
                                         "having after sort",
                                         QT_ORDINARY););
      }
    }
    {
      if (group)
	curr_join->select_limit= HA_POS_ERROR;
      else
      {
	/*
	  We can abort sorting after thd->select_limit rows if we there is no
	  WHERE clause for any tables after the sorted one.
	*/
	JOIN_TAB *curr_table= &curr_join->join_tab[curr_join->const_tables+1];
	JOIN_TAB *end_table= &curr_join->join_tab[curr_join->top_jtrange_tables];
	for (; curr_table < end_table ; curr_table++)
	{
	  /*
	    table->keyuse is set in the case there was an original WHERE clause
	    on the table that was optimized away.
	  */
	  if (curr_table->select_cond ||
	      (curr_table->keyuse && !curr_table->first_inner))
	  {
	    /* We have to sort all rows */
	    curr_join->select_limit= HA_POS_ERROR;
	    break;
	  }
	}
      }
      if (curr_join->join_tab == join_tab && save_join_tab())
      {
	DBUG_VOID_RETURN;
      }
      /*
	Here we sort rows for ORDER BY/GROUP BY clause, if the optimiser
	chose FILESORT to be faster than INDEX SCAN or there is no 
	suitable index present.
	Note, that create_sort_index calls test_if_skip_sort_order and may
	finally replace sorting with index scan if there is a LIMIT clause in
	the query. XXX: it's never shown in EXPLAIN!
	OPTION_FOUND_ROWS supersedes LIMIT and is taken into account.
      */
      if (create_sort_index(thd, curr_join,
			    curr_join->group_list ? 
			    curr_join->group_list : curr_join->order,
			    curr_join->select_limit,
			    (select_options & OPTION_FOUND_ROWS ?
			     HA_POS_ERROR : unit->select_limit_cnt),
                            curr_join->group_list ? TRUE : FALSE))
	DBUG_VOID_RETURN;
      sortorder= curr_join->sortorder;
      if (curr_join->const_tables != curr_join->tables &&
          !curr_join->join_tab[curr_join->const_tables].table->sort.io_cache)
      {
        /*
          If no IO cache exists for the first table then we are using an
          INDEX SCAN and no filesort. Thus we should not remove the sorted
          attribute on the INDEX SCAN.
        */
        skip_sort_order= 1;
      }
    }
  }
  /* XXX: When can we have here thd->is_error() not zero? */
  if (thd->is_error())
  {
    error= thd->is_error();
    DBUG_VOID_RETURN;
  }
  curr_join->having= curr_join->tmp_having;
  curr_join->fields= curr_fields_list;
  curr_join->procedure= procedure;

  if (is_top_level_join() && thd->cursor && tables != const_tables)
  {
    /*
      We are here if this is JOIN::exec for the last select of the main unit
      and the client requested to open a cursor.
      We check that not all tables are constant because this case is not
      handled by do_select() separately, and this case is not implemented
      for cursors yet.
    */
    DBUG_ASSERT(error == 0);
    /*
      curr_join is used only for reusable joins - that is, 
      to perform SELECT for each outer row (like in subselects).
      This join is main, so we know for sure that curr_join == join.
    */
    DBUG_ASSERT(curr_join == this);
    /* Open cursor for the last join sweep */
    error= thd->cursor->open(this);
  }
  else
  {
    thd_proc_info(thd, "Sending data");
    DBUG_PRINT("info", ("%s", thd->proc_info));
    result->send_fields((procedure ? curr_join->procedure_fields_list :
                         *curr_fields_list),
                        Protocol::SEND_NUM_ROWS | Protocol::SEND_EOF);
    error= do_select(curr_join, curr_fields_list, NULL, procedure);
    thd->limit_found_rows= curr_join->send_records;
  }

  /* Accumulate the counts from all join iterations of all join parts. */
  thd->examined_row_count+= curr_join->examined_rows;
  DBUG_PRINT("counts", ("thd->examined_row_count: %lu",
                        (ulong) thd->examined_row_count));

  /* 
    With EXPLAIN EXTENDED we have to restore original ref_array
    for a derived table which is always materialized.
    We also need to do this when we have temp table(s).
    Otherwise we would not be able to print the query correctly.
  */ 
  if (items0 && (thd->lex->describe & DESCRIBE_EXTENDED) &&
      (select_lex->linkage == DERIVED_TABLE_TYPE ||
       exec_tmp_table1 || exec_tmp_table2))
    set_items_ref_array(items0);

  DBUG_VOID_RETURN;
}


/**
  Clean up join.

  @return
    Return error that hold JOIN.
*/

int
JOIN::destroy()
{
  DBUG_ENTER("JOIN::destroy");
  select_lex->join= 0;

  if (tmp_join)
  {
    if (join_tab != tmp_join->join_tab)
    {
      JOIN_TAB *tab, *end;
      for (tab= join_tab, end= tab+tables ; tab != end ; tab++)
	tab->cleanup();
    }
    tmp_join->tmp_join= 0;
    /*
      We need to clean up tmp_table_param for reusable JOINs (having non-zero
      and different from self tmp_join) because it's not being cleaned up
      anywhere else (as we need to keep the join is reusable).
    */
    tmp_table_param.cleanup();
    tmp_join->tmp_table_param.copy_field= 0;
    DBUG_RETURN(tmp_join->destroy());
  }
  cond_equal= 0;
  having_equal= 0;

  cleanup(1);
 /* Cleanup items referencing temporary table columns */
  cleanup_item_list(tmp_all_fields1);
  cleanup_item_list(tmp_all_fields3);
  if (exec_tmp_table1)
    free_tmp_table(thd, exec_tmp_table1);
  if (exec_tmp_table2)
    free_tmp_table(thd, exec_tmp_table2);
  delete select;
  destroy_sj_tmp_tables(this);
  delete_dynamic(&keyuse);
  delete procedure;
  DBUG_RETURN(error);
}


void JOIN::cleanup_item_list(List<Item> &items) const
{
  if (!items.is_empty())
  {
    List_iterator_fast<Item> it(items);
    Item *item;
    while ((item= it++))
      item->cleanup();
  }
}


/**
  An entry point to single-unit select (a select without UNION).

  @param thd                  thread handler
  @param rref_pointer_array   a reference to ref_pointer_array of
                              the top-level select_lex for this query
  @param tables               list of all tables used in this query.
                              The tables have been pre-opened.
  @param wild_num             number of wildcards used in the top level 
                              select of this query.
                              For example statement
                              SELECT *, t1.*, catalog.t2.* FROM t0, t1, t2;
                              has 3 wildcards.
  @param fields               list of items in SELECT list of the top-level
                              select
                              e.g. SELECT a, b, c FROM t1 will have Item_field
                              for a, b and c in this list.
  @param conds                top level item of an expression representing
                              WHERE clause of the top level select
  @param og_num               total number of ORDER BY and GROUP BY clauses
                              arguments
  @param order                linked list of ORDER BY agruments
  @param group                linked list of GROUP BY arguments
  @param having               top level item of HAVING expression
  @param proc_param           list of PROCEDUREs
  @param select_options       select options (BIG_RESULT, etc)
  @param result               an instance of result set handling class.
                              This object is responsible for send result
                              set rows to the client or inserting them
                              into a table.
  @param select_lex           the only SELECT_LEX of this query
  @param unit                 top-level UNIT of this query
                              UNIT is an artificial object created by the
                              parser for every SELECT clause.
                              e.g.
                              SELECT * FROM t1 WHERE a1 IN (SELECT * FROM t2)
                              has 2 unions.

  @retval
    FALSE  success
  @retval
    TRUE   an error
*/

bool
mysql_select(THD *thd, Item ***rref_pointer_array,
	     TABLE_LIST *tables, uint wild_num, List<Item> &fields,
	     COND *conds, uint og_num,  ORDER *order, ORDER *group,
	     Item *having, ORDER *proc_param, ulonglong select_options,
	     select_result *result, SELECT_LEX_UNIT *unit,
	     SELECT_LEX *select_lex)
{
  bool err;
  bool free_join= 1;
  DBUG_ENTER("mysql_select");

  select_lex->context.resolve_in_select_list= TRUE;
  JOIN *join;
  if (select_lex->join != 0)
  {
    join= select_lex->join;
    /*
      is it single SELECT in derived table, called in derived table
      creation
    */
    if (select_lex->linkage != DERIVED_TABLE_TYPE ||
	(select_options & SELECT_DESCRIBE))
    {
      if (select_lex->linkage != GLOBAL_OPTIONS_TYPE)
      {
	//here is EXPLAIN of subselect or derived table
	if (join->change_result(result))
	{
	  DBUG_RETURN(TRUE);
	}
        /*
          Original join tabs might be overwritten at first
          subselect execution. So we need to restore them.
        */
        Item_subselect *subselect= select_lex->master_unit()->item;
        if (subselect && subselect->is_uncacheable() && join->reinit())
          DBUG_RETURN(TRUE);
      }
      else
      {
        if ((err= join->prepare(rref_pointer_array, tables, wild_num,
                                conds, og_num, order, group, having,
                                proc_param, select_lex, unit)))
	{
	  goto err;
	}
      }
    }
    free_join= 0;
    join->select_options= select_options;
  }
  else
  {
    /*
      When in EXPLAIN, delay deleting the joins so that they are still
      available when we're producing EXPLAIN EXTENDED warning text.
    */
    if (select_options & SELECT_DESCRIBE)
      free_join= 0;

    if (!(join= new JOIN(thd, fields, select_options, result)))
	DBUG_RETURN(TRUE);
    thd_proc_info(thd, "init");
    thd->used_tables=0;                         // Updated by setup_fields
    if ((err= join->prepare(rref_pointer_array, tables, wild_num,
                            conds, og_num, order, group, having, proc_param,
                            select_lex, unit)))
    {
      goto err;
    }
  }

  if ((err= join->optimize()))
  {
    goto err;					// 1
  }

  if (thd->lex->describe & DESCRIBE_EXTENDED)
  {
    join->conds_history= join->conds;
    join->having_history= (join->having?join->having:join->tmp_having);
  }

  if (thd->is_error())
    goto err;

  join->exec();

  if (thd->cursor && thd->cursor->is_open())
  {
    /*
      A cursor was opened for the last sweep in exec().
      We are here only if this is mysql_select for top-level SELECT_LEX_UNIT
      and there were no error.
    */
    free_join= 0;
  }

  if (thd->lex->describe & DESCRIBE_EXTENDED)
  {
    select_lex->where= join->conds_history;
    select_lex->having= join->having_history;
  }

err:
  if (free_join)
  {
    thd_proc_info(thd, "end");
    err|= select_lex->cleanup();
    DBUG_RETURN(err || thd->is_error());
  }
  DBUG_RETURN(join->error);
}


/**
  Setup for execution all subqueries of a query, for which the optimizer
  chose hash semi-join.

  @details Iterate over all subqueries of the query, and if they are under an
  IN predicate, and the optimizer chose to compute it via hash semi-join:
  - try to initialize all data structures needed for the materialized execution
    of the IN predicate,
  - if this fails, then perform the IN=>EXISTS transformation which was
    previously blocked during JOIN::prepare.

  This method is part of the "code generation" query processing phase.

  This phase must be called after substitute_for_best_equal_field() because
  that function may replace items with other items from a multiple equality,
  and we need to reference the correct items in the index access method of the
  IN predicate.

  @return Operation status
  @retval FALSE     success.
  @retval TRUE      error occurred.
*/

bool JOIN::setup_subquery_materialization()
{
  for (SELECT_LEX_UNIT *un= select_lex->first_inner_unit(); un;
       un= un->next_unit())
  {
    for (SELECT_LEX *sl= un->first_select(); sl; sl= sl->next_select())
    {
      Item_subselect *subquery_predicate= sl->master_unit()->item;
      if (subquery_predicate &&
          subquery_predicate->substype() == Item_subselect::IN_SUBS)
      {
        Item_in_subselect *in_subs= (Item_in_subselect*) subquery_predicate;
        if (in_subs->exec_method == Item_in_subselect::MATERIALIZATION &&
            in_subs->setup_engine(FALSE))
          return TRUE;
      }
    }
  }
  return FALSE;
}


/*****************************************************************************
  Create JOIN_TABS, make a guess about the table types,
  Approximate how many records will be used in each table
*****************************************************************************/

static ha_rows get_quick_record_count(THD *thd, SQL_SELECT *select,
				      TABLE *table,
				      const key_map *keys,ha_rows limit)
{
  int error;
  DBUG_ENTER("get_quick_record_count");
#ifndef EMBEDDED_LIBRARY                      // Avoid compiler warning
  uchar buff[STACK_BUFF_ALLOC];
#endif
  if (check_stack_overrun(thd, STACK_MIN_SIZE, buff))
    DBUG_RETURN(0);                           // Fatal error flag is set
  if (select)
  {
    select->head=table;
    table->reginfo.impossible_range=0;
    if ((error= select->test_quick_select(thd, *(key_map *)keys,(table_map) 0,
                                          limit, 0, FALSE)) == 1)
      DBUG_RETURN(select->quick->records);
    if (error == -1)
    {
      table->reginfo.impossible_range=1;
      DBUG_RETURN(0);
    }
    DBUG_PRINT("warning",("Couldn't use record count on const keypart"));
  }
  DBUG_RETURN(HA_POS_ERROR);			/* This shouldn't happend */
}

/*
   This structure is used to collect info on potentially sargable
   predicates in order to check whether they become sargable after
   reading const tables.
   We form a bitmap of indexes that can be used for sargable predicates.
   Only such indexes are involved in range analysis.
*/
typedef struct st_sargable_param
{
  Field *field;              /* field against which to check sargability */
  Item **arg_value;          /* values of potential keys for lookups     */
  uint num_values;           /* number of values in the above array      */
} SARGABLE_PARAM;  


/**
  Calculate the best possible join and initialize the join structure.

  @retval
    0	ok
  @retval
    1	Fatal error
*/

static bool
make_join_statistics(JOIN *join, TABLE_LIST *tables_arg, COND *conds,
		     DYNAMIC_ARRAY *keyuse_array)
{
  int error;
  TABLE *table;
  TABLE_LIST *tables= tables_arg;
  uint i,table_count,const_count,key;
  table_map found_const_table_map, all_table_map, found_ref, refs;
  key_map const_ref, eq_part;
  TABLE **table_vector;
  JOIN_TAB *stat,*stat_end,*s,**stat_ref;
  KEYUSE *keyuse,*start_keyuse;
  table_map outer_join=0;
  table_map no_rows_const_tables= 0;
  SARGABLE_PARAM *sargables= 0;
  JOIN_TAB *stat_vector[MAX_TABLES+1];
  DBUG_ENTER("make_join_statistics");

  LINT_INIT(table); /* inited in all loops */
  table_count=join->tables;

  stat=(JOIN_TAB*) join->thd->calloc(sizeof(JOIN_TAB)*(table_count));
  stat_ref=(JOIN_TAB**) join->thd->alloc(sizeof(JOIN_TAB*)*MAX_TABLES);
  table_vector=(TABLE**) join->thd->alloc(sizeof(TABLE*)*(table_count*2));
  if (!stat || !stat_ref || !table_vector)
    DBUG_RETURN(1);				// Eom /* purecov: inspected */

  join->best_ref=stat_vector;

  stat_end=stat+table_count;
  found_const_table_map= all_table_map=0;
  const_count=0;

  for (s= stat, i= 0;
       tables;
       s++, tables= tables->next_leaf, i++)
  {
    TABLE_LIST *embedding= tables->embedding;
    stat_vector[i]=s;
    s->keys.init();
    s->const_keys.init();
    s->checked_keys.init();
    s->needed_reg.init();
    table_vector[i]=s->table=table=tables->table;
    table->pos_in_table_list= tables;
    error= table->file->info(HA_STATUS_VARIABLE | HA_STATUS_NO_LOCK);
    if (error)
    {
      table->file->print_error(error, MYF(0));
      goto error;
    }
    table->quick_keys.clear_all();
    table->intersect_keys.clear_all();
    table->reginfo.join_tab=s;
    table->reginfo.not_exists_optimize=0;
    bzero((char*) table->const_key_parts, sizeof(key_part_map)*table->s->keys);
    all_table_map|= table->map;
    s->join=join;

    s->dependent= tables->dep_tables;
    if (tables->schema_table)
      table->file->stats.records= 2;
    table->quick_condition_rows= table->file->stats.records;

    s->on_expr_ref= &tables->on_expr;
    if (*s->on_expr_ref)
    {
      /* s is the only inner table of an outer join */
#ifdef WITH_PARTITION_STORAGE_ENGINE
      if (!table->is_filled_at_execution() &&
           (!table->file->stats.records || table->no_partitions_used) && !embedding)
#else
      if (!table->is_filled_at_execution() &&
          !table->file->stats.records && !embedding)
#endif
      {						// Empty table
        s->dependent= 0;                        // Ignore LEFT JOIN depend.
        no_rows_const_tables |= table->map;
	set_position(join,const_count++,s,(KEYUSE*) 0);
	continue;
      }
      outer_join|= table->map;
      s->embedding_map= 0;
      for (;embedding; embedding= embedding->embedding)
        s->embedding_map|= embedding->nested_join->nj_map;
      continue;
    }
    if (embedding && !(embedding->sj_on_expr && ! embedding->embedding))
    {
      /* s belongs to a nested join, maybe to several embedded joins */
      s->embedding_map= 0;
      do
      {
        NESTED_JOIN *nested_join= embedding->nested_join;
        s->embedding_map|=nested_join->nj_map;
        s->dependent|= embedding->dep_tables;
        embedding= embedding->embedding;
        outer_join|= nested_join->used_tables;
      }
      while (embedding);
      continue;
    }
#ifdef WITH_PARTITION_STORAGE_ENGINE
    const bool no_partitions_used= table->no_partitions_used;
#else
    const bool no_partitions_used= FALSE;
#endif
    if (!table->is_filled_at_execution() && 
        (table->s->system || table->file->stats.records <= 1 ||
         no_partitions_used) &&
	!s->dependent &&
	(table->file->ha_table_flags() & HA_STATS_RECORDS_IS_EXACT) &&
        !table->fulltext_searched && !join->no_const_tables)
    {
      set_position(join,const_count++,s,(KEYUSE*) 0);
      no_rows_const_tables |= table->map;
    }
  }
  stat_vector[i]=0;
  join->outer_join=outer_join;

  if (join->outer_join)
  {
    /* 
       Build transitive closure for relation 'to be dependent on'.
       This will speed up the plan search for many cases with outer joins,
       as well as allow us to catch illegal cross references/
       Warshall's algorithm is used to build the transitive closure.
       As we use bitmaps to represent the relation the complexity
       of the algorithm is O((number of tables)^2).

       The classic form of the Warshall's algorithm would look like: 
       for (i= 0; i < table_count; i++)
       {
         for (j= 0; j < table_count; j++)
         {
           for (k= 0; k < table_count; k++)
           {
             if (bitmap_is_set(stat[j].dependent, i) &&
                 bitmap_is_set(stat[i].dependent, k))
               bitmap_set_bit(stat[j].dependent, k);
         }
       }  
    */
    
    for (s= stat ; s < stat_end ; s++)
    {
      table= s->table;
      for (JOIN_TAB *t= stat ; t < stat_end ; t++)
      {
        if (t->dependent & table->map)
          t->dependent |= table->reginfo.join_tab->dependent;
      }
      if (outer_join & s->table->map)
        s->table->maybe_null= 1;
    }
    /* Catch illegal cross references for outer joins */
    for (i= 0, s= stat ; i < table_count ; i++, s++)
    {
      if (s->dependent & s->table->map)
      {
        join->tables=0;			// Don't use join->table
        my_message(ER_WRONG_OUTER_JOIN, ER(ER_WRONG_OUTER_JOIN), MYF(0));
        goto error;
      }
      s->key_dependent= s->dependent;
    }
  }

  if (conds || outer_join)
    if (update_ref_and_keys(join->thd, keyuse_array, stat, join->tables,
                            conds, join->cond_equal,
                            ~outer_join, join->select_lex, &sargables))
      goto error;

  join->const_table_map= no_rows_const_tables;
  join->const_tables= const_count;
  eliminate_tables(join);
  join->const_table_map &= ~no_rows_const_tables;
  const_count= join->const_tables;
  found_const_table_map= join->const_table_map;

  /* Read tables with 0 or 1 rows (system tables) */
  for (POSITION *p_pos=join->positions, *p_end=p_pos+const_count;
       p_pos < p_end ;
       p_pos++)
  {
    s= p_pos->table;
    if (! (s->table->map & join->eliminated_tables))
    {
      int tmp;
      s->type=JT_SYSTEM;
      join->const_table_map|=s->table->map;
      if ((tmp=join_read_const_table(s, p_pos)))
      {
        if (tmp > 0)
          goto error;		// Fatal error
      }
      else
        found_const_table_map|= s->table->map;
    }
  }

  /* loop until no more const tables are found */
  int ref_changed;
  do
  {
  more_const_tables_found:
    ref_changed = 0;
    found_ref=0;

    /*
      We only have to loop from stat_vector + const_count as
      set_position() will move all const_tables first in stat_vector
    */

    for (JOIN_TAB **pos=stat_vector+const_count ; (s= *pos) ; pos++)
    {
      table=s->table;

      if (table->is_filled_at_execution())
        continue;

      /* 
        If equi-join condition by a key is null rejecting and after a
        substitution of a const table the key value happens to be null
        then we can state that there are no matches for this equi-join.
      */  
      if ((keyuse= s->keyuse) && *s->on_expr_ref && !s->embedding_map &&
         !(table->map & join->eliminated_tables))
      {
        /* 
          When performing an outer join operation if there are no matching rows
          for the single row of the outer table all the inner tables are to be
          null complemented and thus considered as constant tables.
          Here we apply this consideration to the case of outer join operations 
          with a single inner table only because the case with nested tables
          would require a more thorough analysis.
          TODO. Apply single row substitution to null complemented inner tables
          for nested outer join operations. 
	*/              
        while (keyuse->table == table)
        {
          if (!keyuse->is_for_hash_join() && 
              !(keyuse->val->used_tables() & ~join->const_table_map) &&
              keyuse->val->is_null() && keyuse->null_rejecting)
          {
            s->type= JT_CONST;
            mark_as_null_row(table);
            found_const_table_map|= table->map;
	    join->const_table_map|= table->map;
	    set_position(join,const_count++,s,(KEYUSE*) 0);
            goto more_const_tables_found;
           }
	  keyuse++;
        }
      }

      if (s->dependent)				// If dependent on some table
      {
	// All dep. must be constants
	if (s->dependent & ~(found_const_table_map))
	  continue;
	if (table->file->stats.records <= 1L &&
	    (table->file->ha_table_flags() & HA_STATS_RECORDS_IS_EXACT) &&
            !table->pos_in_table_list->embedding)
	{					// system table
	  int tmp= 0;
	  s->type=JT_SYSTEM;
	  join->const_table_map|=table->map;
	  set_position(join,const_count++,s,(KEYUSE*) 0);
	  if ((tmp= join_read_const_table(s, join->positions+const_count-1)))
	  {
	    if (tmp > 0)
	      goto error;			// Fatal error
	  }
	  else
	    found_const_table_map|= table->map;
	  continue;
	}
      }
      /* check if table can be read by key or table only uses const refs */
      if ((keyuse=s->keyuse))
      {
	s->type= JT_REF;
	while (keyuse->table == table)
	{
          if (keyuse->is_for_hash_join())
	  {
            keyuse++;
            continue;
          }
	  start_keyuse=keyuse;
	  key=keyuse->key;
	  s->keys.set_bit(key);               // TODO: remove this ?

	  refs=0;
          const_ref.clear_all();
	  eq_part.clear_all();
	  do
	  {
	    if (keyuse->val->type() != Item::NULL_ITEM && !keyuse->optimize)
	    {
	      if (!((~found_const_table_map) & keyuse->used_tables))
		const_ref.set_bit(keyuse->keypart);
	      else
		refs|=keyuse->used_tables;
	      eq_part.set_bit(keyuse->keypart);
	    }
	    keyuse++;
	  } while (keyuse->table == table && keyuse->key == key);

          TABLE_LIST *embedding= table->pos_in_table_list->embedding;
          /*
            TODO (low priority): currently we ignore the const tables that
            are within a semi-join nest which is within an outer join nest.
            The effect of this is that we don't do const substitution for
            such tables.
          */
	  if (eq_part.is_prefix(table->key_info[key].key_parts) &&
              !table->fulltext_searched && 
              (!embedding || (embedding->sj_on_expr && !embedding->embedding)))
	  {
            if (table->key_info[key].flags & HA_NOSAME)
            {
	      if (const_ref == eq_part)
	      {					// Found everything for ref.
	        int tmp;
	        ref_changed = 1;
	        s->type= JT_CONST;
	        join->const_table_map|=table->map;
	        set_position(join,const_count++,s,start_keyuse);
	        if (create_ref_for_key(join, s, start_keyuse,
				       found_const_table_map))
                  goto error;
	        if ((tmp=join_read_const_table(s,
                                               join->positions+const_count-1)))
	        {
		  if (tmp > 0)
		    goto error;			// Fatal error
	        }
	        else
		  found_const_table_map|= table->map;
	        break;
	      }
	      else
	        found_ref|= refs;      // Table is const if all refs are const
	    }
            else if (const_ref == eq_part)
              s->const_keys.set_bit(key);
          }
	}
      }
    }
  } while (join->const_table_map & found_ref && ref_changed);
 
  /* 
    Update info on indexes that can be used for search lookups as
    reading const tables may has added new sargable predicates. 
  */
  if (const_count && sargables)
  {
    for( ; sargables->field ; sargables++)
    {
      Field *field= sargables->field;
      JOIN_TAB *join_tab= field->table->reginfo.join_tab;
      key_map possible_keys= field->key_start;
      possible_keys.intersect(field->table->keys_in_use_for_query);
      bool is_const= 1;
      for (uint j=0; j < sargables->num_values; j++)
        is_const&= sargables->arg_value[j]->const_item();
      if (is_const)
        join_tab[0].const_keys.merge(possible_keys);
    }
  }

  /* Calc how many (possible) matched records in each table */

  for (s=stat ; s < stat_end ; s++)
  {
    s->startup_cost= 0;
    if (s->type == JT_SYSTEM || s->type == JT_CONST)
    {
      /* Only one matching row */
      s->found_records= s->records= 1;
      s->read_time=1.0; 
      s->worst_seeks=1.0;
      continue;
    }
    /* Approximate found rows and time to read them */

    if (s->table->is_filled_at_execution())
    {
      get_delayed_table_estimates(s->table, &s->records, &s->read_time,
                                  &s->startup_cost);
      s->found_records= s->records;
      table->quick_condition_rows=s->records;
    }
    else
    {
      s->found_records= s->records= s->table->file->stats.records;
      s->read_time= s->table->file->scan_time();
      /*
        table->quick_condition_rows has already been set to
        table->file->stats.records
      */
    }


    /*
      Set a max range of how many seeks we can expect when using keys
      This is can't be to high as otherwise we are likely to use
      table scan.
    */
    s->worst_seeks= min((double) s->found_records / 10,
			(double) s->read_time*3);
    if (s->worst_seeks < 2.0)			// Fix for small tables
      s->worst_seeks=2.0;

    /*
      Add to stat->const_keys those indexes for which all group fields or
      all select distinct fields participate in one index.
    */
    add_group_and_distinct_keys(join, s);
    
    /*
      Perform range analysis if there are keys it could use (1). 
      Don't do range analysis if we're on the inner side of an outer join (2).
      Do range analysis if we're on the inner side of a semi-join (3).
    */
    if (!s->const_keys.is_clear_all() &&                          // (1)
        (!s->table->pos_in_table_list->embedding ||               // (2)
         (s->table->pos_in_table_list->embedding &&               // (3)
          s->table->pos_in_table_list->embedding->sj_on_expr)) && // (3)
        !s->table->is_filled_at_execution())
    {
      ha_rows records;
      SQL_SELECT *select;
      select= make_select(s->table, found_const_table_map,
			  found_const_table_map,
			  *s->on_expr_ref ? *s->on_expr_ref : conds,
			  1, &error);
      if (!select)
        goto error;
      records= get_quick_record_count(join->thd, select, s->table,
				      &s->const_keys, join->row_limit);
      s->quick=select->quick;
      s->needed_reg=select->needed_reg;
      select->quick=0;
      if (records == 0 && s->table->reginfo.impossible_range)
      {
	/*
	  Impossible WHERE or ON expression
	  In case of ON, we mark that the we match one empty NULL row.
	  In case of WHERE, don't set found_const_table_map to get the
	  caller to abort with a zero row result.
	*/
	join->const_table_map|= s->table->map;
	set_position(join,const_count++,s,(KEYUSE*) 0);
	s->type= JT_CONST;
	if (*s->on_expr_ref)
	{
	  /* Generate empty row */
	  s->info= "Impossible ON condition";
	  found_const_table_map|= s->table->map;
	  s->type= JT_CONST;
	  mark_as_null_row(s->table);		// All fields are NULL
	}
      }
      if (records != HA_POS_ERROR)
      {
	s->found_records=records;
	s->read_time= s->quick ? s->quick->read_time : 0.0;
      }
      delete select;
    }
  }

  if (pull_out_semijoin_tables(join))
    DBUG_RETURN(TRUE);

  join->join_tab=stat;
  join->map2table=stat_ref;
  join->table= table_vector;
  join->const_tables=const_count;
  join->found_const_table_map=found_const_table_map;

  if (join->const_tables != join->tables)
    optimize_keyuse(join, keyuse_array);
   
  if (optimize_semijoin_nests(join, all_table_map))
    DBUG_RETURN(TRUE); /* purecov: inspected */

  /* Find an optimal join order of the non-constant tables. */
  if (join->const_tables != join->tables)
  {
    if (choose_plan(join, all_table_map & ~join->const_table_map))
      goto error;
  }
  else
  {
    memcpy((uchar*) join->best_positions,(uchar*) join->positions,
	   sizeof(POSITION)*join->const_tables);
    join->best_read=1.0;
  }
  /* Generate an execution plan from the found optimal join order. */
  DBUG_RETURN(join->thd->killed || get_best_combination(join));

error:
  /*
    Need to clean up join_tab from TABLEs in case of error.
    They won't get cleaned up by JOIN::cleanup() because JOIN::join_tab
    may not be assigned yet by this function (which is building join_tab).
    Dangling TABLE::reginfo.join_tab may cause part_of_refkey to choke. 
  */
  for (tables= tables_arg; tables; tables= tables->next_leaf)
    tables->table->reginfo.join_tab= NULL;
  DBUG_RETURN (1);
}


/*****************************************************************************
  Check with keys are used and with tables references with tables
  Updates in stat:
	  keys	     Bitmap of all used keys
	  const_keys Bitmap of all keys with may be used with quick_select
	  keyuse     Pointer to possible keys
*****************************************************************************/

/// Used when finding key fields
typedef struct key_field_t {
  Field		*field;
  Item		*val;			///< May be empty if diff constant
  uint		level;
  uint		optimize;
  bool		eq_func;
  /**
    If true, the condition this struct represents will not be satisfied
    when val IS NULL.
  */
  bool          null_rejecting; 
  bool         *cond_guard; /* See KEYUSE::cond_guard */
  uint          sj_pred_no; /* See KEYUSE::sj_pred_no */
} KEY_FIELD;

/**
  Merge new key definitions to old ones, remove those not used in both.

  This is called for OR between different levels.

  That is, the function operates on an array of KEY_FIELD elements which has
  two parts:

                      $LEFT_PART             $RIGHT_PART
             +-----------------------+-----------------------+
            start                new_fields                 end
         
  $LEFT_PART and $RIGHT_PART are arrays that have KEY_FIELD elements for two
  parts of the OR condition. Our task is to produce an array of KEY_FIELD 
  elements that would correspond to "$LEFT_PART OR $RIGHT_PART". 
  
  The rules for combining elements are as follows:

    (keyfieldA1 AND keyfieldA2 AND ...) OR (keyfieldB1 AND keyfieldB2 AND ...)=
     
     = AND_ij (keyfieldA_i OR keyfieldB_j)
  
  We discard all (keyfieldA_i OR keyfieldB_j) that refer to different
  fields. For those referring to the same field, the logic is as follows:
    
    t.keycol=expr1 OR t.keycol=expr2 -> (since expr1 and expr2 are different 
                                         we can't produce a single equality,
                                         so produce nothing)

    t.keycol=expr1 OR t.keycol=expr1 -> t.keycol=expr1

    t.keycol=expr1 OR t.keycol IS NULL -> t.keycol=expr1, and also set
                                          KEY_OPTIMIZE_REF_OR_NULL flag

  The last one is for ref_or_null access. We have handling for this special
  because it's needed for evaluating IN subqueries that are internally
  transformed into 

  @code
    EXISTS(SELECT * FROM t1 WHERE t1.key=outer_ref_field or t1.key IS NULL)
  @endcode

  See add_key_fields() for discussion of what is and_level.

  KEY_FIELD::null_rejecting is processed as follows: @n
  result has null_rejecting=true if it is set for both ORed references.
  for example:
  -   (t2.key = t1.field OR t2.key  =  t1.field) -> null_rejecting=true
  -   (t2.key = t1.field OR t2.key <=> t1.field) -> null_rejecting=false

  @todo
    The result of this is that we're missing some 'ref' accesses.
    OptimizerTeam: Fix this
*/

static KEY_FIELD *
merge_key_fields(KEY_FIELD *start,KEY_FIELD *new_fields,KEY_FIELD *end,
		 uint and_level)
{
  if (start == new_fields)
    return start;				// Impossible or
  if (new_fields == end)
    return start;				// No new fields, skip all

  KEY_FIELD *first_free=new_fields;

  /* Mark all found fields in old array */
  for (; new_fields != end ; new_fields++)
  {
    for (KEY_FIELD *old=start ; old != first_free ; old++)
    {
      if (old->field == new_fields->field)
      {
        /*
          NOTE: below const_item() call really works as "!used_tables()", i.e.
          it can return FALSE where it is feasible to make it return TRUE.
          
          The cause is as follows: Some of the tables are already known to be
          const tables (the detection code is in make_join_statistics(),
          above the update_ref_and_keys() call), but we didn't propagate 
          information about this: TABLE::const_table is not set to TRUE, and
          Item::update_used_tables() hasn't been called for each item.
          The result of this is that we're missing some 'ref' accesses.
          TODO: OptimizerTeam: Fix this
        */
	if (!new_fields->val->const_item())
	{
	  /*
	    If the value matches, we can use the key reference.
	    If not, we keep it until we have examined all new values
	  */
	  if (old->val->eq(new_fields->val, old->field->binary()))
	  {
	    old->level= and_level;
	    old->optimize= ((old->optimize & new_fields->optimize &
			     KEY_OPTIMIZE_EXISTS) |
			    ((old->optimize | new_fields->optimize) &
			     KEY_OPTIMIZE_REF_OR_NULL));
            old->null_rejecting= (old->null_rejecting &&
                                  new_fields->null_rejecting);
	  }
	}
	else if (old->eq_func && new_fields->eq_func &&
                 old->val->eq_by_collation(new_fields->val, 
                                           old->field->binary(),
                                           old->field->charset()))

	{
	  old->level= and_level;
	  old->optimize= ((old->optimize & new_fields->optimize &
			   KEY_OPTIMIZE_EXISTS) |
			  ((old->optimize | new_fields->optimize) &
			   KEY_OPTIMIZE_REF_OR_NULL));
          old->null_rejecting= (old->null_rejecting &&
                                new_fields->null_rejecting);
	}
	else if (old->eq_func && new_fields->eq_func &&
		 ((old->val->const_item() && old->val->is_null()) || 
                  new_fields->val->is_null()))
	{
	  /* field = expression OR field IS NULL */
	  old->level= and_level;
	  old->optimize= KEY_OPTIMIZE_REF_OR_NULL;
	  /*
            Remember the NOT NULL value unless the value does not depend
            on other tables.
          */
	  if (!old->val->used_tables() && old->val->is_null())
	    old->val= new_fields->val;
          /* The referred expression can be NULL: */ 
          old->null_rejecting= 0;
	}
	else
	{
	  /*
	    We are comparing two different const.  In this case we can't
	    use a key-lookup on this so it's better to remove the value
	    and let the range optimzier handle it
	  */
	  if (old == --first_free)		// If last item
	    break;
	  *old= *first_free;			// Remove old value
	  old--;				// Retry this value
	}
      }
    }
  }
  /* Remove all not used items */
  for (KEY_FIELD *old=start ; old != first_free ;)
  {
    if (old->level != and_level)
    {						// Not used in all levels
      if (old == --first_free)
	break;
      *old= *first_free;			// Remove old value
      continue;
    }
    old++;
  }
  return first_free;
}


/*
  Given a field, return its index in semi-join's select list, or UINT_MAX

  DESCRIPTION
    Given a field, we find its table; then see if the table is within a
    semi-join nest and if the field was in select list of the subselect.
    If it was, we return field's index in the select list. The value is used
    by LooseScan strategy.
*/

static uint get_semi_join_select_list_index(Field *field)
{
  uint res= UINT_MAX;
  TABLE_LIST *emb_sj_nest;
  if ((emb_sj_nest= field->table->pos_in_table_list->embedding) &&
      emb_sj_nest->sj_on_expr)
  {
    Item_in_subselect *subq_pred= emb_sj_nest->sj_subq_pred;
    st_select_lex *subq_lex= subq_pred->unit->first_select();
    if (subq_pred->left_expr->cols() == 1)
    {
      Item *sel_item= subq_lex->ref_pointer_array[0];
      if (sel_item->type() == Item::FIELD_ITEM &&
          ((Item_field*)sel_item)->field->eq(field))
      {
        res= 0;
      }
    }
    else
    {
      for (uint i= 0; i < subq_pred->left_expr->cols(); i++)
      {
        Item *sel_item= subq_lex->ref_pointer_array[i];
        if (sel_item->type() == Item::FIELD_ITEM &&
            ((Item_field*)sel_item)->field->eq(field))
        {
          res= i;
          break;
        }
      }
    }
  }
  return res;
}


/**
  Add a possible key to array of possible keys if it's usable as a key

    @param key_fields      Pointer to add key, if usable
    @param and_level       And level, to be stored in KEY_FIELD
    @param cond            Condition predicate
    @param field           Field used in comparision
    @param eq_func         True if we used =, <=> or IS NULL
    @param value           Value used for comparison with field
    @param usable_tables   Tables which can be used for key optimization
    @param sargables       IN/OUT Array of found sargable candidates

  @note
    If we are doing a NOT NULL comparison on a NOT NULL field in a outer join
    table, we store this to be able to do not exists optimization later.

  @returns
    *key_fields is incremented if we stored a key in the array
*/

static void
add_key_field(JOIN *join,
              KEY_FIELD **key_fields,uint and_level, Item_func *cond,
              Field *field, bool eq_func, Item **value, uint num_values,
              table_map usable_tables, SARGABLE_PARAM **sargables)
{
  uint optimize= 0;  
  if (eq_func && join->is_allowed_hash_join_access() &&
      field->hash_join_is_possible())
  {
    optimize= KEY_OPTIMIZE_EQ;
  }   
  else if (!(field->flags & PART_KEY_FLAG))
  {
    // Don't remove column IS NULL on a LEFT JOIN table
    if (!eq_func || (*value)->type() != Item::NULL_ITEM ||
        !field->table->maybe_null || field->null_ptr)
      return;					// Not a key. Skip it
    optimize= KEY_OPTIMIZE_EXISTS;
    DBUG_ASSERT(num_values == 1);
  }
  if (optimize != KEY_OPTIMIZE_EXISTS)
  {
    table_map used_tables=0;
    bool optimizable=0;
    for (uint i=0; i<num_values; i++)
    {
      used_tables|=(value[i])->used_tables();
      if (!((value[i])->used_tables() & (field->table->map | RAND_TABLE_BIT)))
        optimizable=1;
    }
    if (!optimizable)
      return;
    if (!(usable_tables & field->table->map))
    {
      if (!eq_func || (*value)->type() != Item::NULL_ITEM ||
          !field->table->maybe_null || field->null_ptr)
	return;					// Can't use left join optimize
      optimize= KEY_OPTIMIZE_EXISTS;
    }
    else
    {
      JOIN_TAB *stat=field->table->reginfo.join_tab;
      key_map possible_keys=field->key_start;
      possible_keys.intersect(field->table->keys_in_use_for_query);
      stat[0].keys.merge(possible_keys);             // Add possible keys

      /*
	Save the following cases:
	Field op constant
	Field LIKE constant where constant doesn't start with a wildcard
	Field = field2 where field2 is in a different table
	Field op formula
	Field IS NULL
	Field IS NOT NULL
         Field BETWEEN ...
         Field IN ...
      */
      if (field->flags & PART_KEY_FLAG)
        stat[0].key_dependent|=used_tables;

      bool is_const=1;
      for (uint i=0; i<num_values; i++)
      {
        if (!(is_const&= value[i]->const_item()))
          break;
      }
      if (is_const)
        stat[0].const_keys.merge(possible_keys);
      else if (!eq_func)
      {
        /* 
          Save info to be able check whether this predicate can be 
          considered as sargable for range analisis after reading const tables.
          We do not save info about equalities as update_const_equal_items
          will take care of updating info on keys from sargable equalities. 
        */
        (*sargables)--;
        (*sargables)->field= field;
        (*sargables)->arg_value= value;
        (*sargables)->num_values= num_values;
      }
      /*
	We can't always use indexes when comparing a string index to a
	number. cmp_type() is checked to allow compare of dates to numbers.
        eq_func is NEVER true when num_values > 1
       */
      if (!eq_func)
      {
        /* 
          Additional optimization: if we're processing
          "t.key BETWEEN c1 AND c1" then proceed as if we were processing
          "t.key = c1".
          TODO: This is a very limited fix. A more generic fix is possible. 
          There are 2 options:
          A) Make equality propagation code be able to handle BETWEEN
             (including cases like t1.key BETWEEN t2.key AND t3.key)
          B) Make range optimizer to infer additional "t.key = c" equalities
             and use them in equality propagation process (see details in
             OptimizerKBAndTodo)
        */
        if ((cond->functype() != Item_func::BETWEEN) ||
            ((Item_func_between*) cond)->negated ||
            !value[0]->eq(value[1], field->binary()))
          return;
        eq_func= TRUE;
      }

      if (field->result_type() == STRING_RESULT)
      {
        if ((*value)->result_type() != STRING_RESULT)
        {
          if (field->cmp_type() != (*value)->result_type())
            return;
        }
        else
        {
          /*
            We can't use indexes if the effective collation
            of the operation differ from the field collation.
          */
          if (field->cmp_type() == STRING_RESULT &&
              ((Field_str*)field)->charset() != cond->compare_collation())
            return;
        }
      }
    }
  }
  /*
    For the moment eq_func is always true. This slot is reserved for future
    extensions where we want to remembers other things than just eq comparisons
  */
  DBUG_ASSERT(eq_func);
  /* Store possible eq field */
  (*key_fields)->field=		field;
  (*key_fields)->eq_func=	eq_func;
  (*key_fields)->val=		*value;
  (*key_fields)->level=         and_level;
  (*key_fields)->optimize=      optimize;
  /*
    If the condition has form "tbl.keypart = othertbl.field" and 
    othertbl.field can be NULL, there will be no matches if othertbl.field 
    has NULL value.
    We use null_rejecting in add_not_null_conds() to add
    'othertbl.field IS NOT NULL' to tab->select_cond.
  */
  {
    Item *real= (*value)->real_item();
    if (((cond->functype() == Item_func::EQ_FUNC) ||
         (cond->functype() == Item_func::MULT_EQUAL_FUNC)) &&
        (real->type() == Item::FIELD_ITEM) &&
        ((Item_field*)real)->field->maybe_null())
      (*key_fields)->null_rejecting= true;
    else
      (*key_fields)->null_rejecting= false;
  }
  (*key_fields)->cond_guard= NULL;

  (*key_fields)->sj_pred_no= get_semi_join_select_list_index(field);
  (*key_fields)++;
}

/**
  Add possible keys to array of possible keys originated from a simple
  predicate.

    @param  key_fields     Pointer to add key, if usable
    @param  and_level      And level, to be stored in KEY_FIELD
    @param  cond           Condition predicate
    @param  field          Field used in comparision
    @param  eq_func        True if we used =, <=> or IS NULL
    @param  value          Value used for comparison with field
                           Is NULL for BETWEEN and IN    
    @param  usable_tables  Tables which can be used for key optimization
    @param  sargables      IN/OUT Array of found sargable candidates

  @note
    If field items f1 and f2 belong to the same multiple equality and
    a key is added for f1, the the same key is added for f2.

  @returns
    *key_fields is incremented if we stored a key in the array
*/

static void
add_key_equal_fields(JOIN *join, KEY_FIELD **key_fields, uint and_level,
                     Item_func *cond, Item_field *field_item,
                     bool eq_func, Item **val,
                     uint num_values, table_map usable_tables,
                     SARGABLE_PARAM **sargables)
{
  Field *field= field_item->field;
  add_key_field(join, key_fields, and_level, cond, field,
                eq_func, val, num_values, usable_tables, sargables);
  Item_equal *item_equal= field_item->item_equal;
  if (item_equal)
  { 
    /*
      Add to the set of possible key values every substitution of
      the field for an equal field included into item_equal
    */
    Item_equal_iterator it(*item_equal);
    Item_field *item;
    while ((item= it++))
    {
      if (!field->eq(item->field))
      {
        add_key_field(join, key_fields, and_level, cond, item->field,
                      eq_func, val, num_values, usable_tables,
                      sargables);
      }
    }
  }
}


/**
  Check if an expression is a non-outer field.

  Checks if an expression is a field and belongs to the current select.

  @param   field  Item expression to check

  @return boolean
     @retval TRUE   the expression is a local field
     @retval FALSE  it's something else
*/

static bool
is_local_field (Item *field)
{
  return field->real_item()->type() == Item::FIELD_ITEM
     && !(field->used_tables() & OUTER_REF_TABLE_BIT)
     && !((Item_field *)field->real_item())->depended_from;
}


/*
  In this and other functions, and_level is a number that is ever-growing
  and is different for the contents of every AND or OR clause. For example,
  when processing clause

     (a AND b AND c) OR (x AND y)
  
  we'll have
   * KEY_FIELD elements for (a AND b AND c) are assigned and_level=1
   * KEY_FIELD elements for (x AND y) are assigned and_level=2
   * OR operation is performed, and whatever elements are left after it are
     assigned and_level=3.

  The primary reason for having and_level attribute is the OR operation which 
  uses and_level to mark KEY_FIELDs that should get into the result of the OR
  operation

*/

static void
add_key_fields(JOIN *join, KEY_FIELD **key_fields, uint *and_level,
               COND *cond, table_map usable_tables,
               SARGABLE_PARAM **sargables)
{
  if (cond->type() == Item_func::COND_ITEM)
  {
    List_iterator_fast<Item> li(*((Item_cond*) cond)->argument_list());
    KEY_FIELD *org_key_fields= *key_fields;

    if (((Item_cond*) cond)->functype() == Item_func::COND_AND_FUNC)
    {
      Item *item;
      while ((item=li++))
        add_key_fields(join, key_fields, and_level, item, usable_tables,
                       sargables);
      for (; org_key_fields != *key_fields ; org_key_fields++)
	org_key_fields->level= *and_level;
    }
    else
    {
      (*and_level)++;
      add_key_fields(join, key_fields, and_level, li++, usable_tables,
                     sargables);
      Item *item;
      while ((item=li++))
      {
	KEY_FIELD *start_key_fields= *key_fields;
	(*and_level)++;
        add_key_fields(join, key_fields, and_level, item, usable_tables,
                       sargables);
	*key_fields=merge_key_fields(org_key_fields,start_key_fields,
				     *key_fields,++(*and_level));
      }
    }
    return;
  }

  /* 
    Subquery optimization: Conditions that are pushed down into subqueries
    are wrapped into Item_func_trig_cond. We process the wrapped condition
    but need to set cond_guard for KEYUSE elements generated from it.
  */
  {
    if (cond->type() == Item::FUNC_ITEM &&
        ((Item_func*)cond)->functype() == Item_func::TRIG_COND_FUNC)
    {
      Item *cond_arg= ((Item_func*)cond)->arguments()[0];
      if (!join->group_list && !join->order &&
          join->unit->item && 
          join->unit->item->substype() == Item_subselect::IN_SUBS &&
          !join->unit->is_union())
      {
        KEY_FIELD *save= *key_fields;
        add_key_fields(join, key_fields, and_level, cond_arg, usable_tables,
                       sargables);
        // Indicate that this ref access candidate is for subquery lookup:
        for (; save != *key_fields; save++)
          save->cond_guard= ((Item_func_trig_cond*)cond)->get_trig_var();
      }
      return;
    }
  }

  /* If item is of type 'field op field/constant' add it to key_fields */
  if (cond->type() != Item::FUNC_ITEM)
    return;
  Item_func *cond_func= (Item_func*) cond;
  switch (cond_func->select_optimize()) {
  case Item_func::OPTIMIZE_NONE:
    break;
  case Item_func::OPTIMIZE_KEY:
  {
    Item **values;
    // BETWEEN, IN, NE
    if (is_local_field (cond_func->key_item()) &&
	!(cond_func->used_tables() & OUTER_REF_TABLE_BIT))
    {
      values= cond_func->arguments()+1;
      if (cond_func->functype() == Item_func::NE_FUNC &&
        is_local_field (cond_func->arguments()[1]))
        values--;
      DBUG_ASSERT(cond_func->functype() != Item_func::IN_FUNC ||
                  cond_func->argument_count() != 2);
      add_key_equal_fields(join, key_fields, *and_level, cond_func,
                           (Item_field*) (cond_func->key_item()->real_item()),
                           0, values, 
                           cond_func->argument_count()-1,
                           usable_tables, sargables);
    }
    if (cond_func->functype() == Item_func::BETWEEN)
    {
      values= cond_func->arguments();
      for (uint i= 1 ; i < cond_func->argument_count() ; i++)
      {
        Item_field *field_item;
        if (is_local_field (cond_func->arguments()[i]))
        {
          field_item= (Item_field *) (cond_func->arguments()[i]->real_item());
          add_key_equal_fields(join, key_fields, *and_level, cond_func,
                               field_item, 0, values, 1, usable_tables, 
                               sargables);
        }
      }  
    }
    break;
  }
  case Item_func::OPTIMIZE_OP:
  {
    bool equal_func=(cond_func->functype() == Item_func::EQ_FUNC ||
		     cond_func->functype() == Item_func::EQUAL_FUNC);

    if (is_local_field (cond_func->arguments()[0]))
    {
      add_key_equal_fields(join, key_fields, *and_level, cond_func,
	                (Item_field*) (cond_func->arguments()[0])->real_item(),
		           equal_func,
                           cond_func->arguments()+1, 1, usable_tables,
                           sargables);
    }
    if (is_local_field (cond_func->arguments()[1]) &&
	cond_func->functype() != Item_func::LIKE_FUNC)
    {
      add_key_equal_fields(join, key_fields, *and_level, cond_func, 
                       (Item_field*) (cond_func->arguments()[1])->real_item(),
		           equal_func,
                           cond_func->arguments(),1,usable_tables,
                           sargables);
    }
    break;
  }
  case Item_func::OPTIMIZE_NULL:
    /* column_name IS [NOT] NULL */
    if (is_local_field (cond_func->arguments()[0]) &&
	!(cond_func->used_tables() & OUTER_REF_TABLE_BIT))
    {
      Item *tmp=new Item_null;
      if (unlikely(!tmp))                       // Should never be true
	return;
      add_key_equal_fields(join, key_fields, *and_level, cond_func,
		    (Item_field*) (cond_func->arguments()[0])->real_item(),
		    cond_func->functype() == Item_func::ISNULL_FUNC,
			   &tmp, 1, usable_tables, sargables);
    }
    break;
  case Item_func::OPTIMIZE_EQUAL:
    Item_equal *item_equal= (Item_equal *) cond;
    Item *const_item= item_equal->get_const();
    Item_equal_iterator it(*item_equal);
    Item_field *item;
    if (const_item)
    {
      /*
        For each field field1 from item_equal consider the equality 
        field1=const_item as a condition allowing an index access of the table
        with field1 by the keys value of field1.
      */   
      while ((item= it++))
      {
        add_key_field(join, key_fields, *and_level, cond_func, item->field,
                      TRUE, &const_item, 1, usable_tables, sargables);
      }
    }
    else 
    {
      /*
        Consider all pairs of different fields included into item_equal.
        For each of them (field1, field1) consider the equality 
        field1=field2 as a condition allowing an index access of the table
        with field1 by the keys value of field2.
      */   
      Item_equal_iterator fi(*item_equal);
      while ((item= fi++))
      {
        Field *field= item->field;
        while ((item= it++))
        {
          if (!field->eq(item->field))
          {
            Item *tmp_item= item;
            add_key_field(join, key_fields, *and_level, cond_func, field,
                          TRUE, &tmp_item, 1, usable_tables,
                          sargables);
          }
        }
        it.rewind();
      }
    }
    break;
  }
}


static uint
max_part_bit(key_part_map bits)
{
  uint found;
  for (found=0; bits & 1 ; found++,bits>>=1) ;
  return found;
}


/**
  Add a new keuse to the specified array of KEYUSE objects

  @param[in,out]  keyuse_array  array of keyuses to be extended 
  @param[in]      key_field     info on the key use occurrence
  @param[in]      key           key number for the keyse to be added
  @param[in]      part          key part for the keyuse to be added

  @note
  The function builds a new KEYUSE object for a key use utilizing the info
  on the left and right parts of the given key use  extracted from the 
  structure key_field, the key number and key part for this key use. 
  The built object is added to the dynamic array keyuse_array.

  @retval         0             the built object is succesfully added 
  @retval         1             otherwise
*/

static bool
add_keyuse(DYNAMIC_ARRAY *keyuse_array, KEY_FIELD *key_field,
          uint key, uint part)
{
  KEYUSE keyuse;
  Field *field= key_field->field;

  keyuse.table= field->table;
  keyuse.val= key_field->val;
  keyuse.key= key;
  if (!is_hash_join_key_no(key))
  {
    keyuse.keypart=part;
    keyuse.keypart_map= (key_part_map) 1 << part;
  }
  else
  {
    /* 
      If this is a key use for hash join then keypart of
      the added element actually contains the field number.
    */
    keyuse.keypart= field->field_index;
    keyuse.keypart_map= (key_part_map) 0;
  }
  keyuse.used_tables= key_field->val->used_tables();
  keyuse.optimize= key_field->optimize & KEY_OPTIMIZE_REF_OR_NULL;
  keyuse.ref_table_rows= 0;
  keyuse.null_rejecting= key_field->null_rejecting;
  keyuse.cond_guard= key_field->cond_guard;
  keyuse.sj_pred_no= key_field->sj_pred_no;
  return (insert_dynamic(keyuse_array,(uchar*) &keyuse));
}


/*
  Add all keys with uses 'field' for some keypart
  If field->and_level != and_level then only mark key_part as const_part

  RETURN 
   0 - OK
   1 - Out of memory.
*/

static bool
add_key_part(DYNAMIC_ARRAY *keyuse_array, KEY_FIELD *key_field)
{
  Field *field=key_field->field;
  TABLE *form= field->table;

  if (key_field->eq_func && !(key_field->optimize & KEY_OPTIMIZE_EXISTS))
  {
    for (uint key=0 ; key < form->s->keys ; key++)
    {
      if (!(form->keys_in_use_for_query.is_set(key)))
	continue;
      if (form->key_info[key].flags & (HA_FULLTEXT | HA_SPATIAL))
	continue;    // ToDo: ft-keys in non-ft queries.   SerG

      uint key_parts= (uint) form->key_info[key].key_parts;
      for (uint part=0 ; part <  key_parts ; part++)
      {
	if (field->eq(form->key_info[key].key_part[part].field))
	{
          if (add_keyuse(keyuse_array, key_field, key, part))
            return TRUE;
	}
      }
    }
    if (field->hash_join_is_possible() &&
        (key_field->optimize & KEY_OPTIMIZE_EQ) &&
        key_field->val->used_tables())
    {
      /* 
        If a key use is extracted from an equi-join predicate then it is
        added not only as a key use for every index whose component can
        be evalusted utilizing this key use, but also as a key use for
        hash join. Such key uses are marked with a special key number. 
      */    
      if (add_keyuse(keyuse_array, key_field, get_hash_join_key_no(), 0))
        return TRUE;
    }
  }
  return FALSE;
}


#define FT_KEYPART   (MAX_REF_PARTS+10)

static bool
add_ft_keys(DYNAMIC_ARRAY *keyuse_array,
            JOIN_TAB *stat,COND *cond,table_map usable_tables)
{
  Item_func_match *cond_func=NULL;

  if (!cond)
    return FALSE;

  if (cond->type() == Item::FUNC_ITEM)
  {
    Item_func *func=(Item_func *)cond;
    Item_func::Functype functype=  func->functype();
    if (functype == Item_func::FT_FUNC)
      cond_func=(Item_func_match *)cond;
    else if (func->arg_count == 2)
    {
      Item *arg0= func->arguments()[0],
           *arg1= func->arguments()[1];
      if (arg1->const_item() && arg1->cols() == 1 &&
           arg0->type() == Item::FUNC_ITEM &&
           ((Item_func *) arg0)->functype() == Item_func::FT_FUNC &&
          ((functype == Item_func::GE_FUNC && arg1->val_real() > 0) ||
           (functype == Item_func::GT_FUNC && arg1->val_real() >= 0)))
        cond_func= (Item_func_match *) arg0;
      else if (arg0->const_item() && arg0->cols() == 1 &&
                arg1->type() == Item::FUNC_ITEM &&
                ((Item_func *) arg1)->functype() == Item_func::FT_FUNC &&
               ((functype == Item_func::LE_FUNC && arg0->val_real() > 0) ||
                (functype == Item_func::LT_FUNC && arg0->val_real() >= 0)))
        cond_func= (Item_func_match *) arg1;
    }
  }
  else if (cond->type() == Item::COND_ITEM)
  {
    List_iterator_fast<Item> li(*((Item_cond*) cond)->argument_list());

    if (((Item_cond*) cond)->functype() == Item_func::COND_AND_FUNC)
    {
      Item *item;
      while ((item=li++))
      {
        if (add_ft_keys(keyuse_array,stat,item,usable_tables))
          return TRUE;
      }
    }
  }

  if (!cond_func || cond_func->key == NO_SUCH_KEY ||
      !(usable_tables & cond_func->table->map))
    return FALSE;

  KEYUSE keyuse;
  keyuse.table= cond_func->table;
  keyuse.val =  cond_func;
  keyuse.key =  cond_func->key;
  keyuse.keypart= FT_KEYPART;
  keyuse.used_tables=cond_func->key_item()->used_tables();
  keyuse.optimize= 0;
  keyuse.keypart_map= 0;
  keyuse.sj_pred_no= UINT_MAX;
  return insert_dynamic(keyuse_array,(uchar*) &keyuse);
}


static int
sort_keyuse(KEYUSE *a,KEYUSE *b)
{
  int res;
  if (a->table->tablenr != b->table->tablenr)
    return (int) (a->table->tablenr - b->table->tablenr);
  if (a->key != b->key)
    return (int) (a->key - b->key);
  if (a->keypart != b->keypart)
    return (int) (a->keypart - b->keypart);
  // Place const values before other ones
  if ((res= test((a->used_tables & ~OUTER_REF_TABLE_BIT)) -
       test((b->used_tables & ~OUTER_REF_TABLE_BIT))))
    return res;
  /* Place rows that are not 'OPTIMIZE_REF_OR_NULL' first */
  return (int) ((a->optimize & KEY_OPTIMIZE_REF_OR_NULL) -
		(b->optimize & KEY_OPTIMIZE_REF_OR_NULL));
}


/*
  Add to KEY_FIELD array all 'ref' access candidates within nested join.

    This function populates KEY_FIELD array with entries generated from the 
    ON condition of the given nested join, and does the same for nested joins 
    contained within this nested join.

  @param[in]      nested_join_table   Nested join pseudo-table to process
  @param[in,out]  end                 End of the key field array
  @param[in,out]  and_level           And-level
  @param[in,out]  sargables           Array of found sargable candidates


  @note
    We can add accesses to the tables that are direct children of this nested 
    join (1), and are not inner tables w.r.t their neighbours (2).
    
    Example for #1 (outer brackets pair denotes nested join this function is 
    invoked for):
    @code
     ... LEFT JOIN (t1 LEFT JOIN (t2 ... ) ) ON cond
    @endcode
    Example for #2:
    @code
     ... LEFT JOIN (t1 LEFT JOIN t2 ) ON cond
    @endcode
    In examples 1-2 for condition cond, we can add 'ref' access candidates to 
    t1 only.
    Example #3:
    @code
     ... LEFT JOIN (t1, t2 LEFT JOIN t3 ON inner_cond) ON cond
    @endcode
    Here we can add 'ref' access candidates for t1 and t2, but not for t3.
*/

static void add_key_fields_for_nj(JOIN *join, TABLE_LIST *nested_join_table,
                                  KEY_FIELD **end, uint *and_level,
                                  SARGABLE_PARAM **sargables)
{
  List_iterator<TABLE_LIST> li(nested_join_table->nested_join->join_list);
  List_iterator<TABLE_LIST> li2(nested_join_table->nested_join->join_list);
  bool have_another = FALSE;
  table_map tables= 0;
  TABLE_LIST *table;
  DBUG_ASSERT(nested_join_table->nested_join);

  while ((table= li++) || (have_another && (li=li2, have_another=FALSE,
                                            (table= li++))))
  {
    if (table->nested_join)
    {
      if (!table->on_expr)
      {
        /* It's a semi-join nest. Walk into it as if it wasn't a nest */
        have_another= TRUE;
        li2= li;
        li= List_iterator<TABLE_LIST>(table->nested_join->join_list); 
      }
      else
        add_key_fields_for_nj(join, table, end, and_level, sargables);
    }
    else
      if (!table->on_expr)
        tables |= table->table->map;
  }
  if (nested_join_table->on_expr)
    add_key_fields(join, end, and_level, nested_join_table->on_expr, tables,
                   sargables);
}


/**
  Update keyuse array with all possible keys we can use to fetch rows.
  
  @param       thd 
  @param[out]  keyuse         Put here ordered array of KEYUSE structures
  @param       join_tab       Array in tablenr_order
  @param       tables         Number of tables in join
  @param       cond           WHERE condition (note that the function analyzes
                              join_tab[i]->on_expr too)
  @param       normal_tables  Tables not inner w.r.t some outer join (ones
                              for which we can make ref access based the WHERE
                              clause)
  @param       select_lex     current SELECT
  @param[out]  sargables      Array of found sargable candidates
      
   @retval
     0  OK
   @retval
     1  Out of memory.
*/

static bool
update_ref_and_keys(THD *thd, DYNAMIC_ARRAY *keyuse,JOIN_TAB *join_tab,
                    uint tables, COND *cond, COND_EQUAL *cond_equal,
                    table_map normal_tables, SELECT_LEX *select_lex,
                    SARGABLE_PARAM **sargables)
{
  uint	and_level,i,found_eq_constant;
  KEY_FIELD *key_fields, *end, *field;
  uint sz;
  uint m= max(select_lex->max_equal_elems,1);
  
  /* 
    We use the same piece of memory to store both  KEY_FIELD 
    and SARGABLE_PARAM structure.
    KEY_FIELD values are placed at the beginning this memory
    while  SARGABLE_PARAM values are put at the end.
    All predicates that are used to fill arrays of KEY_FIELD
    and SARGABLE_PARAM structures have at most 2 arguments
    except BETWEEN predicates that have 3 arguments and 
    IN predicates.
    This any predicate if it's not BETWEEN/IN can be used 
    directly to fill at most 2 array elements, either of KEY_FIELD
    or SARGABLE_PARAM type. For a BETWEEN predicate 3 elements
    can be filled as this predicate is considered as
    saragable with respect to each of its argument.
    An IN predicate can require at most 1 element as currently
    it is considered as sargable only for its first argument.
    Multiple equality can add  elements that are filled after
    substitution of field arguments by equal fields. There
    can be not more than select_lex->max_equal_elems such 
    substitutions.
  */ 
  sz= max(sizeof(KEY_FIELD),sizeof(SARGABLE_PARAM))*
      (((thd->lex->current_select->cond_count+1)*2 +
	thd->lex->current_select->between_count)*m+1);
  if (!(key_fields=(KEY_FIELD*)	thd->alloc(sz)))
    return TRUE; /* purecov: inspected */
  and_level= 0;
  field= end= key_fields;
  *sargables= (SARGABLE_PARAM *) key_fields + 
                (sz - sizeof((*sargables)[0].field))/sizeof(SARGABLE_PARAM);
  /* set a barrier for the array of SARGABLE_PARAM */
  (*sargables)[0].field= 0; 

  if (my_init_dynamic_array(keyuse,sizeof(KEYUSE),20,64))
    return TRUE;
  if (cond)
  {
    add_key_fields(join_tab->join, &end, &and_level, cond, normal_tables,
                   sargables);
    for (; field != end ; field++)
    {
      if (add_key_part(keyuse,field))
        return TRUE;
      /* Mark that we can optimize LEFT JOIN */
      if (field->val->type() == Item::NULL_ITEM &&
	  !field->field->real_maybe_null())
	field->field->table->reginfo.not_exists_optimize=1;
    }
  }
  for (i=0 ; i < tables ; i++)
  {
    /*
      Block the creation of keys for inner tables of outer joins.
      Here only the outer joins that can not be converted to
      inner joins are left and all nests that can be eliminated
      are flattened.
      In the future when we introduce conditional accesses
      for inner tables in outer joins these keys will be taken
      into account as well.
    */ 
    if (*join_tab[i].on_expr_ref)
      add_key_fields(join_tab->join, &end, &and_level, 
                     *join_tab[i].on_expr_ref,
                     join_tab[i].table->map, sargables);
  }

  /* Process ON conditions for the nested joins */
  {
    List_iterator<TABLE_LIST> li(*join_tab->join->join_list);
    TABLE_LIST *table;
    while ((table= li++))
    {
      if (table->nested_join)
        add_key_fields_for_nj(join_tab->join, table, &end, &and_level, 
                              sargables);
    }
  }

  /* fill keyuse with found key parts */
  for ( ; field != end ; field++)
  {
    if (add_key_part(keyuse,field))
      return TRUE;
  }

  if (select_lex->ftfunc_list->elements)
  {
    if (add_ft_keys(keyuse,join_tab,cond,normal_tables))
      return TRUE;
  }

  /*
    Sort the array of possible keys and remove the following key parts:
    - ref if there is a keypart which is a ref and a const.
      (e.g. if there is a key(a,b) and the clause is a=3 and b=7 and b=t2.d,
      then we skip the key part corresponding to b=t2.d)
    - keyparts without previous keyparts
      (e.g. if there is a key(a,b,c) but only b < 5 (or a=2 and c < 3) is
      used in the query, we drop the partial key parts from consideration).
    Special treatment for ft-keys.
  */
  if (keyuse->elements)
  {
    KEYUSE key_end,*prev,*save_pos,*use;

    my_qsort(keyuse->buffer,keyuse->elements,sizeof(KEYUSE),
	  (qsort_cmp) sort_keyuse);

    bzero((char*) &key_end,sizeof(key_end));    /* Add for easy testing */
    if (insert_dynamic(keyuse,(uchar*) &key_end))
      return TRUE;

    use=save_pos=dynamic_element(keyuse,0,KEYUSE*);
    prev= &key_end;
    found_eq_constant=0;
    for (i=0 ; i < keyuse->elements-1 ; i++,use++)
    {
      if (!use->is_for_hash_join())
      {
        if (!use->used_tables && use->optimize != KEY_OPTIMIZE_REF_OR_NULL)
	  use->table->const_key_parts[use->key]|= use->keypart_map;
        if (use->keypart != FT_KEYPART)
        {
	  if (use->key == prev->key && use->table == prev->table)
	  {
	    if (prev->keypart+1 < use->keypart ||
	        (prev->keypart == use->keypart && found_eq_constant))
	      continue;				/* remove */
	  }
	  else if (use->keypart != 0)		// First found must be 0
	    continue;
        }

        prev= use;
        found_eq_constant= !use->used_tables;
        use->table->reginfo.join_tab->checked_keys.set_bit(use->key);
      }
#ifdef HAVE_valgrind
      /* Valgrind complains about overlapped memcpy when save_pos==use. */
      if (save_pos != use)
#endif
        *save_pos= *use;
      /* Save ptr to first use */
      if (!use->table->reginfo.join_tab->keyuse)
	use->table->reginfo.join_tab->keyuse= save_pos;
      save_pos++;
    }
    i=(uint) (save_pos-(KEYUSE*) keyuse->buffer);
    VOID(set_dynamic(keyuse,(uchar*) &key_end,i));
    keyuse->elements=i;
  }
  DBUG_EXECUTE("opt", print_keyuse_array(keyuse););
  return FALSE;
}

/**
  Update some values in keyuse for faster choose_plan() loop.
*/

static void optimize_keyuse(JOIN *join, DYNAMIC_ARRAY *keyuse_array)
{
  KEYUSE *end,*keyuse= dynamic_element(keyuse_array, 0, KEYUSE*);

  for (end= keyuse+ keyuse_array->elements ; keyuse < end ; keyuse++)
  {
    table_map map;
    /*
      If we find a ref, assume this table matches a proportional
      part of this table.
      For example 100 records matching a table with 5000 records
      gives 5000/100 = 50 records per key
      Constant tables are ignored.
      To avoid bad matches, we don't make ref_table_rows less than 100.
    */
    keyuse->ref_table_rows= ~(ha_rows) 0;	// If no ref
    if (keyuse->used_tables &
	(map= (keyuse->used_tables & ~join->const_table_map &
	       ~OUTER_REF_TABLE_BIT)))
    {
      uint tablenr;
      for (tablenr=0 ; ! (map & 1) ; map>>=1, tablenr++) ;
      if (map == 1)			// Only one table
      {
	TABLE *tmp_table=join->table[tablenr];
	keyuse->ref_table_rows= max(tmp_table->file->stats.records, 100);
      }
    }
    /*
      Outer reference (external field) is constant for single executing
      of subquery
    */
    if (keyuse->used_tables == OUTER_REF_TABLE_BIT)
      keyuse->ref_table_rows= 1;
  }
}


/**
  Discover the indexes that can be used for GROUP BY or DISTINCT queries.

  If the query has a GROUP BY clause, find all indexes that contain all
  GROUP BY fields, and add those indexes to join->const_keys.

  If the query has a DISTINCT clause, find all indexes that contain all
  SELECT fields, and add those indexes to join->const_keys.
  This allows later on such queries to be processed by a
  QUICK_GROUP_MIN_MAX_SELECT.

  @param join
  @param join_tab

  @return
    None
*/

static void
add_group_and_distinct_keys(JOIN *join, JOIN_TAB *join_tab)
{
  List<Item_field> indexed_fields;
  List_iterator<Item_field> indexed_fields_it(indexed_fields);
  ORDER      *cur_group;
  Item_field *cur_item;
  key_map possible_keys(0);

  if (join->group_list)
  { /* Collect all query fields referenced in the GROUP clause. */
    for (cur_group= join->group_list; cur_group; cur_group= cur_group->next)
      (*cur_group->item)->walk(&Item::collect_item_field_processor, 0,
                               (uchar*) &indexed_fields);
  }
  else if (join->select_distinct)
  { /* Collect all query fields referenced in the SELECT clause. */
    List<Item> &select_items= join->fields_list;
    List_iterator<Item> select_items_it(select_items);
    Item *item;
    while ((item= select_items_it++))
      item->walk(&Item::collect_item_field_processor, 0,
                 (uchar*) &indexed_fields);
  }
  else
    return;

  if (indexed_fields.elements == 0)
    return;

  /* Intersect the keys of all group fields. */
  cur_item= indexed_fields_it++;
  possible_keys.merge(cur_item->field->part_of_key);
  while ((cur_item= indexed_fields_it++))
  {
    possible_keys.intersect(cur_item->field->part_of_key);
  }

  if (!possible_keys.is_clear_all())
    join_tab->const_keys.merge(possible_keys);
}


/*****************************************************************************
  Go through all combinations of not marked tables and find the one
  which uses least records
*****************************************************************************/

/** Save const tables first as used tables. */

void set_position(JOIN *join,uint idx,JOIN_TAB *table,KEYUSE *key)
{
  join->positions[idx].table= table;
  join->positions[idx].key=key;
  join->positions[idx].records_read=1.0;	/* This is a const table */
  join->positions[idx].ref_depend_map= 0;

  join->positions[idx].loosescan_key= MAX_KEY; /* Not a LooseScan */
  join->positions[idx].sj_strategy= SJ_OPT_NONE;
  join->positions[idx].use_join_buffer= FALSE;

  /* Move the const table as down as possible in best_ref */
  JOIN_TAB **pos=join->best_ref+idx+1;
  JOIN_TAB *next=join->best_ref[idx];
  for (;next != table ; pos++)
  {
    JOIN_TAB *tmp=pos[0];
    pos[0]=next;
    next=tmp;
  }
  join->best_ref[idx]=table;
}


/* Estimate of the number matching candidates in the joined table */

inline
ha_rows matching_candidates_in_table(JOIN_TAB *s, bool with_found_constraint)
{
  ha_rows records= s->found_records;
  /*
    If there is a filtering condition on the table (i.e. ref analyzer found
    at least one "table.keyXpartY= exprZ", where exprZ refers only to tables
    preceding this table in the join order we're now considering), then 
    assume that 25% of the rows will be filtered out by this condition.

    This heuristic is supposed to force tables used in exprZ to be before
    this table in join order.
  */
  if (with_found_constraint)
    records-= records/4;

    /*
      If applicable, get a more accurate estimate. Don't use the two
      heuristics at once.
    */
  if (s->table->quick_condition_rows != s->found_records)
    records= s->table->quick_condition_rows;

  return records;
}


/**
  Find the best access path for an extension of a partial execution
  plan and add this path to the plan.

  The function finds the best access path to table 's' from the passed
  partial plan where an access path is the general term for any means to
  access the data in 's'. An access path may use either an index or a scan,
  whichever is cheaper. The input partial plan is passed via the array
  'join->positions' of length 'idx'. The chosen access method for 's' and its
  cost are stored in 'join->positions[idx]'.

  @param join             pointer to the structure providing all context info
                          for the query
  @param s                the table to be joined by the function
  @param thd              thread for the connection that submitted the query
  @param remaining_tables set of tables not included into the partial plan yet
  @param idx              the length of the partial plan
  @param disable_jbuf     TRUE<=> Don't use join buffering
  @param record_count     estimate for the number of records returned by the
                          partial plan
  @param pos              OUT Table access plan
  @param loose_scan_pos   OUT Table plan that uses loosescan, or set cost to 
                              DBL_MAX if not possible.

  @return
    None
*/

void
best_access_path(JOIN      *join,
                 JOIN_TAB  *s,
                 table_map remaining_tables,
                 uint      idx,
                 bool      disable_jbuf,
                 double    record_count,
                 POSITION *pos,
                 POSITION *loose_scan_pos)
{
  THD *thd= join->thd;
  KEYUSE *best_key=         0;
  uint best_max_key_part=   0;
  my_bool found_constraint= 0;
  double best=              DBL_MAX;
  double best_time=         DBL_MAX;
  double records=           DBL_MAX;
  table_map best_ref_depends_map= 0;
  double tmp;
  ha_rows rec;
  bool best_uses_jbuf= FALSE;
  MY_BITMAP *eq_join_set= &s->table->eq_join_set;
  KEYUSE *hj_start_key= 0;

  Loose_scan_opt loose_scan_opt;
  DBUG_ENTER("best_access_path");
  
  bitmap_clear_all(eq_join_set);

  loose_scan_opt.init(join, s, remaining_tables);
  
  if (s->keyuse)
  {                                            /* Use key if possible */
    KEYUSE *keyuse;
    KEYUSE *start_key=0;
    TABLE *table= s->table;
    double best_records= DBL_MAX;
    uint max_key_part=0;

    /* Test how we can use keys */
    rec= s->records/MATCHING_ROWS_IN_OTHER_TABLE;  // Assumed records/key
    for (keyuse=s->keyuse ; keyuse->table == table ;)
    {
      KEY *keyinfo;
      key_part_map found_part= 0;
      table_map found_ref= 0;
      uint key= keyuse->key;
      bool ft_key=  (keyuse->keypart == FT_KEYPART);
      /* Bitmap of keyparts where the ref access is over 'keypart=const': */
      key_part_map const_part= 0;
      /* The or-null keypart in ref-or-null access: */
      key_part_map ref_or_null_part= 0;
      if (is_hash_join_key_no(key))
      {
        /* 
          Hash join as any join employing join buffer can be used to join
          only those tables that are joined after the first non const table
	*/  
        if (!(remaining_tables & keyuse->used_tables) &&
            idx > join->const_tables)
        {
          if (!hj_start_key)
            hj_start_key= keyuse;
          bitmap_set_bit(eq_join_set, keyuse->keypart);
        }
        keyuse++;
        continue;
      }

      keyinfo= table->key_info+key;

      /* Calculate how many key segments of the current key we can use */
      start_key= keyuse;

      loose_scan_opt.next_ref_key();
      DBUG_PRINT("info", ("Considering ref access on key %s",
                          keyuse->table->key_info[keyuse->key].name));

      do /* For each keypart */
      {
        uint keypart= keyuse->keypart;
        table_map best_part_found_ref= 0;
        double best_prev_record_reads= DBL_MAX;
        
        do /* For each way to access the keypart */
        {
          /*
            if 1. expression doesn't refer to forward tables
               2. we won't get two ref-or-null's
          */
          if (!(remaining_tables & keyuse->used_tables) &&
              !(ref_or_null_part && (keyuse->optimize &
                                     KEY_OPTIMIZE_REF_OR_NULL)))
          {
            found_part|= keyuse->keypart_map;
            if (!(keyuse->used_tables & ~join->const_table_map))
              const_part|= keyuse->keypart_map;

            double tmp2= prev_record_reads(join, idx, (found_ref |
                                                      keyuse->used_tables));
            if (tmp2 < best_prev_record_reads)
            {
              best_part_found_ref= keyuse->used_tables & ~join->const_table_map;
              best_prev_record_reads= tmp2;
            }
            if (rec > keyuse->ref_table_rows)
              rec= keyuse->ref_table_rows;
	    /*
	      If there is one 'key_column IS NULL' expression, we can
	      use this ref_or_null optimisation of this field
	    */
            if (keyuse->optimize & KEY_OPTIMIZE_REF_OR_NULL)
              ref_or_null_part |= keyuse->keypart_map;
          }
          loose_scan_opt.add_keyuse(remaining_tables, keyuse);
          keyuse++;
        } while (keyuse->table == table && keyuse->key == key &&
                 keyuse->keypart == keypart);
	found_ref|= best_part_found_ref;
      } while (keyuse->table == table && keyuse->key == key);

      /*
        Assume that that each key matches a proportional part of table.
      */
      if (!found_part && !ft_key && !loose_scan_opt.have_a_case())
        continue;                               // Nothing usable found

      if (rec < MATCHING_ROWS_IN_OTHER_TABLE)
        rec= MATCHING_ROWS_IN_OTHER_TABLE;      // Fix for small tables

      /*
        ft-keys require special treatment
      */
      if (ft_key)
      {
        /*
          Really, there should be records=0.0 (yes!)
          but 1.0 would be probably safer
        */
        tmp= prev_record_reads(join, idx, found_ref);
        records= 1.0;
      }
      else
      {
        found_constraint= test(found_part);
        loose_scan_opt.check_ref_access_part1(s, key, start_key, found_part);

        /* Check if we found full key */
        if (found_part == PREV_BITS(uint,keyinfo->key_parts) &&
            !ref_or_null_part)
        {                                         /* use eq key */
          max_key_part= (uint) ~0;
          if ((keyinfo->flags & (HA_NOSAME | HA_NULL_PART_KEY)) == HA_NOSAME)
          {
            tmp = prev_record_reads(join, idx, found_ref);
            records=1.0;
          }
          else
          {
            if (!found_ref)
            {                                     /* We found a const key */
              /*
                ReuseRangeEstimateForRef-1:
                We get here if we've found a ref(const) (c_i are constants):
                  "(keypart1=c1) AND ... AND (keypartN=cN)"   [ref_const_cond]
                
                If range optimizer was able to construct a "range" 
                access on this index, then its condition "quick_cond" was
                eqivalent to ref_const_cond (*), and we can re-use E(#rows)
                from the range optimizer.
                
                Proof of (*): By properties of range and ref optimizers 
                quick_cond will be equal or tighther than ref_const_cond. 
                ref_const_cond already covers "smallest" possible interval - 
                a singlepoint interval over all keyparts. Therefore, 
                quick_cond is equivalent to ref_const_cond (if it was an 
                empty interval we wouldn't have got here).
              */
              if (table->quick_keys.is_set(key))
                records= (double) table->quick_rows[key];
              else
              {
                /* quick_range couldn't use key! */
                records= (double) s->records/rec;
              }
            }
            else
            {
              if (!(records=keyinfo->rec_per_key[keyinfo->key_parts-1]))
              {                                   /* Prefer longer keys */
                records=
                  ((double) s->records / (double) rec *
                   (1.0 +
                    ((double) (table->s->max_key_length-keyinfo->key_length) /
                     (double) table->s->max_key_length)));
                if (records < 2.0)
                  records=2.0;               /* Can't be as good as a unique */
              }
              /*
                ReuseRangeEstimateForRef-2:  We get here if we could not reuse
                E(#rows) from range optimizer. Make another try:
                
                If range optimizer produced E(#rows) for a prefix of the ref
                access we're considering, and that E(#rows) is lower then our
                current estimate, make an adjustment. The criteria of when we
                can make an adjustment is a special case of the criteria used
                in ReuseRangeEstimateForRef-3.
              */
              if (table->quick_keys.is_set(key) &&
                  (const_part & ((1 << table->quick_key_parts[key])-1)) ==
                  (((key_part_map)1 << table->quick_key_parts[key])-1) &&
                  table->quick_n_ranges[key] == 1 &&
                  records > (double) table->quick_rows[key])
              {
                records= (double) table->quick_rows[key];
              }
            }
            /* Limit the number of matched rows */
            tmp= records;
            set_if_smaller(tmp, (double) thd->variables.max_seeks_for_key);
            if (table->covering_keys.is_set(key))
              tmp= table->file->keyread_time(key, 1, (ha_rows) tmp);
            else
              tmp= table->file->read_time(key, 1,
                                          (ha_rows) min(tmp,s->worst_seeks)-1);
            tmp*= record_count;
          }
        }
        else
        {
          /*
            Use as much key-parts as possible and a uniq key is better
            than a not unique key
            Set tmp to (previous record count) * (records / combination)
          */
          if ((found_part & 1) &&
              (!(table->file->index_flags(key, 0, 0) & HA_ONLY_WHOLE_INDEX) ||
               found_part == PREV_BITS(uint,keyinfo->key_parts)))
          {
            max_key_part= max_part_bit(found_part);
            /*
              ReuseRangeEstimateForRef-3:
              We're now considering a ref[or_null] access via
              (t.keypart1=e1 AND ... AND t.keypartK=eK) [ OR  
              (same-as-above but with one cond replaced 
               with "t.keypart_i IS NULL")]  (**)
              
              Try re-using E(#rows) from "range" optimizer:
              We can do so if "range" optimizer used the same intervals as
              in (**). The intervals used by range optimizer may be not 
              available at this point (as "range" access might have choosen to
              create quick select over another index), so we can't compare
              them to (**). We'll make indirect judgements instead.
              The sufficient conditions for re-use are:
              (C1) All e_i in (**) are constants, i.e. found_ref==FALSE. (if
                   this is not satisfied we have no way to know which ranges
                   will be actually scanned by 'ref' until we execute the 
                   join)
              (C2) max #key parts in 'range' access == K == max_key_part (this
                   is apparently a necessary requirement)

              We also have a property that "range optimizer produces equal or 
              tighter set of scan intervals than ref(const) optimizer". Each
              of the intervals in (**) are "tightest possible" intervals when 
              one limits itself to using keyparts 1..K (which we do in #2).              
              From here it follows that range access used either one, or
              both of the (I1) and (I2) intervals:
              
               (t.keypart1=c1 AND ... AND t.keypartK=eK)  (I1) 
               (same-as-above but with one cond replaced  
                with "t.keypart_i IS NULL")               (I2)

              The remaining part is to exclude the situation where range
              optimizer used one interval while we're considering
              ref-or-null and looking for estimate for two intervals. This
              is done by last limitation:

              (C3) "range optimizer used (have ref_or_null?2:1) intervals"
            */
            if (table->quick_keys.is_set(key) && !found_ref &&          //(C1)
                table->quick_key_parts[key] == max_key_part &&          //(C2)
                table->quick_n_ranges[key] == 1+test(ref_or_null_part)) //(C3)
            {
              tmp= records= (double) table->quick_rows[key];
            }
            else
            {
              /* Check if we have statistic about the distribution */
              if ((records= keyinfo->rec_per_key[max_key_part-1]))
              {
                /* 
                  Fix for the case where the index statistics is too
                  optimistic: If 
                  (1) We're considering ref(const) and there is quick select
                      on the same index, 
                  (2) and that quick select uses more keyparts (i.e. it will
                      scan equal/smaller interval then this ref(const))
                  (3) and E(#rows) for quick select is higher then our
                      estimate,
                  Then 
                    We'll use E(#rows) from quick select.

                  Q: Why do we choose to use 'ref'? Won't quick select be
                  cheaper in some cases ?
                  TODO: figure this out and adjust the plan choice if needed.
                */
                if (!found_ref && table->quick_keys.is_set(key) &&    // (1)
                    table->quick_key_parts[key] > max_key_part &&     // (2)
                    records < (double)table->quick_rows[key])         // (3)
                  records= (double)table->quick_rows[key];

                tmp= records;
              }
              else
              {
                /*
                  Assume that the first key part matches 1% of the file
                  and that the whole key matches 10 (duplicates) or 1
                  (unique) records.
                  Assume also that more key matches proportionally more
                  records
                  This gives the formula:
                  records = (x * (b-a) + a*c-b)/(c-1)

                  b = records matched by whole key
                  a = records matched by first key part (1% of all records?)
                  c = number of key parts in key
                  x = used key parts (1 <= x <= c)
                */
                double rec_per_key;
                if (!(rec_per_key=(double)
                      keyinfo->rec_per_key[keyinfo->key_parts-1]))
                  rec_per_key=(double) s->records/rec+1;

                if (!s->records)
                  tmp = 0;
                else if (rec_per_key/(double) s->records >= 0.01)
                  tmp = rec_per_key;
                else
                {
                  double a=s->records*0.01;
                  if (keyinfo->key_parts > 1)
                    tmp= (max_key_part * (rec_per_key - a) +
                          a*keyinfo->key_parts - rec_per_key)/
                         (keyinfo->key_parts-1);
                  else
                    tmp= a;
                  set_if_bigger(tmp,1.0);
                }
                records = (ulong) tmp;
              }

              if (ref_or_null_part)
              {
                /* We need to do two key searches to find key */
                tmp *= 2.0;
                records *= 2.0;
              }

              /*
                ReuseRangeEstimateForRef-4:  We get here if we could not reuse
                E(#rows) from range optimizer. Make another try:
                
                If range optimizer produced E(#rows) for a prefix of the ref 
                access we're considering, and that E(#rows) is lower then our
                current estimate, make the adjustment.

                The decision whether we can re-use the estimate from the range
                optimizer is the same as in ReuseRangeEstimateForRef-3,
                applied to first table->quick_key_parts[key] key parts.
              */
              if (table->quick_keys.is_set(key) &&
                  table->quick_key_parts[key] <= max_key_part &&
                  const_part & (1 << table->quick_key_parts[key]) &&
                  table->quick_n_ranges[key] == 1 + test(ref_or_null_part &
                                                         const_part) &&
                  records > (double) table->quick_rows[key])
              {
                tmp= records= (double) table->quick_rows[key];
              }
            }

            /* Limit the number of matched rows */
            set_if_smaller(tmp, (double) thd->variables.max_seeks_for_key);
            if (table->covering_keys.is_set(key))
              tmp= table->file->keyread_time(key, 1, (ha_rows) tmp);
            else
              tmp= table->file->read_time(key, 1,
                                          (ha_rows) min(tmp,s->worst_seeks)-1);
            tmp*= record_count;
          }
          else
            tmp= best_time;                    // Do nothing
        }

        tmp += s->startup_cost;
        loose_scan_opt.check_ref_access_part2(key, start_key, records, tmp);
      } /* not ft_key */
      if (tmp + 0.0001 < best_time - records/(double) TIME_FOR_COMPARE)
      {
        best_time= tmp + records/(double) TIME_FOR_COMPARE;
        best= tmp;
        best_records= records;
        best_key= start_key;
        best_max_key_part= max_key_part;
        best_ref_depends_map= found_ref;
      }
    } /* for each key */
    records= best_records;
  }

  /* 
    If there is no key to access the table, but there is an equi-join
    predicate connecting the table with the privious tables then we
    consider the possibility of using hash join.
    We need also to check that:
    (1) s is inner table of semi-join -> join cache is allowed for semijoins
    (2) s is inner table of outer join -> join cache is allowed for outer joins
  */  
  if (idx > join->const_tables && best_key == 0 && 
     !bitmap_is_clear_all(eq_join_set) &&  !disable_jbuf &&
      (!s->emb_sj_nest ||                     
       join->allowed_semijoin_with_cache) &&    // (1)
      (!(s->table->map & join->outer_join) ||
       join->allowed_outer_join_with_cache))    // (2)
  {
    double join_sel= 0.1;
    /* Estimate the cost of  the hash join access to the table */
    ha_rows rnd_records= matching_candidates_in_table(s, found_constraint);

    tmp= s->quick ? s->quick->read_time : s->table->file->scan_time();
    tmp+= (s->records - rnd_records)/(double) TIME_FOR_COMPARE;

    /* We read the table as many times as join buffer becomes full. */
    tmp*= (1.0 + floor((double) cache_record_length(join,idx) *
                          record_count /
                          (double) thd->variables.join_buff_size));
    best_time= tmp + 
               (record_count*join_sel) / TIME_FOR_COMPARE * rnd_records;
    best= tmp;
    records= rows2double(rnd_records);
    best_key= hj_start_key;
    best_ref_depends_map= 0;
    best_uses_jbuf= TRUE;
   }

  /*
    Don't test table scan if it can't be better.
    Prefer key lookup if we would use the same key for scanning.

    Don't do a table scan on InnoDB tables, if we can read the used
    parts of the row from any of the used index.
    This is because table scans uses index and we would not win
    anything by using a table scan.

    A word for word translation of the below if-statement in sergefp's
    understanding: we check if we should use table scan if:
    (1) The found 'ref' access produces more records than a table scan
        (or index scan, or quick select), or 'ref' is more expensive than
        any of them.
    (2) This doesn't hold: the best way to perform table scan is to to perform
        'range' access using index IDX, and the best way to perform 'ref' 
        access is to use the same index IDX, with the same or more key parts.
        (note: it is not clear how this rule is/should be extended to 
        index_merge quick selects)
    (3) See above note about InnoDB.
    (4) NOT ("FORCE INDEX(...)" is used for table and there is 'ref' access
             path, but there is no quick select)
        If the condition in the above brackets holds, then the only possible
        "table scan" access method is ALL/index (there is no quick select).
        Since we have a 'ref' access path, and FORCE INDEX instructs us to
        choose it over ALL/index, there is no need to consider a full table
        scan.
    (5) Non-flattenable semi-joins: don't consider doing a scan of temporary
        table if we had an option to make lookups into it. In real-world cases,
        lookups are cheaper than full scans, but when the table is small, they
        can be [considered to be] more expensive, which causes lookups not to 
        be used for cases with small datasets, which is annoying.
  */
  if ((records >= s->found_records || best > s->read_time) &&            // (1)
      !(s->quick && best_key && s->quick->index == best_key->key &&      // (2)
        best_max_key_part >= s->table->quick_key_parts[best_key->key]) &&// (2)
      !((s->table->file->ha_table_flags() & HA_TABLE_SCAN_ON_INDEX) &&   // (3)
        ! s->table->covering_keys.is_clear_all() && best_key && !s->quick) &&// (3)
      !(s->table->force_index && best_key && !s->quick) &&               // (4)
      !(best_key && s->table->pos_in_table_list->jtbm_subselect))        // (5)
  {                                             // Check full join
    ha_rows rnd_records= matching_candidates_in_table(s, found_constraint);

    /*
      Range optimizer never proposes a RANGE if it isn't better
      than FULL: so if RANGE is present, it's always preferred to FULL.
      Here we estimate its cost.
    */

    if (s->quick)
    {
      /*
        For each record we:
        - read record range through 'quick'
        - skip rows which does not satisfy WHERE constraints
        TODO: 
        We take into account possible use of join cache for ALL/index
        access (see first else-branch below), but we don't take it into 
        account here for range/index_merge access. Find out why this is so.
      */
      tmp= record_count *
        (s->quick->read_time +
         (s->found_records - rnd_records)/(double) TIME_FOR_COMPARE);

      loose_scan_opt.check_range_access(join, idx, s->quick);
    }
    else
    {
      tmp= s->read_time;
      if ((s->table->map & join->outer_join) || disable_jbuf)     // Can't use join cache
      {
        /*
          For each record we have to:
          - read the whole table record 
          - skip rows which does not satisfy join condition
        */
        tmp= record_count *
          (tmp +
           (s->records - rnd_records)/(double) TIME_FOR_COMPARE);
      }
      else
      {
        /* We read the table as many times as join buffer becomes full. */
        tmp*= (1.0 + floor((double) cache_record_length(join,idx) *
                           record_count /
                           (double) thd->variables.join_buff_size));
        /* 
            We don't make full cartesian product between rows in the scanned
           table and existing records because we skip all rows from the
           scanned table, which does not satisfy join condition when 
           we read the table (see flush_cached_records for details). Here we
           take into account cost to read and skip these records.
        */
        tmp+= (s->records - rnd_records)/(double) TIME_FOR_COMPARE;
      }
    }

    tmp += s->startup_cost;
    /*
      We estimate the cost of evaluating WHERE clause for found records
      as record_count * rnd_records / TIME_FOR_COMPARE. This cost plus
      tmp give us total cost of using TABLE SCAN
    */
    if (best == DBL_MAX ||
        (tmp  + record_count/(double) TIME_FOR_COMPARE*rnd_records <
         (best_key->is_for_hash_join() ? best_time :
          best + record_count/(double) TIME_FOR_COMPARE*records)))
    {
      /*
        If the table has a range (s->quick is set) make_join_select()
        will ensure that this will be used
      */
      best= tmp;
      records= rows2double(rnd_records);
      best_key= 0;
      /* range/index_merge/ALL/index access method are "independent", so: */
      best_ref_depends_map= 0;
      best_uses_jbuf= test(!disable_jbuf && !((s->table->map & 
                                               join->outer_join)));
    }
  }

  /* Update the cost information for the current partial plan */
  pos->records_read= records;
  pos->read_time=    best;
  pos->key=          best_key;
  pos->table=        s;
  pos->ref_depend_map= best_ref_depends_map;
  pos->loosescan_key= MAX_KEY;
  pos->use_join_buffer= best_uses_jbuf;
   
  loose_scan_opt.save_to_position(s, loose_scan_pos);

  if (!best_key &&
      idx == join->const_tables &&
      s->table == join->sort_by_table &&
      join->unit->select_limit_cnt >= records)
    join->sort_by_table= (TABLE*) 1;  // Must use temporary table

  DBUG_VOID_RETURN;
}


/**
  Selects and invokes a search strategy for an optimal query plan.

  The function checks user-configurable parameters that control the search
  strategy for an optimal plan, selects the search method and then invokes
  it. Each specific optimization procedure stores the final optimal plan in
  the array 'join->best_positions', and the cost of the plan in
  'join->best_read'.

  @param join         pointer to the structure providing all context info for
                      the query
  @param join_tables  set of the tables in the query

  @todo
    'MAX_TABLES+2' denotes the old implementation of find_best before
    the greedy version. Will be removed when greedy_search is approved.

  @retval
    FALSE       ok
  @retval
    TRUE        Fatal error
*/

bool
choose_plan(JOIN *join, table_map join_tables)
{
  uint search_depth= join->thd->variables.optimizer_search_depth;
  uint prune_level=  join->thd->variables.optimizer_prune_level;
  bool straight_join= test(join->select_options & SELECT_STRAIGHT_JOIN);
  DBUG_ENTER("choose_plan");

  join->cur_embedding_map= 0;
  join->cur_dups_producing_tables= 0;
  reset_nj_counters(join, join->join_list);
  qsort2_cmp jtab_sort_func;

  if (join->emb_sjm_nest)
  {
    /* We're optimizing semi-join materialization nest, so put the 
       tables from this semi-join as first
    */
    jtab_sort_func= join_tab_cmp_embedded_first;
  }
  else
  {
    /*
      if (SELECT_STRAIGHT_JOIN option is set)
        reorder tables so dependent tables come after tables they depend 
        on, otherwise keep tables in the order they were specified in the query 
      else
        Apply heuristic: pre-sort all access plans with respect to the number of
        records accessed.
    */
    jtab_sort_func= straight_join ? join_tab_cmp_straight : join_tab_cmp;
  }
  my_qsort2(join->best_ref + join->const_tables,
            join->tables - join->const_tables, sizeof(JOIN_TAB*),
            jtab_sort_func, (void*)join->emb_sjm_nest);
  join->cur_sj_inner_tables= 0;

  if (straight_join)
  {
    optimize_straight_join(join, join_tables);
  }
  else
  {
    if (search_depth == MAX_TABLES+2)
    { /*
        TODO: 'MAX_TABLES+2' denotes the old implementation of find_best before
        the greedy version. Will be removed when greedy_search is approved.
      */
      join->best_read= DBL_MAX;
      if (find_best(join, join_tables, join->const_tables, 1.0, 0.0))
        DBUG_RETURN(TRUE);
    } 
    else
    {
      if (search_depth == 0)
        /* Automatically determine a reasonable value for 'search_depth' */
        search_depth= determine_search_depth(join);
      if (greedy_search(join, join_tables, search_depth, prune_level))
        DBUG_RETURN(TRUE);
    }
  }

  /* 
    Store the cost of this query into a user variable
    Don't update last_query_cost for statements that are not "flat joins" :
    i.e. they have subqueries, unions or call stored procedures.
    TODO: calculate a correct cost for a query with subqueries and UNIONs.
  */
  if (join->thd->lex->is_single_level_stmt())
    join->thd->status_var.last_query_cost= join->best_read;
  DBUG_RETURN(FALSE);
}


/**
  Compare two JOIN_TAB objects based on the number of accessed records.

  @param ptr1 pointer to first JOIN_TAB object
  @param ptr2 pointer to second JOIN_TAB object

  NOTES
    The order relation implemented by join_tab_cmp() is not transitive,
    i.e. it is possible to choose such a, b and c that (a < b) && (b < c)
    but (c < a). This implies that result of a sort using the relation
    implemented by join_tab_cmp() depends on the order in which
    elements are compared, i.e. the result is implementation-specific.
    Example:
      a: dependent = 0x0 table->map = 0x1 found_records = 3 ptr = 0x907e6b0
      b: dependent = 0x0 table->map = 0x2 found_records = 3 ptr = 0x907e838
      c: dependent = 0x6 table->map = 0x10 found_records = 2 ptr = 0x907ecd0
     
  @retval
    1  if first is bigger
  @retval
    -1  if second is bigger
  @retval
    0  if equal
*/

static int
join_tab_cmp(const void *dummy, const void* ptr1, const void* ptr2)
{
  JOIN_TAB *jt1= *(JOIN_TAB**) ptr1;
  JOIN_TAB *jt2= *(JOIN_TAB**) ptr2;

  if (jt1->dependent & jt2->table->map)
    return 1;
  if (jt2->dependent & jt1->table->map)
    return -1;  
  if (jt1->found_records > jt2->found_records)
    return 1;
  if (jt1->found_records < jt2->found_records)
    return -1; 
  return jt1 > jt2 ? 1 : (jt1 < jt2 ? -1 : 0);
}


/**
  Same as join_tab_cmp, but for use with SELECT_STRAIGHT_JOIN.
*/

static int
join_tab_cmp_straight(const void *dummy, const void* ptr1, const void* ptr2)
{
  JOIN_TAB *jt1= *(JOIN_TAB**) ptr1;
  JOIN_TAB *jt2= *(JOIN_TAB**) ptr2;

  /*
    We don't do subquery flattening if the parent or child select has
    STRAIGHT_JOIN modifier. It is complicated to implement and the semantics
    is hardly useful.
  */
  DBUG_ASSERT(!jt1->emb_sj_nest);
  DBUG_ASSERT(!jt2->emb_sj_nest);

  if (jt1->dependent & jt2->table->map)
    return 1;
  if (jt2->dependent & jt1->table->map)
    return -1;
  return jt1 > jt2 ? 1 : (jt1 < jt2 ? -1 : 0);
}


/*
  Same as join_tab_cmp but tables from within the given semi-join nest go 
  first. Used when the optimizing semi-join materialization nests.
*/

static int
join_tab_cmp_embedded_first(const void *emb,  const void* ptr1, const void* ptr2)
{
  const TABLE_LIST *emb_nest= (TABLE_LIST*) emb;
  JOIN_TAB *jt1= *(JOIN_TAB**) ptr1;
  JOIN_TAB *jt2= *(JOIN_TAB**) ptr2;

  if (jt1->emb_sj_nest == emb_nest && jt2->emb_sj_nest != emb_nest)
    return -1;
  if (jt1->emb_sj_nest != emb_nest && jt2->emb_sj_nest == emb_nest)
    return 1;

  if (jt1->dependent & jt2->table->map)
    return 1;
  if (jt2->dependent & jt1->table->map)
    return -1;

  if (jt1->found_records > jt2->found_records)
    return 1;
  if (jt1->found_records < jt2->found_records)
    return -1; 
  
  return jt1 > jt2 ? 1 : (jt1 < jt2 ? -1 : 0);
}


/**
  Heuristic procedure to automatically guess a reasonable degree of
  exhaustiveness for the greedy search procedure.

  The procedure estimates the optimization time and selects a search depth
  big enough to result in a near-optimal QEP, that doesn't take too long to
  find. If the number of tables in the query exceeds some constant, then
  search_depth is set to this constant.

  @param join   pointer to the structure providing all context info for
                the query

  @note
    This is an extremely simplistic implementation that serves as a stub for a
    more advanced analysis of the join. Ideally the search depth should be
    determined by learning from previous query optimizations, because it will
    depend on the CPU power (and other factors).

  @todo
    this value should be determined dynamically, based on statistics:
    uint max_tables_for_exhaustive_opt= 7;

  @todo
    this value could be determined by some mapping of the form:
    depth : table_count -> [max_tables_for_exhaustive_opt..MAX_EXHAUSTIVE]

  @return
    A positive integer that specifies the search depth (and thus the
    exhaustiveness) of the depth-first search algorithm used by
    'greedy_search'.
*/

static uint
determine_search_depth(JOIN *join)
{
  uint table_count=  join->tables - join->const_tables;
  uint search_depth;
  /* TODO: this value should be determined dynamically, based on statistics: */
  uint max_tables_for_exhaustive_opt= 7;

  if (table_count <= max_tables_for_exhaustive_opt)
    search_depth= table_count+1; // use exhaustive for small number of tables
  else
    /*
      TODO: this value could be determined by some mapping of the form:
      depth : table_count -> [max_tables_for_exhaustive_opt..MAX_EXHAUSTIVE]
    */
    search_depth= max_tables_for_exhaustive_opt; // use greedy search

  return search_depth;
}


/**
  Select the best ways to access the tables in a query without reordering them.

    Find the best access paths for each query table and compute their costs
    according to their order in the array 'join->best_ref' (thus without
    reordering the join tables). The function calls sequentially
    'best_access_path' for each table in the query to select the best table
    access method. The final optimal plan is stored in the array
    'join->best_positions', and the corresponding cost in 'join->best_read'.

  @param join          pointer to the structure providing all context info for
                       the query
  @param join_tables   set of the tables in the query

  @note
    This function can be applied to:
    - queries with STRAIGHT_JOIN
    - internally to compute the cost of an arbitrary QEP
  @par
    Thus 'optimize_straight_join' can be used at any stage of the query
    optimization process to finalize a QEP as it is.
*/

static void
optimize_straight_join(JOIN *join, table_map join_tables)
{
  JOIN_TAB *s;
  uint idx= join->const_tables;
  double    record_count= 1.0;
  double    read_time=    0.0;
  POSITION  loose_scan_pos;

  for (JOIN_TAB **pos= join->best_ref + idx ; (s= *pos) ; pos++)
  {
    /* Find the best access method from 's' to the current partial plan */
    best_access_path(join, s, join_tables, idx, FALSE, record_count,
                     join->positions + idx, &loose_scan_pos);

    /* compute the cost of the new plan extended with 's' */
    record_count*= join->positions[idx].records_read;
    read_time+=    join->positions[idx].read_time;
    advance_sj_state(join, join_tables, s, idx, &record_count, &read_time,
                     &loose_scan_pos);

    join_tables&= ~(s->table->map);
    ++idx;
  }

  read_time+= record_count / (double) TIME_FOR_COMPARE;
  if (join->sort_by_table &&
      join->sort_by_table != join->positions[join->const_tables].table->table)
    read_time+= record_count;  // We have to make a temp table
  memcpy((uchar*) join->best_positions, (uchar*) join->positions,
         sizeof(POSITION)*idx);
  join->best_read= read_time;
}


/**
  Find a good, possibly optimal, query execution plan (QEP) by a greedy search.

    The search procedure uses a hybrid greedy/exhaustive search with controlled
    exhaustiveness. The search is performed in N = card(remaining_tables)
    steps. Each step evaluates how promising is each of the unoptimized tables,
    selects the most promising table, and extends the current partial QEP with
    that table.  Currenly the most 'promising' table is the one with least
    expensive extension.\

    There are two extreme cases:
    -# When (card(remaining_tables) < search_depth), the estimate finds the
    best complete continuation of the partial QEP. This continuation can be
    used directly as a result of the search.
    -# When (search_depth == 1) the 'best_extension_by_limited_search'
    consideres the extension of the current QEP with each of the remaining
    unoptimized tables.

    All other cases are in-between these two extremes. Thus the parameter
    'search_depth' controlls the exhaustiveness of the search. The higher the
    value, the longer the optimization time and possibly the better the
    resulting plan. The lower the value, the fewer alternative plans are
    estimated, but the more likely to get a bad QEP.

    All intermediate and final results of the procedure are stored in 'join':
    - join->positions     : modified for every partial QEP that is explored
    - join->best_positions: modified for the current best complete QEP
    - join->best_read     : modified for the current best complete QEP
    - join->best_ref      : might be partially reordered

    The final optimal plan is stored in 'join->best_positions', and its
    corresponding cost in 'join->best_read'.

  @note
    The following pseudocode describes the algorithm of 'greedy_search':

    @code
    procedure greedy_search
    input: remaining_tables
    output: pplan;
    {
      pplan = <>;
      do {
        (t, a) = best_extension(pplan, remaining_tables);
        pplan = concat(pplan, (t, a));
        remaining_tables = remaining_tables - t;
      } while (remaining_tables != {})
      return pplan;
    }

  @endcode
    where 'best_extension' is a placeholder for a procedure that selects the
    most "promising" of all tables in 'remaining_tables'.
    Currently this estimate is performed by calling
    'best_extension_by_limited_search' to evaluate all extensions of the
    current QEP of size 'search_depth', thus the complexity of 'greedy_search'
    mainly depends on that of 'best_extension_by_limited_search'.

  @par
    If 'best_extension()' == 'best_extension_by_limited_search()', then the
    worst-case complexity of this algorithm is <=
    O(N*N^search_depth/search_depth). When serch_depth >= N, then the
    complexity of greedy_search is O(N!).

  @par
    In the future, 'greedy_search' might be extended to support other
    implementations of 'best_extension', e.g. some simpler quadratic procedure.

  @param join             pointer to the structure providing all context info
                          for the query
  @param remaining_tables set of tables not included into the partial plan yet
  @param search_depth     controlls the exhaustiveness of the search
  @param prune_level      the pruning heuristics that should be applied during
                          search

  @retval
    FALSE       ok
  @retval
    TRUE        Fatal error
*/

static bool
greedy_search(JOIN      *join,
              table_map remaining_tables,
              uint      search_depth,
              uint      prune_level)
{
  double    record_count= 1.0;
  double    read_time=    0.0;
  uint      idx= join->const_tables; // index into 'join->best_ref'
  uint      best_idx;
  uint      size_remain;    // cardinality of remaining_tables
  POSITION  best_pos;
  JOIN_TAB  *best_table; // the next plan node to be added to the curr QEP
  uint      n_tables; // ==join->tables or # tables in the sj-mat nest we're optimizing

  DBUG_ENTER("greedy_search");

  /* number of tables that remain to be optimized */
  n_tables= size_remain= my_count_bits(remaining_tables &
                                       (join->emb_sjm_nest? 
                                         (join->emb_sjm_nest->sj_inner_tables &
                                          ~join->const_table_map)
                                         :
                                         ~(table_map)0));

  do {
    /* Find the extension of the current QEP with the lowest cost */
    join->best_read= DBL_MAX;
    if (best_extension_by_limited_search(join, remaining_tables, idx, record_count,
                                         read_time, search_depth, prune_level))
      DBUG_RETURN(TRUE);
    /*
      'best_read < DBL_MAX' means that optimizer managed to find
      some plan and updated 'best_positions' array accordingly.
    */
    DBUG_ASSERT(join->best_read < DBL_MAX); 

    if (size_remain <= search_depth)
    {
      /*
        'join->best_positions' contains a complete optimal extension of the
        current partial QEP.
      */
      DBUG_EXECUTE("opt", print_plan(join, n_tables,
                                     record_count, read_time, read_time,
                                     "optimal"););
      DBUG_RETURN(FALSE);
    }

    /* select the first table in the optimal extension as most promising */
    best_pos= join->best_positions[idx];
    best_table= best_pos.table;
    /*
      Each subsequent loop of 'best_extension_by_limited_search' uses
      'join->positions' for cost estimates, therefore we have to update its
      value.
    */
    join->positions[idx]= best_pos;

    /*
      Update the interleaving state after extending the current partial plan
      with a new table.
      We are doing this here because best_extension_by_limited_search reverts
      the interleaving state to the one of the non-extended partial plan 
      on exit.
    */
    bool is_interleave_error __attribute__((unused))= 
      check_interleaving_with_nj(best_table);
    /* This has been already checked by best_extension_by_limited_search */
    DBUG_ASSERT(!is_interleave_error);


    /* find the position of 'best_table' in 'join->best_ref' */
    best_idx= idx;
    JOIN_TAB *pos= join->best_ref[best_idx];
    while (pos && best_table != pos)
      pos= join->best_ref[++best_idx];
    DBUG_ASSERT((pos != NULL)); // should always find 'best_table'
    /* move 'best_table' at the first free position in the array of joins */
    swap_variables(JOIN_TAB*, join->best_ref[idx], join->best_ref[best_idx]);

    /* compute the cost of the new plan extended with 'best_table' */
    record_count*= join->positions[idx].records_read;
    read_time+=    join->positions[idx].read_time;

    remaining_tables&= ~(best_table->table->map);
    --size_remain;
    ++idx;

    DBUG_EXECUTE("opt", print_plan(join, idx,
                                   record_count, read_time, read_time,
                                   "extended"););
  } while (TRUE);
}


/*
  Calculate a cost of given partial join order
 
  SYNOPSIS
    get_partial_join_cost()
      join               IN    Join to use. join->positions holds the
                               partial join order
      idx                IN    # tables in the partial join order
      read_time_arg      OUT   Store read time here 
      record_count_arg   OUT   Store record count here

  DESCRIPTION

    This is needed for semi-join materialization code. The idea is that 
    we detect sj-materialization after we've put all sj-inner tables into
    the join prefix

      prefix-tables semi-join-inner-tables  tN
                                             ^--we're here

    and we'll need to get the cost of prefix-tables prefix again.
*/

void get_partial_join_cost(JOIN *join, uint n_tables, double *read_time_arg,
                           double *record_count_arg)
{
  double record_count= 1;
  double read_time= 0.0;
  for (uint i= join->const_tables; i < n_tables + join->const_tables ; i++)
  {
    if (join->best_positions[i].records_read)
    {
      record_count *= join->best_positions[i].records_read;
      read_time += join->best_positions[i].read_time;
    }
  }
  *read_time_arg= read_time;// + record_count / TIME_FOR_COMPARE;
  *record_count_arg= record_count;
}




/**
  Find a good, possibly optimal, query execution plan (QEP) by a possibly
  exhaustive search.

    The procedure searches for the optimal ordering of the query tables in set
    'remaining_tables' of size N, and the corresponding optimal access paths to
    each table. The choice of a table order and an access path for each table
    constitutes a query execution plan (QEP) that fully specifies how to
    execute the query.
   
    The maximal size of the found plan is controlled by the parameter
    'search_depth'. When search_depth == N, the resulting plan is complete and
    can be used directly as a QEP. If search_depth < N, the found plan consists
    of only some of the query tables. Such "partial" optimal plans are useful
    only as input to query optimization procedures, and cannot be used directly
    to execute a query.

    The algorithm begins with an empty partial plan stored in 'join->positions'
    and a set of N tables - 'remaining_tables'. Each step of the algorithm
    evaluates the cost of the partial plan extended by all access plans for
    each of the relations in 'remaining_tables', expands the current partial
    plan with the access plan that results in lowest cost of the expanded
    partial plan, and removes the corresponding relation from
    'remaining_tables'. The algorithm continues until it either constructs a
    complete optimal plan, or constructs an optimal plartial plan with size =
    search_depth.

    The final optimal plan is stored in 'join->best_positions'. The
    corresponding cost of the optimal plan is in 'join->best_read'.

  @note
    The procedure uses a recursive depth-first search where the depth of the
    recursion (and thus the exhaustiveness of the search) is controlled by the
    parameter 'search_depth'.

  @note
    The pseudocode below describes the algorithm of
    'best_extension_by_limited_search'. The worst-case complexity of this
    algorithm is O(N*N^search_depth/search_depth). When serch_depth >= N, then
    the complexity of greedy_search is O(N!).

    @code
    procedure best_extension_by_limited_search(
      pplan in,             // in, partial plan of tables-joined-so-far
      pplan_cost,           // in, cost of pplan
      remaining_tables,     // in, set of tables not referenced in pplan
      best_plan_so_far,     // in/out, best plan found so far
      best_plan_so_far_cost,// in/out, cost of best_plan_so_far
      search_depth)         // in, maximum size of the plans being considered
    {
      for each table T from remaining_tables
      {
        // Calculate the cost of using table T as above
        cost = complex-series-of-calculations;

        // Add the cost to the cost so far.
        pplan_cost+= cost;

        if (pplan_cost >= best_plan_so_far_cost)
          // pplan_cost already too great, stop search
          continue;

        pplan= expand pplan by best_access_method;
        remaining_tables= remaining_tables - table T;
        if (remaining_tables is not an empty set
            and
            search_depth > 1)
        {
          best_extension_by_limited_search(pplan, pplan_cost,
                                           remaining_tables,
                                           best_plan_so_far,
                                           best_plan_so_far_cost,
                                           search_depth - 1);
        }
        else
        {
          best_plan_so_far_cost= pplan_cost;
          best_plan_so_far= pplan;
        }
      }
    }
    @endcode

  @note
    When 'best_extension_by_limited_search' is called for the first time,
    'join->best_read' must be set to the largest possible value (e.g. DBL_MAX).
    The actual implementation provides a way to optionally use pruning
    heuristic (controlled by the parameter 'prune_level') to reduce the search
    space by skipping some partial plans.

  @note
    The parameter 'search_depth' provides control over the recursion
    depth, and thus the size of the resulting optimal plan.

  @param join             pointer to the structure providing all context info
                          for the query
  @param remaining_tables set of tables not included into the partial plan yet
  @param idx              length of the partial QEP in 'join->positions';
                          since a depth-first search is used, also corresponds
                          to the current depth of the search tree;
                          also an index in the array 'join->best_ref';
  @param record_count     estimate for the number of records returned by the
                          best partial plan
  @param read_time        the cost of the best partial plan
  @param search_depth     maximum depth of the recursion and thus size of the
                          found optimal plan
                          (0 < search_depth <= join->tables+1).
  @param prune_level      pruning heuristics that should be applied during
                          optimization
                          (values: 0 = EXHAUSTIVE, 1 = PRUNE_BY_TIME_OR_ROWS)

  @retval
    FALSE       ok
  @retval
    TRUE        Fatal error
*/

static bool
best_extension_by_limited_search(JOIN      *join,
                                 table_map remaining_tables,
                                 uint      idx,
                                 double    record_count,
                                 double    read_time,
                                 uint      search_depth,
                                 uint      prune_level)
{
  DBUG_ENTER("best_extension_by_limited_search");

  THD *thd= join->thd;
  if (thd->killed)  // Abort
    DBUG_RETURN(TRUE);

  DBUG_EXECUTE("opt", print_plan(join, idx, read_time, record_count, idx,
                                 "SOFAR:"););

  /* 
     'join' is a partial plan with lower cost than the best plan so far,
     so continue expanding it further with the tables in 'remaining_tables'.
  */
  JOIN_TAB *s;
  double best_record_count= DBL_MAX;
  double best_read_time=    DBL_MAX;

  DBUG_EXECUTE("opt", print_plan(join, idx, record_count, read_time, read_time,
                                "part_plan"););

  /* 
    If we are searching for the execution plan of a materialized semi-join nest
    then allowed_tables contains bits only for the tables from this nest.
  */
  table_map allowed_tables= ~(table_map)0;
  if (join->emb_sjm_nest)
    allowed_tables= join->emb_sjm_nest->sj_inner_tables & ~join->const_table_map;

  for (JOIN_TAB **pos= join->best_ref + idx ; (s= *pos) ; pos++)
  {
    table_map real_table_bit= s->table->map;
    if ((remaining_tables & real_table_bit) && 
        (allowed_tables & real_table_bit) &&
        !(remaining_tables & s->dependent) && 
        (!idx || !check_interleaving_with_nj(s)))
    {
      double current_record_count, current_read_time;
      POSITION *position= join->positions + idx;

      /* Find the best access method from 's' to the current partial plan */
      POSITION loose_scan_pos;
      best_access_path(join, s, remaining_tables, idx, FALSE, record_count, 
                       join->positions + idx, &loose_scan_pos);

      /* Compute the cost of extending the plan with 's' */

      current_record_count= record_count * position->records_read;
      current_read_time=    read_time + position->read_time;

      advance_sj_state(join, remaining_tables, s, idx, &current_record_count,
                       &current_read_time, &loose_scan_pos);

      /* Expand only partial plans with lower cost than the best QEP so far */
      if ((current_read_time +
           current_record_count / (double) TIME_FOR_COMPARE) >= join->best_read)
      {
        DBUG_EXECUTE("opt", print_plan(join, idx+1,
                                       current_record_count,
                                       read_time,
                                       (current_read_time +
                                        current_record_count / 
                                        (double) TIME_FOR_COMPARE),
                                       "prune_by_cost"););
        restore_prev_nj_state(s);
        restore_prev_sj_state(remaining_tables, s, idx);
        continue;
      }

      /*
        Prune some less promising partial plans. This heuristic may miss
        the optimal QEPs, thus it results in a non-exhaustive search.
      */
      if (prune_level == 1)
      {
        if (best_record_count > current_record_count ||
            best_read_time > current_read_time ||
            (idx == join->const_tables &&  // 's' is the first table in the QEP
            s->table == join->sort_by_table))
        {
          if (best_record_count >= current_record_count &&
              best_read_time >= current_read_time &&
              /* TODO: What is the reasoning behind this condition? */
              (!(s->key_dependent & allowed_tables & remaining_tables) ||
               join->positions[idx].records_read < 2.0))
          {
            best_record_count= current_record_count;
            best_read_time=    current_read_time;
          }
        }
        else
        {
          DBUG_EXECUTE("opt", print_plan(join, idx+1,
                                         current_record_count,
                                         read_time,
                                         current_read_time,
                                         "pruned_by_heuristic"););
          restore_prev_nj_state(s);
          restore_prev_sj_state(remaining_tables, s, idx);
          continue;
        }
      }

      if ( (search_depth > 1) && (remaining_tables & ~real_table_bit) & allowed_tables )
      { /* Recursively expand the current partial plan */
        swap_variables(JOIN_TAB*, join->best_ref[idx], *pos);
        if (best_extension_by_limited_search(join,
                                             remaining_tables & ~real_table_bit,
                                             idx + 1,
                                             current_record_count,
                                             current_read_time,
                                             search_depth - 1,
                                             prune_level))
          DBUG_RETURN(TRUE);
        swap_variables(JOIN_TAB*, join->best_ref[idx], *pos);
      }
      else
      { /*
          'join' is either the best partial QEP with 'search_depth' relations,
          or the best complete QEP so far, whichever is smaller.
        */
        current_read_time+= current_record_count / (double) TIME_FOR_COMPARE;
        if (join->sort_by_table &&
            join->sort_by_table !=
            join->positions[join->const_tables].table->table)
          /* We have to make a temp table */
          current_read_time+= current_record_count;
        if ((search_depth == 1) || (current_read_time < join->best_read))
        {
          memcpy((uchar*) join->best_positions, (uchar*) join->positions,
                 sizeof(POSITION) * (idx + 1));
          join->best_read= current_read_time - 0.001;
        }
        DBUG_EXECUTE("opt", print_plan(join, idx+1,
                                       current_record_count,
                                       read_time,
                                       current_read_time,
                                       "full_plan"););
      }
      restore_prev_nj_state(s);
      restore_prev_sj_state(remaining_tables, s, idx);
    }
  }
  DBUG_RETURN(FALSE);
}


/**
  @todo
  - TODO: this function is here only temporarily until 'greedy_search' is
  tested and accepted.

  RETURN VALUES
    FALSE       ok
    TRUE        Fatal error
*/
static bool
find_best(JOIN *join,table_map rest_tables,uint idx,double record_count,
	  double read_time)
{
  DBUG_ENTER("find_best");
  THD *thd= join->thd;
  if (thd->killed)
    DBUG_RETURN(TRUE);
  if (!rest_tables)
  {
    DBUG_PRINT("best",("read_time: %g  record_count: %g",read_time,
		       record_count));

    read_time+=record_count/(double) TIME_FOR_COMPARE;
    if (join->sort_by_table &&
	join->sort_by_table !=
	join->positions[join->const_tables].table->table)
      read_time+=record_count;			// We have to make a temp table
    if (read_time < join->best_read)
    {
      memcpy((uchar*) join->best_positions,(uchar*) join->positions,
	     sizeof(POSITION)*idx);
      join->best_read= read_time - 0.001;
    }
    DBUG_RETURN(FALSE);
  }
  if (read_time+record_count/(double) TIME_FOR_COMPARE >= join->best_read)
    DBUG_RETURN(FALSE);					/* Found better before */

  JOIN_TAB *s;
  double best_record_count=DBL_MAX,best_read_time=DBL_MAX;
  for (JOIN_TAB **pos=join->best_ref+idx ; (s=*pos) ; pos++)
  {
    table_map real_table_bit=s->table->map;
    if ((rest_tables & real_table_bit) && !(rest_tables & s->dependent) &&
        (!idx|| !check_interleaving_with_nj(s)))
    {
      double records, best;
      POSITION loose_scan_pos;
      best_access_path(join, s, rest_tables, idx, FALSE, record_count, 
                       join->positions + idx, &loose_scan_pos);
      records= join->positions[idx].records_read;
      best= join->positions[idx].read_time;
      /*
	Go to the next level only if there hasn't been a better key on
	this level! This will cut down the search for a lot simple cases!
      */
      double current_record_count=record_count*records;
      double current_read_time=read_time+best;
      advance_sj_state(join, rest_tables, s, idx, &current_record_count, 
                       &current_read_time, &loose_scan_pos);

      if (best_record_count > current_record_count ||
	  best_read_time > current_read_time ||
	  (idx == join->const_tables && s->table == join->sort_by_table))
      {
	if (best_record_count >= current_record_count &&
	    best_read_time >= current_read_time &&
	    (!(s->key_dependent & rest_tables) || records < 2.0))
	{
	  best_record_count=current_record_count;
	  best_read_time=current_read_time;
	}
	swap_variables(JOIN_TAB*, join->best_ref[idx], *pos);
	if (find_best(join,rest_tables & ~real_table_bit,idx+1,
                      current_record_count,current_read_time))
          DBUG_RETURN(TRUE);
	swap_variables(JOIN_TAB*, join->best_ref[idx], *pos);
      }
      restore_prev_nj_state(s);
      restore_prev_sj_state(rest_tables, s, idx);
      if (join->select_options & SELECT_STRAIGHT_JOIN)
	break;				// Don't test all combinations
    }
  }
  DBUG_RETURN(FALSE);
}


/**
  Find how much space the prevous read not const tables takes in cache.
*/

void JOIN_TAB::calc_used_field_length(bool max_fl)
{
  uint null_fields,blobs,fields,rec_length;
  Field **f_ptr,*field;
  uint uneven_bit_fields;
  MY_BITMAP *read_set= table->read_set;

  uneven_bit_fields= null_fields= blobs= fields= rec_length=0;
  for (f_ptr=table->field ; (field= *f_ptr) ; f_ptr++)
  {
    if (bitmap_is_set(read_set, field->field_index))
    {
      uint flags=field->flags;
      fields++;
      rec_length+=field->pack_length();
      if (flags & BLOB_FLAG)
	blobs++;
      if (!(flags & NOT_NULL_FLAG))
	null_fields++;
      if (field->type() == MYSQL_TYPE_BIT &&
          ((Field_bit*)field)->bit_len)
        uneven_bit_fields++;
    }
  }
  if (null_fields || uneven_bit_fields)
    rec_length+=(table->s->null_fields+7)/8;
  if (table->maybe_null)
    rec_length+=sizeof(my_bool);
  if (max_fl)
  {
    // TODO: to improve this estimate for max expected length 
    if (blobs)
    {
      uint blob_length=(uint) (table->file->stats.mean_rec_length-
			      (table->s->reclength-rec_length));
      rec_length+=(uint) max(sizeof(void*) * blobs, blob_length);
    }
    max_used_fieldlength= rec_length;
  } 
  else if (table->file->stats.mean_rec_length)           
    set_if_smaller(rec_length, table->file->stats.mean_rec_length);
      
  /*
    TODO: why we don't count here rowid that we might need to store when 
    using DuplicateElimination?
  */
  used_fields=fields;
  used_fieldlength=rec_length;
  used_blobs=blobs;
  used_null_fields= null_fields;
  used_uneven_bit_fields= uneven_bit_fields;
}


/* 
  @brief
  Extract pushdown conditions for a table scan

  @details
  This functions extracts pushdown conditions usable when this table is scanned.
  The conditions are extracted either from WHERE or from ON expressions.
  The conditions are attached to the field cache_select of this table.

  @note 
  Currently the extracted conditions are used only by BNL and BNLH join.
  algorithms.
 
  @retval  0   on success
           1   otherwise
*/ 

int JOIN_TAB::make_scan_filter()
{
  COND *tmp;
  DBUG_ENTER("make_scan_filter");

  Item *cond= is_inner_table_of_outer_join() ?
                *get_first_inner_table()->on_expr_ref : join->conds;

  if (cond &&
      (tmp=make_cond_for_table(cond, join->const_table_map | table->map,
			       table->map, FALSE, TRUE)))
  {
     DBUG_EXECUTE("where",print_where(tmp,"cache", QT_ORDINARY););
     if (!(cache_select=
          (SQL_SELECT*) join->thd->memdup((uchar*) select, sizeof(SQL_SELECT))))
	DBUG_RETURN(1);
     cache_select->cond= tmp;
     cache_select->read_tables=join->const_table_map;
  }
  DBUG_RETURN(0);
}


/**
  @brief
  Check whether hash join algorithm can be used to join this table   

  @details
  This function finds out whether the ref items that have been chosen
  by the planner to access this table can be used for hash join algorithms.
  The answer depends on a certain property of the the fields of the
  joined tables on which the hash join key is built.
  
  @note
  At present the function is supposed to be called only after the function
  get_best_combination has been called.

  @retval TRUE    it's possible to use hash join to join this table
  @retval FALSE   otherwise
*/

bool JOIN_TAB::hash_join_is_possible()
{
  if (type != JT_REF && type != JT_EQ_REF)
    return FALSE;
  if (!is_ref_for_hash_join())
  {
    KEY *keyinfo= table->key_info + ref.key;
    return keyinfo->key_part[0].field->hash_join_is_possible();
  }
  return TRUE;
}


static uint
cache_record_length(JOIN *join,uint idx)
{
  uint length=0;
  JOIN_TAB **pos,**end;

  for (pos=join->best_ref+join->const_tables,end=join->best_ref+idx ;
       pos != end ;
       pos++)
  {
    JOIN_TAB *join_tab= *pos;
    length+= join_tab->get_used_fieldlength();
  }
  return length;
}


/*
  Get the number of different row combinations for subset of partial join

  SYNOPSIS
    prev_record_reads()
      join       The join structure
      idx        Number of tables in the partial join order (i.e. the
                 partial join order is in join->positions[0..idx-1])
      found_ref  Bitmap of tables for which we need to find # of distinct
                 row combinations.

  DESCRIPTION
    Given a partial join order (in join->positions[0..idx-1]) and a subset of
    tables within that join order (specified in found_ref), find out how many
    distinct row combinations of subset tables will be in the result of the
    partial join order.
     
    This is used as follows: Suppose we have a table accessed with a ref-based
    method. The ref access depends on current rows of tables in found_ref.
    We want to count # of different ref accesses. We assume two ref accesses
    will be different if at least one of access parameters is different.
    Example: consider a query

    SELECT * FROM t1, t2, t3 WHERE t1.key=c1 AND t2.key=c2 AND t3.key=t1.field

    and a join order:
      t1,  ref access on t1.key=c1
      t2,  ref access on t2.key=c2       
      t3,  ref access on t3.key=t1.field 
    
    For t1: n_ref_scans = 1, n_distinct_ref_scans = 1
    For t2: n_ref_scans = records_read(t1), n_distinct_ref_scans=1
    For t3: n_ref_scans = records_read(t1)*records_read(t2)
            n_distinct_ref_scans = #records_read(t1)
    
    The reason for having this function (at least the latest version of it)
    is that we need to account for buffering in join execution. 
    
    An edge-case example: if we have a non-first table in join accessed via
    ref(const) or ref(param) where there is a small number of different
    values of param, then the access will likely hit the disk cache and will
    not require any disk seeks.
    
    The proper solution would be to assume an LRU disk cache of some size,
    calculate probability of cache hits, etc. For now we just count
    identical ref accesses as one.

  RETURN 
    Expected number of row combinations
*/

static double
prev_record_reads(JOIN *join, uint idx, table_map found_ref)
{
  double found=1.0;
  POSITION *pos_end= join->positions - 1;
  for (POSITION *pos= join->positions + idx - 1; pos != pos_end; pos--)
  {
    if (pos->table->table->map & found_ref)
    {
      found_ref|= pos->ref_depend_map;
      /* 
        For the case of "t1 LEFT JOIN t2 ON ..." where t2 is a const table 
        with no matching row we will get position[t2].records_read==0. 
        Actually the size of output is one null-complemented row, therefore 
        we will use value of 1 whenever we get records_read==0.

        Note
        - the above case can't occur if inner part of outer join has more 
          than one table: table with no matches will not be marked as const.

        - Ideally we should add 1 to records_read for every possible null-
          complemented row. We're not doing it because: 1. it will require
          non-trivial code and add overhead. 2. The value of records_read
          is an inprecise estimate and adding 1 (or, in the worst case,
          #max_nested_outer_joins=64-1) will not make it any more precise.
      */
      if (pos->records_read)
        found*= pos->records_read;
    }
  }
  return found;
}


JOIN_TAB *first_linear_tab(JOIN *join, bool after_const_tables)
{
  JOIN_TAB *first= join->join_tab;
  if (after_const_tables)
    first+= join->const_tables;
  if (first < join->join_tab + join->top_jtrange_tables)
    return first;
  return NULL; /* All tables were const tables */
}


/*
  A helper function to loop over all join's join_tab in sequential fashion

  DESCRIPTION
    Depending on include_bush_roots parameter, JOIN_TABS that represent
    SJM-scan/lookups are produced or omitted.

    SJM-Bush children are returned right after (or in place of) their container
    join tab (TODO: does anybody depend on this? A: make_join_readinfo() seems
    to.)
*/

JOIN_TAB *next_linear_tab(JOIN* join, JOIN_TAB* tab, bool include_bush_roots)
{
  if (include_bush_roots && tab->bush_children)
    return tab->bush_children->start;

  DBUG_ASSERT(!tab->last_leaf_in_bush || tab->bush_root_tab);
  if (tab->last_leaf_in_bush)
    tab= tab->bush_root_tab;

  if (tab->bush_root_tab)
    return ++tab;

  if (++tab == join->join_tab + join->top_jtrange_tables)
    return NULL;

  if (!include_bush_roots && tab->bush_children)
    tab= tab->bush_children->start;

  return tab;
}


/*
  A helper function to iterate over all join tables in bush-children-first order

  DESCRIPTION
   
  For example, for this join plan

     ot1 ot2  sjm            ot3 
              | +--------+ 
              |          |
              it1  it2  it3 
  
  
  the function will return

    ot1-ot2-it1-it2-it3-sjm-ot3 ...

*/

JOIN_TAB *next_depth_first_tab(JOIN* join, JOIN_TAB* tab)
{
  bool start= FALSE;
  if (tab == NULL)
  {
    /* This means we're starting the enumeration */
    if (join->const_tables == join->top_jtrange_tables)
      return NULL;

    tab= join->join_tab + join->const_tables;
    start= TRUE;
  }
   
  if (tab->last_leaf_in_bush)
    return tab->bush_root_tab;
  
  /* Move to next tab in the array we're traversing*/
  if (!start)
    tab++;
  
  //psergey-remove: check:
  DBUG_ASSERT(join->join_tab_ranges.head()->end == 
              join->join_tab +join->top_jtrange_tables);
  if (tab == join->join_tab +join->top_jtrange_tables)
    return NULL; /* End */

  if (tab->bush_children)
    return tab->bush_children->start;

  return tab;
}


static Item * const null_ptr= NULL;

/*
  Set up join struct according to the picked join order in
  
  SYNOPSIS
    get_best_combination()
      join  The join to process (the picked join order is mainly in
            join->best_positions)

  DESCRIPTION
    Setup join structures according the picked join order
    - finalize semi-join strategy choices (see
        fix_semijoin_strategies_for_picked_join_order)
    - create join->join_tab array and put there the JOIN_TABs in the join order
    - create data structures describing ref access methods.

  NOTE
    In this function we switch from pre-join-optimization JOIN_TABs to
    post-join-optimization JOIN_TABs. This is achieved by copying the entire
    JOIN_TAB objects.
 
  RETURN 
    FALSE  OK
    TRUE   Out of memory
*/

static bool
get_best_combination(JOIN *join)
{
  uint tablenr;
  table_map used_tables;
  JOIN_TAB *join_tab,*j;
  KEYUSE *keyuse;
  uint table_count;
  THD *thd=join->thd;
  DBUG_ENTER("get_best_combination");

  table_count=join->tables;
  if (!(join->join_tab=join_tab=
	(JOIN_TAB*) thd->alloc(sizeof(JOIN_TAB)*table_count)))
    DBUG_RETURN(TRUE);

  join->full_join=0;

  used_tables= OUTER_REF_TABLE_BIT;		// Outer row is already read

  fix_semijoin_strategies_for_picked_join_order(join);
  
  JOIN_TAB_RANGE *root_range;
  if (!(root_range= new JOIN_TAB_RANGE))
    DBUG_RETURN(TRUE);
  root_range->start= join->join_tab;
  /* root_range->end will be set later */
  join->join_tab_ranges.empty();

  if (join->join_tab_ranges.push_back(root_range))
    DBUG_RETURN(TRUE);

  JOIN_TAB *sjm_nest_end= NULL;
  JOIN_TAB *sjm_saved_tab; /* protected by sjm_nest_end */
  LINT_INIT(sjm_saved_tab);

  for (j=join_tab, tablenr=0 ; tablenr < table_count ; tablenr++,j++)
  {
    TABLE *form;
    POSITION *cur_pos= &join->best_positions[tablenr];
    if (cur_pos->sj_strategy == SJ_OPT_MATERIALIZE || 
        cur_pos->sj_strategy == SJ_OPT_MATERIALIZE_SCAN)
    {
      /*
        Ok, we've entered an SJ-Materialization semi-join (note that this can't
        be done recursively, semi-joins are not allowed to be nested).
      */
      /*
        1. Put into main join order a JOIN_TAB that represents a lookup or scan
           in the temptable.
      // TODO: record this join_tab to be processed by 
      // setup_semijoin_elimination? 
      */
      bzero(j, sizeof(JOIN_TAB));
      j->join= join;
      j->table= NULL; //temporary way to tell SJM tables from others.
      j->ref.key = -1;
      j->on_expr_ref= (Item**) &null_ptr;
      j->keys= key_map(1); /* The unique index is always in 'possible keys' in EXPLAIN */


      /*
        2. Proceed with processing SJM nest's join tabs, putting them into the
           sub-order
      */
      SJ_MATERIALIZATION_INFO *sjm= cur_pos->table->emb_sj_nest->sj_mat_info;
      j->records= j->records_read= (ha_rows)(sjm->is_sj_scan? sjm->rows : 1);
      JOIN_TAB *jt;
      JOIN_TAB_RANGE *jt_range;
      if (!(jt= (JOIN_TAB*)join->thd->alloc(sizeof(JOIN_TAB)*sjm->tables)) ||
          !(jt_range= new JOIN_TAB_RANGE))
        DBUG_RETURN(TRUE);
      jt_range->start= jt;
      jt_range->end= jt + sjm->tables;
      join->join_tab_ranges.push_back(jt_range);
      j->bush_children= jt_range;
      sjm_nest_end= jt + sjm->tables;
      sjm_saved_tab= j;
      root_range->end= j+1;

      j= jt;
    }
    
    *j= *join->best_positions[tablenr].table;

    if (sjm_nest_end)
      j->bush_root_tab= sjm_saved_tab;
    else
      root_range->end= j+1;
    form=join->table[tablenr]=j->table;
    used_tables|= form->map;
    form->reginfo.join_tab=j;
    if (!*j->on_expr_ref)
      form->reginfo.not_exists_optimize=0;	// Only with LEFT JOIN
    DBUG_PRINT("info",("type: %d", j->type));
    if (j->type == JT_CONST)
      goto loop_end;					// Handled in make_join_stat..

    j->loosescan_match_tab= NULL;  //non-nulls will be set later
    j->ref.key = -1;
    j->ref.key_parts=0;

    if (j->type == JT_SYSTEM)
      goto loop_end;
    if ( !(keyuse= join->best_positions[tablenr].key) || 
        (join->best_positions[tablenr].sj_strategy == SJ_OPT_LOOSE_SCAN))
    {
      j->type=JT_ALL;
      j->index= join->best_positions[tablenr].loosescan_key;
      if (tablenr != join->const_tables)
	join->full_join=1;
    }
    else if (create_ref_for_key(join, j, keyuse, used_tables))
      DBUG_RETURN(TRUE);                        // Something went wrong
  loop_end:
    j->records_read= (ha_rows)join->best_positions[tablenr].records_read;
    join->map2table[j->table->tablenr]= j;

    // If we've reached the end of sjm nest, switch back to main sequence
    if (j + 1 == sjm_nest_end)
    {
      j->last_leaf_in_bush= TRUE;
      j= sjm_saved_tab;
      sjm_nest_end= NULL;
    }
  }

  join->top_jtrange_tables= join->join_tab_ranges.head()->end - 
                            join->join_tab_ranges.head()->start;

  //for (i=0 ; i < table_count ; i++)
  //  join->map2table[join->join_tab[i].table->tablenr]=join->join_tab+i;
  update_depend_map(join);
  DBUG_RETURN(0);
}

/**
  Create a descriptor of hash join key to access a given join table  

  @param   join         join which the join table belongs to
  @param   join_tab     the join table to access
  @param   org_keyuse   beginning of the key uses to join this table
  @param   used_tables  bitmap of the previous tables

  @details
  This function first finds key uses that can be utilized by the hash join
  algorithm to join join_tab to the previous tables marked in the bitmap 
  used_tables.  The tested key uses are taken from the array of all key uses
  for 'join' starting from the position org_keyuse. After all interesting key
  uses have been found the function builds a descriptor of the corresponding
  key that is used by the hash join algorithm would it be chosen to join
  the table join_tab.

  @retval  FALSE  the descriptor for a hash join key is successfully created
  @retval  TRUE   otherwise
*/

static bool create_hj_key_for_table(JOIN *join, JOIN_TAB *join_tab,
                                    KEYUSE *org_keyuse, table_map used_tables)
{
  KEY *keyinfo;
  KEY_PART_INFO *key_part_info;
  KEYUSE *keyuse= org_keyuse;
  uint key_parts= 0;
  THD  *thd= join->thd;
  TABLE *table= join_tab->table;
  bool first_keyuse= TRUE;
  DBUG_ENTER("create_hj_key_for_table");

  do
  {
    if (!(~used_tables & keyuse->used_tables) &&
	(first_keyuse || keyuse->keypart != (keyuse-1)->keypart))
      key_parts++;
    first_keyuse= FALSE;
    keyuse++;
  } while (keyuse->table == table && keyuse->is_for_hash_join());
  if (!key_parts)
    DBUG_RETURN(TRUE);
  /* This memory is allocated only once for the joined table join_tab */
  if (!(keyinfo= (KEY *) thd->alloc(sizeof(KEY))) ||
      !(key_part_info = (KEY_PART_INFO *) thd->alloc(sizeof(KEY_PART_INFO)*
                                                     key_parts)))
    DBUG_RETURN(TRUE);
  keyinfo->usable_key_parts= keyinfo->key_parts = key_parts;
  keyinfo->key_part= key_part_info;
  keyinfo->key_length=0;
  keyinfo->algorithm= HA_KEY_ALG_UNDEF;
  keyinfo->flags= HA_GENERATED_KEY;
  keyinfo->name= (char *) "$hj";
  keyinfo->rec_per_key= (ulong*) thd->calloc(sizeof(ulong)*key_parts);
  if (!keyinfo->rec_per_key)
    DBUG_RETURN(TRUE);
  keyinfo->key_part= key_part_info;

  first_keyuse= TRUE;
  keyuse= org_keyuse;
  do
  {
    if (!(~used_tables & keyuse->used_tables) &&
        (first_keyuse || keyuse->keypart != (keyuse-1)->keypart))
    {
      Field *field= table->field[keyuse->keypart];
      table->create_key_part_by_field(keyinfo, key_part_info, field);
      first_keyuse= FALSE;
      key_part_info++;
    }
    keyuse++;
  } while (keyuse->table == table && keyuse->is_for_hash_join());

  join_tab->hj_key= keyinfo;

  DBUG_RETURN(FALSE);
}


static bool create_ref_for_key(JOIN *join, JOIN_TAB *j,
                               KEYUSE *org_keyuse, table_map used_tables)
{
  uint keyparts, length, key;
  TABLE *table;
  KEY *keyinfo;
  KEYUSE *keyuse= org_keyuse;
  bool ftkey= (keyuse->keypart == FT_KEYPART);
  THD *thd= join->thd;
  DBUG_ENTER("create_ref_for_key");

  /*  Use best key from find_best */
  table= j->table;
  key= keyuse->key;
  if (!is_hash_join_key_no(key))
    keyinfo= table->key_info+key;
  else
  {
    if (create_hj_key_for_table(join, j, org_keyuse, used_tables))
      DBUG_RETURN(TRUE);
    keyinfo= j->hj_key;
  }

  if (ftkey)
  {
    Item_func_match *ifm=(Item_func_match *)keyuse->val;

    length=0;
    keyparts=1;
    ifm->join_key=1;
  }
  else
  {
    keyparts=length=0;
    uint found_part_ref_or_null= 0;
    /*
      Calculate length for the used key
      Stop if there is a missing key part or when we find second key_part
      with KEY_OPTIMIZE_REF_OR_NULL
    */
    do
    {
      if (!(~used_tables & keyuse->used_tables))
      {
        if ((is_hash_join_key_no(key) && 
            (keyparts == 0 || keyuse->keypart != (keyuse-1)->keypart)) ||
            (!is_hash_join_key_no(key) && keyparts == keyuse->keypart &&
             !(found_part_ref_or_null & keyuse->optimize)))
        {
           length+= keyinfo->key_part[keyparts].store_length;
           keyparts++;
           found_part_ref_or_null|= keyuse->optimize & ~KEY_OPTIMIZE_EQ;
        }
      }
      keyuse++;
    } while (keyuse->table == table && keyuse->key == key);
  } /* not ftkey */

  /* set up fieldref */
  j->ref.key_parts= keyparts;
  j->ref.key_length= length;
  j->ref.key= (int) key;
  if (!(j->ref.key_buff= (uchar*) thd->calloc(ALIGN_SIZE(length)*2)) ||
      !(j->ref.key_copy= (store_key**) thd->alloc((sizeof(store_key*) *
						          (keyparts+1)))) ||
      !(j->ref.items=(Item**) thd->alloc(sizeof(Item*)*keyparts)) ||
      !(j->ref.cond_guards= (bool**) thd->alloc(sizeof(uint*)*keyparts)))
  {
    DBUG_RETURN(TRUE);
  }
  j->ref.key_buff2=j->ref.key_buff+ALIGN_SIZE(length);
  j->ref.key_err=1;
  j->ref.has_record= FALSE;
  j->ref.null_rejecting= 0;
  j->ref.disable_cache= FALSE;
  keyuse=org_keyuse;

  store_key **ref_key= j->ref.key_copy;
  uchar *key_buff=j->ref.key_buff, *null_ref_key= 0;
  bool keyuse_uses_no_tables= TRUE;
  if (ftkey)
  {
    j->ref.items[0]=((Item_func*)(keyuse->val))->key_item();
    /* Predicates pushed down into subquery can't be used FT access */
    j->ref.cond_guards[0]= NULL;
    if (keyuse->used_tables)
      DBUG_RETURN(TRUE);                        // not supported yet. SerG

    j->type=JT_FT;
  }
  else
  {
    uint i;
    for (i=0 ; i < keyparts ; keyuse++,i++)
    {
      while (((~used_tables) & keyuse->used_tables) || 
	     (keyuse->keypart != 
              (is_hash_join_key_no(key) ?
                 keyinfo->key_part[i].field->field_index : i))) 
	 keyuse++;                              	/* Skip other parts */ 

      uint maybe_null= test(keyinfo->key_part[i].null_bit);
      j->ref.items[i]=keyuse->val;		// Save for cond removal
      j->ref.cond_guards[i]= keyuse->cond_guard;
      if (keyuse->null_rejecting) 
        j->ref.null_rejecting |= 1 << i;
      keyuse_uses_no_tables= keyuse_uses_no_tables && !keyuse->used_tables;
      if (!keyuse->used_tables &&
	  !(join->select_options & SELECT_DESCRIBE))
      {					// Compare against constant
	store_key_item tmp(thd, 
                           keyinfo->key_part[i].field,
                           key_buff + maybe_null,
                           maybe_null ?  key_buff : 0,
                           keyinfo->key_part[i].length,
                           keyuse->val,
                           FALSE);
	if (thd->is_fatal_error)
	  DBUG_RETURN(TRUE);
	tmp.copy();
      }
      else
	*ref_key++= get_store_key(thd,
				  keyuse,join->const_table_map,
				  &keyinfo->key_part[i],
				  key_buff, maybe_null);
      /*
	Remember if we are going to use REF_OR_NULL
	But only if field _really_ can be null i.e. we force JT_REF
	instead of JT_REF_OR_NULL in case if field can't be null
      */
      if ((keyuse->optimize & KEY_OPTIMIZE_REF_OR_NULL) && maybe_null)
	null_ref_key= key_buff;
      key_buff+= keyinfo->key_part[i].store_length;
    }
  } /* not ftkey */
  *ref_key=0;				// end_marker
  if (j->type == JT_FT)
    DBUG_RETURN(0);
  if (j->type == JT_CONST)
    j->table->const_table= 1;
  else if (((keyinfo->flags & (HA_NOSAME | HA_NULL_PART_KEY)) != HA_NOSAME) ||
	   keyparts != keyinfo->key_parts || null_ref_key)
  {
    /* Must read with repeat */
    j->type= null_ref_key ? JT_REF_OR_NULL : JT_REF;
    j->ref.null_ref_key= null_ref_key;
  }
  else if (keyuse_uses_no_tables)
  {
    /*
      This happen if we are using a constant expression in the ON part
      of an LEFT JOIN.
      SELECT * FROM a LEFT JOIN b ON b.key=30
      Here we should not mark the table as a 'const' as a field may
      have a 'normal' value or a NULL value.
    */
    j->type=JT_CONST;
  }
  else
    j->type=JT_EQ_REF;
  DBUG_RETURN(0);
}



static store_key *
get_store_key(THD *thd, KEYUSE *keyuse, table_map used_tables,
	      KEY_PART_INFO *key_part, uchar *key_buff, uint maybe_null)
{
  if (!((~used_tables) & keyuse->used_tables))		// if const item
  {
    return new store_key_const_item(thd,
				    key_part->field,
				    key_buff + maybe_null,
				    maybe_null ? key_buff : 0,
				    key_part->length,
				    keyuse->val);
  }
  else if (keyuse->val->type() == Item::FIELD_ITEM ||
           (keyuse->val->type() == Item::REF_ITEM &&
            ((Item_ref*)keyuse->val)->ref_type() == Item_ref::OUTER_REF &&
            (*(Item_ref**)((Item_ref*)keyuse->val)->ref)->ref_type() ==
             Item_ref::DIRECT_REF && 
            keyuse->val->real_item()->type() == Item::FIELD_ITEM))
    return new store_key_field(thd,
			       key_part->field,
			       key_buff + maybe_null,
			       maybe_null ? key_buff : 0,
			       key_part->length,
			       ((Item_field*) keyuse->val->real_item())->field,
			       keyuse->val->full_name());
  return new store_key_item(thd,
			    key_part->field,
			    key_buff + maybe_null,
			    maybe_null ? key_buff : 0,
			    key_part->length,
			    keyuse->val, FALSE);
}

/**
  This function is only called for const items on fields which are keys.

  @return
    returns 1 if there was some conversion made when the field was stored.
*/

bool
store_val_in_field(Field *field, Item *item, enum_check_fields check_flag)
{
  bool error;
  TABLE *table= field->table;
  THD *thd= table->in_use;
  ha_rows cuted_fields=thd->cuted_fields;
  my_bitmap_map *old_map= dbug_tmp_use_all_columns(table,
                                                   table->write_set);

  /*
    we should restore old value of count_cuted_fields because
    store_val_in_field can be called from mysql_insert 
    with select_insert, which make count_cuted_fields= 1
   */
  enum_check_fields old_count_cuted_fields= thd->count_cuted_fields;
  thd->count_cuted_fields= check_flag;
  error= item->save_in_field(field, 1);
  thd->count_cuted_fields= old_count_cuted_fields;
  dbug_tmp_restore_column_map(table->write_set, old_map);
  return error || cuted_fields != thd->cuted_fields;
}


/**
  @details Initialize a JOIN as a query execution plan
  that accesses a single table via a table scan.

  @param  parent      contains JOIN_TAB and TABLE object buffers for this join
  @param  tmp_table   temporary table

  @retval FALSE       success
  @retval TRUE        error occurred
*/
bool
JOIN::make_simple_join(JOIN *parent, TABLE *temp_table)
{
  DBUG_ENTER("JOIN::make_simple_join");

  /*
    Reuse TABLE * and JOIN_TAB if already allocated by a previous call
    to this function through JOIN::exec (may happen for sub-queries).
  */
  if (!parent->join_tab_reexec &&
      !(parent->join_tab_reexec= (JOIN_TAB*) thd->alloc(sizeof(JOIN_TAB))))
    DBUG_RETURN(TRUE);                        /* purecov: inspected */

  join_tab= parent->join_tab_reexec;
  table= &parent->table_reexec[0]; parent->table_reexec[0]= temp_table;
  tables= top_jtrange_tables= 1;

  const_tables= 0;
  const_table_map= 0;
  eliminated_tables= 0;
  tmp_table_param.field_count= tmp_table_param.sum_func_count=
    tmp_table_param.func_count= 0;
  /*
    We need to destruct the copy_field (allocated in create_tmp_table())
    before setting it to 0 if the join is not "reusable".
  */
  if (!tmp_join || tmp_join != this) 
    tmp_table_param.cleanup(); 
  tmp_table_param.copy_field= tmp_table_param.copy_field_end=0;
  first_record= sort_and_group=0;
  send_records= (ha_rows) 0;
  group= 0;
  row_limit= unit->select_limit_cnt;
  do_send_rows= row_limit ? 1 : 0;

  join_tab->use_join_cache= FALSE;
  join_tab->cache=0;			        /* No caching */
  join_tab->table=temp_table;
  join_tab->cache_select= 0;
  join_tab->select=0;
  join_tab->select_cond= 0;                     // Avoid valgrind warning
  join_tab->set_select_cond(NULL, __LINE__);
  join_tab->quick=0;
  join_tab->type= JT_ALL;			/* Map through all records */
  join_tab->keys.init();
  join_tab->keys.set_all();                     /* test everything in quick */
  join_tab->info=0;
  join_tab->on_expr_ref=0;
  join_tab->last_inner= 0;
  join_tab->first_unmatched= 0;
  join_tab->ref.key = -1;
  join_tab->not_used_in_distinct=0;
  join_tab->read_first_record= join_init_read_record;
  join_tab->join= this;
  join_tab->ref.key_parts= 0;
  join_tab->keep_current_rowid= FALSE;
  join_tab->flush_weedout_table= join_tab->check_weed_out_table= NULL;
  join_tab->do_firstmatch= NULL;
  join_tab->loosescan_match_tab= NULL;
  join_tab->emb_sj_nest= NULL;
  join_tab->pre_idx_push_select_cond= NULL;
  join_tab->bush_root_tab= NULL;
  join_tab->bush_children= NULL;
  join_tab->last_leaf_in_bush= FALSE;
  bzero((char*) &join_tab->read_record,sizeof(join_tab->read_record));
  temp_table->status=0;
  temp_table->null_row=0;
  DBUG_RETURN(FALSE);
}


inline void add_cond_and_fix(Item **e1, Item *e2)
{
  if (*e1)
  {
    if (!e2)
      return;
    Item *res;
    if ((res= new Item_cond_and(*e1, e2)))
    {
      *e1= res;
      res->quick_fix_field();
      res->update_used_tables();
    }
  }
  else
    *e1= e2;
}


/**
  Add to join_tab->select_cond[i] "table.field IS NOT NULL" conditions
  we've inferred from ref/eq_ref access performed.

    This function is a part of "Early NULL-values filtering for ref access"
    optimization.

    Example of this optimization:
    For query SELECT * FROM t1,t2 WHERE t2.key=t1.field @n
    and plan " any-access(t1), ref(t2.key=t1.field) " @n
    add "t1.field IS NOT NULL" to t1's table condition. @n

    Description of the optimization:
    
      We look through equalities choosen to perform ref/eq_ref access,
      pick equalities that have form "tbl.part_of_key = othertbl.field"
      (where othertbl is a non-const table and othertbl.field may be NULL)
      and add them to conditions on correspoding tables (othertbl in this
      example).

      Exception from that is the case when referred_tab->join != join.
      I.e. don't add NOT NULL constraints from any embedded subquery.
      Consider this query:
      @code
      SELECT A.f2 FROM t1 LEFT JOIN t2 A ON A.f2 = f1
      WHERE A.f3=(SELECT MIN(f3) FROM  t2 C WHERE A.f4 = C.f4) OR A.f3 IS NULL;
      @endocde
      Here condition A.f3 IS NOT NULL is going to be added to the WHERE
      condition of the embedding query.
      Another example:
      SELECT * FROM t10, t11 WHERE (t10.a < 10 OR t10.a IS NULL)
      AND t11.b <=> t10.b AND (t11.a = (SELECT MAX(a) FROM t12
      WHERE t12.b = t10.a ));
      Here condition t10.a IS NOT NULL is going to be added.
      In both cases addition of NOT NULL condition will erroneously reject
      some rows of the result set.
      referred_tab->join != join constraint would disallow such additions.

      This optimization doesn't affect the choices that ref, range, or join
      optimizer make. This was intentional because this was added after 4.1
      was GA.
      
    Implementation overview
      1. update_ref_and_keys() accumulates info about null-rejecting
         predicates in in KEY_FIELD::null_rejecting
      1.1 add_key_part saves these to KEYUSE.
      2. create_ref_for_key copies them to TABLE_REF.
      3. add_not_null_conds adds "x IS NOT NULL" to join_tab->select_cond of
         appropiate JOIN_TAB members.
*/

static void add_not_null_conds(JOIN *join)
{
  DBUG_ENTER("add_not_null_conds");
  
  for (JOIN_TAB *tab= first_linear_tab(join, TRUE); 
       tab; 
       tab= next_linear_tab(join, tab, TRUE))
  {
    if (tab->type == JT_REF || tab->type == JT_EQ_REF || 
        tab->type == JT_REF_OR_NULL)
    {
      for (uint keypart= 0; keypart < tab->ref.key_parts; keypart++)
      {
        if (tab->ref.null_rejecting & (1 << keypart))
        {
          Item *item= tab->ref.items[keypart];
          Item *notnull;
          Item *real= item->real_item();
          DBUG_ASSERT(real->type() == Item::FIELD_ITEM);
          Item_field *not_null_item= (Item_field*)real;
          JOIN_TAB *referred_tab= not_null_item->field->table->reginfo.join_tab;
          /*
            For UPDATE queries such as:
            UPDATE t1 SET t1.f2=(SELECT MAX(t2.f4) FROM t2 WHERE t2.f3=t1.f1);
            not_null_item is the t1.f1, but it's referred_tab is 0.
          */
          if (!referred_tab || referred_tab->join != join)
            continue;
          if (!(notnull= new Item_func_isnotnull(not_null_item)))
            DBUG_VOID_RETURN;
          /*
            We need to do full fix_fields() call here in order to have correct
            notnull->const_item(). This is needed e.g. by test_quick_select 
            when it is called from make_join_select after this function is 
            called.
          */
          if (notnull->fix_fields(join->thd, &notnull))
            DBUG_VOID_RETURN;
          DBUG_EXECUTE("where",print_where(notnull,
                                           referred_tab->table->alias.c_ptr(),
                                           QT_ORDINARY););
          if (!tab->first_inner)
	  {
            COND *new_cond= referred_tab->select_cond;
            add_cond_and_fix(&new_cond, notnull);
            referred_tab->set_select_cond(new_cond, __LINE__);
          }
          else
            add_cond_and_fix(tab->first_inner->on_expr_ref, notnull);
        }
      }
    }
  }
  DBUG_VOID_RETURN;
}

/**
  Build a predicate guarded by match variables for embedding outer joins.
  The function recursively adds guards for predicate cond
  assending from tab to the first inner table  next embedding
  nested outer join and so on until it reaches root_tab
  (root_tab can be 0).

  @param tab       the first inner table for most nested outer join
  @param cond      the predicate to be guarded (must be set)
  @param root_tab  the first inner table to stop

  @return
    -  pointer to the guarded predicate, if success
    -  0, otherwise
*/

static COND*
add_found_match_trig_cond(JOIN_TAB *tab, COND *cond, JOIN_TAB *root_tab)
{
  COND *tmp;
  DBUG_ASSERT(cond != 0);
  if (tab == root_tab)
    return cond;
  if ((tmp= add_found_match_trig_cond(tab->first_upper, cond, root_tab)))
    tmp= new Item_func_trig_cond(tmp, &tab->found);
  if (tmp)
  {
    tmp->quick_fix_field();
    tmp->update_used_tables();
  }
  return tmp;
}


/**
  Fill in outer join related info for the execution plan structure.

    For each outer join operation left after simplification of the
    original query the function set up the following pointers in the linear
    structure join->join_tab representing the selected execution plan.
    The first inner table t0 for the operation is set to refer to the last
    inner table tk through the field t0->last_inner.
    Any inner table ti for the operation are set to refer to the first
    inner table ti->first_inner.
    The first inner table t0 for the operation is set to refer to the
    first inner table of the embedding outer join operation, if there is any,
    through the field t0->first_upper.
    The on expression for the outer join operation is attached to the
    corresponding first inner table through the field t0->on_expr_ref.
    Here ti are structures of the JOIN_TAB type.

  EXAMPLE. For the query: 
  @code
        SELECT * FROM t1
                      LEFT JOIN
                      (t2, t3 LEFT JOIN t4 ON t3.a=t4.a)
                      ON (t1.a=t2.a AND t1.b=t3.b)
          WHERE t1.c > 5,
  @endcode

    given the execution plan with the table order t1,t2,t3,t4
    is selected, the following references will be set;
    t4->last_inner=[t4], t4->first_inner=[t4], t4->first_upper=[t2]
    t2->last_inner=[t4], t2->first_inner=t3->first_inner=[t2],
    on expression (t1.a=t2.a AND t1.b=t3.b) will be attached to 
    *t2->on_expr_ref, while t3.a=t4.a will be attached to *t4->on_expr_ref.

  @param join   reference to the info fully describing the query

  @note
    The function assumes that the simplification procedure has been
    already applied to the join query (see simplify_joins).
    This function can be called only after the execution plan
    has been chosen.
*/
static void
make_outerjoin_info(JOIN *join)
{
  DBUG_ENTER("make_outerjoin_info");
  bool top= TRUE;
  List_iterator<JOIN_TAB_RANGE> it(join->join_tab_ranges);
  JOIN_TAB_RANGE *jt_range;

  while ((jt_range= it++))
  {
    for (JOIN_TAB *tab=jt_range->start + (top ? join->const_tables : 0);
         tab != jt_range->end; tab++)
    {
      TABLE *table=tab->table;
      /* 
        psergey: The following is probably incorrect, fix it when we get 
        semi+outer joins processing to work: 
      */
      if (!table)
        continue;
      TABLE_LIST *tbl= table->pos_in_table_list;
      TABLE_LIST *embedding= tbl->embedding;

      if (tbl->outer_join)
      {
        /* 
          Table tab is the only one inner table for outer join.
          (Like table t4 for the table reference t3 LEFT JOIN t4 ON t3.a=t4.a
          is in the query above.)
        */
        tab->last_inner= tab->first_inner= tab;
        tab->on_expr_ref= &tbl->on_expr;
        tab->cond_equal= tbl->cond_equal;
        if (embedding)
          tab->first_upper= embedding->nested_join->first_nested;
      }    
      for ( ; embedding ; embedding= embedding->embedding)
      {
        /* Ignore sj-nests: */
        if (!embedding->on_expr)
          continue;
        NESTED_JOIN *nested_join= embedding->nested_join;
        if (!nested_join->counter)
        {
          /* 
            Table tab is the first inner table for nested_join.
            Save reference to it in the nested join structure.
          */ 
          nested_join->first_nested= tab;
          tab->on_expr_ref= &embedding->on_expr;
          tab->cond_equal= tbl->cond_equal;
          if (embedding->embedding)
            tab->first_upper= embedding->embedding->nested_join->first_nested;
        }
        if (!tab->first_inner)  
          tab->first_inner= nested_join->first_nested;
        if (tab->table->reginfo.not_exists_optimize)
          tab->first_inner->table->reginfo.not_exists_optimize= 1;         
        if (++nested_join->counter < nested_join->n_tables)
          break;
        /* Table tab is the last inner table for nested join. */
        nested_join->first_nested->last_inner= tab;
        if (tab->first_inner->table->reginfo.not_exists_optimize)
        {
          for (JOIN_TAB *join_tab= tab->first_inner; join_tab <= tab; join_tab++)
            join_tab->table->reginfo.not_exists_optimize= 1;
        } 
      }
    }
    top= FALSE;
  }
  DBUG_VOID_RETURN;
}


static bool
make_join_select(JOIN *join,SQL_SELECT *select,COND *cond)
{
  THD *thd= join->thd;
  DBUG_ENTER("make_join_select");
  if (select)
  {
    add_not_null_conds(join);
    table_map used_tables;
    /*
      Step #1: Extract constant condition
       - Extract and check the constant part of the WHERE 
       - Extract constant parts of ON expressions from outer 
         joins and attach them appropriately.
    */
    if (cond)                /* Because of QUICK_GROUP_MIN_MAX_SELECT */
    {                        /* there may be a select without a cond. */    
      if (join->tables > 1)
        cond->update_used_tables();		// Tablenr may have changed
      if (join->const_tables == join->tables &&
	  thd->lex->current_select->master_unit() ==
	  &thd->lex->unit)		// not upper level SELECT
        join->const_table_map|=RAND_TABLE_BIT;

      /*
        Extract expressions that depend on constant tables
        1. Const part of the join's WHERE clause can be checked immediately
           and if it is not satisfied then the join has empty result
        2. Constant parts of outer joins' ON expressions must be attached 
           there inside the triggers.
      */
      {						// Check const tables
        COND *const_cond=
	  make_cond_for_table(cond,
                              join->const_table_map,
                              (table_map) 0, TRUE, FALSE);
        /* Add conditions added by add_not_null_conds(). */
        for (uint i= 0 ; i < join->const_tables ; i++)
          add_cond_and_fix(&const_cond, join->join_tab[i].select_cond);

        DBUG_EXECUTE("where",print_where(const_cond,"constants", QT_ORDINARY););
        for (JOIN_TAB *tab= first_linear_tab(join, TRUE); 
             tab; 
             tab= next_linear_tab(join, tab, FALSE))
        {
          if (*tab->on_expr_ref)
          {
            JOIN_TAB *cond_tab= tab->first_inner;
            COND *tmp= make_cond_for_table(*tab->on_expr_ref,
                                           join->const_table_map,
					   (table_map) 0, FALSE, FALSE);
            if (!tmp)
              continue;
            tmp= new Item_func_trig_cond(tmp, &cond_tab->not_null_compl);
            if (!tmp)
              DBUG_RETURN(1);
            tmp->quick_fix_field();
            COND *new_cond= !cond_tab->select_cond ? tmp :
              new Item_cond_and(cond_tab->select_cond, tmp);
            cond_tab->set_select_cond(new_cond, __LINE__);
            if (!cond_tab->select_cond)
	      DBUG_RETURN(1);
            cond_tab->select_cond->update_used_tables();
            cond_tab->select_cond->quick_fix_field();
          }       
        }
        if (const_cond && !const_cond->val_int())
        {
	  DBUG_PRINT("info",("Found impossible WHERE condition"));
	  DBUG_RETURN(1);	 // Impossible const condition
        }
      }
    }

    /*
      Step #2: Extract WHERE/ON parts
    */
    table_map save_used_tables= 0;
    used_tables=((select->const_tables=join->const_table_map) |
		 OUTER_REF_TABLE_BIT | RAND_TABLE_BIT);
    JOIN_TAB *tab;
    table_map current_map;
    uint i= join->const_tables;
    for (tab= next_depth_first_tab(join, NULL); tab; 
         tab= next_depth_first_tab(join, tab), i++)
    {
      bool is_hj;
      /*
        first_inner is the X in queries like:
        SELECT * FROM t1 LEFT OUTER JOIN (t2 JOIN t3) ON X
      */
      JOIN_TAB *first_inner_tab= tab->first_inner;

      if (tab->table)
        current_map= tab->table->map;
      else
        current_map= tab->bush_children->start->emb_sj_nest->sj_inner_tables;

      bool use_quick_range=0;
      COND *tmp;

      /* 
        Tables that are within SJ-Materialization nests cannot have their
        conditions referring to preceding non-const tables.
         - If we're looking at the first SJM table, reset used_tables
           to refer to only allowed tables
      */
      if (tab->emb_sj_nest && tab->emb_sj_nest->sj_mat_info && 
          tab->emb_sj_nest->sj_mat_info->is_used &&
          !(used_tables & tab->emb_sj_nest->sj_inner_tables))
      {
        save_used_tables= used_tables;
        used_tables= join->const_table_map | OUTER_REF_TABLE_BIT | 
                     RAND_TABLE_BIT;
      }

      /*
	Following force including random expression in last table condition.
	It solve problem with select like SELECT * FROM t1 WHERE rand() > 0.5
      */
      if (i == join->tables-1)
	current_map|= OUTER_REF_TABLE_BIT | RAND_TABLE_BIT;
      used_tables|=current_map;

      if (tab->type == JT_REF && tab->quick &&
	  (((uint) tab->ref.key == tab->quick->index &&
	    tab->ref.key_length < tab->quick->max_used_key_length) ||
	    tab->table->intersect_keys.is_set(tab->ref.key)))
      {
	/* Range uses longer key;  Use this instead of ref on key */
	tab->type=JT_ALL;
	use_quick_range=1;
	tab->use_quick=1;
        tab->ref.key= -1;
	tab->ref.key_parts=0;		// Don't use ref key.
	join->best_positions[i].records_read= rows2double(tab->quick->records);
        /* 
          We will use join cache here : prevent sorting of the first
          table only and sort at the end.
        */
        if (i != join->const_tables && join->tables > join->const_tables + 1)
          join->full_join= 1;
      }

      tmp= NULL;

      if (cond)
      {
        if (tab->bush_children)
        {
          // Reached the materialization tab
          tmp= make_cond_after_sjm(cond, cond, save_used_tables, used_tables);
          used_tables= save_used_tables | used_tables;
          save_used_tables= 0;
        }
        else
          tmp= make_cond_for_table(cond, used_tables, current_map, FALSE, FALSE);

        /* Add conditions added by add_not_null_conds(). */
        if (tab->select_cond)
          add_cond_and_fix(&tmp, tab->select_cond);
      }


      is_hj= (tab->type == JT_REF || tab->type == JT_EQ_REF) &&
             (join->allowed_join_cache_types & JOIN_CACHE_HASHED_BIT) &&
	     ((join->max_allowed_join_cache_level+1)/2 == 2 ||
              ((join->max_allowed_join_cache_level+1)/2 > 2 &&
	       is_hash_join_key_no(tab->ref.key))) &&
              (!tab->emb_sj_nest ||                     
               join->allowed_semijoin_with_cache) && 
              (!(tab->table->map & join->outer_join) ||
               join->allowed_outer_join_with_cache);

      if (cond && !tmp && tab->quick)
      {						// Outer join
        if (tab->type != JT_ALL && !is_hj)
        {
          /*
            Don't use the quick method
            We come here in the case where we have 'key=constant' and
            the test is removed by make_cond_for_table()
          */
          delete tab->quick;
          tab->quick= 0;
        }
        else
        {
          /*
            Hack to handle the case where we only refer to a table
            in the ON part of an OUTER JOIN. In this case we want the code
            below to check if we should use 'quick' instead.
          */
          DBUG_PRINT("info", ("Item_int"));
          tmp= new Item_int((longlong) 1,1);	// Always true
        }

      }
      if (tmp || !cond || tab->type == JT_REF || tab->type == JT_REF_OR_NULL ||
          tab->type == JT_EQ_REF || first_inner_tab)
      {
        DBUG_EXECUTE("where",print_where(tmp, 
                                         tab->table? tab->table->alias.c_ptr() :"sjm-nest",
                                         QT_ORDINARY););
	SQL_SELECT *sel= tab->select= ((SQL_SELECT*)
                                       thd->memdup((uchar*) select,
                                                   sizeof(*select)));
	if (!sel)
	  DBUG_RETURN(1);			// End of memory
        /*
          If tab is an inner table of an outer join operation,
          add a match guard to the pushed down predicate.
          The guard will turn the predicate on only after
          the first match for outer tables is encountered.
	*/        
        if (cond && tmp)
        {
          /*
            Because of QUICK_GROUP_MIN_MAX_SELECT there may be a select without
            a cond, so neutralize the hack above.
          */
          if (!(tmp= add_found_match_trig_cond(first_inner_tab, tmp, 0)))
            DBUG_RETURN(1);
          sel->cond= tmp;
          tab->set_select_cond(tmp, __LINE__);
          /* Push condition to storage engine if this is enabled
             and the condition is not guarded */
          if (tab->table)
          {
            tab->table->file->pushed_cond= NULL;
            if (thd->variables.engine_condition_pushdown && !first_inner_tab)
            {
              COND *push_cond= 
              make_cond_for_table(tmp, current_map, current_map, FALSE, FALSE);
              if (push_cond)
              {
                /* Push condition to handler */
                if (!tab->table->file->cond_push(push_cond))
                  tab->table->file->pushed_cond= push_cond;
              }
            }
          }
        }
        else
        {
          sel->cond= NULL;
          tab->set_select_cond(NULL, __LINE__);
        }

	sel->head=tab->table;
        DBUG_EXECUTE("where",
                     print_where(tmp,tab->table->alias.c_ptr(),
                                 QT_ORDINARY););
	if (tab->quick)
	{
	  /* Use quick key read if it's a constant and it's not used
	     with key reading */
	  if ((tab->needed_reg.is_clear_all() && tab->type != JT_EQ_REF
	       && tab->type != JT_FT &&
               (tab->type != JT_REF ||
                (uint) tab->ref.key == tab->quick->index)) || is_hj)
	  {
	    sel->quick=tab->quick;		// Use value from get_quick_...
	    sel->quick_keys.clear_all();
	    sel->needed_reg.clear_all();
	  }
	  else
	  {
	    delete tab->quick;
	  }
	  tab->quick=0;
	}
	uint ref_key= sel->head? (uint) sel->head->reginfo.join_tab->ref.key+1 : 0;
	if (i == join->const_tables && ref_key)
	{
	  if (!tab->const_keys.is_clear_all() &&
              tab->table->reginfo.impossible_range)
	    DBUG_RETURN(1);
	}
	else if (tab->type == JT_ALL && ! use_quick_range)
	{
	  if (!tab->const_keys.is_clear_all() &&
	      tab->table->reginfo.impossible_range)
	    DBUG_RETURN(1);				// Impossible range
	  /*
	    We plan to scan all rows.
	    Check again if we should use an index.
	    We could have used an column from a previous table in
	    the index if we are using limit and this is the first table
	  */

	  if (!tab->table->is_filled_at_execution() &&
              ((cond && (!tab->keys.is_subset(tab->const_keys) && i > 0)) ||
               (!tab->const_keys.is_clear_all() && i == join->const_tables &&
                join->unit->select_limit_cnt <
                join->best_positions[i].records_read &&
                !(join->select_options & OPTION_FOUND_ROWS))))
	  {
	    /* Join with outer join condition */
	    COND *orig_cond=sel->cond;
	    sel->cond= and_conds(sel->cond, *tab->on_expr_ref);

	    /*
              We can't call sel->cond->fix_fields,
              as it will break tab->on_expr if it's AND condition
              (fix_fields currently removes extra AND/OR levels).
              Yet attributes of the just built condition are not needed.
              Thus we call sel->cond->quick_fix_field for safety.
	    */
	    if (sel->cond && !sel->cond->fixed)
	      sel->cond->quick_fix_field();

	    if (sel->test_quick_select(thd, tab->keys,
				       (used_tables & ~ current_map) | OUTER_REF_TABLE_BIT,
				       (join->select_options &
					OPTION_FOUND_ROWS ?
					HA_POS_ERROR :
					join->unit->select_limit_cnt), 0,
                                        FALSE) < 0)
            {
	      /*
		Before reporting "Impossible WHERE" for the whole query
		we have to check isn't it only "impossible ON" instead
	      */
              sel->cond=orig_cond;
              if (!*tab->on_expr_ref ||
                  sel->test_quick_select(thd, tab->keys,
                                         used_tables & ~ current_map,
                                         (join->select_options &
                                          OPTION_FOUND_ROWS ?
                                          HA_POS_ERROR :
                                          join->unit->select_limit_cnt),0,
                                          FALSE) < 0)
		DBUG_RETURN(1);			// Impossible WHERE
            }
            else
	      sel->cond=orig_cond;

	    /* Fix for EXPLAIN */
	    if (sel->quick)
	      join->best_positions[i].records_read= (double)sel->quick->records;
	  }
	  else
	  {
	    sel->needed_reg=tab->needed_reg;
	    sel->quick_keys.clear_all();
	  }
	  if (!sel->quick_keys.is_subset(tab->checked_keys) ||
              !sel->needed_reg.is_subset(tab->checked_keys))
	  {
	    tab->keys=sel->quick_keys;
            tab->keys.merge(sel->needed_reg);
	    tab->use_quick= (!sel->needed_reg.is_clear_all() &&
			     (select->quick_keys.is_clear_all() ||
			      (select->quick &&
			       (select->quick->records >= 100L)))) ?
	      2 : 1;
	    sel->read_tables= used_tables & ~current_map;
	  }
	  if (i != join->const_tables && tab->use_quick != 2 &&
              !tab->first_inner)
	  {					/* Read with cache */
            if (tab->make_scan_filter())
              DBUG_RETURN(1);
          }
	}
      }
      
      /* 
        Push down conditions from all ON expressions.
        Each of these conditions are guarded by a variable
        that turns if off just before null complemented row for
        outer joins is formed. Thus, the condition from an
        'on expression' are guaranteed not to be checked for
        the null complemented row.
      */ 

      /* First push down constant conditions from on expressions */
      for (JOIN_TAB *join_tab= first_linear_tab(join, TRUE); 
           join_tab; 
           join_tab= next_linear_tab(join, join_tab, FALSE))
      {
        if (*join_tab->on_expr_ref)
        {
          JOIN_TAB *cond_tab= join_tab->first_inner;
          COND *tmp= make_cond_for_table(*join_tab->on_expr_ref,
                                         join->const_table_map,
                                         (table_map) 0, FALSE, FALSE);
          if (!tmp)
            continue;
          tmp= new Item_func_trig_cond(tmp, &cond_tab->not_null_compl);
          if (!tmp)
            DBUG_RETURN(1);
          tmp->quick_fix_field();
          cond_tab->select_cond= !cond_tab->select_cond ? tmp :
	                            new Item_cond_and(cond_tab->select_cond,tmp);
          if (!cond_tab->select_cond)
	    DBUG_RETURN(1);
          cond_tab->select_cond->quick_fix_field();
          cond_tab->select_cond->update_used_tables();
          if (cond_tab->select)
            cond_tab->select->cond= cond_tab->select_cond; 
        }       
      }

      /* Push down non-constant conditions from ON expressions */
      JOIN_TAB *last_tab= tab;
      while (first_inner_tab && first_inner_tab->last_inner == last_tab)
      { 
        /* 
          Table tab is the last inner table of an outer join.
          An on expression is always attached to it.
	*/     
        COND *on_expr= *first_inner_tab->on_expr_ref;

        table_map used_tables2= (join->const_table_map |
                                 OUTER_REF_TABLE_BIT | RAND_TABLE_BIT);
        for (JOIN_TAB *tab= first_linear_tab(join, TRUE); 
             tab; 
             tab= next_linear_tab(join, tab, TRUE))
        {
          if (!tab->table)
          {
            /* 
              psergey-todo: this is probably incorrect, fix this when we get
              correct processing for outer joins + semi joins 
            */
            continue;
          }
          current_map= tab->table->map;
          used_tables2|= current_map;
          COND *tmp_cond= make_cond_for_table(on_expr, used_tables2,
                                              current_map, FALSE, FALSE);
          if (tab == first_inner_tab && tab->on_precond)
            add_cond_and_fix(&tmp_cond, tab->on_precond);
          if (tmp_cond)
          {
            JOIN_TAB *cond_tab= tab < first_inner_tab ? first_inner_tab : tab;
            Item **sel_cond_ref= tab < first_inner_tab ?
                                   &first_inner_tab->on_precond :
                                   &tab->select_cond;
            /*
              First add the guards for match variables of
              all embedding outer join operations.
	    */
            if (!(tmp_cond= add_found_match_trig_cond(cond_tab->first_inner,
                                                     tmp_cond,
                                                     first_inner_tab)))
              DBUG_RETURN(1);
            /* 
              Now add the guard turning the predicate off for 
              the null complemented row.
	    */ 
            DBUG_PRINT("info", ("Item_func_trig_cond"));
            tmp_cond= new Item_func_trig_cond(tmp_cond,
                                              &first_inner_tab->
                                              not_null_compl);
            DBUG_PRINT("info", ("Item_func_trig_cond 0x%lx",
                                (ulong) tmp_cond));
            if (tmp_cond)
              tmp_cond->quick_fix_field();
	    /* Add the predicate to other pushed down predicates */
            DBUG_PRINT("info", ("Item_cond_and"));
            *sel_cond_ref= !(*sel_cond_ref) ? 
                             tmp_cond :
                             new Item_cond_and(*sel_cond_ref, tmp_cond);
            DBUG_PRINT("info", ("Item_cond_and 0x%lx",
                                (ulong)(*sel_cond_ref)));
            if (!(*sel_cond_ref))
              DBUG_RETURN(1);
            (*sel_cond_ref)->quick_fix_field();
            (*sel_cond_ref)->update_used_tables();
            if (cond_tab->select)
              cond_tab->select->cond= cond_tab->select_cond;
          }
          if (tab == last_tab)
            break;
        }
        first_inner_tab= first_inner_tab->first_upper;       
      }
    }
  }
  DBUG_RETURN(0);
}


/*
  Determine {after which table we'll produce ordered set} 

  SYNOPSIS
    make_join_orderinfo()
     join

   
  DESCRIPTION 
    Determine if the set is already ordered for ORDER BY, so it can 
    disable join cache because it will change the ordering of the results.
    Code handles sort table that is at any location (not only first after 
    the const tables) despite the fact that it's currently prohibited.
    We must disable join cache if the first non-const table alone is
    ordered. If there is a temp table the ordering is done as a last
    operation and doesn't prevent join cache usage.

  RETURN
    Number of table after which the set will be ordered
    join->tables if we don't need an ordered set 
*/

static uint make_join_orderinfo(JOIN *join)
{
  JOIN_TAB *tab;
  if (join->need_tmp)
    return join->tables;
  tab= join->get_sort_by_join_tab();
  return tab ? tab-join->join_tab : join->tables;
}

/*
  Deny usage of join buffer for the specified table

  SYNOPSIS
    set_join_cache_denial()
      tab    join table for which join buffer usage is to be denied  
     
  DESCRIPTION
    The function denies usage of join buffer when joining the table 'tab'.
    The table is marked as not employing any join buffer. If a join cache
    object has been already allocated for the table this object is destroyed.

  RETURN
    none    
*/

static
void set_join_cache_denial(JOIN_TAB *join_tab)
{
  if (join_tab->cache)
  {
    /* 
      If there is a previous cache linked to this cache through the
      next_cache pointer: remove the link. 
    */
    if (join_tab->cache->prev_cache)
      join_tab->cache->prev_cache->next_cache= 0;
    /*
      No need to do the same for next_cache since cache denial is done
      backwards starting from the latest cache in the linked list (see
      revise_cache_usage()).
    */
    DBUG_ASSERT(!join_tab->cache->next_cache);

    join_tab->cache->free();
    join_tab->cache= 0;
  }
  if (join_tab->use_join_cache)
  {
    join_tab->use_join_cache= FALSE;
    join_tab->used_join_cache_level= 0;
    /*
      It could be only sub_select(). It could not be sub_seject_sjm because we
      don't do join buffering for the first table in sjm nest. 
    */
    join_tab[-1].next_select= sub_select;
    if (join_tab->type == JT_REF && join_tab->is_ref_for_hash_join())
    {
      join_tab->type= JT_ALL;
      join_tab->ref.key_parts= 0;
    }
    join_tab->join->return_tab= join_tab;
  }
}


/**
  The default implementation of unlock-row method of READ_RECORD,
  used in all access methods.
*/

void rr_unlock_row(st_join_table *tab)
{
  READ_RECORD *info= &tab->read_record;
  info->file->unlock_row();
}


/**
  Pick the appropriate access method functions

  Sets the functions for the selected table access method

  @param      tab               Table reference to put access method
*/

static void
pick_table_access_method(JOIN_TAB *tab)
{
  switch (tab->type) 
  {
  case JT_REF:
    tab->read_first_record= join_read_always_key;
    tab->read_record.read_record= join_read_next_same;
    break;

  case JT_REF_OR_NULL:
    tab->read_first_record= join_read_always_key_or_null;
    tab->read_record.read_record= join_read_next_same_or_null;
    break;

  case JT_CONST:
    tab->read_first_record= join_read_const;
    tab->read_record.read_record= join_no_more_records;
    break;

  case JT_EQ_REF:
    tab->read_first_record= join_read_key;
    tab->read_record.read_record= join_no_more_records;
    break;

  case JT_FT:
    tab->read_first_record= join_ft_read_first;
    tab->read_record.read_record= join_ft_read_next;
    break;

  case JT_SYSTEM:
    tab->read_first_record= join_read_system;
    tab->read_record.read_record= join_no_more_records;
    break;

  /* keep gcc happy */  
  default:
    break;  
  }
}


/* 
  Revise usage of join buffer for the specified table and the whole nest   

  SYNOPSIS
    revise_cache_usage()
      tab    join table for which join buffer usage is to be revised  

  DESCRIPTION
    The function revise the decision to use a join buffer for the table 'tab'.
    If this table happened to be among the inner tables of a nested outer join/
    semi-join the functions denies usage of join buffers for all of them

  RETURN
    none    
*/

static
void revise_cache_usage(JOIN_TAB *join_tab)
{
  JOIN_TAB *tab;
  JOIN_TAB *first_inner;

  if (join_tab->first_inner)
  {
    JOIN_TAB *end_tab= join_tab;
    for (first_inner= join_tab->first_inner; 
         first_inner;
         first_inner= first_inner->first_upper)           
    {
      for (tab= end_tab-1; tab >= first_inner; tab--)
        set_join_cache_denial(tab);
      end_tab= first_inner;
    }
  }
  else if (join_tab->first_sj_inner_tab)
  {
    first_inner= join_tab->first_sj_inner_tab;
    for (tab= join_tab-1; tab >= first_inner; tab--)
    {
      if (tab->first_sj_inner_tab == first_inner)
        set_join_cache_denial(tab);
    }
  }
  else set_join_cache_denial(join_tab);
}


/*
  end_select-compatible function that writes the record into a sjm temptable
  
  SYNOPSIS
    end_sj_materialize()
      join            The join 
      join_tab        Points to right after the last join_tab in materialization bush
      end_of_records  FALSE <=> This call is made to pass another record 
                                combination
                      TRUE  <=> EOF (no action)

  DESCRIPTION
    This function is used by semi-join materialization to capture suquery's
    resultset and write it into the temptable (that is, materialize it).

  NOTE
    This function is used only for semi-join materialization. Non-semijoin
    materialization uses different mechanism.

  RETURN 
    NESTED_LOOP_OK
    NESTED_LOOP_ERROR
*/

enum_nested_loop_state 
end_sj_materialize(JOIN *join, JOIN_TAB *join_tab, bool end_of_records)
{
  int error;
  THD *thd= join->thd;
  SJ_MATERIALIZATION_INFO *sjm= join_tab[-1].emb_sj_nest->sj_mat_info;
  DBUG_ENTER("end_sj_materialize");
  if (!end_of_records)
  {
    TABLE *table= sjm->table;

    List_iterator<Item> it(sjm->sjm_table_cols);
    Item *item;
    while ((item= it++))
    {
      if (item->is_null())
        DBUG_RETURN(NESTED_LOOP_OK);
    }
    fill_record(thd, table->field, sjm->sjm_table_cols, TRUE, FALSE);
    if (thd->is_error())
      DBUG_RETURN(NESTED_LOOP_ERROR); /* purecov: inspected */
    if ((error= table->file->ha_write_tmp_row(table->record[0])))
    {
      /* create_myisam_from_heap will generate error if needed */
      if (table->file->is_fatal_error(error, HA_CHECK_DUP) &&
          create_internal_tmp_table_from_heap(thd, table,
                                              sjm->sjm_table_param.start_recinfo, 
                                              &sjm->sjm_table_param.recinfo, error, 1))
        DBUG_RETURN(NESTED_LOOP_ERROR); /* purecov: inspected */
    }
  }
  DBUG_RETURN(NESTED_LOOP_OK);
}


/* 
  Check whether a join buffer can be used to join the specified table   

  SYNOPSIS
    check_join_cache_usage()
      tab                 joined table to check join buffer usage for
      options             options of the join
      no_jbuf_after       don't use join buffering after table with this number
      prev_tab            previous join table

  DESCRIPTION
    The function finds out whether the table 'tab' can be joined using a join
    buffer. This check is performed after the best execution plan for 'join'
    has been chosen. If the function decides that a join buffer can be employed
    then it selects the most appropriate join cache object that contains this
    join buffer.
    The result of the check and the type of the the join buffer to be used
    depend on:
      - the access method to access rows of the joined table
      - whether the join table is an inner table of an outer join or semi-join
      - whether the optimizer switches
          outer_join_with_cache, semijoin_with_cache, join_cache_incremental,
          join_cache_hashed, join_cache_bka,
        are set on or off
      - the join cache level set for the query
      - the join 'options'.

    In any case join buffer is not used if the number of the joined table is
    greater than 'no_jbuf_after'. It's also never used if the value of
    join_cache_level is equal to 0.
    If the optimizer switch outer_join_with_cache is off no join buffer is
    used for outer join operations.
    If the optimizer switch semijoin_with_cache is off no join buffer is used
    for semi-join operations.
    If the optimizer switch join_cache_incremental is off no incremental join
    buffers are used.
    If the optimizer switch join_cache_hashed is off then the optimizer uses
    neither BNLH algorithm, nor BKAH algorithm to perform join operations.

    If the optimizer switch join_cache_bka is off then the optimizer uses
    neither BKA algorithm, nor BKAH algorithm to perform join operation.
    The valid settings for join_cache_level lay in the interval 0..8.
    If it set to 0 no join buffers are used to perform join operations.
    Currently we differentiate between join caches of 8 levels:
      1 : non-incremental join cache used for BNL join algorithm
      2 : incremental join cache used for BNL join algorithm
      3 : non-incremental join cache used for BNLH join algorithm
      4 : incremental join cache used for BNLH join algorithm
      5 : non-incremental join cache used for BKA join algorithm
      6 : incremental join cache used for BKA join algorithm 
      7 : non-incremental join cache used for BKAH join algorithm 
      8 : incremental join cache used for BKAH join algorithm
    If the value of join_cache_level is set to n then no join caches of
    levels higher than n can be employed.

    If the optimizer switches outer_join_with_cache, semijoin_with_cache,
    join_cache_incremental, join_cache_hashed, join_cache_bka are all on
    the following rules are applied.
    If join_cache_level==1|2 then join buffer is used for inner joins, outer
    joins and semi-joins with 'JT_ALL' access method. In this case a
    JOIN_CACHE_BNL object is employed.
    If join_cache_level==3|4 and then join buffer is used for a join operation
    (inner join, outer join, semi-join) with 'JT_REF'/'JT_EQREF' access method
    then a JOIN_CACHE_BNLH object is employed. 
    If an index is used to access rows of the joined table and the value of
    join_cache_level==5|6 then a JOIN_CACHE_BKA object is employed. 
    If an index is used to access rows of the joined table and the value of
    join_cache_level==7|8 then a JOIN_CACHE_BKAH object is employed. 
    If the value of join_cache_level is odd then creation of a non-linked 
    join cache is forced.

    Currently for any join operation a join cache of the  level of the
    highest allowed and applicable level is used.
    For example, if join_cache_level is set to 6 and the optimizer switch
    join_cache_bka is off, while the optimizer switch join_cache_hashed is
    on then for any inner join operation with JT_REF/JT_EQREF access method
    to the joined table the BNLH join algorithm will be used, while for
    the table accessed by the JT_ALL methods the BNL algorithm will be used.

    If the function decides that a join buffer can be used to join the table
    'tab' then it sets the value of tab->use_join_buffer to TRUE and assigns
    the selected join cache object to the field 'cache' of the previous
    join table. 
    If the function creates a join cache object it tries to initialize it. The
    failure to do this results in an invocation of the function that destructs
    the created object.
    If the function decides that but some reasons no join buffer can be used
    for a table it calls the function revise_cache_usage that checks
    whether join cache should be denied for some previous tables. In this case
    a pointer to the first table for which join cache usage has been denied
    is passed in join->return_val (see the function set_join_cache_denial).
    
    The functions changes the value the fields tab->icp_other_tables_ok and
    tab->idx_cond_fact_out to FALSE if the chosen join cache algorithm 
    requires it.
 
  NOTES
    An inner table of a nested outer join or a nested semi-join can be currently
    joined only when a linked cache object is employed. In these cases setting
    join_cache_incremental to 'off' results in denial of usage of any join
    buffer when joining the table.
    For a nested outer join/semi-join, currently, we either use join buffers for
    all inner tables or for none of them. 
    Some engines (e.g. Falcon) currently allow to use only a join cache
    of the type JOIN_CACHE_BKAH when the joined table is accessed through
    an index. For these engines setting the value of join_cache_level to 5 or 6
    results in that no join buffer is used to join the table. 
  
  RETURN VALUE
    cache level if cache is used, otherwise returns 0

  TODO
    Support BKA inside SJ-Materialization nests. When doing this, we'll need
    to only store sj-inner tables in the join buffer.
#if 0
        JOIN_TAB *first_tab= join->join_tab+join->const_tables;
        uint n_tables= i-join->const_tables;
        / *
          We normally put all preceding tables into the join buffer, except
          for the constant tables.
          If we're inside a semi-join materialization nest, e.g.

             outer_tbl1  outer_tbl2  ( inner_tbl1, inner_tbl2 ) ...
                                                       ^-- we're here

          then we need to put into the join buffer only the tables from
          within the nest.
        * /
        if (i >= first_sjm_table && i < last_sjm_table)
        {
          n_tables= i - first_sjm_table; // will be >0 if we got here
          first_tab= join->join_tab + first_sjm_table;
        }
#endif
*/

static
uint check_join_cache_usage(JOIN_TAB *tab,
                            ulonglong options,
                            uint no_jbuf_after,
                            JOIN_TAB *prev_tab)
{
  COST_VECT cost;
  uint flags= 0;
  ha_rows rows= 0;
  uint bufsz= 4096;
  JOIN_CACHE *prev_cache=0;
  JOIN *join= tab->join;
  uint cache_level= tab->used_join_cache_level;
  bool force_unlinked_cache=
         !(join->allowed_join_cache_types & JOIN_CACHE_INCREMENTAL_BIT);
  bool no_hashed_cache=
         !(join->allowed_join_cache_types & JOIN_CACHE_HASHED_BIT);
  bool no_bka_cache= 
         !(join->allowed_join_cache_types & JOIN_CACHE_BKA_BIT);
  uint i= tab - join->join_tab;

  join->return_tab= 0;

  /*
    Don't use join cache if @@join_cache_level==0 or this table is the first
    one join suborder (either at top level or inside a bush)
  */
  if (cache_level == 0 || tab == join->join_tab + join->const_tables || 
      (tab->bush_root_tab && tab->bush_root_tab->bush_children->start == tab))
    return 0;

  if (force_unlinked_cache && (cache_level%2 == 0))
    cache_level--;

  if (options & SELECT_NO_JOIN_CACHE)
    goto no_join_cache;

  if (tab->use_quick == 2)
    goto no_join_cache;

  if (tab->is_inner_table_of_semi_join_with_first_match() &&
      !join->allowed_semijoin_with_cache)
    goto no_join_cache;
  if (tab->is_inner_table_of_outer_join() &&
      !join->allowed_outer_join_with_cache)
    goto no_join_cache;

  /*
    Non-linked join buffers can't guarantee one match
  */
  if (tab->is_nested_inner())
  {
    if (force_unlinked_cache || cache_level == 1)
      goto no_join_cache;
    if (cache_level & 1)
      cache_level--;
  }
    
  /*
    Don't use join buffering if we're dictated not to by no_jbuf_after (this
    ...)
  */
  if ((!tab->bush_root_tab? !(i <= no_jbuf_after) : FALSE) || 
       tab->loosescan_match_tab || tab->bush_children)
    goto no_join_cache;

  for (JOIN_TAB *first_inner= tab->first_inner; first_inner;
       first_inner= first_inner->first_upper)
  {
    if (first_inner != tab && !first_inner->use_join_cache)
      goto no_join_cache;
  }
  if (tab->first_sj_inner_tab && tab->first_sj_inner_tab != tab &&
      !tab->first_sj_inner_tab->use_join_cache)
    goto no_join_cache;
  if (!prev_tab->use_join_cache)
  {
    /* 
      Check whether table tab and the previous one belong to the same nest of
      inner tables and if so do not use join buffer when joining table tab. 
    */
    if (tab->first_inner)
    {
      for (JOIN_TAB *first_inner= tab[-1].first_inner;
           first_inner;
           first_inner= first_inner->first_upper)
      {
        if (first_inner == tab->first_inner)
          goto no_join_cache;
      }
    }
    else if (tab->first_sj_inner_tab &&
             tab->first_sj_inner_tab == tab[-1].first_sj_inner_tab)
      goto no_join_cache; 
  }       

  prev_cache= prev_tab->cache;

  switch (tab->type) {
  case JT_ALL:
    if (cache_level == 1)
      prev_cache= 0;
    if ((tab->cache= new JOIN_CACHE_BNL(join, tab, prev_cache)) &&
        ((options & SELECT_DESCRIBE) || !tab->cache->init()))
    {
      tab->icp_other_tables_ok= FALSE;
      return (2-test(!prev_cache));
    }
    goto no_join_cache;
  case JT_SYSTEM:
  case JT_CONST:
  case JT_REF:
  case JT_EQ_REF:
    if (cache_level <=2 || (no_hashed_cache && no_bka_cache))
      goto no_join_cache;
    if (!tab->is_ref_for_hash_join())
    {
      flags= HA_MRR_NO_NULL_ENDPOINTS | HA_MRR_SINGLE_POINT;
      if (tab->table->covering_keys.is_set(tab->ref.key))
        flags|= HA_MRR_INDEX_ONLY;
      rows= tab->table->file->multi_range_read_info(tab->ref.key, 10, 20,
                                                    tab->ref.key_parts,
                                                    &bufsz, &flags, &cost);
    }

    if ((cache_level <=4 && !no_hashed_cache) || no_bka_cache ||
        tab->is_ref_for_hash_join() ||
	((flags & HA_MRR_NO_ASSOCIATION) && cache_level <=6))
    {
      if (!tab->hash_join_is_possible() ||
          tab->make_scan_filter())
        goto no_join_cache;
      if (cache_level == 3)
        prev_cache= 0;
      if ((tab->cache= new JOIN_CACHE_BNLH(join, tab, prev_cache)) &&
          ((options & SELECT_DESCRIBE) || !tab->cache->init()))
      {
        tab->icp_other_tables_ok= FALSE;        
        return (4-test(!prev_cache));
      }
      goto no_join_cache;
    }
    if (cache_level > 4 && no_bka_cache)
      goto no_join_cache;
    
    if ((flags & HA_MRR_NO_ASSOCIATION) &&
	(cache_level <= 6 || no_hashed_cache))
      goto no_join_cache;

    if ((rows != HA_POS_ERROR) && !(flags & HA_MRR_USE_DEFAULT_IMPL))
    {
      if (cache_level <= 6 || no_hashed_cache)
      {
        if (cache_level == 5)
          prev_cache= 0;
        if ((tab->cache= new JOIN_CACHE_BKA(join, tab, flags, prev_cache)) &&
            ((options & SELECT_DESCRIBE) || !tab->cache->init()))
          return (6-test(!prev_cache));
        goto no_join_cache;
      }
      else
      {
        if (cache_level == 7)
          prev_cache= 0;
        if ((tab->cache= new JOIN_CACHE_BKAH(join, tab, flags, prev_cache)) &&
            ((options & SELECT_DESCRIBE) || !tab->cache->init()))
	{
         tab->idx_cond_fact_out= FALSE;
          return (8-test(!prev_cache));
        }
        goto no_join_cache;
      }
    }
    goto no_join_cache;
  default : ;
  }

no_join_cache:
  if (tab->type != JT_ALL && tab->is_ref_for_hash_join())
    tab->type= JT_ALL;
  revise_cache_usage(tab); 
  return 0;
}


/* 
  Check whether join buffers can be used to join tables of a join   

  SYNOPSIS
    check_join_cache_usage()
      join                join whose tables are to be checked             
      options             options of the join
      no_jbuf_after       don't use join buffering after table with this number

  DESCRIPTION
    For each table after the first non-constant table the function checks
    whether the table can be joined using a join buffer. If the function decides
    that a join buffer can be employed then it selects the most appropriate join
    cache object that contains this join buffer whose level is not greater
    than join_cache_level set for the join. To make this check the function
    calls the function check_join_cache_usage for every non-constant table.

  NOTES
    In some situations (e.g. for nested outer joins, for nested semi-joins) only
    incremental buffers can be used. If it turns out that for some inner table
    no join buffer can be used then any inner table of an outer/semi-join nest
    cannot use join buffer. In the case when already chosen buffer must be
    denied for a table the function recalls check_join_cache_usage()
    starting from this table. The pointer to the table from which the check
    has to be restarted is returned in join->return_val (see the description
    of check_join_cache_usage).
*/

void check_join_cache_usage_for_tables(JOIN *join, ulonglong options,
                                       uint no_jbuf_after)
{
  JOIN_TAB *tab;

  for (tab= first_linear_tab(join, TRUE); 
       tab; 
       tab= next_linear_tab(join, tab, TRUE))
  {
    tab->used_join_cache_level= join->max_allowed_join_cache_level;  
  }

  for (tab= first_linear_tab(join, TRUE); 
       tab; 
       tab= next_linear_tab(join, tab, TRUE))
  {
    JOIN_TAB *prev_tab;
restart:
    tab->icp_other_tables_ok= TRUE;
    tab->idx_cond_fact_out= TRUE;

    prev_tab= tab - 1;
    if ((tab->bush_root_tab && tab->bush_root_tab->bush_children->start == tab))
      prev_tab= NULL;

    switch (tab->type) {
    case JT_SYSTEM:
    case JT_CONST:
    case JT_EQ_REF:
    case JT_REF:
    case JT_REF_OR_NULL:
    case JT_ALL:
      tab->used_join_cache_level= check_join_cache_usage(tab, options,
                                                         no_jbuf_after,
                                                         prev_tab);
      tab->use_join_cache= test(tab->used_join_cache_level);
      /*
        psergey-merge: todo: raise the question that this is really stupid that
        we can first allocate a join buffer, then decide not to use it and free
        it.
      */
      if (join->return_tab)
      {
        tab= join->return_tab;
        goto restart;
      }
      break; 
    default:
      tab->used_join_cache_level= 0;
    }     
  }
}


/*
  Plan refinement stage: do various setup things for the executor

  SYNOPSIS
    make_join_readinfo()
      join           Join being processed
      options        Join's options (checking for SELECT_DESCRIBE, 
                     SELECT_NO_JOIN_CACHE)
      no_jbuf_after  Don't use join buffering after table with this number.

  DESCRIPTION
    Plan refinement stage: do various set ups for the executioner
      - set up use of join buffering
      - push index conditions
      - increment relevant counters
      - etc

  RETURN 
    FALSE - OK
    TRUE  - Out of memory
*/

static bool
make_join_readinfo(JOIN *join, ulonglong options, uint no_jbuf_after)
{
  JOIN_TAB *tab;
  uint i;
  DBUG_ENTER("make_join_readinfo");

  bool statistics= test(!(join->select_options & SELECT_DESCRIBE));
  bool sorted= 1;

  if (!join->select_lex->sj_nests.is_empty() &&
      setup_semijoin_dups_elimination(join, options, no_jbuf_after))
    DBUG_RETURN(TRUE); /* purecov: inspected */

  for (tab= first_linear_tab(join, TRUE); 
       tab; 
       tab= next_linear_tab(join, tab, TRUE))
  {
    tab->partial_join_cardinality= 1; 
  }

  //for (i=join->const_tables ; i < join->tables ; i++)
  for (tab= first_linear_tab(join, TRUE), i= join->const_tables; 
       tab; 
       tab= next_linear_tab(join, tab, TRUE))
  {
    /*
      The approximation below for partial join cardinality is not good because
        - it does not take into account some pushdown predicates
        - it does not differentiate between inner joins, outer joins and semi-joins.
      Later it should be improved.
    */
    JOIN_TAB *prev_tab= tab - 1;
    if ((tab->bush_root_tab && tab->bush_root_tab->bush_children->start == tab) || 
        (tab == join->join_tab + join->const_tables))
      prev_tab= NULL;
    DBUG_ASSERT(tab->bush_children || tab->table == join->best_positions[i].table->table);
    tab->partial_join_cardinality= join->best_positions[i].records_read *
                                   (prev_tab? prev_tab->partial_join_cardinality : 1);
    if (!tab->bush_children)
      i++;
  }
 
  check_join_cache_usage_for_tables(join, options, no_jbuf_after);

  for (tab= first_linear_tab(join, TRUE), i= join->const_tables; 
       tab; 
       tab= next_linear_tab(join, tab, TRUE), i++)
  {
    if (tab->bush_children)
    {
      if (setup_sj_materialization(tab))
        return TRUE;
    }

    TABLE *table=tab->table;
    uint jcl= tab->used_join_cache_level;
    tab->read_record.table= table;
    tab->read_record.file=table->file;
    tab->read_record.unlock_row= rr_unlock_row;
    tab->sorted= sorted;
    sorted= 0;                                  // only first must be sorted
    

    /*
      We should not set tab->next_select for the last table in the
      SMJ-nest, as setup_sj_materialization() has already set it to
      end_sj_materialize.
    */
    if (!(tab->bush_root_tab && 
          tab->bush_root_tab->bush_children->end == tab + 1))
    {
      tab->next_select=sub_select;		/* normal select */
    }


    if (tab->loosescan_match_tab)
    {
      if (!(tab->loosescan_buf= (uchar*)join->thd->alloc(tab->
                                                         loosescan_key_len)))
        return TRUE; /* purecov: inspected */
      tab->sorted= TRUE;
    }
    table->status=STATUS_NO_RECORD;
    pick_table_access_method (tab);

    if (jcl)
       tab[-1].next_select=sub_select_cache;

    if (tab->cache && tab->cache->get_join_alg() == JOIN_CACHE::BNLH_JOIN_ALG)
      tab->type= JT_HASH;
      
    switch (tab->type) {
    case JT_SYSTEM:				// Only happens with left join 
    case JT_CONST:				// Only happens with left join
      /* Only happens with outer joins */
      tab->read_first_record= tab->type == JT_SYSTEM ?
                                join_read_system :join_read_const;
      if (table->covering_keys.is_set(tab->ref.key) &&
          !table->no_keyread)
      {
        table->key_read=1;
        table->file->extra(HA_EXTRA_KEYREAD);
      }
      else if (!jcl || jcl > 4) 
        push_index_cond(tab, tab->ref.key);
        break;
    case JT_EQ_REF:
      tab->read_record.unlock_row= join_read_key_unlock_row;
      /* fall through */
      if (table->covering_keys.is_set(tab->ref.key) &&
	  !table->no_keyread)
      {
	table->key_read=1;
	table->file->extra(HA_EXTRA_KEYREAD);
      }
      else if (!jcl || jcl > 4) 
        push_index_cond(tab, tab->ref.key);
      break;
    case JT_REF_OR_NULL:
    case JT_REF:
      if (tab->select)
      {
	delete tab->select->quick;
	tab->select->quick=0;
      }
      delete tab->quick;
      tab->quick=0;
      if (table->covering_keys.is_set(tab->ref.key) &&
	  !table->no_keyread)
        table->enable_keyread();
      else if (!jcl || jcl > 4)
        push_index_cond(tab, tab->ref.key);
      break;
    case JT_ALL:
    case JT_HASH:
      /*
	If previous table use cache
        If the incoming data set is already sorted don't use cache.
        Also don't use cache if this is the first table in semi-join
          materialization nest.
      */
      /* These init changes read_record */
      if (tab->use_quick == 2)
      {
	join->thd->server_status|=SERVER_QUERY_NO_GOOD_INDEX_USED;
	tab->read_first_record= join_init_quick_read_record;
	if (statistics)
	  status_var_increment(join->thd->status_var.select_range_check_count);
      }
      else
      {
        if (!tab->bush_children)
          tab->read_first_record= join_init_read_record;
	if (i == join->const_tables)
	{
	  if (tab->select && tab->select->quick)
	  {
	    if (statistics)
	      status_var_increment(join->thd->status_var.select_range_count);
	  }
	  else
	  {
	    join->thd->server_status|=SERVER_QUERY_NO_INDEX_USED;
	    if (statistics)
	    {
	      status_var_increment(join->thd->status_var.select_scan_count);
	      join->thd->query_plan_flags|= QPLAN_FULL_SCAN;
	    }
	  }
	}
	else
	{
	  if (tab->select && tab->select->quick)
	  {
	    if (statistics)
	      status_var_increment(join->thd->status_var.select_full_range_join_count);
	  }
	  else
	  {
	    join->thd->server_status|=SERVER_QUERY_NO_INDEX_USED;
	    if (statistics)
	    {
	      status_var_increment(join->thd->status_var.select_full_join_count);
	      join->thd->query_plan_flags|= QPLAN_FULL_JOIN;
	    }
	  }
	}
	if (!table->no_keyread)
	{
	  if (tab->select && tab->select->quick &&
              tab->select->quick->index != MAX_KEY && //not index_merge
	      table->covering_keys.is_set(tab->select->quick->index))
            table->enable_keyread();
	  else if (!table->covering_keys.is_clear_all() &&
		   !(tab->select && tab->select->quick))
	  {					// Only read index tree
	    /*
            It has turned out that the below change, while speeding things
            up for disk-bound loads, slows them down for cases when the data
            is in disk cache (see BUG#35850):
	    //  See bug #26447: "Using the clustered index for a table scan
	    //  is always faster than using a secondary index".
            if (table->s->primary_key != MAX_KEY &&
                table->file->primary_key_is_clustered())
              tab->index= table->s->primary_key;
            else
	    */
              tab->index=find_shortest_key(table, & table->covering_keys);
	    tab->read_first_record= join_read_first;
            /* Read with index_first / index_next */
	    tab->type= tab->type == JT_ALL ? JT_NEXT : JT_HASH_NEXT;		
	  }
	}
        if (tab->select && tab->select->quick &&
            tab->select->quick->index != MAX_KEY && ! tab->table->key_read)
          push_index_cond(tab, tab->select->quick->index);
      }
      break;
    case JT_FT:
      break;
    default:
      DBUG_PRINT("error",("Table type %d found",tab->type)); /* purecov: deadcode */
      break;					/* purecov: deadcode */
    case JT_UNKNOWN:
    case JT_MAYBE_REF:
      abort();					/* purecov: deadcode */
    }
  }
  uint n_top_tables= join->join_tab_ranges.head()->end -  
                     join->join_tab_ranges.head()->start;
  join->join_tab[n_top_tables - 1].next_select=0; /* Set by do_select */
  
  /*
    If a join buffer is used to join a table the ordering by an index
    for the first non-constant table cannot be employed anymore.
  */
  //for (i=join->const_tables ; i < join->tables ; i++)
  for (i=join->const_tables ; i < n_top_tables ; i++)
  {
    JOIN_TAB *tab=join->join_tab+i;
    if (tab->use_join_cache)
    {
       JOIN_TAB *sort_by_tab= join->group && join->simple_group &&
                              join->group_list ?
			       join->join_tab+join->const_tables :
                               join->get_sort_by_join_tab();
     if (sort_by_tab)
      {
        join->need_tmp= 1;
        join->simple_order= join->simple_group= 0;
        if (sort_by_tab->type == JT_NEXT)
        {
          sort_by_tab->type= JT_ALL;
          sort_by_tab->read_first_record= join_init_read_record;
        }
        else if (sort_by_tab->type == JT_HASH_NEXT)
        {
          sort_by_tab->type= JT_HASH;
          sort_by_tab->read_first_record= join_init_read_record;
        }
      }
      break;
    }
  }

  DBUG_RETURN(FALSE);
}


/**
  Give error if we some tables are done with a full join.

  This is used by multi_table_update and multi_table_delete when running
  in safe mode.

  @param join		Join condition

  @retval
    0	ok
  @retval
    1	Error (full join used)
*/

bool error_if_full_join(JOIN *join)
{
  for (JOIN_TAB *tab=join->join_tab, *end=join->join_tab+join->tables;
       tab < end;
       tab++)
  {
    if (tab->type == JT_ALL && (!tab->select || !tab->select->quick))
    {
      /* This error should not be ignored. */
      join->select_lex->no_error= FALSE;
      my_message(ER_UPDATE_WITHOUT_KEY_IN_SAFE_MODE,
                 ER(ER_UPDATE_WITHOUT_KEY_IN_SAFE_MODE), MYF(0));
      return(1);
    }
  }
  return(0);
}


/**
  cleanup JOIN_TAB.

  DESCRIPTION 
    This is invoked when we've finished all join executions.
*/

void JOIN_TAB::cleanup()
{
  delete select;
  select= 0;
  delete quick;
  quick= 0;
  if (cache)
  {
    cache->free();
    cache= 0;
  }
  limit= 0;
  if (table)
  {
    table->disable_keyread();
    table->file->ha_index_or_rnd_end();

    if (table->pos_in_table_list && 
        table->pos_in_table_list->jtbm_subselect)
    {
      table->pos_in_table_list->jtbm_subselect->cleanup();
    }
    /*
      We need to reset this for next select
      (Tested in part_of_refkey)
    */
    table->reginfo.join_tab= 0;
  }
  end_read_record(&read_record);
}


/**
  Build a TABLE_REF structure for index lookup in the temporary table

  @param thd             Thread handle
  @param tmp_key         The temporary table key
  @param it              The iterator of items for lookup in the key

  @details
  Build TABLE_REF object for lookup in the key 'tmp_key' using items
  accessible via item iterator 'it'.

  @retval TRUE  Error
  @retval FALSE OK
*/

bool TABLE_REF::tmp_table_index_lookup_init(THD *thd,
                                            KEY *tmp_key,
                                            Item_iterator &it,
                                            bool value)
{
  uint tmp_key_parts= tmp_key->key_parts;
  DBUG_ENTER("TABLE_REF::tmp_table_index_lookup_init");

  key= 0; /* The only temp table index. */
  key_length= tmp_key->key_length;
  if (!(key_buff=
        (uchar*) thd->calloc(ALIGN_SIZE(tmp_key->key_length) * 2)) ||
      !(key_copy=
        (store_key**) thd->alloc((sizeof(store_key*) *
                                  (tmp_key_parts + 1)))) ||
      !(items=
        (Item**) thd->alloc(sizeof(Item*) * tmp_key_parts)))
    DBUG_RETURN(TRUE);

  key_buff2= key_buff + ALIGN_SIZE(tmp_key->key_length);

  KEY_PART_INFO *cur_key_part= tmp_key->key_part;
  store_key **ref_key= key_copy;
  uchar *cur_ref_buff= key_buff;

  it.open();
  for (uint i= 0; i < tmp_key_parts; i++, cur_key_part++, ref_key++)
  {
    Item *item= it.next();
    DBUG_ASSERT(item);
    items[i]= item;
    int null_count= test(cur_key_part->field->real_maybe_null());
    *ref_key= new store_key_item(thd, cur_key_part->field,
                                 /* TIMOUR:
                                    the NULL byte is taken into account in
                                    cur_key_part->store_length, so instead of
                                    cur_ref_buff + test(maybe_null), we could
                                    use that information instead.
                                 */
                                 cur_ref_buff + null_count,
                                 null_count ? cur_ref_buff : 0,
                                 cur_key_part->length, items[i], value);
    cur_ref_buff+= cur_key_part->store_length;
  }
  *ref_key= NULL; /* End marker. */
  key_err= 1;
  key_parts= tmp_key_parts;
  DBUG_RETURN(FALSE);
}


/**
  Partially cleanup JOIN after it has executed: close index or rnd read
  (table cursors), free quick selects.

    This function is called in the end of execution of a JOIN, before the used
    tables are unlocked and closed.

    For a join that is resolved using a temporary table, the first sweep is
    performed against actual tables and an intermediate result is inserted
    into the temprorary table.
    The last sweep is performed against the temporary table. Therefore,
    the base tables and associated buffers used to fill the temporary table
    are no longer needed, and this function is called to free them.

    For a join that is performed without a temporary table, this function
    is called after all rows are sent, but before EOF packet is sent.

    For a simple SELECT with no subqueries this function performs a full
    cleanup of the JOIN and calls mysql_unlock_read_tables to free used base
    tables.

    If a JOIN is executed for a subquery or if it has a subquery, we can't
    do the full cleanup and need to do a partial cleanup only.
    - If a JOIN is not the top level join, we must not unlock the tables
    because the outer select may not have been evaluated yet, and we
    can't unlock only selected tables of a query.
    - Additionally, if this JOIN corresponds to a correlated subquery, we
    should not free quick selects and join buffers because they will be
    needed for the next execution of the correlated subquery.
    - However, if this is a JOIN for a [sub]select, which is not
    a correlated subquery itself, but has subqueries, we can free it
    fully and also free JOINs of all its subqueries. The exception
    is a subquery in SELECT list, e.g: @n
    SELECT a, (select max(b) from t1) group by c @n
    This subquery will not be evaluated at first sweep and its value will
    not be inserted into the temporary table. Instead, it's evaluated
    when selecting from the temporary table. Therefore, it can't be freed
    here even though it's not correlated.

  @todo
    Unlock tables even if the join isn't top level select in the tree
*/

void JOIN::join_free()
{
  SELECT_LEX_UNIT *tmp_unit;
  SELECT_LEX *sl;
  /*
    Optimization: if not EXPLAIN and we are done with the JOIN,
    free all tables.
  */
  bool full= (!select_lex->uncacheable && !thd->lex->describe);
  bool can_unlock= full;
  DBUG_ENTER("JOIN::join_free");

  cleanup(full);

  for (tmp_unit= select_lex->first_inner_unit();
       tmp_unit;
       tmp_unit= tmp_unit->next_unit())
    for (sl= tmp_unit->first_select(); sl; sl= sl->next_select())
    {
      Item_subselect *subselect= sl->master_unit()->item;
      bool full_local= full && (!subselect || subselect->is_evaluated());
      /*
        If this join is evaluated, we can fully clean it up and clean up all
        its underlying joins even if they are correlated -- they will not be
        used any more anyway.
        If this join is not yet evaluated, we still must clean it up to
        close its table cursors -- it may never get evaluated, as in case of
        ... HAVING FALSE OR a IN (SELECT ...))
        but all table cursors must be closed before the unlock.
      */
      sl->cleanup_all_joins(full_local);
      /* Can't unlock if at least one JOIN is still needed */
      can_unlock= can_unlock && full_local;
    }

  /*
    We are not using tables anymore
    Unlock all tables. We may be in an INSERT .... SELECT statement.
  */
  if (can_unlock && lock && thd->lock &&
      !(select_options & SELECT_NO_UNLOCK) &&
      !select_lex->subquery_in_having &&
      (select_lex == (thd->lex->unit.fake_select_lex ?
                      thd->lex->unit.fake_select_lex : &thd->lex->select_lex)))
  {
    /*
      TODO: unlock tables even if the join isn't top level select in the
      tree.
    */
    mysql_unlock_read_tables(thd, lock);           // Don't free join->lock
    lock= 0;
  }

  DBUG_VOID_RETURN;
}


/**
  Free resources of given join.

  @param fill   true if we should free all resources, call with full==1
                should be last, before it this function can be called with
                full==0

  @note
    With subquery this function definitely will be called several times,
    but even for simple query it can be called several times.
*/

void JOIN::cleanup(bool full)
{
  DBUG_ENTER("JOIN::cleanup");

  if (table)
  {
    JOIN_TAB *tab;
    /*
      Only a sorted table may be cached.  This sorted table is always the
      first non const table in join->table
    */
    if (tables > const_tables) // Test for not-const tables
    {
      free_io_cache(table[const_tables]);
      filesort_free_buffers(table[const_tables],full);
    }

    if (full)
    {
      for (tab= top_jtrange_tables?join_tab:NULL; tab; tab= next_linear_tab(this, tab, TRUE))
	tab->cleanup();
      //psergey4: how is the above supposed to work when
      //top_jtrange_tables==FALSE? It will crash right away!
      table= 0;
    }
    else
    {
      for (tab= top_jtrange_tables?join_tab:NULL; tab; tab= next_linear_tab(this, tab, TRUE))
      {
	if (tab->table)
          tab->table->file->ha_index_or_rnd_end();
      }
    }
  }
  /*
    We are not using tables anymore
    Unlock all tables. We may be in an INSERT .... SELECT statement.
  */
  if (full)
  {
    if (tmp_join)
      tmp_table_param.copy_field= 0;
    group_fields.delete_elements();
    /* 
      Ensure that the above delete_elements() would not be called
      twice for the same list.
    */
    if (tmp_join && tmp_join != this)
      tmp_join->group_fields= group_fields;
    /*
      We can't call delete_elements() on copy_funcs as this will cause
      problems in free_elements() as some of the elements are then deleted.
    */
    tmp_table_param.copy_funcs.empty();
    /*
      If we have tmp_join and 'this' JOIN is not tmp_join and
      tmp_table_param.copy_field's  of them are equal then we have to remove
      pointer to  tmp_table_param.copy_field from tmp_join, because it qill
      be removed in tmp_table_param.cleanup().
    */
    if (tmp_join &&
        tmp_join != this &&
        tmp_join->tmp_table_param.copy_field ==
        tmp_table_param.copy_field)
    {
      tmp_join->tmp_table_param.copy_field=
        tmp_join->tmp_table_param.save_copy_field= 0;
    }
    tmp_table_param.cleanup();
  }
  DBUG_VOID_RETURN;
}


/**
  Remove the following expressions from ORDER BY and GROUP BY:
  Constant expressions @n
  Expression that only uses tables that are of type EQ_REF and the reference
  is in the ORDER list or if all refereed tables are of the above type.

  In the following, the X field can be removed:
  @code
  SELECT * FROM t1,t2 WHERE t1.a=t2.a ORDER BY t1.a,t2.X
  SELECT * FROM t1,t2,t3 WHERE t1.a=t2.a AND t2.b=t3.b ORDER BY t1.a,t3.X
  @endcode

  These can't be optimized:
  @code
  SELECT * FROM t1,t2 WHERE t1.a=t2.a ORDER BY t2.X,t1.a
  SELECT * FROM t1,t2 WHERE t1.a=t2.a AND t1.b=t2.b ORDER BY t1.a,t2.c
  SELECT * FROM t1,t2 WHERE t1.a=t2.a ORDER BY t2.b,t1.a
  @endcode
*/

static bool
eq_ref_table(JOIN *join, ORDER *start_order, JOIN_TAB *tab)
{
  if (tab->cached_eq_ref_table)			// If cached
    return tab->eq_ref_table;
  tab->cached_eq_ref_table=1;
  /* We can skip const tables only if not an outer table */
  if (tab->type == JT_CONST && !tab->first_inner)
    return (tab->eq_ref_table=1);		/* purecov: inspected */
  if (tab->type != JT_EQ_REF || tab->table->maybe_null)
    return (tab->eq_ref_table=0);		// We must use this
  Item **ref_item=tab->ref.items;
  Item **end=ref_item+tab->ref.key_parts;
  uint found=0;
  table_map map=tab->table->map;

  for (; ref_item != end ; ref_item++)
  {
    if (! (*ref_item)->const_item())
    {						// Not a const ref
      ORDER *order;
      for (order=start_order ; order ; order=order->next)
      {
	if ((*ref_item)->eq(order->item[0],0))
	  break;
      }
      if (order)
      {
        if (!(order->used & map))
        {
          found++;
          order->used|= map;
        }
	continue;				// Used in ORDER BY
      }
      if (!only_eq_ref_tables(join,start_order, (*ref_item)->used_tables()))
	return (tab->eq_ref_table=0);
    }
  }
  /* Check that there was no reference to table before sort order */
  for (; found && start_order ; start_order=start_order->next)
  {
    if (start_order->used & map)
    {
      found--;
      continue;
    }
    if (start_order->depend_map & map)
      return (tab->eq_ref_table=0);
  }
  return tab->eq_ref_table=1;
}


static bool
only_eq_ref_tables(JOIN *join,ORDER *order,table_map tables)
{
  tables&= ~PSEUDO_TABLE_BITS;
  for (JOIN_TAB **tab=join->map2table ; tables ; tab++, tables>>=1)
  {
    if (tables & 1 && !eq_ref_table(join, order, *tab))
      return 0;
  }
  return 1;
}


/** Update the dependency map for the tables. */

static void update_depend_map(JOIN *join)
{
  List_iterator<JOIN_TAB_RANGE> it(join->join_tab_ranges);
  JOIN_TAB_RANGE *jt_range;

  while ((jt_range= it++))
  {
    for (JOIN_TAB *join_tab=jt_range->start; join_tab != jt_range->end; 
         join_tab++)
    {
      TABLE_REF *ref= &join_tab->ref;
      table_map depend_map=0;
      Item **item=ref->items;
      uint i;
      for (i=0 ; i < ref->key_parts ; i++,item++)
        depend_map|=(*item)->used_tables();
      ref->depend_map=depend_map & ~OUTER_REF_TABLE_BIT;
      depend_map&= ~OUTER_REF_TABLE_BIT;
      for (JOIN_TAB **tab=join->map2table;
           depend_map ;
           tab++,depend_map>>=1 )
      {
        if (depend_map & 1)
          ref->depend_map|=(*tab)->ref.depend_map;
      }
    }
  }
}


/** Update the dependency map for the sort order. */

static void update_depend_map_for_order(JOIN *join, ORDER *order)
{
  for (; order ; order=order->next)
  {
    table_map depend_map;
    order->item[0]->update_used_tables();
    order->depend_map=depend_map=order->item[0]->used_tables();
    order->used= 0;
    // Not item_sum(), RAND() and no reference to table outside of sub select
    if (!(order->depend_map & (OUTER_REF_TABLE_BIT | RAND_TABLE_BIT))
        && !order->item[0]->with_sum_func)
    {
      for (JOIN_TAB **tab=join->map2table;
	   depend_map ;
	   tab++, depend_map>>=1)
      {
	if (depend_map & 1)
	  order->depend_map|=(*tab)->ref.depend_map;
      }
    }
  }
}


/**
  Remove all constants and check if ORDER only contains simple
  expressions.

  simple_order is set to 1 if sort_order only uses fields from head table
  and the head table is not a LEFT JOIN table.

  @param join			Join handler
  @param first_order		List of SORT or GROUP order
  @param cond			WHERE statement
  @param change_list		Set to 1 if we should remove things from list.
                               If this is not set, then only simple_order is
                               calculated.
  @param simple_order		Set to 1 if we are only using simple expressions

  @return
    Returns new sort order
*/

static ORDER *
remove_const(JOIN *join,ORDER *first_order, COND *cond,
             bool change_list, bool *simple_order)
{
  if (join->tables == join->const_tables)
    return change_list ? 0 : first_order;		// No need to sort

  ORDER *order,**prev_ptr;
  table_map first_table;
  table_map not_const_tables= ~join->const_table_map;
  table_map ref;
  bool first_is_base_table= FALSE;
  DBUG_ENTER("remove_const");
  
  LINT_INIT(first_table); /* protected by first_is_base_table */
  if (join->join_tab[join->const_tables].table)
  {
    first_table= join->join_tab[join->const_tables].table->map;
    first_is_base_table= TRUE;
  }
  

  prev_ptr= &first_order;
  *simple_order= *join->join_tab[join->const_tables].on_expr_ref ? 0 : 1;

  /* NOTE: A variable of not_const_tables ^ first_table; breaks gcc 2.7 */

  update_depend_map_for_order(join, first_order);
  for (order=first_order; order ; order=order->next)
  {
    table_map order_tables=order->item[0]->used_tables();
    if (order->item[0]->with_sum_func ||
        /*
          If the outer table of an outer join is const (either by itself or
          after applying WHERE condition), grouping on a field from such a
          table will be optimized away and filesort without temporary table
          will be used unless we prevent that now. Filesort is not fit to
          handle joins and the join condition is not applied. We can't detect
          the case without an expensive test, however, so we force temporary
          table for all queries containing more than one table, ROLLUP, and an
          outer join.
         */
        (join->tables > 1 && join->rollup.state == ROLLUP::STATE_INITED &&
        join->outer_join))
      *simple_order=0;				// Must do a temp table to sort
    else if (!(order_tables & not_const_tables))
    {
      if (order->item[0]->with_subselect && 
          !(join->select_lex->options & SELECT_DESCRIBE))
        order->item[0]->val_str(&order->item[0]->str_value);
      DBUG_PRINT("info",("removing: %s", order->item[0]->full_name()));
      continue;					// skip const item
    }
    else
    {
      if (order_tables & (RAND_TABLE_BIT | OUTER_REF_TABLE_BIT))
	*simple_order=0;
      else
      {
	Item *comp_item=0;
	if (cond && const_expression_in_where(cond,order->item[0], &comp_item))
	{
	  DBUG_PRINT("info",("removing: %s", order->item[0]->full_name()));
	  continue;
	}
	if (first_is_base_table && (ref=order_tables & (not_const_tables ^ first_table)))
	{
	  if (!(order_tables & first_table) &&
              only_eq_ref_tables(join,first_order, ref))
	  {
	    DBUG_PRINT("info",("removing: %s", order->item[0]->full_name()));
	    continue;
	  }
	  *simple_order=0;			// Must do a temp table to sort
	}
      }
    }
    if (change_list)
      *prev_ptr= order;				// use this entry
    prev_ptr= &order->next;
  }
  if (change_list)
    *prev_ptr=0;
  if (prev_ptr == &first_order)			// Nothing to sort/group
    *simple_order=1;
  DBUG_PRINT("exit",("simple_order: %d",(int) *simple_order));
  DBUG_RETURN(first_order);
}


static int
return_zero_rows(JOIN *join, select_result *result,TABLE_LIST *tables,
		 List<Item> &fields, bool send_row, ulonglong select_options,
		 const char *info, Item *having)
{
  DBUG_ENTER("return_zero_rows");

  if (select_options & SELECT_DESCRIBE)
  {
    select_describe(join, FALSE, FALSE, FALSE, info);
    DBUG_RETURN(0);
  }

  join->join_free();

  if (send_row)
  {
    for (TABLE_LIST *table= tables; table; table= table->next_leaf)
      mark_as_null_row(table->table);		// All fields are NULL
    if (having && having->val_int() == 0)
      send_row=0;
  }
  if (!(result->send_fields(fields,
                              Protocol::SEND_NUM_ROWS | Protocol::SEND_EOF)))
  {
    bool send_error= FALSE;
    if (send_row)
    {
      List_iterator_fast<Item> it(fields);
      Item *item;
      while ((item= it++))
	item->no_rows_in_result();
      send_error= result->send_data(fields);
    }
    if (!send_error)
      result->send_eof();				// Should be safe
  }
  /* Update results for FOUND_ROWS */
  join->thd->limit_found_rows= join->thd->examined_row_count= 0;
  DBUG_RETURN(0);
}

/*
  used only in JOIN::clear
*/
static void clear_tables(JOIN *join)
{
  /* 
    must clear only the non-const tables, as const tables
    are not re-calculated.
  */
  for (uint i= 0 ; i < join->tables ; i++)
  {
    if (!(join->table[i]->map & join->const_table_map))
      mark_as_null_row(join->table[i]);		// All fields are NULL
  }
}

/*****************************************************************************
  Make som simple condition optimization:
  If there is a test 'field = const' change all refs to 'field' to 'const'
  Remove all dummy tests 'item = item', 'const op const'.
  Remove all 'item is NULL', when item can never be null!
  item->marker should be 0 for all items on entry
  Return in cond_value FALSE if condition is impossible (1 = 2)
*****************************************************************************/

class COND_CMP :public ilink {
public:
  static void *operator new(size_t size)
  {
    return (void*) sql_alloc((uint) size);
  }
  static void operator delete(void *ptr __attribute__((unused)),
                              size_t size __attribute__((unused)))
  { TRASH(ptr, size); }

  Item *and_level;
  Item_func *cmp_func;
  COND_CMP(Item *a,Item_func *b) :and_level(a),cmp_func(b) {}
};

#ifdef HAVE_EXPLICIT_TEMPLATE_INSTANTIATION
template class I_List<COND_CMP>;
template class I_List_iterator<COND_CMP>;
template class List<Item_func_match>;
template class List_iterator<Item_func_match>;
#endif


/**
  Find the multiple equality predicate containing a field.

  The function retrieves the multiple equalities accessed through
  the con_equal structure from current level and up looking for
  an equality containing field. It stops retrieval as soon as the equality
  is found and set up inherited_fl to TRUE if it's found on upper levels.

  @param cond_equal          multiple equalities to search in
  @param field               field to look for
  @param[out] inherited_fl   set up to TRUE if multiple equality is found
                             on upper levels (not on current level of
                             cond_equal)

  @return
    - Item_equal for the found multiple equality predicate if a success;
    - NULL otherwise.
*/

Item_equal *find_item_equal(COND_EQUAL *cond_equal, Field *field,
                            bool *inherited_fl)
{
  Item_equal *item= 0;
  bool in_upper_level= FALSE;
  while (cond_equal)
  {
    List_iterator_fast<Item_equal> li(cond_equal->current_level);
    while ((item= li++))
    {
      if (item->contains(field))
        goto finish;
    }
    in_upper_level= TRUE;
    cond_equal= cond_equal->upper_levels;
  }
  in_upper_level= FALSE;
finish:
  *inherited_fl= in_upper_level;
  return item;
}

  
/**
  Check whether an equality can be used to build multiple equalities.

    This function first checks whether the equality (left_item=right_item)
    is a simple equality i.e. the one that equates a field with another field
    or a constant (field=field_item or field=const_item).
    If this is the case the function looks for a multiple equality
    in the lists referenced directly or indirectly by cond_equal inferring
    the given simple equality. If it doesn't find any, it builds a multiple
    equality that covers the predicate, i.e. the predicate can be inferred
    from this multiple equality.
    The built multiple equality could be obtained in such a way:
    create a binary  multiple equality equivalent to the predicate, then
    merge it, if possible, with one of old multiple equalities.
    This guarantees that the set of multiple equalities covering equality
    predicates will be minimal.

  EXAMPLE:
    For the where condition
    @code
      WHERE a=b AND b=c AND
            (b=2 OR f=e)
    @endcode
    the check_equality will be called for the following equality
    predicates a=b, b=c, b=2 and f=e.
    - For a=b it will be called with *cond_equal=(0,[]) and will transform
      *cond_equal into (0,[Item_equal(a,b)]). 
    - For b=c it will be called with *cond_equal=(0,[Item_equal(a,b)])
      and will transform *cond_equal into CE=(0,[Item_equal(a,b,c)]).
    - For b=2 it will be called with *cond_equal=(ptr(CE),[])
      and will transform *cond_equal into (ptr(CE),[Item_equal(2,a,b,c)]).
    - For f=e it will be called with *cond_equal=(ptr(CE), [])
      and will transform *cond_equal into (ptr(CE),[Item_equal(f,e)]).

  @note
    Now only fields that have the same type definitions (verified by
    the Field::eq_def method) are placed to the same multiple equalities.
    Because of this some equality predicates are not eliminated and
    can be used in the constant propagation procedure.
    We could weeken the equlity test as soon as at least one of the 
    equal fields is to be equal to a constant. It would require a 
    more complicated implementation: we would have to store, in
    general case, its own constant for each fields from the multiple
    equality. But at the same time it would allow us to get rid
    of constant propagation completely: it would be done by the call
    to build_equal_items_for_cond.


    The implementation does not follow exactly the above rules to
    build a new multiple equality for the equality predicate.
    If it processes the equality of the form field1=field2, it
    looks for multiple equalities me1 containig field1 and me2 containing
    field2. If only one of them is found the fuction expands it with
    the lacking field. If multiple equalities for both fields are
    found they are merged. If both searches fail a new multiple equality
    containing just field1 and field2 is added to the existing
    multiple equalities.
    If the function processes the predicate of the form field1=const,
    it looks for a multiple equality containing field1. If found, the 
    function checks the constant of the multiple equality. If the value
    is unknown, it is setup to const. Otherwise the value is compared with
    const and the evaluation of the equality predicate is performed.
    When expanding/merging equality predicates from the upper levels
    the function first copies them for the current level. It looks
    acceptable, as this happens rarely. The implementation without
    copying would be much more complicated.

  @param left_item   left term of the quality to be checked
  @param right_item  right term of the equality to be checked
  @param item        equality item if the equality originates from a condition
                     predicate, 0 if the equality is the result of row
                     elimination
  @param cond_equal  multiple equalities that must hold together with the
                     equality

  @retval
    TRUE    if the predicate is a simple equality predicate to be used
    for building multiple equalities
  @retval
    FALSE   otherwise
*/

static bool check_simple_equality(Item *left_item, Item *right_item,
                                  Item *item, COND_EQUAL *cond_equal)
{
  if (left_item->type() == Item::REF_ITEM &&
      ((Item_ref*)left_item)->ref_type() == Item_ref::VIEW_REF)
  {
    if (((Item_ref*)left_item)->depended_from)
      return FALSE;
    left_item= left_item->real_item();
  }
  if (right_item->type() == Item::REF_ITEM &&
      ((Item_ref*)right_item)->ref_type() == Item_ref::VIEW_REF)
  {
    if (((Item_ref*)right_item)->depended_from)
      return FALSE;
    right_item= right_item->real_item();
  }
  if (left_item->type() == Item::FIELD_ITEM &&
      right_item->type() == Item::FIELD_ITEM &&
      !((Item_field*)left_item)->depended_from &&
      !((Item_field*)right_item)->depended_from)
  {
    /* The predicate the form field1=field2 is processed */

    Field *left_field= ((Item_field*) left_item)->field;
    Field *right_field= ((Item_field*) right_item)->field;

    if (!left_field->eq_def(right_field))
      return FALSE;

    /* Search for multiple equalities containing field1 and/or field2 */
    bool left_copyfl, right_copyfl;
    Item_equal *left_item_equal=
               find_item_equal(cond_equal, left_field, &left_copyfl);
    Item_equal *right_item_equal= 
               find_item_equal(cond_equal, right_field, &right_copyfl);

    /* As (NULL=NULL) != TRUE we can't just remove the predicate f=f */
    if (left_field->eq(right_field)) /* f = f */
      return (!(left_field->maybe_null() && !left_item_equal)); 

    if (left_item_equal && left_item_equal == right_item_equal)
    {
      /* 
        The equality predicate is inference of one of the existing
        multiple equalities, i.e the condition is already covered
        by upper level equalities
      */
       return TRUE;
    }
      
    /* Copy the found multiple equalities at the current level if needed */
    if (left_copyfl)
    {
      /* left_item_equal of an upper level contains left_item */
      left_item_equal= new Item_equal(left_item_equal);
      cond_equal->current_level.push_back(left_item_equal);
    }
    if (right_copyfl)
    {
      /* right_item_equal of an upper level contains right_item */
      right_item_equal= new Item_equal(right_item_equal);
      cond_equal->current_level.push_back(right_item_equal);
    }

    if (left_item_equal)
    { 
      /* left item was found in the current or one of the upper levels */
      if (! right_item_equal)
        left_item_equal->add((Item_field *) right_item);
      else
      {
        /* Merge two multiple equalities forming a new one */
        left_item_equal->merge(right_item_equal);
        /* Remove the merged multiple equality from the list */
        List_iterator<Item_equal> li(cond_equal->current_level);
        while ((li++) != right_item_equal) ;
        li.remove();
      }
    }
    else
    { 
      /* left item was not found neither the current nor in upper levels  */
      if (right_item_equal)
        right_item_equal->add((Item_field *) left_item);
      else 
      {
        /* None of the fields was found in multiple equalities */
        Item_equal *item_equal= new Item_equal((Item_field *) left_item,
                                               (Item_field *) right_item);
        cond_equal->current_level.push_back(item_equal);
      }
    }
    return TRUE;
  }

  {
    /* The predicate of the form field=const/const=field is processed */
    Item *const_item= 0;
    Item_field *field_item= 0;
    if (left_item->type() == Item::FIELD_ITEM &&
        !((Item_field*)left_item)->depended_from &&
        right_item->const_item())
    {
      field_item= (Item_field*) left_item;
      const_item= right_item;
    }
    else if (right_item->type() == Item::FIELD_ITEM &&
             !((Item_field*)right_item)->depended_from &&
             left_item->const_item())
    {
      field_item= (Item_field*) right_item;
      const_item= left_item;
    }

    if (const_item &&
        field_item->result_type() == const_item->result_type())
    {
      bool copyfl;

      if (field_item->result_type() == STRING_RESULT)
      {
        CHARSET_INFO *cs= ((Field_str*) field_item->field)->charset();
        if (!item)
        {
          Item_func_eq *eq_item;
          if ((eq_item= new Item_func_eq(left_item, right_item)))
            return FALSE;
          eq_item->set_cmp_func();
          eq_item->quick_fix_field();
          item= eq_item;
        }  
        if ((cs != ((Item_func *) item)->compare_collation()) ||
            !cs->coll->propagate(cs, 0, 0))
          return FALSE;
      }

      Item_equal *item_equal = find_item_equal(cond_equal,
                                               field_item->field, &copyfl);
      if (copyfl)
      {
        item_equal= new Item_equal(item_equal);
        cond_equal->current_level.push_back(item_equal);
      }
      if (item_equal)
      {
        /* 
          The flag cond_false will be set to 1 after this, if item_equal
          already contains a constant and its value is  not equal to
          the value of const_item.
        */
        item_equal->add(const_item, field_item);
      }
      else
      {
        item_equal= new Item_equal(const_item, field_item);
        cond_equal->current_level.push_back(item_equal);
      }
      return TRUE;
    }
  }
  return FALSE;
}


/**
  Convert row equalities into a conjunction of regular equalities.

    The function converts a row equality of the form (E1,...,En)=(E'1,...,E'n)
    into a list of equalities E1=E'1,...,En=E'n. For each of these equalities
    Ei=E'i the function checks whether it is a simple equality or a row
    equality. If it is a simple equality it is used to expand multiple
    equalities of cond_equal. If it is a row equality it converted to a
    sequence of equalities between row elements. If Ei=E'i is neither a
    simple equality nor a row equality the item for this predicate is added
    to eq_list.

  @param thd        thread handle
  @param left_row   left term of the row equality to be processed
  @param right_row  right term of the row equality to be processed
  @param cond_equal multiple equalities that must hold together with the
                    predicate
  @param eq_list    results of conversions of row equalities that are not
                    simple enough to form multiple equalities

  @retval
    TRUE    if conversion has succeeded (no fatal error)
  @retval
    FALSE   otherwise
*/
 
static bool check_row_equality(THD *thd, Item *left_row, Item_row *right_row,
                               COND_EQUAL *cond_equal, List<Item>* eq_list)
{ 
  uint n= left_row->cols();
  for (uint i= 0 ; i < n; i++)
  {
    bool is_converted;
    Item *left_item= left_row->element_index(i);
    Item *right_item= right_row->element_index(i);
    if (left_item->type() == Item::ROW_ITEM &&
        right_item->type() == Item::ROW_ITEM)
    {
      is_converted= check_row_equality(thd, 
                                       (Item_row *) left_item,
                                       (Item_row *) right_item,
			               cond_equal, eq_list);
      if (!is_converted)
        thd->lex->current_select->cond_count++;      
    }
    else
    { 
      is_converted= check_simple_equality(left_item, right_item, 0, cond_equal);
      thd->lex->current_select->cond_count++;
    }  
 
    if (!is_converted)
    {
      Item_func_eq *eq_item;
      if (!(eq_item= new Item_func_eq(left_item, right_item)))
        return FALSE;
      eq_item->set_cmp_func();
      eq_item->quick_fix_field();
      eq_list->push_back(eq_item);
    }
  }
  return TRUE;
}


/**
  Eliminate row equalities and form multiple equalities predicates.

    This function checks whether the item is a simple equality
    i.e. the one that equates a field with another field or a constant
    (field=field_item or field=constant_item), or, a row equality.
    For a simple equality the function looks for a multiple equality
    in the lists referenced directly or indirectly by cond_equal inferring
    the given simple equality. If it doesn't find any, it builds/expands
    multiple equality that covers the predicate.
    Row equalities are eliminated substituted for conjunctive regular
    equalities which are treated in the same way as original equality
    predicates.

  @param thd        thread handle
  @param item       predicate to process
  @param cond_equal multiple equalities that must hold together with the
                    predicate
  @param eq_list    results of conversions of row equalities that are not
                    simple enough to form multiple equalities

  @retval
    TRUE   if re-writing rules have been applied
  @retval
    FALSE  otherwise, i.e.
           if the predicate is not an equality,
           or, if the equality is neither a simple one nor a row equality,
           or, if the procedure fails by a fatal error.
*/

static bool check_equality(THD *thd, Item *item, COND_EQUAL *cond_equal,
                           List<Item> *eq_list)
{
  if (item->type() == Item::FUNC_ITEM &&
         ((Item_func*) item)->functype() == Item_func::EQ_FUNC)
  {
    Item *left_item= ((Item_func*) item)->arguments()[0];
    Item *right_item= ((Item_func*) item)->arguments()[1];

    if (left_item->type() == Item::ROW_ITEM &&
        right_item->type() == Item::ROW_ITEM)
    {
      thd->lex->current_select->cond_count--;
      return check_row_equality(thd,
                                (Item_row *) left_item,
                                (Item_row *) right_item,
                                cond_equal, eq_list);
    }
    else 
      return check_simple_equality(left_item, right_item, item, cond_equal);
  } 
  return FALSE;
}

                          
/**
  Replace all equality predicates in a condition by multiple equality items.

    At each 'and' level the function detects items for equality predicates
    and replaced them by a set of multiple equality items of class Item_equal,
    taking into account inherited equalities from upper levels. 
    If an equality predicate is used not in a conjunction it's just
    replaced by a multiple equality predicate.
    For each 'and' level the function set a pointer to the inherited
    multiple equalities in the cond_equal field of the associated
    object of the type Item_cond_and.   
    The function also traverses the cond tree and and for each field reference
    sets a pointer to the multiple equality item containing the field, if there
    is any. If this multiple equality equates fields to a constant the
    function replaces the field reference by the constant in the cases 
    when the field is not of a string type or when the field reference is
    just an argument of a comparison predicate.
    The function also determines the maximum number of members in 
    equality lists of each Item_cond_and object assigning it to
    thd->lex->current_select->max_equal_elems.

  @note
    Multiple equality predicate =(f1,..fn) is equivalent to the conjuction of
    f1=f2, .., fn-1=fn. It substitutes any inference from these
    equality predicates that is equivalent to the conjunction.
    Thus, =(a1,a2,a3) can substitute for ((a1=a3) AND (a2=a3) AND (a2=a1)) as
    it is equivalent to ((a1=a2) AND (a2=a3)).
    The function always makes a substitution of all equality predicates occured
    in a conjuction for a minimal set of multiple equality predicates.
    This set can be considered as a canonical representation of the
    sub-conjunction of the equality predicates.
    E.g. (t1.a=t2.b AND t2.b>5 AND t1.a=t3.c) is replaced by 
    (=(t1.a,t2.b,t3.c) AND t2.b>5), not by
    (=(t1.a,t2.b) AND =(t1.a,t3.c) AND t2.b>5);
    while (t1.a=t2.b AND t2.b>5 AND t3.c=t4.d) is replaced by
    (=(t1.a,t2.b) AND =(t3.c=t4.d) AND t2.b>5),
    but if additionally =(t4.d,t2.b) is inherited, it
    will be replaced by (=(t1.a,t2.b,t3.c,t4.d) AND t2.b>5)

    The function performs the substitution in a recursive descent by
    the condtion tree, passing to the next AND level a chain of multiple
    equality predicates which have been built at the upper levels.
    The Item_equal items built at the level are attached to other 
    non-equality conjucts as a sublist. The pointer to the inherited
    multiple equalities is saved in the and condition object (Item_cond_and).
    This chain allows us for any field reference occurence easyly to find a 
    multiple equality that must be held for this occurence.
    For each AND level we do the following:
    - scan it for all equality predicate (=) items
    - join them into disjoint Item_equal() groups
    - process the included OR conditions recursively to do the same for 
      lower AND levels. 

    We need to do things in this order as lower AND levels need to know about
    all possible Item_equal objects in upper levels.

  @param thd        thread handle
  @param cond       condition(expression) where to make replacement
  @param inherited  path to all inherited multiple equality items

  @return
    pointer to the transformed condition
*/

static COND *build_equal_items_for_cond(THD *thd, COND *cond,
                                        COND_EQUAL *inherited)
{
  Item_equal *item_equal;
  COND_EQUAL cond_equal;
  cond_equal.upper_levels= inherited;

  if (cond->type() == Item::COND_ITEM)
  {
    List<Item> eq_list;
    bool and_level= ((Item_cond*) cond)->functype() ==
      Item_func::COND_AND_FUNC;
    List<Item> *args= ((Item_cond*) cond)->argument_list();
    
    List_iterator<Item> li(*args);
    Item *item;

    if (and_level)
    {
      /*
         Retrieve all conjuncts of this level detecting the equality
         that are subject to substitution by multiple equality items and
         removing each such predicate from the conjunction after having 
         found/created a multiple equality whose inference the predicate is.
     */      
      while ((item= li++))
      {
        /*
          PS/SP note: we can safely remove a node from AND-OR
          structure here because it's restored before each
          re-execution of any prepared statement/stored procedure.
        */
        if (check_equality(thd, item, &cond_equal, &eq_list))
          li.remove();
      }

      /*
        Check if we eliminated all the predicates of the level, e.g.
        (a=a AND b=b AND a=a).
      */
      if (!args->elements && 
          !cond_equal.current_level.elements && 
          !eq_list.elements)
        return new Item_int((longlong) 1, 1);

      List_iterator_fast<Item_equal> it(cond_equal.current_level);
      while ((item_equal= it++))
      {
        item_equal->fix_fields(thd, NULL);
        item_equal->update_used_tables();
        set_if_bigger(thd->lex->current_select->max_equal_elems,
                      item_equal->members());  
      }

      ((Item_cond_and*)cond)->cond_equal= cond_equal;
      inherited= &(((Item_cond_and*)cond)->cond_equal);
    }
    /*
       Make replacement of equality predicates for lower levels
       of the condition expression.
    */
    li.rewind();
    while ((item= li++))
    { 
      Item *new_item;
      if ((new_item= build_equal_items_for_cond(thd, item, inherited)) != item)
      {
        /* This replacement happens only for standalone equalities */
        /*
          This is ok with PS/SP as the replacement is done for
          arguments of an AND/OR item, which are restored for each
          execution of PS/SP.
        */
        li.replace(new_item);
      }
    }
    if (and_level)
    {
      args->concat(&eq_list);
      args->concat((List<Item> *)&cond_equal.current_level);
    }
  }
  else if (cond->type() == Item::FUNC_ITEM)
  {
    List<Item> eq_list;
    /*
      If an equality predicate forms the whole and level,
      we call it standalone equality and it's processed here.
      E.g. in the following where condition
      WHERE a=5 AND (b=5 or a=c)
      (b=5) and (a=c) are standalone equalities.
      In general we can't leave alone standalone eqalities:
      for WHERE a=b AND c=d AND (b=c OR d=5)
      b=c is replaced by =(a,b,c,d).  
     */
    if (check_equality(thd, cond, &cond_equal, &eq_list))
    {
      int n= cond_equal.current_level.elements + eq_list.elements;
      if (n == 0)
        return new Item_int((longlong) 1,1);
      else if (n == 1)
      {
        if ((item_equal= cond_equal.current_level.pop()))
        {
          item_equal->fix_length_and_dec();
          item_equal->update_used_tables();
          set_if_bigger(thd->lex->current_select->max_equal_elems,
                        item_equal->members());  
          return item_equal;
	}

        return eq_list.pop();
      }
      else
      {
        /* 
          Here a new AND level must be created. It can happen only
          when a row equality is processed as a standalone predicate.
	*/
        Item_cond_and *and_cond= new Item_cond_and(eq_list);
        and_cond->quick_fix_field();
        List<Item> *args= and_cond->argument_list();
        List_iterator_fast<Item_equal> it(cond_equal.current_level);
        while ((item_equal= it++))
        {
          item_equal->fix_length_and_dec();
          item_equal->update_used_tables();
          set_if_bigger(thd->lex->current_select->max_equal_elems,
                        item_equal->members());  
        }
        and_cond->cond_equal= cond_equal;
        args->concat((List<Item> *)&cond_equal.current_level);
        
        return and_cond;
      }
    }
    /* 
      For each field reference in cond, not from equal item predicates,
      set a pointer to the multiple equality it belongs to (if there is any)
      as soon the field is not of a string type or the field reference is
      an argument of a comparison predicate. 
    */ 
    uchar *is_subst_valid= (uchar *) 1;
    cond= cond->compile(&Item::subst_argument_checker,
                        &is_subst_valid, 
                        &Item::equal_fields_propagator,
                        (uchar *) inherited);
    cond->update_used_tables();
  }
  return cond;
}


/**
  Build multiple equalities for a condition and all on expressions that
  inherit these multiple equalities.

    The function first applies the build_equal_items_for_cond function
    to build all multiple equalities for condition cond utilizing equalities
    referred through the parameter inherited. The extended set of
    equalities is returned in the structure referred by the cond_equal_ref
    parameter. After this the function calls itself recursively for
    all on expressions whose direct references can be found in join_list
    and who inherit directly the multiple equalities just having built.

  @note
    The on expression used in an outer join operation inherits all equalities
    from the on expression of the embedding join, if there is any, or
    otherwise - from the where condition.
    This fact is not obvious, but presumably can be proved.
    Consider the following query:
    @code
      SELECT * FROM (t1,t2) LEFT JOIN (t3,t4) ON t1.a=t3.a AND t2.a=t4.a
        WHERE t1.a=t2.a;
    @endcode
    If the on expression in the query inherits =(t1.a,t2.a), then we
    can build the multiple equality =(t1.a,t2.a,t3.a,t4.a) that infers
    the equality t3.a=t4.a. Although the on expression
    t1.a=t3.a AND t2.a=t4.a AND t3.a=t4.a is not equivalent to the one
    in the query the latter can be replaced by the former: the new query
    will return the same result set as the original one.

    Interesting that multiple equality =(t1.a,t2.a,t3.a,t4.a) allows us
    to use t1.a=t3.a AND t3.a=t4.a under the on condition:
    @code
      SELECT * FROM (t1,t2) LEFT JOIN (t3,t4) ON t1.a=t3.a AND t3.a=t4.a
        WHERE t1.a=t2.a
    @endcode
    This query equivalent to:
    @code
      SELECT * FROM (t1 LEFT JOIN (t3,t4) ON t1.a=t3.a AND t3.a=t4.a),t2
        WHERE t1.a=t2.a
    @endcode
    Similarly the original query can be rewritten to the query:
    @code
      SELECT * FROM (t1,t2) LEFT JOIN (t3,t4) ON t2.a=t4.a AND t3.a=t4.a
        WHERE t1.a=t2.a
    @endcode
    that is equivalent to:   
    @code
      SELECT * FROM (t2 LEFT JOIN (t3,t4)ON t2.a=t4.a AND t3.a=t4.a), t1
        WHERE t1.a=t2.a
    @endcode
    Thus, applying equalities from the where condition we basically
    can get more freedom in performing join operations.
    Althogh we don't use this property now, it probably makes sense to use 
    it in the future.    
  @param thd		      Thread handler
  @param cond                condition to build the multiple equalities for
  @param inherited           path to all inherited multiple equality items
  @param join_list           list of join tables to which the condition
                             refers to
  @param[out] cond_equal_ref pointer to the structure to place built
                             equalities in

  @return
    pointer to the transformed condition containing multiple equalities
*/
   
static COND *build_equal_items(THD *thd, COND *cond,
                               COND_EQUAL *inherited,
                               List<TABLE_LIST> *join_list,
                               COND_EQUAL **cond_equal_ref)
{
  COND_EQUAL *cond_equal= 0;

  if (cond) 
  {
    cond= build_equal_items_for_cond(thd, cond, inherited);
    cond->update_used_tables();
    if (cond->type() == Item::COND_ITEM &&
        ((Item_cond*) cond)->functype() == Item_func::COND_AND_FUNC)
      cond_equal= &((Item_cond_and*) cond)->cond_equal;

    else if (cond->type() == Item::FUNC_ITEM &&
             ((Item_cond*) cond)->functype() == Item_func::MULT_EQUAL_FUNC)
    {
      cond_equal= new COND_EQUAL;
      cond_equal->current_level.push_back((Item_equal *) cond);
    }
  }
  if (cond_equal)
  {
    cond_equal->upper_levels= inherited;
    inherited= cond_equal;
  }
  *cond_equal_ref= cond_equal;

  if (join_list)
  {
    TABLE_LIST *table;
    List_iterator<TABLE_LIST> li(*join_list);

    while ((table= li++))
    {
      if (table->on_expr)
      {
        List<TABLE_LIST> *nested_join_list= table->nested_join ?
          &table->nested_join->join_list : NULL;
        /*
          We can modify table->on_expr because its old value will
          be restored before re-execution of PS/SP.
        */
        table->on_expr= build_equal_items(thd, table->on_expr, inherited,
                                          nested_join_list,
                                          &table->cond_equal);
      }
    }
  }

  return cond;
}    


/**
  Compare field items by table order in the execution plan.

    If field1 and field2 belong to different tables then
    field1 considered as better than field2 if the table containing
    field1 is accessed earlier than the table containing field2.   
    The function finds out what of two fields is better according
    this criteria.
    If field1 and field2 belong to the same table then the result
    of comparison depends on whether the fields are parts of
    the key that are used to access this table.  

  @param field1          first field item to compare
  @param field2          second field item to compare
  @param table_join_idx  index to tables determining table order

  @retval
    1  if field1 is better than field2
  @retval
    -1  if field2 is better than field1
  @retval
    0  otherwise
*/

static int compare_fields_by_table_order(Item_field *field1,
                                         Item_field *field2,
                                         void *table_join_idx)
{
  int cmp= 0;
  bool outer_ref= 0;
  if (field2->used_tables() & OUTER_REF_TABLE_BIT)
  {  
    outer_ref= 1;
    cmp= -1;
  }
  if (field1->used_tables() & OUTER_REF_TABLE_BIT)
  {
    outer_ref= 1;
    cmp++;
  }
  if (outer_ref)
    return cmp;
  JOIN_TAB **idx= (JOIN_TAB **) table_join_idx;
  
  JOIN_TAB *tab1= idx[field1->field->table->tablenr];
  JOIN_TAB *tab2= idx[field2->field->table->tablenr];
  
  /* 
    if one of the table is inside a merged SJM nest and another one isn't,
    compare SJM bush roots of the tables.
  */
  if (tab1->bush_root_tab != tab2->bush_root_tab)
  {
    if (tab1->bush_root_tab)
      tab1= tab1->bush_root_tab;

    if (tab2->bush_root_tab)
      tab2= tab2->bush_root_tab;
  }
  
  cmp= tab2 - tab1;

  if (!cmp)
  {
    JOIN_TAB *tab= idx[field1->field->table->tablenr];
    uint keyno= MAX_KEY;
    if (tab->ref.key_parts)
      keyno= tab->ref.key;
    else if (tab->select && tab->select->quick)
       keyno = tab->select->quick->index;
    if (keyno != MAX_KEY)
    {
      if (field2->field->part_of_key.is_set(keyno))
        cmp= -1;
      if (field1->field->part_of_key.is_set(keyno))
        cmp++;
      if (!cmp)
      {
        KEY *key_info= tab->table->key_info + keyno;
        for (uint i= 0; i < key_info->key_parts; i++)
	{
          Field *fld= key_info->key_part[i].field;
          if (fld->eq(field2->field))
	  {
	    cmp= -1;
            break;
          }
          if (fld->eq(field1->field))
	  {
	    cmp= 1;
            break;
          }
        }
      }              
    }              
    else   
      cmp= field2->field->field_index-field1->field->field_index;
  }
  return cmp < 0 ? -1 : (cmp ? 1 : 0);
}


static TABLE_LIST* embedding_sjm(Item_field *item_field)
{
  TABLE_LIST *nest= item_field->field->table->pos_in_table_list->embedding;
  if (nest && nest->sj_mat_info && nest->sj_mat_info->is_used)
    return nest;
  else
    return NULL;
}

/**
  Generate minimal set of simple equalities equivalent to a multiple equality.

    The function retrieves the fields of the multiple equality item
    item_equal and  for each field f:
    - if item_equal contains const it generates the equality f=const_item;
    - otherwise, if f is not the first field, generates the equality
      f=item_equal->get_first().
    All generated equality are added to the cond conjunction.

  @param cond            condition to add the generated equality to
  @param upper_levels    structure to access multiple equality of upper levels
  @param item_equal      multiple equality to generate simple equality from

  @note
    Before generating an equality function checks that it has not
    been generated for multiple equalities of the upper levels.
    E.g. for the following where condition
    WHERE a=5 AND ((a=b AND b=c) OR  c>4)
    the upper level AND condition will contain =(5,a),
    while the lower level AND condition will contain =(5,a,b,c).
    When splitting =(5,a,b,c) into a separate equality predicates
    we should omit 5=a, as we have it already in the upper level.
    The following where condition gives us a more complicated case:
    WHERE t1.a=t2.b AND t3.c=t4.d AND (t2.b=t3.c OR t4.e>5 ...) AND ...
    Given the tables are accessed in the order t1->t2->t3->t4 for
    the selected query execution plan the lower level multiple
    equality =(t1.a,t2.b,t3.c,t4.d) formally  should be converted to
    t1.a=t2.b AND t1.a=t3.c AND t1.a=t4.d. But t1.a=t2.a will be
    generated for the upper level. Also t3.c=t4.d will be generated there.
    So only t1.a=t3.c should be left in the lower level.
    If cond is equal to 0, then not more then one equality is generated
    and a pointer to it is returned as the result of the function.
    
    Equality substutution and semi-join materialization nests:

       In case join order looks like this:

          outer_tbl1 outer_tbl2 SJM (inner_tbl1 inner_tbl2) outer_tbl3 

        We must not construct equalities like 

           outer_tbl1.col = inner_tbl1.col 

        because they would get attached to inner_tbl1 and will get evaluated
        during materialization phase, when we don't have current value of
        outer_tbl1.col.

        Item_equal::get_first() also takes similar measures for dealing with
        equality substitution in presense of SJM nests.

  @return
    - The condition with generated simple equalities or
    a pointer to the simple generated equality, if success.
    - 0, otherwise.
*/

Item *eliminate_item_equal(COND *cond, COND_EQUAL *upper_levels,
                           Item_equal *item_equal)
{
  List<Item> eq_list;
  Item_func_eq *eq_item= 0;
  if (((Item *) item_equal)->const_item() && !item_equal->val_int())
    return new Item_int((longlong) 0,1); 
  Item *item_const= item_equal->get_const();
  Item_equal_iterator it(*item_equal);
  Item *head;
  DBUG_ASSERT(!cond || cond->type() == Item::COND_ITEM);

  TABLE_LIST *current_sjm= NULL;
  Item *current_sjm_head= NULL;

  /* 
    Pick the "head" item: the constant one or the first in the join order
    that's not inside some SJM nest. psergey2: out-of-date comment. It is ok
    inside SJM, too.
  */
  if (item_const)
    head= item_const;
  else
  {
    TABLE_LIST *emb_nest;
    Item_field *item_field;
    head= item_field= item_equal->get_first(NULL);
    it++;
    if ((emb_nest= embedding_sjm(item_field)))
    {
      current_sjm= emb_nest;
      current_sjm_head= head;
    }
  }

  Item_field *item_field;
  /*
    For each other item, generate "item=head" equality (except the tables that 
    are within SJ-Materialization nests, for those "head" is defined
    differently)
  */
  while ((item_field= it++))
  {
    Item_equal *upper= item_field->find_item_equal(upper_levels);
    Item_field *item= item_field;
    TABLE_LIST *field_sjm= embedding_sjm(item_field);
    if (!field_sjm)
    { 
      current_sjm= NULL;
      current_sjm_head= NULL;
    }      

    /* 
      Check if "item_field=head" equality is already guaranteed to be true 
      on upper AND-levels.
    */
    if (upper)
    { 
      if (item_const && upper->get_const())
        item= 0;
      else
      {
        Item_equal_iterator li(*item_equal);
        while ((item= li++) != item_field)
        {
          if (item->find_item_equal(upper_levels) == upper)
            break;
        }
      }
    }
    
    bool produce_equality= test(item == item_field);
    if (!item_const && field_sjm && field_sjm != current_sjm)
    {
      /* Entering an SJM nest */
      current_sjm_head= item_field;
      if (!field_sjm->sj_mat_info->is_sj_scan)
        produce_equality= FALSE;
    }

    if (produce_equality)
    {
      if (eq_item)
        eq_list.push_back(eq_item);
      
      eq_item= new Item_func_eq(item_field, current_sjm? current_sjm_head: head);

      if (!eq_item)
        return 0;
      eq_item->set_cmp_func();
      eq_item->quick_fix_field();
    }
    current_sjm= field_sjm;
  }

  if (!cond)
  {
    if (eq_list.is_empty())
    {
      if (eq_item)
        return eq_item;
      return new Item_int((longlong) 1, 1);
    }
    /* eq_item is always set if list is not empty */
    DBUG_ASSERT(eq_item);
    eq_list.push_back(eq_item);
    if (!(cond= new Item_cond_and(eq_list)))
      return 0;                                 // Error
  }
  else
  {
    if (eq_item)
      eq_list.push_back(eq_item);
    if (!eq_list.is_empty())
      ((Item_cond *) cond)->add_at_head(&eq_list);
  }
  cond->quick_fix_field();
  cond->update_used_tables();
   
  return cond;
}

/**
  Substitute every field reference in a condition by the best equal field
  and eliminate all multiple equality predicates.

    The function retrieves the cond condition and for each encountered
    multiple equality predicate it sorts the field references in it
    according to the order of tables specified by the table_join_idx
    parameter. Then it eliminates the multiple equality predicate it
    replacing it by the conjunction of simple equality predicates 
    equating every field from the multiple equality to the first
    field in it, or to the constant, if there is any.
    After this the function retrieves all other conjuncted
    predicates substitute every field reference by the field reference
    to the first equal field or equal constant if there are any.
  @param cond            condition to process
  @param cond_equal      multiple equalities to take into consideration
  @param table_join_idx  index to tables determining field preference

  @note
    At the first glance full sort of fields in multiple equality
    seems to be an overkill. Yet it's not the case due to possible
    new fields in multiple equality item of lower levels. We want
    the order in them to comply with the order of upper levels.

  @return
    The transformed condition
*/

static COND* substitute_for_best_equal_field(COND *cond,
                                             COND_EQUAL *cond_equal,
                                             void *table_join_idx)
{
  Item_equal *item_equal;
  COND *org_cond= cond;                 // Return this in case of fatal error

  if (cond->type() == Item::COND_ITEM)
  {
    List<Item> *cond_list= ((Item_cond*) cond)->argument_list();

    bool and_level= ((Item_cond*) cond)->functype() ==
                      Item_func::COND_AND_FUNC;
    if (and_level)
    {
      cond_equal= &((Item_cond_and *) cond)->cond_equal;
      cond_list->disjoin((List<Item> *) &cond_equal->current_level);

      List_iterator_fast<Item_equal> it(cond_equal->current_level);      
      while ((item_equal= it++))
      {
        item_equal->sort(&compare_fields_by_table_order, table_join_idx);
      }
    }
    
    List_iterator<Item> li(*cond_list);
    Item *item;
    while ((item= li++))
    {
      Item *new_item= substitute_for_best_equal_field(item, cond_equal,
                                                      table_join_idx);
      /*
        This works OK with PS/SP re-execution as changes are made to
        the arguments of AND/OR items only
      */
      if (new_item != item)
        li.replace(new_item);
    }

    if (and_level)
    {
      List_iterator_fast<Item_equal> it(cond_equal->current_level);
      while ((item_equal= it++))
      {
        cond= eliminate_item_equal(cond, cond_equal->upper_levels, item_equal);
        // This occurs when eliminate_item_equal() founds that cond is
        // always false and substitutes it with Item_int 0.
        // Due to this, value of item_equal will be 0, so just return it.
        if (!cond)
          return org_cond;                      // Error
        if (cond->type() != Item::COND_ITEM)
          break;
      }
    }
    if (cond->type() == Item::COND_ITEM &&
        !((Item_cond*)cond)->argument_list()->elements)
      cond= new Item_int((int32)cond->val_bool());

  }
  else if (cond->type() == Item::FUNC_ITEM && 
           ((Item_cond*) cond)->functype() == Item_func::MULT_EQUAL_FUNC)
  {
    item_equal= (Item_equal *) cond;
    item_equal->sort(&compare_fields_by_table_order, table_join_idx);
    if (cond_equal && cond_equal->current_level.head() == item_equal)
      cond_equal= 0;
    cond= eliminate_item_equal(0, cond_equal, item_equal);
    return cond ? cond : org_cond;
  }
  else 
  {
    while (cond_equal)
    {
      List_iterator_fast<Item_equal> it(cond_equal->current_level);
      while((item_equal= it++))
      {
        cond= cond->transform(&Item::replace_equal_field, (uchar *) item_equal);
      }
      cond_equal= cond_equal->upper_levels;
    }
  }
  return cond;
}


/**
  Check appearance of new constant items in multiple equalities
  of a condition after reading a constant table.

    The function retrieves the cond condition and for each encountered
    multiple equality checks whether new constants have appeared after
    reading the constant (single row) table tab. If so it adjusts
    the multiple equality appropriately.

  @param cond       condition whose multiple equalities are to be checked
  @param table      constant table that has been read
*/

static void update_const_equal_items(COND *cond, JOIN_TAB *tab)
{
  if (!(cond->used_tables() & tab->table->map))
    return;

  if (cond->type() == Item::COND_ITEM)
  {
    List<Item> *cond_list= ((Item_cond*) cond)->argument_list(); 
    List_iterator_fast<Item> li(*cond_list);
    Item *item;
    while ((item= li++))
      update_const_equal_items(item, tab);
  }
  else if (cond->type() == Item::FUNC_ITEM && 
           ((Item_cond*) cond)->functype() == Item_func::MULT_EQUAL_FUNC)
  {
    Item_equal *item_equal= (Item_equal *) cond;
    bool contained_const= item_equal->get_const() != NULL;
    item_equal->update_const();
    if (!contained_const && item_equal->get_const())
    {
      /* Update keys for range analysis */
      Item_equal_iterator it(*item_equal);
      Item_field *item_field;
      while ((item_field= it++))
      {
        Field *field= item_field->field;
        JOIN_TAB *stat= field->table->reginfo.join_tab;
        key_map possible_keys= field->key_start;
        possible_keys.intersect(field->table->keys_in_use_for_query);
        stat[0].const_keys.merge(possible_keys);

        /*
          For each field in the multiple equality (for which we know that it 
          is a constant) we have to find its corresponding key part, and set 
          that key part in const_key_parts.
        */  
        if (!possible_keys.is_clear_all())
        {
          TABLE *tab= field->table;
          KEYUSE *use;
          for (use= stat->keyuse; use && use->table == tab; use++)
            if (!use->is_for_hash_join() && possible_keys.is_set(use->key) && 
                tab->key_info[use->key].key_part[use->keypart].field ==
                field)
              tab->const_key_parts[use->key]|= use->keypart_map;
        }
      }
    }
  }
}


/*
  change field = field to field = const for each found field = const in the
  and_level
*/

static void
change_cond_ref_to_const(THD *thd, I_List<COND_CMP> *save_list,
                         Item *and_father, Item *cond,
                         Item *field, Item *value)
{
  if (cond->type() == Item::COND_ITEM)
  {
    bool and_level= ((Item_cond*) cond)->functype() ==
      Item_func::COND_AND_FUNC;
    List_iterator<Item> li(*((Item_cond*) cond)->argument_list());
    Item *item;
    while ((item=li++))
      change_cond_ref_to_const(thd, save_list,and_level ? cond : item, item,
			       field, value);
    return;
  }
  if (cond->eq_cmp_result() == Item::COND_OK)
    return;					// Not a boolean function

  Item_bool_func2 *func=  (Item_bool_func2*) cond;
  Item **args= func->arguments();
  Item *left_item=  args[0];
  Item *right_item= args[1];
  Item_func::Functype functype=  func->functype();

  if (right_item->eq(field,0) && left_item != value &&
      right_item->cmp_context == field->cmp_context &&
      (left_item->result_type() != STRING_RESULT ||
       value->result_type() != STRING_RESULT ||
       left_item->collation.collation == value->collation.collation))
  {
    Item *tmp=value->clone_item();
    tmp->collation.set(right_item->collation);
    
    if (tmp)
    {
      thd->change_item_tree(args + 1, tmp);
      func->update_used_tables();
      if ((functype == Item_func::EQ_FUNC || functype == Item_func::EQUAL_FUNC)
	  && and_father != cond && !left_item->const_item())
      {
	cond->marker=1;
	COND_CMP *tmp2;
	if ((tmp2=new COND_CMP(and_father,func)))
	  save_list->push_back(tmp2);
      }
      func->set_cmp_func();
    }
  }
  else if (left_item->eq(field,0) && right_item != value &&
           left_item->cmp_context == field->cmp_context &&
           (right_item->result_type() != STRING_RESULT ||
            value->result_type() != STRING_RESULT ||
            right_item->collation.collation == value->collation.collation))
  {
    Item *tmp= value->clone_item();
    tmp->collation.set(left_item->collation);
    
    if (tmp)
    {
      thd->change_item_tree(args, tmp);
      value= tmp;
      func->update_used_tables();
      if ((functype == Item_func::EQ_FUNC || functype == Item_func::EQUAL_FUNC)
	  && and_father != cond && !right_item->const_item())
      {
        args[0]= args[1];                       // For easy check
        thd->change_item_tree(args + 1, value);
	cond->marker=1;
	COND_CMP *tmp2;
	if ((tmp2=new COND_CMP(and_father,func)))
	  save_list->push_back(tmp2);
      }
      func->set_cmp_func();
    }
  }
}


static void
propagate_cond_constants(THD *thd, I_List<COND_CMP> *save_list,
                         COND *and_father, COND *cond)
{
  if (cond->type() == Item::COND_ITEM)
  {
    bool and_level= ((Item_cond*) cond)->functype() ==
      Item_func::COND_AND_FUNC;
    List_iterator_fast<Item> li(*((Item_cond*) cond)->argument_list());
    Item *item;
    I_List<COND_CMP> save;
    while ((item=li++))
    {
      propagate_cond_constants(thd, &save,and_level ? cond : item, item);
    }
    if (and_level)
    {						// Handle other found items
      I_List_iterator<COND_CMP> cond_itr(save);
      COND_CMP *cond_cmp;
      while ((cond_cmp=cond_itr++))
      {
        Item **args= cond_cmp->cmp_func->arguments();
        if (!args[0]->const_item())
          change_cond_ref_to_const(thd, &save,cond_cmp->and_level,
                                   cond_cmp->and_level, args[0], args[1]);
      }
    }
  }
  else if (and_father != cond && !cond->marker)		// In a AND group
  {
    if (cond->type() == Item::FUNC_ITEM &&
	(((Item_func*) cond)->functype() == Item_func::EQ_FUNC ||
	 ((Item_func*) cond)->functype() == Item_func::EQUAL_FUNC))
    {
      Item_func_eq *func=(Item_func_eq*) cond;
      Item **args= func->arguments();
      bool left_const= args[0]->const_item();
      bool right_const= args[1]->const_item();
      if (!(left_const && right_const) &&
          args[0]->result_type() == args[1]->result_type())
      {
	if (right_const)
	{
          resolve_const_item(thd, &args[1], args[0]);
	  func->update_used_tables();
          change_cond_ref_to_const(thd, save_list, and_father, and_father,
                                   args[0], args[1]);
	}
	else if (left_const)
	{
          resolve_const_item(thd, &args[0], args[1]);
	  func->update_used_tables();
          change_cond_ref_to_const(thd, save_list, and_father, and_father,
                                   args[1], args[0]);
	}
      }
    }
  }
}

/**
  Simplify joins replacing outer joins by inner joins whenever it's
  possible.

    The function, during a retrieval of join_list,  eliminates those
    outer joins that can be converted into inner join, possibly nested.
    It also moves the on expressions for the converted outer joins
    and from inner joins to conds.
    The function also calculates some attributes for nested joins:
    - used_tables    
    - not_null_tables
    - dep_tables.
    - on_expr_dep_tables
    The first two attributes are used to test whether an outer join can
    be substituted for an inner join. The third attribute represents the
    relation 'to be dependent on' for tables. If table t2 is dependent
    on table t1, then in any evaluated execution plan table access to
    table t2 must precede access to table t2. This relation is used also
    to check whether the query contains  invalid cross-references.
    The forth attribute is an auxiliary one and is used to calculate
    dep_tables.
    As the attribute dep_tables qualifies possibles orders of tables in the
    execution plan, the dependencies required by the straight join
    modifiers are reflected in this attribute as well.
    The function also removes all braces that can be removed from the join
    expression without changing its meaning.

  @note
    An outer join can be replaced by an inner join if the where condition
    or the on expression for an embedding nested join contains a conjunctive
    predicate rejecting null values for some attribute of the inner tables.

    E.g. in the query:    
    @code
      SELECT * FROM t1 LEFT JOIN t2 ON t2.a=t1.a WHERE t2.b < 5
    @endcode
    the predicate t2.b < 5 rejects nulls.
    The query is converted first to:
    @code
      SELECT * FROM t1 INNER JOIN t2 ON t2.a=t1.a WHERE t2.b < 5
    @endcode
    then to the equivalent form:
    @code
      SELECT * FROM t1, t2 ON t2.a=t1.a WHERE t2.b < 5 AND t2.a=t1.a
    @endcode


    Similarly the following query:
    @code
      SELECT * from t1 LEFT JOIN (t2, t3) ON t2.a=t1.a t3.b=t1.b
        WHERE t2.c < 5  
    @endcode
    is converted to:
    @code
      SELECT * FROM t1, (t2, t3) WHERE t2.c < 5 AND t2.a=t1.a t3.b=t1.b 

    @endcode

    One conversion might trigger another:
    @code
      SELECT * FROM t1 LEFT JOIN t2 ON t2.a=t1.a
                       LEFT JOIN t3 ON t3.b=t2.b
        WHERE t3 IS NOT NULL =>
      SELECT * FROM t1 LEFT JOIN t2 ON t2.a=t1.a, t3
        WHERE t3 IS NOT NULL AND t3.b=t2.b => 
      SELECT * FROM t1, t2, t3
        WHERE t3 IS NOT NULL AND t3.b=t2.b AND t2.a=t1.a
  @endcode

    The function removes all unnecessary braces from the expression
    produced by the conversions.
    E.g.
    @code
      SELECT * FROM t1, (t2, t3) WHERE t2.c < 5 AND t2.a=t1.a AND t3.b=t1.b
    @endcode
    finally is converted to: 
    @code
      SELECT * FROM t1, t2, t3 WHERE t2.c < 5 AND t2.a=t1.a AND t3.b=t1.b

    @endcode


    It also will remove braces from the following queries:
    @code
      SELECT * from (t1 LEFT JOIN t2 ON t2.a=t1.a) LEFT JOIN t3 ON t3.b=t2.b
      SELECT * from (t1, (t2,t3)) WHERE t1.a=t2.a AND t2.b=t3.b.
    @endcode

    The benefit of this simplification procedure is that it might return 
    a query for which the optimizer can evaluate execution plan with more
    join orders. With a left join operation the optimizer does not
    consider any plan where one of the inner tables is before some of outer
    tables.

  IMPLEMENTATION
    The function is implemented by a recursive procedure.  On the recursive
    ascent all attributes are calculated, all outer joins that can be
    converted are replaced and then all unnecessary braces are removed.
    As join list contains join tables in the reverse order sequential
    elimination of outer joins does not require extra recursive calls.

  SEMI-JOIN NOTES
    Remove all semi-joins that have are within another semi-join (i.e. have
    an "ancestor" semi-join nest)

  EXAMPLES
    Here is an example of a join query with invalid cross references:
    @code
      SELECT * FROM t1 LEFT JOIN t2 ON t2.a=t3.a LEFT JOIN t3 ON t3.b=t1.b 
    @endcode

  @param join        reference to the query info
  @param join_list   list representation of the join to be converted
  @param conds       conditions to add on expressions for converted joins
  @param top         true <=> conds is the where condition
  @param in_sj       TRUE <=> processing semi-join nest's children
  @return
    - The new condition, if success
    - 0, otherwise
*/

static COND *
simplify_joins(JOIN *join, List<TABLE_LIST> *join_list, COND *conds, bool top,
               bool in_sj)
{
  TABLE_LIST *table;
  NESTED_JOIN *nested_join;
  TABLE_LIST *prev_table= 0;
  List_iterator<TABLE_LIST> li(*join_list);
  bool straight_join= test(join->select_options & SELECT_STRAIGHT_JOIN);
  DBUG_ENTER("simplify_joins");

  /* 
    Try to simplify join operations from join_list.
    The most outer join operation is checked for conversion first. 
  */
  while ((table= li++))
  {
    table_map used_tables;
    table_map not_null_tables= (table_map) 0;

    if ((nested_join= table->nested_join))
    {
      /* 
         If the element of join_list is a nested join apply
         the procedure to its nested join list first.
      */
      if (table->on_expr)
      {
        Item *expr= table->on_expr;
        /* 
           If an on expression E is attached to the table, 
           check all null rejected predicates in this expression.
           If such a predicate over an attribute belonging to
           an inner table of an embedded outer join is found,
           the outer join is converted to an inner join and
           the corresponding on expression is added to E. 
	*/ 
        expr= simplify_joins(join, &nested_join->join_list,
                             expr, FALSE, in_sj || table->sj_on_expr);

        if (!table->prep_on_expr || expr != table->on_expr)
        {
          DBUG_ASSERT(expr);

          table->on_expr= expr;
          table->prep_on_expr= expr->copy_andor_structure(join->thd);
        }
      }
      nested_join->used_tables= (table_map) 0;
      nested_join->not_null_tables=(table_map) 0;
      conds= simplify_joins(join, &nested_join->join_list, conds, top, 
                            in_sj || table->sj_on_expr);
      used_tables= nested_join->used_tables;
      not_null_tables= nested_join->not_null_tables;  
      /* The following two might become unequal after table elimination: */
      nested_join->n_tables= nested_join->join_list.elements;
    }
    else
    {
      if (!table->prep_on_expr)
        table->prep_on_expr= table->on_expr;
      used_tables= table->table->map;
      if (conds)
        not_null_tables= conds->not_null_tables();
    }
      
    if (table->embedding)
    {
      table->embedding->nested_join->used_tables|= used_tables;
      table->embedding->nested_join->not_null_tables|= not_null_tables;
    }

    if (!table->outer_join || (used_tables & not_null_tables))
    {
      /* 
        For some of the inner tables there are conjunctive predicates
        that reject nulls => the outer join can be replaced by an inner join.
      */
      if (table->outer_join && !table->embedding && table->table)
        table->table->maybe_null= FALSE;
      table->outer_join= 0;
      if (table->on_expr)
      {
        /* Add ON expression to the WHERE or upper-level ON condition. */
        if (conds)
        {
          conds= and_conds(conds, table->on_expr);
          conds->top_level_item();
          /* conds is always a new item as both cond and on_expr existed */
          DBUG_ASSERT(!conds->fixed);
          conds->fix_fields(join->thd, &conds);
        }
        else
          conds= table->on_expr; 
        table->prep_on_expr= table->on_expr= 0;
      }
    }
    
    if (!top)
      continue;

    /* 
      Only inner tables of non-convertible outer joins
      remain with on_expr.
    */ 
    if (table->on_expr)
    {
      table->dep_tables|= table->on_expr->used_tables(); 
      if (table->embedding)
      {
        table->dep_tables&= ~table->embedding->nested_join->used_tables;   
        /*
           Embedding table depends on tables used
           in embedded on expressions. 
        */
        table->embedding->on_expr_dep_tables|= table->on_expr->used_tables();
      }
      else
        table->dep_tables&= ~table->table->map;
    }

    if (prev_table)
    {
      /* The order of tables is reverse: prev_table follows table */
      if (prev_table->straight || straight_join)
        prev_table->dep_tables|= used_tables;
      if (prev_table->on_expr)
      {
        prev_table->dep_tables|= table->on_expr_dep_tables;
        table_map prev_used_tables= prev_table->nested_join ?
	                            prev_table->nested_join->used_tables :
	                            prev_table->table->map;
        /* 
          If on expression contains only references to inner tables
          we still make the inner tables dependent on the outer tables.
          It would be enough to set dependency only on one outer table
          for them. Yet this is really a rare case.
          Note:
          RAND_TABLE_BIT mask should not be counted as it
          prevents update of inner table dependences.
          For example it might happen if RAND() function
          is used in JOIN ON clause.
	*/  
        if (!((prev_table->on_expr->used_tables() &
               ~(OUTER_REF_TABLE_BIT | RAND_TABLE_BIT)) &
              ~prev_used_tables))
          prev_table->dep_tables|= used_tables;
      }
    }
    prev_table= table;
  }
    
  /* 
    Flatten nested joins that can be flattened.
    no ON expression and not a semi-join => can be flattened.
  */
  TABLE_LIST *right_neighbor= NULL;
  li.rewind();
  while ((table= li++))
  {
    bool fix_name_res= FALSE;
    nested_join= table->nested_join;
    if (table->sj_on_expr && !in_sj)
    {
       /*
         If this is a semi-join that is not contained within another semi-join, 
         leave it intact (otherwise it is flattened)
       */
      join->select_lex->sj_nests.push_back(table);
    }
    else if (nested_join && !table->on_expr)
    {
      TABLE_LIST *tbl;
      List_iterator<TABLE_LIST> it(nested_join->join_list);
      while ((tbl= it++))
      {
        tbl->embedding= table->embedding;
        if (!tbl->embedding && !tbl->on_expr && tbl->table)
          tbl->table->maybe_null= FALSE;
        tbl->join_list= table->join_list;
      }
      li.replace(nested_join->join_list);
      /* Need to update the name resolution table chain when flattening joins */
      fix_name_res= TRUE;
      table= *li.ref();
    }
    if (fix_name_res)
      table->next_name_resolution_table= right_neighbor ?
        right_neighbor->first_leaf_for_name_resolution() :
        NULL;
    right_neighbor= table;
  }
  DBUG_RETURN(conds); 
}


/**
  Assign each nested join structure a bit in nested_join_map.

    Assign each nested join structure (except ones that embed only one element
    and so are redundant) a bit in nested_join_map.

  @param join          Join being processed
  @param join_list     List of tables
  @param first_unused  Number of first unused bit in nested_join_map before the
                       call

  @note
    This function is called after simplify_joins(), when there are no
    redundant nested joins, #non_redundant_nested_joins <= #tables_in_join so
    we will not run out of bits in nested_join_map.

  @return
    First unused bit in nested_join_map after the call.
*/

static uint build_bitmap_for_nested_joins(List<TABLE_LIST> *join_list, 
                                          uint first_unused)
{
  List_iterator<TABLE_LIST> li(*join_list);
  TABLE_LIST *table;
  DBUG_ENTER("build_bitmap_for_nested_joins");
  while ((table= li++))
  {
    NESTED_JOIN *nested_join;
    if ((nested_join= table->nested_join))
    {
      /*
        It is guaranteed by simplify_joins() function that a nested join
        that has only one child represents a single table VIEW (and the child
        is an underlying table). We don't assign bits to such nested join
        structures because 
        1. it is redundant (a "sequence" of one table cannot be interleaved 
            with anything)
        2. we could run out bits in nested_join_map otherwise.
      */
      if (nested_join->n_tables != 1)
      {
        /* Don't assign bits to sj-nests */
        if (table->on_expr)
          nested_join->nj_map= (nested_join_map) 1 << first_unused++;
        first_unused= build_bitmap_for_nested_joins(&nested_join->join_list,
                                                    first_unused);
      }
    }
  }
  DBUG_RETURN(first_unused);
}


/**
  Set NESTED_JOIN::counter=0 in all nested joins in passed list.

    Recursively set NESTED_JOIN::counter=0 for all nested joins contained in
    the passed join_list.

  @param join_list  List of nested joins to process. It may also contain base
                    tables which will be ignored.
*/

static uint reset_nj_counters(JOIN *join, List<TABLE_LIST> *join_list)
{
  List_iterator<TABLE_LIST> li(*join_list);
  TABLE_LIST *table;
  DBUG_ENTER("reset_nj_counters");
  uint n=0;
  while ((table= li++))
  {
    NESTED_JOIN *nested_join;
    bool is_eliminated_nest= FALSE;
    if ((nested_join= table->nested_join))
    {
      nested_join->counter= 0;
      nested_join->n_tables= reset_nj_counters(join, &nested_join->join_list);
      if (!nested_join->n_tables)
        is_eliminated_nest= TRUE;
    }
    if ((!table->table && !is_eliminated_nest) || 
        (table->table && (table->table->map & ~join->eliminated_tables)))
      n++;
  }
  DBUG_RETURN(n);
}


/**
  Check interleaving with an inner tables of an outer join for
  extension table.

    Check if table next_tab can be added to current partial join order, and 
    if yes, record that it has been added.

    The function assumes that both current partial join order and its
    extension with next_tab are valid wrt table dependencies.

  @verbatim
     IMPLEMENTATION 
       LIMITATIONS ON JOIN ORDER
         The nested [outer] joins executioner algorithm imposes these limitations
         on join order:
         1. "Outer tables first" -  any "outer" table must be before any 
             corresponding "inner" table.
         2. "No interleaving" - tables inside a nested join must form a continuous
            sequence in join order (i.e. the sequence must not be interrupted by 
            tables that are outside of this nested join).

         #1 is checked elsewhere, this function checks #2 provided that #1 has
         been already checked.

       WHY NEED NON-INTERLEAVING
         Consider an example: 

           select * from t0 join t1 left join (t2 join t3) on cond1

         The join order "t1 t2 t0 t3" is invalid:

         table t0 is outside of the nested join, so WHERE condition for t0 is
         attached directly to t0 (without triggers, and it may be used to access
         t0). Applying WHERE(t0) to (t2,t0,t3) record is invalid as we may miss
         combinations of (t1, t2, t3) that satisfy condition cond1, and produce a
         null-complemented (t1, t2.NULLs, t3.NULLs) row, which should not have
         been produced.

         If table t0 is not between t2 and t3, the problem doesn't exist:
          If t0 is located after (t2,t3), WHERE(t0) is applied after nested join
           processing has finished.
          If t0 is located before (t2,t3), predicates like WHERE_cond(t0, t2) are
           wrapped into condition triggers, which takes care of correct nested
           join processing.

       HOW IT IS IMPLEMENTED
         The limitations on join order can be rephrased as follows: for valid
         join order one must be able to:
           1. write down the used tables in the join order on one line.
           2. for each nested join, put one '(' and one ')' on the said line        
           3. write "LEFT JOIN" and "ON (...)" where appropriate
           4. get a query equivalent to the query we're trying to execute.

         Calls to check_interleaving_with_nj() are equivalent to writing the
         above described line from left to right. 
         A single check_interleaving_with_nj(A,B) call is equivalent to writing 
         table B and appropriate brackets on condition that table A and
         appropriate brackets is the last what was written. Graphically the
         transition is as follows:

                              +---- current position
                              |
             ... last_tab ))) | ( next_tab )  )..) | ...
                                X          Y   Z   |
                                                   +- need to move to this
                                                      position.

         Notes about the position:
           The caller guarantees that there is no more then one X-bracket by 
           checking "!(remaining_tables & s->dependent)" before calling this 
           function. X-bracket may have a pair in Y-bracket.

         When "writing" we store/update this auxilary info about the current
         position:
          1. join->cur_embedding_map - bitmap of pairs of brackets (aka nested
             joins) we've opened but didn't close.
          2. {each NESTED_JOIN structure not simplified away}->counter - number
             of this nested join's children that have already been added to to
             the partial join order.
  @endverbatim

  @param next_tab   Table we're going to extend the current partial join with

  @retval
    FALSE  Join order extended, nested joins info about current join
    order (see NOTE section) updated.
  @retval
    TRUE   Requested join order extension not allowed.
*/

static bool check_interleaving_with_nj(JOIN_TAB *next_tab)
{
  TABLE_LIST *next_emb= next_tab->table->pos_in_table_list->embedding;
  JOIN *join= next_tab->join;

  if (join->cur_embedding_map & ~next_tab->embedding_map)
  {
    /* 
      next_tab is outside of the "pair of brackets" we're currently in.
      Cannot add it.
    */
    return TRUE;
  }
   
  /*
    Do update counters for "pairs of brackets" that we've left (marked as
    X,Y,Z in the above picture)
  */
  for (;next_emb && next_emb != join->emb_sjm_nest; next_emb= next_emb->embedding)
  {
    if (!next_emb->sj_on_expr)
    {
      next_emb->nested_join->counter++;
      if (next_emb->nested_join->counter == 1)
      {
        /* 
          next_emb is the first table inside a nested join we've "entered". In
          the picture above, we're looking at the 'X' bracket. Don't exit yet as
          X bracket might have Y pair bracket.
        */
        join->cur_embedding_map |= next_emb->nested_join->nj_map;
      }
      
      if (next_emb->nested_join->n_tables !=
          next_emb->nested_join->counter)
        break;

      /*
        We're currently at Y or Z-bracket as depicted in the above picture.
        Mark that we've left it and continue walking up the brackets hierarchy.
      */
      join->cur_embedding_map &= ~next_emb->nested_join->nj_map;
    }
  }
  return FALSE;
}


/**
  Nested joins perspective: Remove the last table from the join order.

  The algorithm is the reciprocal of check_interleaving_with_nj(), hence
  parent join nest nodes are updated only when the last table in its child
  node is removed. The ASCII graphic below will clarify.

  %A table nesting such as <tt> t1 x [ ( t2 x t3 ) x ( t4 x t5 ) ] </tt>is
  represented by the below join nest tree.

  @verbatim
                     NJ1
                  _/ /  \
                _/  /    NJ2
              _/   /     / \ 
             /    /     /   \
   t1 x [ (t2 x t3) x (t4 x t5) ]
  @endverbatim

  At the point in time when check_interleaving_with_nj() adds the table t5 to
  the query execution plan, QEP, it also directs the node named NJ2 to mark
  the table as covered. NJ2 does so by incrementing its @c counter
  member. Since all of NJ2's tables are now covered by the QEP, the algorithm
  proceeds up the tree to NJ1, incrementing its counter as well. All join
  nests are now completely covered by the QEP.

  restore_prev_nj_state() does the above in reverse. As seen above, the node
  NJ1 contains the nodes t2, t3, and NJ2. Its counter being equal to 3 means
  that the plan covers t2, t3, and NJ2, @e and that the sub-plan (t4 x t5)
  completely covers NJ2. The removal of t5 from the partial plan will first
  decrement NJ2's counter to 1. It will then detect that NJ2 went from being
  completely to partially covered, and hence the algorithm must continue
  upwards to NJ1 and decrement its counter to 2. %A subsequent removal of t4
  will however not influence NJ1 since it did not un-cover the last table in
  NJ2.

  SYNOPSIS
    restore_prev_nj_state()
      last  join table to remove, it is assumed to be the last in current 
            partial join order.
     
  DESCRIPTION

    Remove the last table from the partial join order and update the nested
    joins counters and join->cur_embedding_map. It is ok to call this 
    function for the first table in join order (for which 
    check_interleaving_with_nj has not been called)

  @param last  join table to remove, it is assumed to be the last in current
               partial join order.
*/

static void restore_prev_nj_state(JOIN_TAB *last)
{
  TABLE_LIST *last_emb= last->table->pos_in_table_list->embedding;
  JOIN *join= last->join;
  for (;last_emb != NULL && last_emb != join->emb_sjm_nest; 
       last_emb= last_emb->embedding)
  {
    if (!last_emb->sj_on_expr)
    {
      NESTED_JOIN *nest= last_emb->nested_join;
      DBUG_ASSERT(nest->counter > 0);
      
      bool was_fully_covered= nest->is_fully_covered();
      
      if (--nest->counter == 0)
        join->cur_embedding_map&= ~nest->nj_map;
      
      if (!was_fully_covered)
        break;
      
      join->cur_embedding_map|= nest->nj_map;
    }
  }
}



/*
  Change access methods not to use join buffering and adjust costs accordingly

  SYNOPSIS
    optimize_wo_join_buffering()
      join
      first_tab               The first tab to do re-optimization for
      last_tab                The last tab to do re-optimization for
      last_remaining_tables   Bitmap of tables that are not in the
                              [0...last_tab] join prefix
      first_alt               TRUE <=> Use the LooseScan plan for the first_tab
      no_jbuf_before          Don't allow to use join buffering before this
                              table
      reopt_rec_count     OUT New output record count
      reopt_cost          OUT New join prefix cost

  DESCRIPTION
    Given a join prefix [0; ... first_tab], change the access to the tables
    in the [first_tab; last_tab] not to use join buffering. This is needed
    because some semi-join strategies cannot be used together with the join
    buffering.
    In general case the best table order in [first_tab; last_tab] range with
    join buffering is different from the best order without join buffering but
    we don't try finding a better join order. (TODO ask Igor why did we
    chose not to do this in the end. that's actually the difference from the 
    forking approach)
*/

void optimize_wo_join_buffering(JOIN *join, uint first_tab, uint last_tab, 
                                table_map last_remaining_tables, 
                                bool first_alt, uint no_jbuf_before,
                                double *outer_rec_count, double *reopt_cost)
{
  double cost, rec_count;
  table_map reopt_remaining_tables= last_remaining_tables;
  uint i;

  if (first_tab > join->const_tables)
  {
    cost=      join->positions[first_tab - 1].prefix_cost.total_cost();
    rec_count= join->positions[first_tab - 1].prefix_record_count;
  }
  else
  {
    cost= 0.0;
    rec_count= 1;
  }

  *outer_rec_count= rec_count;
  for (i= first_tab; i <= last_tab; i++)
    reopt_remaining_tables |= join->positions[i].table->table->map;

  table_map save_cur_sj_inner_tables= join->cur_sj_inner_tables;
  join->cur_sj_inner_tables= 0;

  for (i= first_tab; i <= last_tab; i++)
  {
    JOIN_TAB *rs= join->positions[i].table;
    POSITION pos, loose_scan_pos;
    
    if ((i == first_tab && first_alt) || join->positions[i].use_join_buffer)
    {
      /* Find the best access method that would not use join buffering */
      best_access_path(join, rs, reopt_remaining_tables, i, 
                       TRUE, rec_count,
                       &pos, &loose_scan_pos);
    }
    else 
      pos= join->positions[i];

    if ((i == first_tab && first_alt))
      pos= loose_scan_pos;

    reopt_remaining_tables &= ~rs->table->map;
    rec_count *= pos.records_read;
    cost += pos.read_time;

    if (!rs->emb_sj_nest)
      *outer_rec_count *= pos.records_read;
  }
  join->cur_sj_inner_tables= save_cur_sj_inner_tables;
  *reopt_cost= cost;
}


static COND *
optimize_cond(JOIN *join, COND *conds, List<TABLE_LIST> *join_list,
              Item::cond_result *cond_value, COND_EQUAL **cond_equal)
{
  THD *thd= join->thd;
  DBUG_ENTER("optimize_cond");

  if (!conds)
  {
    *cond_value= Item::COND_TRUE;
    build_equal_items(join->thd, NULL, NULL, join_list, cond_equal);
  }  
  else
  {
    /* 
      Build all multiple equality predicates and eliminate equality
      predicates that can be inferred from these multiple equalities.
      For each reference of a field included into a multiple equality
      that occurs in a function set a pointer to the multiple equality
      predicate. Substitute a constant instead of this field if the
      multiple equality contains a constant.
    */ 
    DBUG_EXECUTE("where", print_where(conds, "original", QT_ORDINARY););
    conds= build_equal_items(join->thd, conds, NULL, join_list,
                             &join->cond_equal);
    DBUG_EXECUTE("where",print_where(conds,"after equal_items", QT_ORDINARY););

    /* change field = field to field = const for each found field = const */
    propagate_cond_constants(thd, (I_List<COND_CMP> *) 0, conds, conds);
    /*
      Remove all instances of item == item
      Remove all and-levels where CONST item != CONST item
    */
    DBUG_EXECUTE("where",print_where(conds,"after const change", QT_ORDINARY););
    conds= remove_eq_conds(thd, conds, cond_value) ;
    DBUG_EXECUTE("info",print_where(conds,"after remove", QT_ORDINARY););
  }
  DBUG_RETURN(conds);
}


/**
  Remove const and eq items.

  @return
    Return new item, or NULL if no condition @n
    cond_value is set to according:
    - COND_OK     : query is possible (field = constant)
    - COND_TRUE   : always true	( 1 = 1 )
    - COND_FALSE  : always false	( 1 = 2 )
*/

COND *
remove_eq_conds(THD *thd, COND *cond, Item::cond_result *cond_value)
{
  if (cond->type() == Item::COND_ITEM)
  {
    bool and_level= ((Item_cond*) cond)->functype()
      == Item_func::COND_AND_FUNC;
    List_iterator<Item> li(*((Item_cond*) cond)->argument_list());
    Item::cond_result tmp_cond_value;
    bool should_fix_fields=0;

    *cond_value=Item::COND_UNDEF;
    Item *item;
    while ((item=li++))
    {
      Item *new_item=remove_eq_conds(thd, item, &tmp_cond_value);
      if (!new_item)
	li.remove();
      else if (item != new_item)
      {
	VOID(li.replace(new_item));
	should_fix_fields=1;
      }
      if (*cond_value == Item::COND_UNDEF)
	*cond_value=tmp_cond_value;
      switch (tmp_cond_value) {
      case Item::COND_OK:			// Not TRUE or FALSE
	if (and_level || *cond_value == Item::COND_FALSE)
	  *cond_value=tmp_cond_value;
	break;
      case Item::COND_FALSE:
	if (and_level)
	{
	  *cond_value=tmp_cond_value;
	  return (COND*) 0;			// Always false
	}
	break;
      case Item::COND_TRUE:
	if (!and_level)
	{
	  *cond_value= tmp_cond_value;
	  return (COND*) 0;			// Always true
	}
	break;
      case Item::COND_UNDEF:			// Impossible
	break; /* purecov: deadcode */
      }
    }
    if (should_fix_fields)
      cond->update_used_tables();

    if (!((Item_cond*) cond)->argument_list()->elements ||
	*cond_value != Item::COND_OK)
      return (COND*) 0;
    if (((Item_cond*) cond)->argument_list()->elements == 1)
    {						// Remove list
      item= ((Item_cond*) cond)->argument_list()->head();
      ((Item_cond*) cond)->argument_list()->empty();
      return item;
    }
  }
  else if (cond->type() == Item::FUNC_ITEM &&
	   ((Item_func*) cond)->functype() == Item_func::ISNULL_FUNC)
  {
    /*
      Handles this special case for some ODBC applications:
      The are requesting the row that was just updated with a auto_increment
      value with this construct:

      SELECT * from table_name where auto_increment_column IS NULL
      This will be changed to:
      SELECT * from table_name where auto_increment_column = LAST_INSERT_ID
    */

    Item_func_isnull *func=(Item_func_isnull*) cond;
    Item **args= func->arguments();
    if (args[0]->type() == Item::FIELD_ITEM)
    {
      Field *field=((Item_field*) args[0])->field;
      if (field->flags & AUTO_INCREMENT_FLAG && !field->table->maybe_null &&
	  (thd->options & OPTION_AUTO_IS_NULL) &&
	  (thd->first_successful_insert_id_in_prev_stmt > 0 &&
           thd->substitute_null_with_insert_id))
      {
#ifdef HAVE_QUERY_CACHE
	query_cache_abort(&thd->net);
#endif
	COND *new_cond;
	if ((new_cond= new Item_func_eq(args[0],
					new Item_int("last_insert_id()",
                                                     thd->read_first_successful_insert_id_in_prev_stmt(),
                                                     MY_INT64_NUM_DECIMAL_DIGITS))))
	{
	  cond=new_cond;
          /*
            Item_func_eq can't be fixed after creation so we do not check
            cond->fixed, also it do not need tables so we use 0 as second
            argument.
          */
	  cond->fix_fields(thd, &cond);
	}
        /*
          IS NULL should be mapped to LAST_INSERT_ID only for first row, so
          clear for next row
        */
        thd->substitute_null_with_insert_id= FALSE;
      }
      /* fix to replace 'NULL' dates with '0' (shreeve@uci.edu) */
      else if (((field->type() == MYSQL_TYPE_DATE) ||
		(field->type() == MYSQL_TYPE_DATETIME)) &&
		(field->flags & NOT_NULL_FLAG) &&
	       !field->table->maybe_null)
      {
	COND *new_cond;
	if ((new_cond= new Item_func_eq(args[0],new Item_int("0", 0, 2))))
	{
	  cond=new_cond;
          /*
            Item_func_eq can't be fixed after creation so we do not check
            cond->fixed, also it do not need tables so we use 0 as second
            argument.
          */
	  cond->fix_fields(thd, &cond);
	}
      }
    }
    if (cond->const_item())
    {
      *cond_value= eval_const_cond(cond) ? Item::COND_TRUE : Item::COND_FALSE;
      return (COND*) 0;
    }
  }
  else if (cond->const_item() && !cond->is_expensive())
  {
    *cond_value= eval_const_cond(cond) ? Item::COND_TRUE : Item::COND_FALSE;
    return (COND*) 0;
  }
  else if ((*cond_value= cond->eq_cmp_result()) != Item::COND_OK)
  {						// boolan compare function
    Item *left_item=	((Item_func*) cond)->arguments()[0];
    Item *right_item= ((Item_func*) cond)->arguments()[1];
    if (left_item->eq(right_item,1))
    {
      if (!left_item->maybe_null ||
	  ((Item_func*) cond)->functype() == Item_func::EQUAL_FUNC)
	return (COND*) 0;			// Compare of identical items
    }
  }
  *cond_value=Item::COND_OK;
  return cond;					// Point at next and level
}

/* 
  Check if equality can be used in removing components of GROUP BY/DISTINCT
  
  SYNOPSIS
    test_if_equality_guarantees_uniqueness()
      l          the left comparison argument (a field if any)
      r          the right comparison argument (a const of any)
  
  DESCRIPTION    
    Checks if an equality predicate can be used to take away 
    DISTINCT/GROUP BY because it is known to be true for exactly one 
    distinct value (e.g. <expr> == <const>).
    Arguments must be of the same type because e.g. 
    <string_field> = <int_const> may match more than 1 distinct value from 
    the column. 
    We must take into consideration and the optimization done for various 
    string constants when compared to dates etc (see Item_int_with_ref) as
    well as the collation of the arguments.
  
  RETURN VALUE  
    TRUE    can be used
    FALSE   cannot be used
*/
static bool
test_if_equality_guarantees_uniqueness(Item *l, Item *r)
{
  return r->const_item() &&
    /* elements must be compared as dates */
     (Arg_comparator::can_compare_as_dates(l, r, 0) ||
      /* or of the same result type */
      (r->result_type() == l->result_type() &&
       /* and must have the same collation if compared as strings */
       (l->result_type() != STRING_RESULT ||
        l->collation.collation == r->collation.collation)));
}

/**
  Return TRUE if the item is a const value in all the WHERE clause.
*/

static bool
const_expression_in_where(COND *cond, Item *comp_item, Item **const_item)
{
  if (cond->type() == Item::COND_ITEM)
  {
    bool and_level= (((Item_cond*) cond)->functype()
		     == Item_func::COND_AND_FUNC);
    List_iterator_fast<Item> li(*((Item_cond*) cond)->argument_list());
    Item *item;
    while ((item=li++))
    {
      bool res=const_expression_in_where(item, comp_item, const_item);
      if (res)					// Is a const value
      {
	if (and_level)
	  return 1;
      }
      else if (!and_level)
	return 0;
    }
    return and_level ? 0 : 1;
  }
  else if (cond->eq_cmp_result() != Item::COND_OK)
  {						// boolan compare function
    Item_func* func= (Item_func*) cond;
    if (func->functype() != Item_func::EQUAL_FUNC &&
	func->functype() != Item_func::EQ_FUNC)
      return 0;
    Item *left_item=	((Item_func*) cond)->arguments()[0];
    Item *right_item= ((Item_func*) cond)->arguments()[1];
    if (left_item->eq(comp_item,1))
    {
      if (test_if_equality_guarantees_uniqueness (left_item, right_item))
      {
	if (*const_item)
	  return right_item->eq(*const_item, 1);
	*const_item=right_item;
	return 1;
      }
    }
    else if (right_item->eq(comp_item,1))
    {
      if (test_if_equality_guarantees_uniqueness (right_item, left_item))
      {
	if (*const_item)
	  return left_item->eq(*const_item, 1);
	*const_item=left_item;
	return 1;
      }
    }
  }
  return 0;
}

/****************************************************************************
  Create internal temporary table
****************************************************************************/

/**
  Create field for temporary table from given field.

  @param thd	       Thread handler
  @param org_field    field from which new field will be created
  @param name         New field name
  @param table	       Temporary table
  @param item	       !=NULL if item->result_field should point to new field.
                      This is relevant for how fill_record() is going to work:
                      If item != NULL then fill_record() will update
                      the record in the original table.
                      If item == NULL then fill_record() will update
                      the temporary table
  @param convert_blob_length   If >0 create a varstring(convert_blob_length)
                               field instead of blob.

  @retval
    NULL		on error
  @retval
    new_created field
*/

Field *create_tmp_field_from_field(THD *thd, Field *org_field,
                                   const char *name, TABLE *table,
                                   Item_field *item, uint convert_blob_length)
{
  Field *new_field;

  /* 
    Make sure that the blob fits into a Field_varstring which has 
    2-byte lenght. 
  */
  if (convert_blob_length && convert_blob_length <= Field_varstring::MAX_SIZE &&
      (org_field->flags & BLOB_FLAG))
    new_field= new Field_varstring(convert_blob_length,
                                   org_field->maybe_null(),
                                   org_field->field_name, table->s,
                                   org_field->charset());
  else
    new_field= org_field->new_field(thd->mem_root, table,
                                    table == org_field->table);
  if (new_field)
  {
    new_field->init(table);
    new_field->orig_table= org_field->orig_table;
    if (item)
      item->result_field= new_field;
    else
      new_field->field_name= name;
    new_field->flags|= (org_field->flags & NO_DEFAULT_VALUE_FLAG);
    if (org_field->maybe_null() || (item && item->maybe_null))
      new_field->flags&= ~NOT_NULL_FLAG;	// Because of outer join
    if (org_field->type() == MYSQL_TYPE_VAR_STRING ||
        org_field->type() == MYSQL_TYPE_VARCHAR)
      table->s->db_create_options|= HA_OPTION_PACK_RECORD;
    else if (org_field->type() == FIELD_TYPE_DOUBLE)
      ((Field_double *) new_field)->not_fixed= TRUE;
    new_field->vcol_info= 0;
    new_field->stored_in_db= TRUE;
  }
  return new_field;
}

/**
  Create field for temporary table using type of given item.

  @param thd                   Thread handler
  @param item                  Item to create a field for
  @param table                 Temporary table
  @param copy_func             If set and item is a function, store copy of
                               item in this array
  @param modify_item           1 if item->result_field should point to new
                               item. This is relevent for how fill_record()
                               is going to work:
                               If modify_item is 1 then fill_record() will
                               update the record in the original table.
                               If modify_item is 0 then fill_record() will
                               update the temporary table
  @param convert_blob_length   If >0 create a varstring(convert_blob_length)
                               field instead of blob.

  @retval
    0  on error
  @retval
    new_created field
*/

static Field *create_tmp_field_from_item(THD *thd, Item *item, TABLE *table,
                                         Item ***copy_func, bool modify_item,
                                         uint convert_blob_length)
{
  bool maybe_null= item->maybe_null;
  Field *new_field;
  LINT_INIT(new_field);

  switch (item->result_type()) {
  case REAL_RESULT:
    new_field= new Field_double(item->max_length, maybe_null,
                                item->name, item->decimals, TRUE);
    break;
  case INT_RESULT:
    /* 
      Select an integer type with the minimal fit precision.
      MY_INT32_NUM_DECIMAL_DIGITS is sign inclusive, don't consider the sign.
      Values with MY_INT32_NUM_DECIMAL_DIGITS digits may or may not fit into 
      Field_long : make them Field_longlong.  
    */
    if (item->max_length >= (MY_INT32_NUM_DECIMAL_DIGITS - 1))
      new_field=new Field_longlong(item->max_length, maybe_null,
                                   item->name, item->unsigned_flag);
    else
      new_field=new Field_long(item->max_length, maybe_null,
                               item->name, item->unsigned_flag);
    break;
  case STRING_RESULT:
    DBUG_ASSERT(item->collation.collation);
  
    enum enum_field_types type;
    /*
      DATE/TIME and GEOMETRY fields have STRING_RESULT result type. 
      To preserve type they needed to be handled separately.
    */
    if ((type= item->field_type()) == MYSQL_TYPE_DATETIME ||
        type == MYSQL_TYPE_TIME || type == MYSQL_TYPE_DATE ||
        type == MYSQL_TYPE_NEWDATE ||
        type == MYSQL_TYPE_TIMESTAMP || type == MYSQL_TYPE_GEOMETRY)
      new_field= item->tmp_table_field_from_field_type(table, 1);
    /* 
      Make sure that the blob fits into a Field_varstring which has 
      2-byte lenght. 
    */
    else if (item->max_length/item->collation.collation->mbmaxlen > 255 &&
             convert_blob_length <= Field_varstring::MAX_SIZE && 
             convert_blob_length)
      new_field= new Field_varstring(convert_blob_length, maybe_null,
                                     item->name, table->s,
                                     item->collation.collation);
    else
      new_field= item->make_string_field(table);
    new_field->set_derivation(item->collation.derivation);
    break;
  case DECIMAL_RESULT:
    new_field= Field_new_decimal::create_from_item(item);
    break;
  case ROW_RESULT:
  default:
    // This case should never be choosen
    DBUG_ASSERT(0);
    new_field= 0;
    break;
  }
  if (new_field)
    new_field->init(table);
    
  if (copy_func && item->is_result_field())
    *((*copy_func)++) = item;			// Save for copy_funcs
  if (modify_item)
    item->set_result_field(new_field);
  if (item->type() == Item::NULL_ITEM)
    new_field->is_created_from_null_item= TRUE;
  return new_field;
}


/**
  Create field for information schema table.

  @param thd		Thread handler
  @param table		Temporary table
  @param item		Item to create a field for

  @retval
    0			on error
  @retval
    new_created field
*/

Field *create_tmp_field_for_schema(THD *thd, Item *item, TABLE *table)
{
  if (item->field_type() == MYSQL_TYPE_VARCHAR)
  {
    Field *field;
    if (item->max_length > MAX_FIELD_VARCHARLENGTH)
      field= new Field_blob(item->max_length, item->maybe_null,
                            item->name, item->collation.collation);
    else
      field= new Field_varstring(item->max_length, item->maybe_null,
                                 item->name,
                                 table->s, item->collation.collation);
    if (field)
      field->init(table);
    return field;
  }
  return item->tmp_table_field_from_field_type(table, 0);
}


/**
  Create field for temporary table.

  @param thd		Thread handler
  @param table		Temporary table
  @param item		Item to create a field for
  @param type		Type of item (normally item->type)
  @param copy_func	If set and item is a function, store copy of item
                       in this array
  @param from_field    if field will be created using other field as example,
                       pointer example field will be written here
  @param default_field	If field has a default value field, store it here
  @param group		1 if we are going to do a relative group by on result
  @param modify_item	1 if item->result_field should point to new item.
                       This is relevent for how fill_record() is going to
                       work:
                       If modify_item is 1 then fill_record() will update
                       the record in the original table.
                       If modify_item is 0 then fill_record() will update
                       the temporary table
  @param convert_blob_length If >0 create a varstring(convert_blob_length)
                             field instead of blob.

  @retval
    0			on error
  @retval
    new_created field
*/

Field *create_tmp_field(THD *thd, TABLE *table,Item *item, Item::Type type,
                        Item ***copy_func, Field **from_field,
                        Field **default_field,
                        bool group, bool modify_item,
                        bool table_cant_handle_bit_fields,
                        bool make_copy_field,
                        uint convert_blob_length)
{
  Field *result;
  Item::Type orig_type= type;
  Item *orig_item= 0;

  if (type != Item::FIELD_ITEM &&
      item->real_item()->type() == Item::FIELD_ITEM)
  {
    orig_item= item;
    item= item->real_item();
    type= Item::FIELD_ITEM;
  }

  switch (type) {
  case Item::SUM_FUNC_ITEM:
  {
    Item_sum *item_sum=(Item_sum*) item;
    result= item_sum->create_tmp_field(group, table, convert_blob_length);
    if (!result)
      thd->fatal_error();
    return result;
  }
  case Item::FIELD_ITEM:
  case Item::DEFAULT_VALUE_ITEM:
  {
    Item_field *field= (Item_field*) item;
    bool orig_modify= modify_item;
    if (orig_type == Item::REF_ITEM)
      modify_item= 0;
    /*
      If item have to be able to store NULLs but underlaid field can't do it,
      create_tmp_field_from_field() can't be used for tmp field creation.
    */
    if (field->maybe_null && field->in_rollup && !field->field->maybe_null())
    {
      result= create_tmp_field_from_item(thd, item, table, NULL,
                                         modify_item, convert_blob_length);
      *from_field= field->field;
      if (result && modify_item)
        field->result_field= result;
    } 
    else if (table_cant_handle_bit_fields && field->field->type() ==
             MYSQL_TYPE_BIT)
    {
      *from_field= field->field;
      result= create_tmp_field_from_item(thd, item, table, copy_func,
                                        modify_item, convert_blob_length);
      if (result && modify_item)
        field->result_field= result;
    }
    else
      result= create_tmp_field_from_field(thd, (*from_field= field->field),
                                          orig_item ? orig_item->name :
                                          item->name,
                                          table,
                                          modify_item ? field :
                                          NULL,
                                          convert_blob_length);
    if (orig_type == Item::REF_ITEM && orig_modify)
      ((Item_ref*)orig_item)->set_result_field(result);
    if (field->field->eq_def(result))
      *default_field= field->field;
    return result;
  }
  /* Fall through */
  case Item::FUNC_ITEM:
    if (((Item_func *) item)->functype() == Item_func::FUNC_SP)
    {
      Item_func_sp *item_func_sp= (Item_func_sp *) item;
      Field *sp_result_field= item_func_sp->get_sp_result_field();

      if (make_copy_field)
      {
        DBUG_ASSERT(item_func_sp->result_field);
        *from_field= item_func_sp->result_field;
      }
      else
      {
        *((*copy_func)++)= item;
      }

      Field *result_field=
        create_tmp_field_from_field(thd,
                                    sp_result_field,
                                    item_func_sp->name,
                                    table,
                                    NULL,
                                    convert_blob_length);

      if (modify_item)
        item->set_result_field(result_field);

      return result_field;
    }

    /* Fall through */
  case Item::COND_ITEM:
  case Item::FIELD_AVG_ITEM:
  case Item::FIELD_STD_ITEM:
  case Item::SUBSELECT_ITEM:
    /* The following can only happen with 'CREATE TABLE ... SELECT' */
  case Item::PROC_ITEM:
  case Item::INT_ITEM:
  case Item::REAL_ITEM:
  case Item::DECIMAL_ITEM:
  case Item::STRING_ITEM:
  case Item::REF_ITEM:
  case Item::NULL_ITEM:
  case Item::VARBIN_ITEM:
  case Item::CACHE_ITEM:
  case Item::EXPR_CACHE_ITEM:
    if (make_copy_field)
    {
      DBUG_ASSERT(((Item_result_field*)item)->result_field);
      *from_field= ((Item_result_field*)item)->result_field;
    }
    return create_tmp_field_from_item(thd, item, table,
                                      (make_copy_field ? 0 : copy_func),
                                       modify_item, convert_blob_length);
  case Item::TYPE_HOLDER:  
    result= ((Item_type_holder *)item)->make_field_by_type(table);
    result->set_derivation(item->collation.derivation);
    return result;
  default:					// Dosen't have to be stored
    return 0;
  }
}

/*
  Set up column usage bitmaps for a temporary table

  IMPLEMENTATION
    For temporary tables, we need one bitmap with all columns set and
    a tmp_set bitmap to be used by things like filesort.
*/

void setup_tmp_table_column_bitmaps(TABLE *table, uchar *bitmaps)
{
  uint field_count= table->s->fields;
  bitmap_init(&table->def_read_set, (my_bitmap_map*) bitmaps, field_count,
              FALSE);
  bitmap_init(&table->def_vcol_set,
              (my_bitmap_map*) (bitmaps+ bitmap_buffer_size(field_count)),
              field_count, FALSE);
  bitmap_init(&table->tmp_set,
              (my_bitmap_map*) (bitmaps+ 2*bitmap_buffer_size(field_count)),
              field_count, FALSE);
  bitmap_init(&table->eq_join_set,
              (my_bitmap_map*) (bitmaps+ 3*bitmap_buffer_size(field_count)),
              field_count, FALSE);
  /* write_set and all_set are copies of read_set */
  table->def_write_set= table->def_read_set;
  table->s->all_set= table->def_read_set;
  bitmap_set_all(&table->s->all_set);
  table->default_column_bitmaps();
}


/**
  Create a temp table according to a field list.

  Given field pointers are changed to point at tmp_table for
  send_fields. The table object is self contained: it's
  allocated in its own memory root, as well as Field objects
  created for table columns.
  This function will replace Item_sum items in 'fields' list with
  corresponding Item_field items, pointing at the fields in the
  temporary table, unless this was prohibited by TRUE
  value of argument save_sum_fields. The Item_field objects
  are created in THD memory root.

  @param thd                  thread handle
  @param param                a description used as input to create the table
  @param fields               list of items that will be used to define
                              column types of the table (also see NOTES)
  @param group                TODO document
  @param distinct             should table rows be distinct
  @param save_sum_fields      see NOTES
  @param select_options
  @param rows_limit
  @param table_alias          possible name of the temporary table that can
                              be used for name resolving; can be "".
*/

TABLE *
create_tmp_table(THD *thd,TMP_TABLE_PARAM *param,List<Item> &fields,
		 ORDER *group, bool distinct, bool save_sum_fields,
		 ulonglong select_options, ha_rows rows_limit,
		 char *table_alias)
{
  MEM_ROOT *mem_root_save, own_root;
  TABLE *table;
  TABLE_SHARE *share;
  uint	i,field_count,null_count,null_pack_length;
  uint  copy_func_count= param->func_count;
  uint  hidden_null_count, hidden_null_pack_length, hidden_field_count;
  uint  blob_count,group_null_items, string_count;
  uint  temp_pool_slot=MY_BIT_NONE;
  uint fieldnr= 0;
  ulong reclength, string_total_length;
  bool  using_unique_constraint= 0;
  bool  use_packed_rows= 0;
  bool  not_all_columns= !(select_options & TMP_TABLE_ALL_COLUMNS);
  char  *tmpname,path[FN_REFLEN], tmp_table_name[50];
  uchar	*pos, *group_buff, *bitmaps;
  uchar *null_flags;
  Field **reg_field, **from_field, **default_field;
  uint *blob_field;
  Copy_field *copy=0;
  KEY *keyinfo;
  KEY_PART_INFO *key_part_info;
  Item **copy_func;
  ENGINE_COLUMNDEF *recinfo;
  /*
    total_uneven_bit_length is uneven bit length for visible fields
    hidden_uneven_bit_length is uneven bit length for hidden fields
  */
  uint total_uneven_bit_length= 0, hidden_uneven_bit_length= 0;
  bool force_copy_fields= param->force_copy_fields;
  /* Treat sum functions as normal ones when loose index scan is used. */
  save_sum_fields|= param->precomputed_group_by;
  DBUG_ENTER("create_tmp_table");
  DBUG_PRINT("enter",
             ("distinct: %d  save_sum_fields: %d  rows_limit: %lu  group: %d",
              (int) distinct, (int) save_sum_fields,
              (ulong) rows_limit,test(group)));

  status_var_increment(thd->status_var.created_tmp_tables);
  thd->query_plan_flags|= QPLAN_TMP_TABLE;

  if (use_temp_pool && !(test_flags & TEST_KEEP_TMP_TABLES))
    temp_pool_slot = bitmap_lock_set_next(&temp_pool);

  if (temp_pool_slot != MY_BIT_NONE) // we got a slot
    sprintf(tmp_table_name, "%s_%lx_%i", tmp_file_prefix,
            current_pid, temp_pool_slot);
  else
  {
    /* if we run out of slots or we are not using tempool */
    sprintf(tmp_table_name, "%s%lx_%lx_%x", tmp_file_prefix,current_pid,
            thd->thread_id, thd->tmp_table++);
  }

  /*
    No need to change table name to lower case as we are only creating
    MyISAM, Aria or HEAP tables here
  */
  fn_format(path, tmp_table_name, mysql_tmpdir, "",
            MY_REPLACE_EXT|MY_UNPACK_FILENAME);

  if (group)
  {
    if (!param->quick_group)
      group=0;					// Can't use group key
    else for (ORDER *tmp=group ; tmp ; tmp=tmp->next)
    {
      /*
        marker == 4 means two things:
        - store NULLs in the key, and
        - convert BIT fields to 64-bit long, needed because MEMORY tables
          can't index BIT fields.
      */
      (*tmp->item)->marker=4;			// Store null in key
      if ((*tmp->item)->max_length >= CONVERT_IF_BIGGER_TO_BLOB)
	using_unique_constraint=1;
    }
    if (param->group_length >= MAX_BLOB_WIDTH)
      using_unique_constraint=1;
    if (group)
      distinct=0;				// Can't use distinct
  }

  field_count=param->field_count+param->func_count+param->sum_func_count;
  hidden_field_count=param->hidden_field_count;

  /*
    When loose index scan is employed as access method, it already
    computes all groups and the result of all aggregate functions. We
    make space for the items of the aggregate function in the list of
    functions TMP_TABLE_PARAM::items_to_copy, so that the values of
    these items are stored in the temporary table.
  */
  if (param->precomputed_group_by)
    copy_func_count+= param->sum_func_count;
  
  init_sql_alloc(&own_root, TABLE_ALLOC_BLOCK_SIZE, 0);

  if (!multi_alloc_root(&own_root,
                        &table, sizeof(*table),
                        &share, sizeof(*share),
                        &reg_field, sizeof(Field*) * (field_count+1),
                        &default_field, sizeof(Field*) * (field_count),
                        &blob_field, sizeof(uint)*(field_count+1),
                        &from_field, sizeof(Field*)*field_count,
                        &copy_func, sizeof(*copy_func)*(copy_func_count+1),
                        &param->keyinfo, sizeof(*param->keyinfo),
                        &key_part_info,
                        sizeof(*key_part_info)*(param->group_parts+1),
                        &param->start_recinfo,
                        sizeof(*param->recinfo)*(field_count*2+4),
                        &tmpname, (uint) strlen(tmp_table_name)+1,
                        &group_buff, (group && ! using_unique_constraint ?
                                      param->group_length : 0),
                        &bitmaps, bitmap_buffer_size(field_count)*4,
                        NullS))
  {
    if (temp_pool_slot != MY_BIT_NONE)
      bitmap_lock_clear_bit(&temp_pool, temp_pool_slot);
    DBUG_RETURN(NULL);				/* purecov: inspected */
  }
  /* Copy_field belongs to TMP_TABLE_PARAM, allocate it in THD mem_root */
  if (!(param->copy_field= copy= new (thd->mem_root) Copy_field[field_count]))
  {
    if (temp_pool_slot != MY_BIT_NONE)
      bitmap_lock_clear_bit(&temp_pool, temp_pool_slot);
    free_root(&own_root, MYF(0));               /* purecov: inspected */
    DBUG_RETURN(NULL);				/* purecov: inspected */
  }
  param->items_to_copy= copy_func;
  strmov(tmpname, tmp_table_name);
  /* make table according to fields */

  bzero((char*) table,sizeof(*table));
  bzero((char*) reg_field,sizeof(Field*)*(field_count+1));
  bzero((char*) default_field, sizeof(Field*) * (field_count));
  bzero((char*) from_field,sizeof(Field*)*field_count);

  table->mem_root= own_root;
  mem_root_save= thd->mem_root;
  thd->mem_root= &table->mem_root;

  table->field=reg_field;
  table->alias.set(table_alias, strlen(table_alias), table_alias_charset);

  table->reginfo.lock_type=TL_WRITE;	/* Will be updated */
  table->db_stat=HA_OPEN_KEYFILE+HA_OPEN_RNDFILE;
  table->map=1;
  table->temp_pool_slot = temp_pool_slot;
  table->copy_blobs= 1;
  table->in_use= thd;
  table->quick_keys.init();
  table->covering_keys.init();
  table->merge_keys.init();
  table->intersect_keys.init();
  table->keys_in_use_for_query.init();

  table->s= share;
  init_tmp_table_share(thd, share, "", 0, tmpname, tmpname);
  share->blob_field= blob_field;
  share->blob_ptr_size= portable_sizeof_char_ptr;
  share->db_low_byte_first=1;                // True for HEAP, MyISAM and Maria
  share->table_charset= param->table_charset;
  share->primary_key= MAX_KEY;               // Indicate no primary key
  share->keys_for_keyread.init();
  share->keys_in_use.init();

  /* Calculate which type of fields we will store in the temporary table */

  reclength= string_total_length= 0;
  blob_count= string_count= null_count= hidden_null_count= group_null_items= 0;
  param->using_indirect_summary_function=0;

  List_iterator_fast<Item> li(fields);
  Item *item;
  Field **tmp_from_field=from_field;
  while ((item=li++))
  {
    Item::Type type=item->type();
    if (not_all_columns)
    {
      if (item->with_sum_func && type != Item::SUM_FUNC_ITEM)
      {
        if (item->used_tables() & OUTER_REF_TABLE_BIT)
          item->update_used_tables();
        if (type == Item::SUBSELECT_ITEM ||
            (item->get_cached_item() &&
             item->get_cached_item()->type() == Item::SUBSELECT_ITEM ) ||
            (item->used_tables() & ~OUTER_REF_TABLE_BIT))
        {
	  /*
	    Mark that the we have ignored an item that refers to a summary
	    function. We need to know this if someone is going to use
	    DISTINCT on the result.
	  */
	  param->using_indirect_summary_function=1;
	  continue;
        }
      }
      if (item->const_item() && (int) hidden_field_count <= 0)
        continue; // We don't have to store this
    }
    if (type == Item::SUM_FUNC_ITEM && !group && !save_sum_fields)
    {						/* Can't calc group yet */
      Item_sum *sum_item= (Item_sum *) item;
      sum_item->result_field=0;
      for (i=0 ; i < sum_item->get_arg_count() ; i++)
      {
	Item *arg= sum_item->get_arg(i);
	if (!arg->const_item())
	{
	  Field *new_field=
            create_tmp_field(thd, table, arg, arg->type(), &copy_func,
                             tmp_from_field, &default_field[fieldnr],
                             group != 0,not_all_columns,
                             distinct, 0,
                             param->convert_blob_length);
	  if (!new_field)
	    goto err;					// Should be OOM
	  tmp_from_field++;
	  reclength+=new_field->pack_length();
	  if (new_field->flags & BLOB_FLAG)
	  {
	    *blob_field++= fieldnr;
	    blob_count++;
	  }
          if (new_field->type() == MYSQL_TYPE_BIT)
            total_uneven_bit_length+= new_field->field_length & 7;
	  *(reg_field++)= new_field;
          if (new_field->real_type() == MYSQL_TYPE_STRING ||
              new_field->real_type() == MYSQL_TYPE_VARCHAR)
          {
            string_count++;
            string_total_length+= new_field->pack_length();
          }
          thd->mem_root= mem_root_save;
          arg= sum_item->set_arg(i, thd, new Item_field(new_field));
          thd->mem_root= &table->mem_root;
	  if (!(new_field->flags & NOT_NULL_FLAG))
          {
	    null_count++;
            /*
              new_field->maybe_null() is still false, it will be
              changed below. But we have to setup Item_field correctly
            */
            arg->maybe_null=1;
          }
          new_field->field_index= fieldnr++;
	}
      }
    }
    else
    {
      /*
	The last parameter to create_tmp_field() is a bit tricky:

	We need to set it to 0 in union, to get fill_record() to modify the
	temporary table.
	We need to set it to 1 on multi-table-update and in select to
	write rows to the temporary table.
	We here distinguish between UNION and multi-table-updates by the fact
	that in the later case group is set to the row pointer.

        The test for item->marker == 4 is ensure we don't create a group-by
        key over a bit field as heap tables can't handle that.
      */
      Field *new_field= (param->schema_table) ?
        create_tmp_field_for_schema(thd, item, table) :
        create_tmp_field(thd, table, item, type, &copy_func,
                         tmp_from_field, &default_field[fieldnr],
                         group != 0,
                         !force_copy_fields &&
                           (not_all_columns || group !=0),
                         /*
                           If item->marker == 4 then we force create_tmp_field
                           to create a 64-bit longs for BIT fields because HEAP
                           tables can't index BIT fields directly. We do the same
                           for distinct, as we want the distinct index to be
                           usable in this case too.
                         */
                         item->marker == 4  || param->bit_fields_as_long,
                         force_copy_fields,
                         param->convert_blob_length);

      if (!new_field)
      {
	if (thd->is_fatal_error)
	  goto err;				// Got OOM
	continue;				// Some kindf of const item
      }
      if (type == Item::SUM_FUNC_ITEM)
	((Item_sum *) item)->result_field= new_field;
      tmp_from_field++;
      reclength+=new_field->pack_length();
      if (!(new_field->flags & NOT_NULL_FLAG))
	null_count++;
      if (new_field->type() == MYSQL_TYPE_BIT)
        total_uneven_bit_length+= new_field->field_length & 7;
      if (new_field->flags & BLOB_FLAG)
      {
        *blob_field++= fieldnr;
	blob_count++;
      }
      if (new_field->real_type() == MYSQL_TYPE_STRING ||
          new_field->real_type() == MYSQL_TYPE_VARCHAR)
      {
        string_count++;
        string_total_length+= new_field->pack_length();
      }
      if (item->marker == 4 && item->maybe_null)
      {
	group_null_items++;
	new_field->flags|= GROUP_FLAG;
      }
      new_field->field_index= fieldnr++;
      *(reg_field++)= new_field;
    }
    if (!--hidden_field_count)
    {
      /*
        This was the last hidden field; Remember how many hidden fields could
        have null
      */
      hidden_null_count=null_count;
      /*
	We need to update hidden_field_count as we may have stored group
	functions with constant arguments
      */
      param->hidden_field_count= fieldnr;
      null_count= 0;
      /*
        On last hidden field we store uneven bit length in
        hidden_uneven_bit_length and proceed calculation of
        uneven bits for visible fields into
        total_uneven_bit_length variable.
      */
      hidden_uneven_bit_length= total_uneven_bit_length;
      total_uneven_bit_length= 0;
    }
  }
  DBUG_ASSERT(fieldnr == (uint) (reg_field - table->field));
  DBUG_ASSERT(field_count >= (uint) (reg_field - table->field));
  field_count= fieldnr;
  *reg_field= 0;
  *blob_field= 0;				// End marker
  share->fields= field_count;

  /* If result table is small; use a heap */
  /* future: storage engine selection can be made dynamic? */
  if (blob_count || using_unique_constraint ||
      (select_options & (OPTION_BIG_TABLES | SELECT_SMALL_RESULT)) ==
      OPTION_BIG_TABLES || (select_options & TMP_TABLE_FORCE_MYISAM) ||
      !thd->variables.tmp_table_size)
  {
    share->db_plugin= ha_lock_engine(0, TMP_ENGINE_HTON);
    table->file= get_new_handler(share, &table->mem_root,
                                 share->db_type());
    if (group &&
	(param->group_parts > table->file->max_key_parts() ||
	 param->group_length > table->file->max_key_length()))
      using_unique_constraint=1;
  }
  else
  {
    share->db_plugin= ha_lock_engine(0, heap_hton);
    table->file= get_new_handler(share, &table->mem_root,
                                 share->db_type());
  }
  if (!table->file)
    goto err;

  if (!using_unique_constraint)
    reclength+= group_null_items;	// null flag is stored separately

  share->blob_fields= blob_count;
  if (blob_count == 0)
  {
    /* We need to ensure that first byte is not 0 for the delete link */
    if (param->hidden_field_count)
      hidden_null_count++;
    else
      null_count++;
  }
  hidden_null_pack_length= (hidden_null_count + 7 +
                            hidden_uneven_bit_length) / 8;
  null_pack_length= (hidden_null_pack_length +
                     (null_count + total_uneven_bit_length + 7) / 8);
  reclength+=null_pack_length;
  if (!reclength)
    reclength=1;				// Dummy select
  /* Use packed rows if there is blobs or a lot of space to gain */
  if (blob_count ||
      (string_total_length >= STRING_TOTAL_LENGTH_TO_PACK_ROWS &&
       (reclength / string_total_length <= RATIO_TO_PACK_ROWS ||
        string_total_length / string_count >= AVG_STRING_LENGTH_TO_PACK_ROWS)))
    use_packed_rows= 1;

  share->reclength= reclength;
  {
    uint alloc_length=ALIGN_SIZE(reclength+MI_UNIQUE_HASH_LENGTH+1);
    share->rec_buff_length= alloc_length;
    if (!(table->record[0]= (uchar*)
                            alloc_root(&table->mem_root, alloc_length*3)))
      goto err;
    table->record[1]= table->record[0]+alloc_length;
    share->default_values= table->record[1]+alloc_length;
  }
  copy_func[0]=0;				// End marker
  param->func_count= copy_func - param->items_to_copy; 

  setup_tmp_table_column_bitmaps(table, bitmaps);

  recinfo=param->start_recinfo;
  null_flags=(uchar*) table->record[0];
  pos=table->record[0]+ null_pack_length;
  if (null_pack_length)
  {
    bzero((uchar*) recinfo,sizeof(*recinfo));
    recinfo->type=FIELD_NORMAL;
    recinfo->length=null_pack_length;
    recinfo++;
    bfill(null_flags,null_pack_length,255);	// Set null fields

    table->null_flags= (uchar*) table->record[0];
    share->null_fields= null_count+ hidden_null_count;
    share->null_bytes= share->null_bytes_for_compare= null_pack_length;
  }
  null_count= (blob_count == 0) ? 1 : 0;
  hidden_field_count=param->hidden_field_count;
  for (i=0,reg_field=table->field; i < field_count; i++,reg_field++,recinfo++)
  {
    Field *field= *reg_field;
    uint length;
    bzero((uchar*) recinfo,sizeof(*recinfo));

    if (!(field->flags & NOT_NULL_FLAG))
    {
      if (field->flags & GROUP_FLAG && !using_unique_constraint)
      {
	/*
	  We have to reserve one byte here for NULL bits,
	  as this is updated by 'end_update()'
	*/
	*pos++=0;				// Null is stored here
	recinfo->length=1;
	recinfo->type=FIELD_NORMAL;
	recinfo++;
	bzero((uchar*) recinfo,sizeof(*recinfo));
      }
      else
      {
	recinfo->null_bit= 1 << (null_count & 7);
	recinfo->null_pos= null_count/8;
      }
      field->move_field(pos,null_flags+null_count/8,
			1 << (null_count & 7));
      null_count++;
    }
    else
      field->move_field(pos,(uchar*) 0,0);
    if (field->type() == MYSQL_TYPE_BIT)
    {
      /* We have to reserve place for extra bits among null bits */
      ((Field_bit*) field)->set_bit_ptr(null_flags + null_count / 8,
                                        null_count & 7);
      null_count+= (field->field_length & 7);
    }
    field->reset();

    /*
      Test if there is a default field value. The test for ->ptr is to skip
      'offset' fields generated by initalize_tables
    */
    if (default_field[i] && default_field[i]->ptr)
    {
      /* 
         default_field[i] is set only in the cases  when 'field' can
         inherit the default value that is defined for the field referred
         by the Item_field object from which 'field' has been created.
      */
      my_ptrdiff_t diff;
      Field *orig_field= default_field[i];
      /* Get the value from default_values */
      diff= (my_ptrdiff_t) (orig_field->table->s->default_values-
                            orig_field->table->record[0]);
      orig_field->move_field_offset(diff);      // Points now at default_values
      if (orig_field->is_real_null())
        field->set_null();
      else
      {
        field->set_notnull();
        memcpy(field->ptr, orig_field->ptr, field->pack_length());
      }
      orig_field->move_field_offset(-diff);     // Back to record[0]
    } 

    if (from_field[i])
    {						/* Not a table Item */
      copy->set(field,from_field[i],save_sum_fields);
      copy++;
    }
    length=field->pack_length();
    pos+= length;

    /* Make entry for create table */
    recinfo->length=length;
    if (field->flags & BLOB_FLAG)
      recinfo->type= FIELD_BLOB;
    else if (use_packed_rows &&
             field->real_type() == MYSQL_TYPE_STRING &&
	     length >= MIN_STRING_LENGTH_TO_PACK_ROWS)
      recinfo->type= FIELD_SKIP_ENDSPACE;
    else if (field->real_type() == MYSQL_TYPE_VARCHAR)
      recinfo->type= FIELD_VARCHAR;
    else
      recinfo->type= FIELD_NORMAL;

    if (!--hidden_field_count)
      null_count=(null_count+7) & ~7;		// move to next byte

    // fix table name in field entry
    field->set_table_name(&table->alias);
  }

  param->copy_field_end=copy;
  param->recinfo= recinfo;              	// Pointer to after last field
  store_record(table,s->default_values);        // Make empty default record

  if (thd->variables.tmp_table_size == ~ (ulonglong) 0)		// No limit
    share->max_rows= ~(ha_rows) 0;
  else
    share->max_rows= (ha_rows) (((share->db_type() == heap_hton) ?
                                 min(thd->variables.tmp_table_size,
                                     thd->variables.max_heap_table_size) :
                                 thd->variables.tmp_table_size) /
			         share->reclength);
  set_if_bigger(share->max_rows,1);		// For dummy start options
  /*
    Push the LIMIT clause to the temporary table creation, so that we
    materialize only up to 'rows_limit' records instead of all result records.
  */
  set_if_smaller(share->max_rows, rows_limit);
  param->end_write_records= rows_limit;

  keyinfo= param->keyinfo;

  if (group)
  {
    DBUG_PRINT("info",("Creating group key in temporary table"));
    table->group=group;				/* Table is grouped by key */
    param->group_buff=group_buff;
    share->keys=1;
    share->uniques= test(using_unique_constraint);
    table->key_info= table->s->key_info= keyinfo;
    table->keys_in_use_for_query.set_bit(0);
    share->keys_in_use.set_bit(0);
    keyinfo->key_part=key_part_info;
    keyinfo->flags=HA_NOSAME;
    keyinfo->usable_key_parts=keyinfo->key_parts= param->group_parts;
    keyinfo->key_length=0;
    keyinfo->rec_per_key=0;
    keyinfo->algorithm= HA_KEY_ALG_UNDEF;
    keyinfo->name= (char*) "group_key";
    ORDER *cur_group= group;
    for (; cur_group ; cur_group= cur_group->next, key_part_info++)
    {
      Field *field=(*cur_group->item)->get_tmp_table_field();
      DBUG_ASSERT(field->table == table);
      bool maybe_null=(*cur_group->item)->maybe_null;
      key_part_info->null_bit=0;
      key_part_info->field=  field;
      if (cur_group == group)
        field->key_start.set_bit(0);
      key_part_info->offset= field->offset(table->record[0]);
      key_part_info->length= (uint16) field->key_length();
      key_part_info->type=   (uint8) field->key_type();
      key_part_info->key_type =
	((ha_base_keytype) key_part_info->type == HA_KEYTYPE_TEXT ||
	 (ha_base_keytype) key_part_info->type == HA_KEYTYPE_VARTEXT1 ||
	 (ha_base_keytype) key_part_info->type == HA_KEYTYPE_VARTEXT2) ?
	0 : FIELDFLAG_BINARY;
      if (!using_unique_constraint)
      {
	cur_group->buff=(char*) group_buff;
	if (!(cur_group->field= field->new_key_field(thd->mem_root,table,
                                                     group_buff +
                                                     test(maybe_null),
                                                     field->null_ptr,
                                                     field->null_bit)))
	  goto err; /* purecov: inspected */
	if (maybe_null)
	{
	  /*
	    To be able to group on NULL, we reserved place in group_buff
	    for the NULL flag just before the column. (see above).
	    The field data is after this flag.
	    The NULL flag is updated in 'end_update()' and 'end_write()'
	  */
	  keyinfo->flags|= HA_NULL_ARE_EQUAL;	// def. that NULL == NULL
	  key_part_info->null_bit=field->null_bit;
	  key_part_info->null_offset= (uint) (field->null_ptr -
					      (uchar*) table->record[0]);
          cur_group->buff++;                        // Pointer to field data
	  group_buff++;                         // Skipp null flag
	}
        /* In GROUP BY 'a' and 'a ' are equal for VARCHAR fields */
        key_part_info->key_part_flag|= HA_END_SPACE_ARE_EQUAL;
	group_buff+= cur_group->field->pack_length();
      }
      keyinfo->key_length+=  key_part_info->length;
    }
  }

  if (distinct && field_count != param->hidden_field_count)
  {
    /*
      Create an unique key or an unique constraint over all columns
      that should be in the result.  In the temporary table, there are
      'param->hidden_field_count' extra columns, whose null bits are stored
      in the first 'hidden_null_pack_length' bytes of the row.
    */
    DBUG_PRINT("info",("hidden_field_count: %d", param->hidden_field_count));

    if (blob_count)
    {
      /*
        Special mode for index creation in MyISAM used to support unique
        indexes on blobs with arbitrary length. Such indexes cannot be
        used for lookups.
      */
      share->uniques= 1;
    }
    null_pack_length-=hidden_null_pack_length;
    keyinfo->key_parts= ((field_count-param->hidden_field_count)+
			 (share->uniques ? test(null_pack_length) : 0));
    table->distinct= 1;
    share->keys= 1;
    if (!(key_part_info= (KEY_PART_INFO*)
          alloc_root(&table->mem_root,
                     keyinfo->key_parts * sizeof(KEY_PART_INFO))))
      goto err;
    bzero((void*) key_part_info, keyinfo->key_parts * sizeof(KEY_PART_INFO));
    table->keys_in_use_for_query.set_bit(0);
    share->keys_in_use.set_bit(0);
    table->key_info= table->s->key_info= keyinfo;
    keyinfo->key_part=key_part_info;
    keyinfo->flags=HA_NOSAME | HA_NULL_ARE_EQUAL;
    keyinfo->key_length= 0;  // Will compute the sum of the parts below.
    keyinfo->name= (char*) "distinct_key";
    keyinfo->algorithm= HA_KEY_ALG_UNDEF;
    keyinfo->rec_per_key=0;

    /*
      Create an extra field to hold NULL bits so that unique indexes on
      blobs can distinguish NULL from 0. This extra field is not needed
      when we do not use UNIQUE indexes for blobs.
    */
    if (null_pack_length && share->uniques)
    {
      key_part_info->null_bit=0;
      key_part_info->offset=hidden_null_pack_length;
      key_part_info->length=null_pack_length;
      key_part_info->field= new Field_string(table->record[0],
                                             (uint32) key_part_info->length,
                                             (uchar*) 0,
                                             (uint) 0,
                                             Field::NONE,
                                             NullS, &my_charset_bin);
      if (!key_part_info->field)
        goto err;
      key_part_info->field->init(table);
      key_part_info->key_type=FIELDFLAG_BINARY;
      key_part_info->type=    HA_KEYTYPE_BINARY;
      key_part_info++;
    }
    /* Create a distinct key over the columns we are going to return */
    for (i=param->hidden_field_count, reg_field=table->field + i ;
	 i < field_count;
	 i++, reg_field++, key_part_info++)
    {
      key_part_info->field=    *reg_field;
      (*reg_field)->flags |= PART_KEY_FLAG;
      if (key_part_info == keyinfo->key_part)
        (*reg_field)->key_start.set_bit(0);
      key_part_info->null_bit= (*reg_field)->null_bit;
      key_part_info->null_offset= (uint) ((*reg_field)->null_ptr -
                                          (uchar*) table->record[0]);

      key_part_info->offset=   (*reg_field)->offset(table->record[0]);
      key_part_info->length=   (uint16) (*reg_field)->pack_length();
      /* TODO:
        The below method of computing the key format length of the
        key part is a copy/paste from opt_range.cc, and table.cc.
        This should be factored out, e.g. as a method of Field.
        In addition it is not clear if any of the Field::*_length
        methods is supposed to compute the same length. If so, it
        might be reused.
      */
      key_part_info->store_length= key_part_info->length;

      if ((*reg_field)->real_maybe_null())
        key_part_info->store_length+= HA_KEY_NULL_LENGTH;
      if ((*reg_field)->type() == MYSQL_TYPE_BLOB || 
          (*reg_field)->real_type() == MYSQL_TYPE_VARCHAR)
        key_part_info->store_length+= HA_KEY_BLOB_LENGTH;

      keyinfo->key_length+= key_part_info->store_length;

      key_part_info->type=     (uint8) (*reg_field)->key_type();
      key_part_info->key_type =
	((ha_base_keytype) key_part_info->type == HA_KEYTYPE_TEXT ||
	 (ha_base_keytype) key_part_info->type == HA_KEYTYPE_VARTEXT1 ||
	 (ha_base_keytype) key_part_info->type == HA_KEYTYPE_VARTEXT2) ?
	0 : FIELDFLAG_BINARY;
    }
  }

  if (thd->is_fatal_error)				// If end of memory
    goto err;					 /* purecov: inspected */
  share->db_record_offset= 1;
  if (share->db_type() == TMP_ENGINE_HTON)
  {
    if (create_internal_tmp_table(table, param->keyinfo, param->start_recinfo,
                                  &param->recinfo, select_options))
      goto err;
  }
  DBUG_PRINT("info", ("skip_create_table: %d", (int)param->skip_create_table));
  if (!param->skip_create_table && open_tmp_table(table))
    goto err;

  thd->mem_root= mem_root_save;

  DBUG_RETURN(table);

err:
  thd->mem_root= mem_root_save;
  free_tmp_table(thd,table);                    /* purecov: inspected */
  if (temp_pool_slot != MY_BIT_NONE)
    bitmap_lock_clear_bit(&temp_pool, temp_pool_slot);
  DBUG_RETURN(NULL);				/* purecov: inspected */
}



/****************************************************************************/

/**
  Create a reduced TABLE object with properly set up Field list from a
  list of field definitions.

    The created table doesn't have a table handler associated with
    it, has no keys, no group/distinct, no copy_funcs array.
    The sole purpose of this TABLE object is to use the power of Field
    class to read/write data to/from table->record[0]. Then one can store
    the record in any container (RB tree, hash, etc).
    The table is created in THD mem_root, so are the table's fields.
    Consequently, if you don't BLOB fields, you don't need to free it.

  @param thd         connection handle
  @param field_list  list of column definitions

  @return
    0 if out of memory, TABLE object in case of success
*/

TABLE *create_virtual_tmp_table(THD *thd, List<Create_field> &field_list)
{
  uint field_count= field_list.elements;
  uint blob_count= 0;
  Field **field;
  Create_field *cdef;                           /* column definition */
  uint record_length= 0;
  uint null_count= 0;                 /* number of columns which may be null */
  uint null_pack_length;              /* NULL representation array length */
  uint *blob_field;
  uchar *bitmaps;
  TABLE *table;
  TABLE_SHARE *share;

  if (!multi_alloc_root(thd->mem_root,
                        &table, sizeof(*table),
                        &share, sizeof(*share),
                        &field, (field_count + 1) * sizeof(Field*),
                        &blob_field, (field_count+1) *sizeof(uint),
                        &bitmaps, bitmap_buffer_size(field_count)*4,
                        NullS))
    return 0;

  bzero(table, sizeof(*table));
  bzero(share, sizeof(*share));
  table->field= field;
  table->s= share;
  share->blob_field= blob_field;
  share->fields= field_count;
  share->blob_ptr_size= portable_sizeof_char_ptr;
  setup_tmp_table_column_bitmaps(table, bitmaps);

  /* Create all fields and calculate the total length of record */
  List_iterator_fast<Create_field> it(field_list);
  while ((cdef= it++))
  {
    *field= make_field(share, 0, cdef->length,
                       (uchar*) (f_maybe_null(cdef->pack_flag) ? "" : 0),
                       f_maybe_null(cdef->pack_flag) ? 1 : 0,
                       cdef->pack_flag, cdef->sql_type, cdef->charset,
                       cdef->geom_type, cdef->unireg_check,
                       cdef->interval, cdef->field_name);
    if (!*field)
      goto error;
    (*field)->init(table);
    record_length+= (*field)->pack_length();
    if (! ((*field)->flags & NOT_NULL_FLAG))
      null_count++;

    if ((*field)->flags & BLOB_FLAG)
      share->blob_field[blob_count++]= (uint) (field - table->field);

    field++;
  }
  *field= NULL;                             /* mark the end of the list */
  share->blob_field[blob_count]= 0;            /* mark the end of the list */
  share->blob_fields= blob_count;

  null_pack_length= (null_count + 7)/8;
  share->reclength= record_length + null_pack_length;
  share->rec_buff_length= ALIGN_SIZE(share->reclength + 1);
  table->record[0]= (uchar*) thd->alloc(share->rec_buff_length);
  if (!table->record[0])
    goto error;

  if (null_pack_length)
  {
    table->null_flags= (uchar*) table->record[0];
    share->null_fields= null_count;
    share->null_bytes= share->null_bytes_for_compare= null_pack_length;
  }

  table->in_use= thd;           /* field->reset() may access table->in_use */
  {
    /* Set up field pointers */
    uchar *null_pos= table->record[0];
    uchar *field_pos= null_pos + share->null_bytes;
    uint null_bit= 1;

    for (field= table->field; *field; ++field)
    {
      Field *cur_field= *field;
      if ((cur_field->flags & NOT_NULL_FLAG))
        cur_field->move_field(field_pos);
      else
      {
        cur_field->move_field(field_pos, (uchar*) null_pos, null_bit);
        null_bit<<= 1;
        if (null_bit == (1 << 8))
        {
          ++null_pos;
          null_bit= 1;
        }
      }
      cur_field->reset();

      field_pos+= cur_field->pack_length();
    }
  }
  return table;
error:
  for (field= table->field; *field; ++field)
    delete *field;                         /* just invokes field destructor */
  return 0;
}


bool open_tmp_table(TABLE *table)
{
  int error;
  if ((error= table->file->ha_open(table, table->s->table_name.str, O_RDWR,
                                   HA_OPEN_TMP_TABLE |
                                   HA_OPEN_INTERNAL_TABLE)))
  {
    table->file->print_error(error,MYF(0)); /* purecov: inspected */
    table->db_stat=0;
    return(1);
  }
  (void) table->file->extra(HA_EXTRA_QUICK);		/* Faster */
  return(0);
}


#if defined(WITH_ARIA_STORAGE_ENGINE) && defined(USE_MARIA_FOR_TMP_TABLES)

/*
  Create internal (MyISAM or Maria) temporary table

  SYNOPSIS
    create_internal_tmp_table()
      table           Table object that descrimes the table to be created
      keyinfo         Description of the index (there is always one index)
      start_recinfo   engine's column descriptions
      recinfo INOUT   End of engine's column descriptions
      options         Option bits
   
  DESCRIPTION
    Create an internal emporary table according to passed description. The is
    assumed to have one unique index or constraint.

    The passed array or ENGINE_COLUMNDEF structures must have this form:

      1. 1-byte column (afaiu for 'deleted' flag) (note maybe not 1-byte
         when there are many nullable columns)
      2. Table columns
      3. One free ENGINE_COLUMNDEF element (*recinfo points here)
   
    This function may use the free element to create hash column for unique
    constraint.

   RETURN
     FALSE - OK
     TRUE  - Error
*/


bool create_internal_tmp_table(TABLE *table, KEY *keyinfo, 
                               ENGINE_COLUMNDEF *start_recinfo,
                               ENGINE_COLUMNDEF **recinfo, 
                               ulonglong options)
{
  int error;
  MARIA_KEYDEF keydef;
  MARIA_UNIQUEDEF uniquedef;
  TABLE_SHARE *share= table->s;
  MARIA_CREATE_INFO create_info;
  DBUG_ENTER("create_internal_tmp_table");

  if (share->keys)
  {						// Get keys for ni_create
    bool using_unique_constraint=0;
    HA_KEYSEG *seg= (HA_KEYSEG*) alloc_root(&table->mem_root,
                                            sizeof(*seg) * keyinfo->key_parts);
    if (!seg)
      goto err;

    bzero(seg, sizeof(*seg) * keyinfo->key_parts);
    if (keyinfo->key_length >= table->file->max_key_length() ||
	keyinfo->key_parts > table->file->max_key_parts() ||
	share->uniques)
    {
      /* Can't create a key; Make a unique constraint instead of a key */
      share->keys=    0;
      share->uniques= 1;
      using_unique_constraint=1;
      bzero((char*) &uniquedef,sizeof(uniquedef));
      uniquedef.keysegs=keyinfo->key_parts;
      uniquedef.seg=seg;
      uniquedef.null_are_equal=1;

      /* Create extra column for hash value */
      bzero((uchar*) *recinfo,sizeof(**recinfo));
      (*recinfo)->type=   FIELD_CHECK;
      (*recinfo)->length= MARIA_UNIQUE_HASH_LENGTH;
      (*recinfo)++;
      share->reclength+=      MARIA_UNIQUE_HASH_LENGTH;
    }
    else
    {
      /* Create an unique key */
      bzero((char*) &keydef,sizeof(keydef));
      keydef.flag=HA_NOSAME;
      keydef.keysegs=  keyinfo->key_parts;
      keydef.seg= seg;
    }
    for (uint i=0; i < keyinfo->key_parts ; i++,seg++)
    {
      Field *field=keyinfo->key_part[i].field;
      seg->flag=     0;
      seg->language= field->charset()->number;
      seg->length=   keyinfo->key_part[i].length;
      seg->start=    keyinfo->key_part[i].offset;
      if (field->flags & BLOB_FLAG)
      {
	seg->type=
	((keyinfo->key_part[i].key_type & FIELDFLAG_BINARY) ?
	 HA_KEYTYPE_VARBINARY2 : HA_KEYTYPE_VARTEXT2);
	seg->bit_start= (uint8)(field->pack_length() - share->blob_ptr_size);
	seg->flag= HA_BLOB_PART;
	seg->length=0;			// Whole blob in unique constraint
      }
      else
      {
	seg->type= keyinfo->key_part[i].type;
        /* Tell handler if it can do suffic space compression */
	if (field->real_type() == MYSQL_TYPE_STRING &&
	    keyinfo->key_part[i].length > 32)
	  seg->flag|= HA_SPACE_PACK;
      }
      if (!(field->flags & NOT_NULL_FLAG))
      {
	seg->null_bit= field->null_bit;
	seg->null_pos= (uint) (field->null_ptr - (uchar*) table->record[0]);
	/*
	  We are using a GROUP BY on something that contains NULL
	  In this case we have to tell Aria that two NULL should
	  on INSERT be regarded at the same value
	*/
	if (!using_unique_constraint)
	  keydef.flag|= HA_NULL_ARE_EQUAL;
      }
    }
  }
  bzero((char*) &create_info,sizeof(create_info));

  if ((options & (OPTION_BIG_TABLES | SELECT_SMALL_RESULT)) ==
      OPTION_BIG_TABLES)
    create_info.data_file_length= ~(ulonglong) 0;

  if ((error= maria_create(share->table_name.str,
                           table->no_rows ? NO_RECORD :
                           (share->reclength < 64 &&
                            !share->blob_fields ? STATIC_RECORD :
                            BLOCK_RECORD),
                           share->keys, &keydef,
                           (uint) (*recinfo-start_recinfo),
                           start_recinfo,
                           share->uniques, &uniquedef,
                           &create_info,
                           HA_CREATE_TMP_TABLE)))
  {
    table->file->print_error(error,MYF(0));	/* purecov: inspected */
    table->db_stat=0;
    goto err;
  }
  status_var_increment(table->in_use->status_var.created_tmp_disk_tables);
  table->in_use->query_plan_flags|= QPLAN_TMP_DISK;
  share->db_record_offset= 1;
  DBUG_RETURN(0);
 err:
  DBUG_RETURN(1);
}


bool create_internal_tmp_table_from_heap(THD *thd, TABLE *table,
                                         ENGINE_COLUMNDEF *start_recinfo,
                                         ENGINE_COLUMNDEF **recinfo, 
                                         int error,
                                         bool ignore_last_dupp_key_error)
{
  return create_internal_tmp_table_from_heap2(thd, table, 
                                              start_recinfo, recinfo, error,
                                              ignore_last_dupp_key_error,
                                              maria_hton,
                                              "converting HEAP to Aria");
}

#else

/*
  Create internal (MyISAM or Maria) temporary table

  SYNOPSIS
    create_internal_tmp_table()
      table           Table object that descrimes the table to be created
      keyinfo         Description of the index (there is always one index)
      start_recinfo   engine's column descriptions
      recinfo INOUT   End of engine's column descriptions
      options         Option bits
   
  DESCRIPTION
    Create an internal emporary table according to passed description. The is
    assumed to have one unique index or constraint.

    The passed array or ENGINE_COLUMNDEF structures must have this form:

      1. 1-byte column (afaiu for 'deleted' flag) (note maybe not 1-byte
         when there are many nullable columns)
      2. Table columns
      3. One free ENGINE_COLUMNDEF element (*recinfo points here)
   
    This function may use the free element to create hash column for unique
    constraint.

   RETURN
     FALSE - OK
     TRUE  - Error
*/

/* Create internal MyISAM temporary table */

bool create_internal_tmp_table(TABLE *table, KEY *keyinfo, 
                               ENGINE_COLUMNDEF *start_recinfo,
                               ENGINE_COLUMNDEF **recinfo,
                               ulonglong options)
{
  int error;
  MI_KEYDEF keydef;
  MI_UNIQUEDEF uniquedef;
  TABLE_SHARE *share= table->s;
  DBUG_ENTER("create_internal_tmp_table");

  if (share->keys)
  {						// Get keys for ni_create
    bool using_unique_constraint=0;
    HA_KEYSEG *seg= (HA_KEYSEG*) alloc_root(&table->mem_root,
                                            sizeof(*seg) * keyinfo->key_parts);
    if (!seg)
      goto err;

    bzero(seg, sizeof(*seg) * keyinfo->key_parts);
    if (keyinfo->key_length >= table->file->max_key_length() ||
	keyinfo->key_parts > table->file->max_key_parts() ||
	share->uniques)
    {
      /* Can't create a key; Make a unique constraint instead of a key */
      share->keys=    0;
      share->uniques= 1;
      using_unique_constraint=1;
      bzero((char*) &uniquedef,sizeof(uniquedef));
      uniquedef.keysegs=keyinfo->key_parts;
      uniquedef.seg=seg;
      uniquedef.null_are_equal=1;

      /* Create extra column for hash value */
      bzero((uchar*) *recinfo,sizeof(**recinfo));
      (*recinfo)->type= FIELD_CHECK;
      (*recinfo)->length=MI_UNIQUE_HASH_LENGTH;
      (*recinfo)++;
      share->reclength+=MI_UNIQUE_HASH_LENGTH;
    }
    else
    {
      /* Create an unique key */
      bzero((char*) &keydef,sizeof(keydef));
      keydef.flag=HA_NOSAME | HA_BINARY_PACK_KEY | HA_PACK_KEY;
      keydef.keysegs=  keyinfo->key_parts;
      keydef.seg= seg;
    }
    for (uint i=0; i < keyinfo->key_parts ; i++,seg++)
    {
      Field *field=keyinfo->key_part[i].field;
      seg->flag=     0;
      seg->language= field->charset()->number;
      seg->length=   keyinfo->key_part[i].length;
      seg->start=    keyinfo->key_part[i].offset;
      if (field->flags & BLOB_FLAG)
      {
	seg->type=
	((keyinfo->key_part[i].key_type & FIELDFLAG_BINARY) ?
	 HA_KEYTYPE_VARBINARY2 : HA_KEYTYPE_VARTEXT2);
	seg->bit_start= (uint8)(field->pack_length() - share->blob_ptr_size);
	seg->flag= HA_BLOB_PART;
	seg->length=0;			// Whole blob in unique constraint
      }
      else
      {
	seg->type= keyinfo->key_part[i].type;
        /* Tell handler if it can do suffic space compression */
	if (field->real_type() == MYSQL_TYPE_STRING &&
	    keyinfo->key_part[i].length > 4)
	  seg->flag|= HA_SPACE_PACK;
      }
      if (!(field->flags & NOT_NULL_FLAG))
      {
	seg->null_bit= field->null_bit;
	seg->null_pos= (uint) (field->null_ptr - (uchar*) table->record[0]);
	/*
	  We are using a GROUP BY on something that contains NULL
	  In this case we have to tell MyISAM that two NULL should
	  on INSERT be regarded at the same value
	*/
	if (!using_unique_constraint)
	  keydef.flag|= HA_NULL_ARE_EQUAL;
      }
    }
  }
  MI_CREATE_INFO create_info;
  bzero((char*) &create_info,sizeof(create_info));

  if ((options & (OPTION_BIG_TABLES | SELECT_SMALL_RESULT)) ==
      OPTION_BIG_TABLES)
    create_info.data_file_length= ~(ulonglong) 0;

  if ((error=mi_create(share->table_name.str, share->keys, &keydef,
		       (uint) (*recinfo-start_recinfo),
		       start_recinfo,
		       share->uniques, &uniquedef,
		       &create_info,
		       HA_CREATE_TMP_TABLE)))
  {
    table->file->print_error(error,MYF(0));	/* purecov: inspected */
    table->db_stat=0;
    goto err;
  }
  status_var_increment(table->in_use->status_var.created_tmp_disk_tables);
  share->db_record_offset= 1;
  DBUG_RETURN(0);
 err:
  DBUG_RETURN(1);
}


/**
  If a HEAP table gets full, create a MyISAM table and copy all rows to this
*/

bool create_internal_tmp_table_from_heap(THD *thd, TABLE *table,
                                         ENGINE_COLUMNDEF *start_recinfo,
                                         ENGINE_COLUMNDEF **recinfo, 
                                         int error,
                                         bool ignore_last_dupp_key_error)
{
  return create_internal_tmp_table_from_heap2(thd, table, 
                                              start_recinfo, recinfo, error,
                                              ignore_last_dupp_key_error,
                                              myisam_hton,
                                              "converting HEAP to MyISAM");
}

#endif /* WITH_MARIA_STORAGE_ENGINE */


/*
  If a HEAP table gets full, create a internal table in MyISAM or Maria
  and copy all rows to this
*/


static bool
create_internal_tmp_table_from_heap2(THD *thd, TABLE *table,
                                     ENGINE_COLUMNDEF *start_recinfo,
                                     ENGINE_COLUMNDEF **recinfo, 
                                     int error,
                                     bool ignore_last_dupp_key_error,
                                     handlerton *hton,
                                     const char *proc_info)
{
  TABLE new_table;
  TABLE_SHARE share;
  const char *save_proc_info;
  int write_err= 0;
  DBUG_ENTER("create_internal_tmp_table_from_heap2");

  if (table->s->db_type() != heap_hton || 
      error != HA_ERR_RECORD_FILE_FULL)
  {
    /*
      We don't want this error to be converted to a warning, e.g. in case of
      INSERT IGNORE ... SELECT.
    */
    thd->fatal_error();
    table->file->print_error(error,MYF(0));
    DBUG_RETURN(1);
  }
  new_table= *table;
  share= *table->s;
  new_table.s= &share;
  new_table.s->db_plugin= ha_lock_engine(thd, hton);
  if (!(new_table.file= get_new_handler(&share, &new_table.mem_root,
                                        new_table.s->db_type())))
    DBUG_RETURN(1);				// End of memory

  save_proc_info=thd->proc_info;
  thd_proc_info(thd, proc_info);

  new_table.no_rows= table->no_rows;
  if (create_internal_tmp_table(&new_table, table->key_info, start_recinfo,
                                recinfo, thd->lex->select_lex.options | 
                                thd->options))
    goto err2;
  if (open_tmp_table(&new_table))
    goto err1;
  if (table->file->indexes_are_disabled())
    new_table.file->ha_disable_indexes(HA_KEY_SWITCH_ALL);
  table->file->ha_index_or_rnd_end();
  if (table->file->ha_rnd_init_with_error(1))
    DBUG_RETURN(1);
  if (new_table.no_rows)
    new_table.file->extra(HA_EXTRA_NO_ROWS);
  else
  {
    /* update table->file->stats.records */
    table->file->info(HA_STATUS_VARIABLE);
    new_table.file->ha_start_bulk_insert(table->file->stats.records);
  }

  /*
    copy all old rows from heap table to MyISAM table
    This is the only code that uses record[1] to read/write but this
    is safe as this is a temporary MyISAM table without timestamp/autoincrement
    or partitioning.
  */
  while (!table->file->ha_rnd_next(new_table.record[1]))
  {
    write_err= new_table.file->ha_write_tmp_row(new_table.record[1]);
    DBUG_EXECUTE_IF("raise_error", write_err= HA_ERR_FOUND_DUPP_KEY ;);
    if (write_err)
      goto err;
    if (thd->killed)
    {
      thd->send_kill_message();
      goto err_killed;
    }
  }
  if (!new_table.no_rows && new_table.file->ha_end_bulk_insert())
    goto err;
  /* copy row that filled HEAP table */
  if ((write_err=new_table.file->ha_write_tmp_row(table->record[0])))
  {
    if (new_table.file->is_fatal_error(write_err, HA_CHECK_DUP) ||
	!ignore_last_dupp_key_error)
      goto err;
  }

  /* remove heap table and change to use myisam table */
  (void) table->file->ha_rnd_end();
  (void) table->file->close();                  // This deletes the table !
  delete table->file;
  table->file=0;
  plugin_unlock(0, table->s->db_plugin);
  share.db_plugin= my_plugin_lock(0, share.db_plugin);
  new_table.s= table->s;                       // Keep old share
  *table= new_table;
  *table->s= share;
  
  table->file->change_table_ptr(table, table->s);
  table->use_all_columns();
  if (save_proc_info)
    thd_proc_info(thd, save_proc_info == copy_to_tmp_table ?
                  "Copying to tmp table on disk" : save_proc_info);
  DBUG_RETURN(0);

 err:
  DBUG_PRINT("error",("Got error: %d",write_err));
  table->file->print_error(write_err, MYF(0));
err_killed:
  (void) table->file->ha_rnd_end();
  (void) new_table.file->close();
 err1:
  new_table.file->ha_delete_table(new_table.s->table_name.str);
 err2:
  delete new_table.file;
  thd_proc_info(thd, save_proc_info);
  table->mem_root= new_table.mem_root;
  DBUG_RETURN(1);
}


void
free_tmp_table(THD *thd, TABLE *entry)
{
  MEM_ROOT own_root= entry->mem_root;
  const char *save_proc_info;
  DBUG_ENTER("free_tmp_table");
  DBUG_PRINT("enter",("table: %s",entry->alias.c_ptr()));

  save_proc_info=thd->proc_info;
  thd_proc_info(thd, "removing tmp table");

  if (entry->file)
  {
    if (entry->db_stat)
      entry->file->ha_drop_table(entry->s->table_name.str);
    else
      entry->file->ha_delete_table(entry->s->table_name.str);
    delete entry->file;
  }

  /* free blobs */
  for (Field **ptr=entry->field ; *ptr ; ptr++)
    (*ptr)->free();
  free_io_cache(entry);

  if (entry->temp_pool_slot != MY_BIT_NONE)
    bitmap_lock_clear_bit(&temp_pool, entry->temp_pool_slot);

  plugin_unlock(0, entry->s->db_plugin);

  free_root(&own_root, MYF(0)); /* the table is allocated in its own root */
  thd_proc_info(thd, save_proc_info);

  DBUG_VOID_RETURN;
}


/**
  @details
  Rows produced by a join sweep may end up in a temporary table or be sent
  to a client. Setup the function of the nested loop join algorithm which
  handles final fully constructed and matched records.

  @param join   join to setup the function for.

  @return
    end_select function to use. This function can't fail.
*/

Next_select_func setup_end_select_func(JOIN *join)
{
  TABLE *table= join->tmp_table;
  TMP_TABLE_PARAM *tmp_tbl= &join->tmp_table_param;
  Next_select_func end_select;

  /* Set up select_end */
  if (table)
  {
    if (table->group && tmp_tbl->sum_func_count && 
        !tmp_tbl->precomputed_group_by)
    {
      if (table->s->keys)
      {
	DBUG_PRINT("info",("Using end_update"));
	end_select=end_update;
      }
      else
      {
	DBUG_PRINT("info",("Using end_unique_update"));
	end_select=end_unique_update;
      }
    }
    else if (join->sort_and_group && !tmp_tbl->precomputed_group_by)
    {
      DBUG_PRINT("info",("Using end_write_group"));
      end_select=end_write_group;
    }
    else
    {
      DBUG_PRINT("info",("Using end_write"));
      end_select=end_write;
      if (tmp_tbl->precomputed_group_by)
      {
        /*
          A preceding call to create_tmp_table in the case when loose
          index scan is used guarantees that
          TMP_TABLE_PARAM::items_to_copy has enough space for the group
          by functions. It is OK here to use memcpy since we copy
          Item_sum pointers into an array of Item pointers.
        */
        memcpy(tmp_tbl->items_to_copy + tmp_tbl->func_count,
               join->sum_funcs,
               sizeof(Item*)*tmp_tbl->sum_func_count);
        tmp_tbl->items_to_copy[tmp_tbl->func_count+tmp_tbl->sum_func_count]= 0;
      }
    }
  }
  else
  {
    /* 
       Choose method for presenting result to user. Use end_send_group
       if the query requires grouping (has a GROUP BY clause and/or one or
       more aggregate functions). Use end_send if the query should not
       be grouped.
     */
    if ((join->sort_and_group ||
         (join->procedure && join->procedure->flags & PROC_GROUP)) &&
        !tmp_tbl->precomputed_group_by)
      end_select= end_send_group;
    else
      end_select= end_send;
  }
  return end_select;
}


/**
  Make a join of all tables and write it on socket or to table.

  @retval
    0  if ok
  @retval
    1  if error is sent
  @retval
    -1  if error should be sent
*/
static int
do_select(JOIN *join,List<Item> *fields,TABLE *table,Procedure *procedure)
{
  int rc= 0;
  enum_nested_loop_state error= NESTED_LOOP_OK;
  JOIN_TAB *join_tab;
  DBUG_ENTER("do_select");
  LINT_INIT(join_tab);
  
  join->procedure=procedure;
  join->tmp_table= table;			/* Save for easy recursion */
  join->fields= fields;

  if (table)
  {
    VOID(table->file->extra(HA_EXTRA_WRITE_CACHE));
    empty_record(table);
    if (table->group && join->tmp_table_param.sum_func_count &&
        table->s->keys && !table->file->inited)
    {
      int tmp_error;
      if ((tmp_error= table->file->ha_index_init(0, 0)))
      {
        table->file->print_error(tmp_error, MYF(0)); /* purecov: inspected */
        DBUG_RETURN(-1);                             /* purecov: inspected */
      }
    }
  }
  /* Set up select_end */
  Next_select_func end_select= setup_end_select_func(join);
  if (join->tables)
  {
    join->join_tab[join->top_jtrange_tables - 1].next_select= end_select;
    join_tab=join->join_tab+join->const_tables;
  }
  join->send_records=0;
  if (join->tables == join->const_tables)
  {
    /*
      HAVING will be checked after processing aggregate functions,
      But WHERE should checkd here (we alredy have read tables)
    */
    if (!join->conds || join->conds->val_int())
    {
      error= (*end_select)(join, 0, 0);
      if (error == NESTED_LOOP_OK || error == NESTED_LOOP_QUERY_LIMIT)
	error= (*end_select)(join, 0, 1);

      /*
        If we don't go through evaluate_join_record(), do the counting
        here.  join->send_records is increased on success in end_send(),
        so we don't touch it here.
      */
      join->examined_rows++;
      join->thd->row_count++;
      DBUG_ASSERT(join->examined_rows <= 1);
    }
    else if (join->send_row_on_empty_set())
    {
      if (!join->having || join->having->val_int())
      {
        List<Item> *columns_list= (procedure ? &join->procedure_fields_list :
                                   fields);
        rc= join->result->send_data(*columns_list);
      }
    }
  }
  else
  {
    DBUG_ASSERT(join->tables);
    error= sub_select(join,join_tab,0);
    if (error == NESTED_LOOP_OK || error == NESTED_LOOP_NO_MORE_ROWS)
      error= sub_select(join,join_tab,1);
    if (error == NESTED_LOOP_QUERY_LIMIT)
      error= NESTED_LOOP_OK;                    /* select_limit used */
  }
  if (error == NESTED_LOOP_NO_MORE_ROWS)
    error= NESTED_LOOP_OK;

  if (table == NULL)                      	// If sending data to client
  {
    /*
      The following will unlock all cursors if the command wasn't an
      update command
    */
    join->join_free();                          // Unlock all cursors
  }
  if (error == NESTED_LOOP_OK)
  {
    /*
      Sic: this branch works even if rc != 0, e.g. when
      send_data above returns an error.
    */
    if (table == NULL && join->result->send_eof()) // If sending data to client
      rc= 1;                                  // Don't send error 
    DBUG_PRINT("info",("%ld records output", (long) join->send_records));
  }
  else
    rc= -1;
  if (table)
  {
    int tmp, new_errno= 0;
    if ((tmp=table->file->extra(HA_EXTRA_NO_CACHE)))
    {
      DBUG_PRINT("error",("extra(HA_EXTRA_NO_CACHE) failed"));
      new_errno= tmp;
    }
    if ((tmp=table->file->ha_index_or_rnd_end()))
    {
      DBUG_PRINT("error",("ha_index_or_rnd_end() failed"));
      new_errno= tmp;
    }
    if (new_errno)
      table->file->print_error(new_errno,MYF(0));
  }
#ifndef DBUG_OFF
  if (rc)
  {
    DBUG_PRINT("error",("Error: do_select() failed"));
  }
#endif
  DBUG_RETURN(join->thd->is_error() ? -1 : rc);
}


int rr_sequential_and_unpack(READ_RECORD *info)
{
  int error;
  if ((error= rr_sequential(info)))
    return error;
  
  for (Copy_field *cp= info->copy_field; cp != info->copy_field_end; cp++)
    (*cp->do_copy)(cp);

  return error;
}


/*
  Fill the join buffer with partial records, retrieve all full  matches for them   

  SYNOPSIS
    sub_select_cache()
      join     pointer to the structure providing all context info for the query
      join_tab the first next table of the execution plan to be retrieved
      end_records  true when we need to perform final steps of the retrieval

  DESCRIPTION
    For a given table Ti= join_tab from the sequence of tables of the chosen 
    execution plan T1,...,Ti,...,Tn the function just put the partial record
    t1,...,t[i-1] into the join buffer associated with table Ti unless this
    is the last record added into the buffer. In this case,  the function 
    additionally finds all matching full records for all partial
    records accumulated in the buffer, after which it cleans the buffer up.
    If a partial join record t1,...,ti is extended utilizing a dynamic
    range scan then it is not put into the join buffer. Rather all matching
    records are found for it at once by the function sub_select.

  NOTES
    The function implements the algorithmic schema for both Blocked Nested
    Loop Join and Batched Key Access Join. The difference can be seen only at
    the level of of the implementation of the put_record and join_records
    virtual methods for the cache object associated with the join_tab.
    The put_record method accumulates records in the cache, while the 
    join_records method builds all matching join records and send them into
    the output stream.  
      
  RETURN
    return one of enum_nested_loop_state, except NESTED_LOOP_NO_MORE_ROWS.
*/ 

enum_nested_loop_state
sub_select_cache(JOIN *join, JOIN_TAB *join_tab, bool end_of_records)
{
  enum_nested_loop_state rc;
  JOIN_CACHE *cache= join_tab->cache;

  DBUG_ENTER("sub_select_cache");

  /* This function cannot be called if join_tab has no associated join buffer */
  DBUG_ASSERT(cache != NULL);

  join_tab->cache->reset_join(join);

  if (end_of_records)
  {
    rc= cache->join_records(FALSE);
    if (rc == NESTED_LOOP_OK || rc == NESTED_LOOP_NO_MORE_ROWS)
      rc= sub_select(join, join_tab, end_of_records);
    DBUG_RETURN(rc);
  }
  if (join->thd->killed)
  {
    /* The user has aborted the execution of the query */
    join->thd->send_kill_message();
    DBUG_RETURN(NESTED_LOOP_KILLED);
  }
  if (!test_if_use_dynamic_range_scan(join_tab))
  {
    if (!cache->put_record())
      DBUG_RETURN(NESTED_LOOP_OK); 
    /* 
      We has decided that after the record we've just put into the buffer
      won't add any more records. Now try to find all the matching 
      extensions for all records in the buffer.
    */ 
    rc= cache->join_records(FALSE);
    DBUG_RETURN(rc);
  }
  /*
     TODO: Check whether we really need the call below and we can't do
           without it. If it's not the case remove it.
  */ 
  rc= cache->join_records(TRUE);
  if (rc == NESTED_LOOP_OK || rc == NESTED_LOOP_NO_MORE_ROWS)
    rc= sub_select(join, join_tab, end_of_records);
  DBUG_RETURN(rc);
}

/**
  Retrieve records ends with a given beginning from the result of a join.

    For a given partial join record consisting of records from the tables 
    preceding the table join_tab in the execution plan, the function
    retrieves all matching full records from the result set and
    send them to the result set stream. 

  @note
    The function effectively implements the  final (n-k) nested loops
    of nested loops join algorithm, where k is the ordinal number of
    the join_tab table and n is the total number of tables in the join query.
    It performs nested loops joins with all conjunctive predicates from
    the where condition pushed as low to the tables as possible.
    E.g. for the query
    @code
      SELECT * FROM t1,t2,t3
      WHERE t1.a=t2.a AND t2.b=t3.b AND t1.a BETWEEN 5 AND 9
    @endcode
    the predicate (t1.a BETWEEN 5 AND 9) will be pushed to table t1,
    given the selected plan prescribes to nest retrievals of the
    joined tables in the following order: t1,t2,t3.
    A pushed down predicate are attached to the table which it pushed to,
    at the field join_tab->select_cond.
    When executing a nested loop of level k the function runs through
    the rows of 'join_tab' and for each row checks the pushed condition
    attached to the table.
    If it is false the function moves to the next row of the
    table. If the condition is true the function recursively executes (n-k-1)
    remaining embedded nested loops.
    The situation becomes more complicated if outer joins are involved in
    the execution plan. In this case the pushed down predicates can be
    checked only at certain conditions.
    Suppose for the query
    @code
      SELECT * FROM t1 LEFT JOIN (t2,t3) ON t3.a=t1.a
      WHERE t1>2 AND (t2.b>5 OR t2.b IS NULL)
    @endcode
    the optimizer has chosen a plan with the table order t1,t2,t3.
    The predicate P1=t1>2 will be pushed down to the table t1, while the
    predicate P2=(t2.b>5 OR t2.b IS NULL) will be attached to the table
    t2. But the second predicate can not be unconditionally tested right
    after a row from t2 has been read. This can be done only after the
    first row with t3.a=t1.a has been encountered.
    Thus, the second predicate P2 is supplied with a guarded value that are
    stored in the field 'found' of the first inner table for the outer join
    (table t2). When the first row with t3.a=t1.a for the  current row 
    of table t1  appears, the value becomes true. For now on the predicate
    is evaluated immediately after the row of table t2 has been read.
    When the first row with t3.a=t1.a has been encountered all
    conditions attached to the inner tables t2,t3 must be evaluated.
    Only when all of them are true the row is sent to the output stream.
    If not, the function returns to the lowest nest level that has a false
    attached condition.
    The predicates from on expressions are also pushed down. If in the 
    the above example the on expression were (t3.a=t1.a AND t2.a=t1.a),
    then t1.a=t2.a would be pushed down to table t2, and without any
    guard.
    If after the run through all rows of table t2, the first inner table
    for the outer join operation, it turns out that no matches are
    found for the current row of t1, then current row from table t1
    is complemented by nulls  for t2 and t3. Then the pushed down predicates
    are checked for the composed row almost in the same way as it had
    been done for the first row with a match. The only difference is
    the predicates from on expressions are not checked. 

  @par
  @b IMPLEMENTATION
  @par
    The function forms output rows for a current partial join of k
    tables tables recursively.
    For each partial join record ending with a certain row from
    join_tab it calls sub_select that builds all possible matching
    tails from the result set.
    To be able  check predicates conditionally items of the class
    Item_func_trig_cond are employed.
    An object of  this class is constructed from an item of class COND
    and a pointer to a guarding boolean variable.
    When the value of the guard variable is true the value of the object
    is the same as the value of the predicate, otherwise it's just returns
    true. 
    To carry out a return to a nested loop level of join table t the pointer 
    to t is remembered in the field 'return_tab' of the join structure.
    Consider the following query:
    @code
        SELECT * FROM t1,
                      LEFT JOIN
                      (t2, t3 LEFT JOIN (t4,t5) ON t5.a=t3.a)
                      ON t4.a=t2.a
           WHERE (t2.b=5 OR t2.b IS NULL) AND (t4.b=2 OR t4.b IS NULL)
    @endcode
    Suppose the chosen execution plan dictates the order t1,t2,t3,t4,t5
    and suppose for a given joined rows from tables t1,t2,t3 there are
    no rows in the result set yet.
    When first row from t5 that satisfies the on condition
    t5.a=t3.a is found, the pushed down predicate t4.b=2 OR t4.b IS NULL
    becomes 'activated', as well the predicate t4.a=t2.a. But
    the predicate (t2.b=5 OR t2.b IS NULL) can not be checked until
    t4.a=t2.a becomes true. 
    In order not to re-evaluate the predicates that were already evaluated
    as attached pushed down predicates, a pointer to the the first
    most inner unmatched table is maintained in join_tab->first_unmatched.
    Thus, when the first row from t5 with t5.a=t3.a is found
    this pointer for t5 is changed from t4 to t2.             

    @par
    @b STRUCTURE @b NOTES
    @par
    join_tab->first_unmatched points always backwards to the first inner
    table of the embedding nested join, if any.

  @param join      pointer to the structure providing all context info for
                   the query
  @param join_tab  the first next table of the execution plan to be retrieved
  @param end_records  true when we need to perform final steps of retrival   

  @return
    return one of enum_nested_loop_state, except NESTED_LOOP_NO_MORE_ROWS.
*/

enum_nested_loop_state
sub_select(JOIN *join,JOIN_TAB *join_tab,bool end_of_records)
{
  DBUG_ENTER("sub_select");

  join_tab->table->null_row=0;
  if (end_of_records)
  {
    enum_nested_loop_state nls=
      (*join_tab->next_select)(join,join_tab+1,end_of_records);
    DBUG_RETURN(nls);
  }
  int error;
  enum_nested_loop_state rc= NESTED_LOOP_OK;
  READ_RECORD *info= &join_tab->read_record;

  if (join_tab->flush_weedout_table)
  {
    do_sj_reset(join_tab->flush_weedout_table);
  }

  if (join->resume_nested_loop)
  {
    /* If not the last table, plunge down the nested loop */
    if (join_tab < join->join_tab + join->tables - 1)
      rc= (*join_tab->next_select)(join, join_tab + 1, 0);
    else
    {
      join->resume_nested_loop= FALSE;
      rc= NESTED_LOOP_OK;
    }
  }
  else
  {
    join->return_tab= join_tab;

    if (join_tab->last_inner)
    {
      /* join_tab is the first inner table for an outer join operation. */

      /* Set initial state of guard variables for this table.*/
      join_tab->found=0;
      join_tab->not_null_compl= 1;

      /* Set first_unmatched for the last inner table of this group */
      join_tab->last_inner->first_unmatched= join_tab;
      if (join_tab->on_precond && !join_tab->on_precond->val_int())
        rc= NESTED_LOOP_NO_MORE_ROWS;
     }
    join->thd->row_count= 0;
    
    if (rc != NESTED_LOOP_NO_MORE_ROWS && 
        (rc= join_tab_execution_startup(join_tab)) < 0)
      DBUG_RETURN(rc);

    if (join_tab->loosescan_match_tab)
      join_tab->loosescan_match_tab->found_match= FALSE;

    if (rc != NESTED_LOOP_NO_MORE_ROWS)
    {
      error= (*join_tab->read_first_record)(join_tab);
      if (join_tab->keep_current_rowid)
        join_tab->table->file->position(join_tab->table->record[0]);    
      rc= evaluate_join_record(join, join_tab, error);
    }
  }
  
  /* 
    Note: psergey has added the 2nd part of the following condition; the 
    change should probably be made in 5.1, too.
  */
  bool skip_over= FALSE;
  while (rc == NESTED_LOOP_OK && join->return_tab >= join_tab)
  {
    if (join_tab->loosescan_match_tab && 
        join_tab->loosescan_match_tab->found_match)
    {
      KEY *key= join_tab->table->key_info + join_tab->index;
      key_copy(join_tab->loosescan_buf, info->record, key, 
               join_tab->loosescan_key_len);
      skip_over= TRUE;
    }

    error= info->read_record(info);

    if (skip_over && !error) 
    {
      if(!key_cmp(join_tab->table->key_info[join_tab->index].key_part,
                  join_tab->loosescan_buf, join_tab->loosescan_key_len))
      {
        /* 
          This is the LooseScan action: skip over records with the same key
          value if we already had a match for them.
        */
        continue;
      }
      join_tab->loosescan_match_tab->found_match= FALSE;
      skip_over= FALSE;
    }

    if (join_tab->keep_current_rowid)
      join_tab->table->file->position(join_tab->table->record[0]);
    
    rc= evaluate_join_record(join, join_tab, error);
  }

  if (rc == NESTED_LOOP_NO_MORE_ROWS &&
      join_tab->last_inner && !join_tab->found)
    rc= evaluate_null_complemented_join_record(join, join_tab);

  if (rc == NESTED_LOOP_NO_MORE_ROWS)
    rc= NESTED_LOOP_OK;
  DBUG_RETURN(rc);
}


/**
  @brief Process one row of the nested loop join.

  This function will evaluate parts of WHERE/ON clauses that are
  applicable to the partial row on hand and in case of success
  submit this row to the next level of the nested loop.

  @param  join     - The join object
  @param  join_tab - The most inner join_tab being processed
  @param  error > 0: Error, terminate processing
                = 0: (Partial) row is available
                < 0: No more rows available at this level
  @return Nested loop state (Ok, No_more_rows, Error, Killed)
*/

static enum_nested_loop_state
evaluate_join_record(JOIN *join, JOIN_TAB *join_tab,
                     int error)
{
  bool not_used_in_distinct=join_tab->not_used_in_distinct;
  ha_rows found_records=join->found_records;
  COND *select_cond= join_tab->select_cond;
  bool select_cond_result= TRUE;

  DBUG_ENTER("evaluate_join_record");
  DBUG_PRINT("enter",
             ("evaluate_join_record join: %p join_tab: %p"
              " cond: %p error: %d", join, join_tab, select_cond, error));
  if (error > 0 || (join->thd->is_error()))     // Fatal error
    DBUG_RETURN(NESTED_LOOP_ERROR);
  if (error < 0)
    DBUG_RETURN(NESTED_LOOP_NO_MORE_ROWS);
  if (join->thd->killed)			// Aborted by user
  {
    join->thd->send_kill_message();
    DBUG_RETURN(NESTED_LOOP_KILLED);            /* purecov: inspected */
  }

  update_virtual_fields(join->thd, join_tab->table);

  if (select_cond)
  {
    select_cond_result= test(select_cond->val_int());

    /* check for errors evaluating the condition */
    if (join->thd->is_error())
      DBUG_RETURN(NESTED_LOOP_ERROR);
  }

  if (!select_cond || select_cond_result)
  {
    /*
      There is no select condition or the attached pushed down
      condition is true => a match is found.
    */
    bool found= 1;
    bool use_not_exists_opt= 0;
    while (join_tab->first_unmatched && found)
    {
      /*
        The while condition is always false if join_tab is not
        the last inner join table of an outer join operation.
      */
      JOIN_TAB *first_unmatched= join_tab->first_unmatched;
      /*
        Mark that a match for current outer table is found.
        This activates push down conditional predicates attached
        to the all inner tables of the outer join.
      */
      first_unmatched->found= 1;
      for (JOIN_TAB *tab= first_unmatched; tab <= join_tab; tab++)
      {
        if (tab->table->reginfo.not_exists_optimize)
          use_not_exists_opt= 1;
        /* Check all predicates that has just been activated. */
        /*
          Actually all predicates non-guarded by first_unmatched->found
          will be re-evaluated again. It could be fixed, but, probably,
          it's not worth doing now.
        */
        if (tab->select_cond && !tab->select_cond->val_int())
        {
          /* The condition attached to table tab is false */
          if (tab == join_tab)
            found= 0;
          else
          {
            /*
              Set a return point if rejected predicate is attached
              not to the last table of the current nest level.
            */
            join->return_tab= tab;
            DBUG_RETURN(NESTED_LOOP_OK);
          }
        }
      }
      /*
        Check whether join_tab is not the last inner table
        for another embedding outer join.
      */
      if ((first_unmatched= first_unmatched->first_upper) &&
          first_unmatched->last_inner != join_tab)
        first_unmatched= 0;
      join_tab->first_unmatched= first_unmatched;
    }

    if (use_not_exists_opt)
      DBUG_RETURN(NESTED_LOOP_NO_MORE_ROWS);
    JOIN_TAB *return_tab= join->return_tab;
    join_tab->found_match= TRUE;

    if (join_tab->check_weed_out_table && found)
    {
      int res= do_sj_dups_weedout(join->thd, join_tab->check_weed_out_table);
      if (res == -1)
        DBUG_RETURN(NESTED_LOOP_ERROR);
      else if (res == 1)
        found= FALSE;
    }
    else if (join_tab->do_firstmatch)
    {
      /* 
        We should return to the join_tab->do_firstmatch after we have 
        enumerated all the suffixes for current prefix row combination
      */
      return_tab= join_tab->do_firstmatch;
    }

    /*
      It was not just a return to lower loop level when one
      of the newly activated predicates is evaluated as false
      (See above join->return_tab= tab).
    */
    join->examined_rows++;
    join->thd->row_count++;
    DBUG_PRINT("counts", ("join->examined_rows++: %lu",
                          (ulong) join->examined_rows));

    if (found)
    {
      enum enum_nested_loop_state rc;
      /* A match from join_tab is found for the current partial join. */
      rc= (*join_tab->next_select)(join, join_tab+1, 0);
      if (rc != NESTED_LOOP_OK && rc != NESTED_LOOP_NO_MORE_ROWS)
        DBUG_RETURN(rc);
      if (return_tab < join->return_tab)
        join->return_tab= return_tab;

      if (join->return_tab < join_tab)
        DBUG_RETURN(NESTED_LOOP_OK);
      /*
        Test if this was a SELECT DISTINCT query on a table that
        was not in the field list;  In this case we can abort if
        we found a row, as no new rows can be added to the result.
      */
      if (not_used_in_distinct && found_records != join->found_records)
        DBUG_RETURN(NESTED_LOOP_NO_MORE_ROWS);
    }
    else
      join_tab->read_record.unlock_row(join_tab);
  }
  else
  {
    /*
      The condition pushed down to the table join_tab rejects all rows
      with the beginning coinciding with the current partial join.
    */
    join->examined_rows++;
    join->thd->row_count++;
    join_tab->read_record.unlock_row(join_tab);
  }
  DBUG_RETURN(NESTED_LOOP_OK);
}

/**

  @details
    Construct a NULL complimented partial join record and feed it to the next
    level of the nested loop. This function is used in case we have
    an OUTER join and no matching record was found.
*/

static enum_nested_loop_state
evaluate_null_complemented_join_record(JOIN *join, JOIN_TAB *join_tab)
{
  /*
    The table join_tab is the first inner table of a outer join operation
    and no matches has been found for the current outer row.
  */
  JOIN_TAB *last_inner_tab= join_tab->last_inner;
  /* Cache variables for faster loop */
  COND *select_cond;
  for ( ; join_tab <= last_inner_tab ; join_tab++)
  {
    /* Change the the values of guard predicate variables. */
    join_tab->found= 1;
    join_tab->not_null_compl= 0;
    /* The outer row is complemented by nulls for each inner tables */
    restore_record(join_tab->table,s->default_values);  // Make empty record
    mark_as_null_row(join_tab->table);       // For group by without error
    select_cond= join_tab->select_cond;
    /* Check all attached conditions for inner table rows. */
    if (select_cond && !select_cond->val_int())
      return NESTED_LOOP_OK;
  }
  join_tab--;
  /*
    The row complemented by nulls might be the first row
    of embedding outer joins.
    If so, perform the same actions as in the code
    for the first regular outer join row above.
  */
  for ( ; ; )
  {
    JOIN_TAB *first_unmatched= join_tab->first_unmatched;
    if ((first_unmatched= first_unmatched->first_upper) &&
        first_unmatched->last_inner != join_tab)
      first_unmatched= 0;
    join_tab->first_unmatched= first_unmatched;
    if (!first_unmatched)
      break;
    first_unmatched->found= 1;
    for (JOIN_TAB *tab= first_unmatched; tab <= join_tab; tab++)
    {
      if (tab->select_cond && !tab->select_cond->val_int())
      {
        join->return_tab= tab;
        return NESTED_LOOP_OK;
      }
    }
  }
  /*
    The row complemented by nulls satisfies all conditions
    attached to inner tables.
    Send the row complemented by nulls to be joined with the
    remaining tables.
  */
  return (*join_tab->next_select)(join, join_tab+1, 0);
}

/*****************************************************************************
  The different ways to read a record
  Returns -1 if row was not found, 0 if row was found and 1 on errors
*****************************************************************************/

/** Help function when we get some an error from the table handler. */

int report_error(TABLE *table, int error)
{
  if (error == HA_ERR_END_OF_FILE || error == HA_ERR_KEY_NOT_FOUND)
  {
    table->status= STATUS_GARBAGE;
    return -1;					// key not found; ok
  }
  /*
    Locking reads can legally return also these errors, do not
    print them to the .err log
  */
  if (error != HA_ERR_LOCK_DEADLOCK && error != HA_ERR_LOCK_WAIT_TIMEOUT)
    sql_print_error("Got error %d when reading table '%s'",
		    error, table->s->path.str);
  table->file->print_error(error,MYF(0));
  return 1;
}


int safe_index_read(JOIN_TAB *tab)
{
  int error;
  TABLE *table= tab->table;
  if ((error= table->file->ha_index_read_map(table->record[0],
                                             tab->ref.key_buff,
                                             make_prev_keypart_map(tab->ref.key_parts),
                                             HA_READ_KEY_EXACT)))
    return report_error(table, error);
  return 0;
}


static int
join_read_const_table(JOIN_TAB *tab, POSITION *pos)
{
  int error;
  DBUG_ENTER("join_read_const_table");
  TABLE *table=tab->table;
  table->const_table=1;
  table->null_row=0;
  table->status=STATUS_NO_RECORD;
  
  if (tab->type == JT_SYSTEM)
  {
    if ((error=join_read_system(tab)))
    {						// Info for DESCRIBE
      tab->info="const row not found";
      /* Mark for EXPLAIN that the row was not found */
      pos->records_read=0.0;
      pos->ref_depend_map= 0;
      if (!table->maybe_null || error > 0)
	DBUG_RETURN(error);
    }
    /*
      The optimizer trust the engine that when stats.records is 0, there
      was no found rows
    */
    DBUG_ASSERT(table->file->stats.records > 0 || error);
  }
  else
  {
    if (!table->key_read && table->covering_keys.is_set(tab->ref.key) &&
	!table->no_keyread &&
        (int) table->reginfo.lock_type <= (int) TL_READ_HIGH_PRIORITY)
    {
      table->enable_keyread();
      tab->index= tab->ref.key;
    }
    error=join_read_const(tab);
    table->disable_keyread();
    if (error)
    {
      tab->info="unique row not found";
      /* Mark for EXPLAIN that the row was not found */
      pos->records_read=0.0;
      pos->ref_depend_map= 0;
      if (!table->maybe_null || error > 0)
	DBUG_RETURN(error);
    }
  }
  /* 
     Evaluate an on-expression only if it is not considered expensive.
     This mainly prevents executing subqueries in optimization phase.
     This is necessary since proper setup for such execution has not been
     done at this stage.
  */
  if (*tab->on_expr_ref && !table->null_row && 
      !(*tab->on_expr_ref)->is_expensive())
  {
#if !defined(DBUG_OFF) && defined(NOT_USING_ITEM_EQUAL)
    /*
      This test could be very useful to find bugs in the optimizer
      where we would call this function with an expression that can't be
      evaluated yet. We can't have this enabled by default as long as
      have items like Item_equal, that doesn't report they are const but
      they can still be called even if they contain not const items.
    */
    (*tab->on_expr_ref)->update_used_tables();
    DBUG_ASSERT((*tab->on_expr_ref)->const_item());
#endif
    if ((table->null_row= test((*tab->on_expr_ref)->val_int() == 0)))
      mark_as_null_row(table);  
  }
  if (!table->null_row)
    table->maybe_null=0;

  /* Check appearance of new constant items in Item_equal objects */
  JOIN *join= tab->join;
  if (join->conds)
    update_const_equal_items(join->conds, tab);
  TABLE_LIST *tbl;
  for (tbl= join->select_lex->leaf_tables; tbl; tbl= tbl->next_leaf)
  {
    TABLE_LIST *embedded;
    TABLE_LIST *embedding= tbl;
    do
    {
      embedded= embedding;
      if (embedded->on_expr)
         update_const_equal_items(embedded->on_expr, tab);
      embedding= embedded->embedding;
    }
    while (embedding &&
           embedding->nested_join->join_list.head() == embedded);
  }

  DBUG_RETURN(0);
}


static int
join_read_system(JOIN_TAB *tab)
{
  TABLE *table= tab->table;
  int error;
  if (table->status & STATUS_GARBAGE)		// If first read
  {
    if ((error= table->file->ha_read_first_row(table->record[0],
                                               table->s->primary_key)))
    {
      if (error != HA_ERR_END_OF_FILE)
	return report_error(table, error);
      mark_as_null_row(tab->table);
      empty_record(table);			// Make empty record
      return -1;
    }
    update_virtual_fields(tab->join->thd, table);
    store_record(table,record[1]);
  }
  else if (!table->status)			// Only happens with left join
    restore_record(table,record[1]);			// restore old record
  table->null_row=0;
  return table->status ? -1 : 0;
}


/**
  Read a table when there is at most one matching row.

  @param tab			Table to read

  @retval
    0	Row was found
  @retval
    -1   Row was not found
  @retval
    1   Got an error (other than row not found) during read
*/

static int
join_read_const(JOIN_TAB *tab)
{
  int error;
  TABLE *table= tab->table;
  if (table->status & STATUS_GARBAGE)		// If first read
  {
    table->status= 0;
    if (cp_buffer_from_ref(tab->join->thd, table, &tab->ref))
      error=HA_ERR_KEY_NOT_FOUND;
    else
    {
      error= table->file->ha_index_read_idx_map(table->record[0],tab->ref.key,
                                                (uchar*) tab->ref.key_buff,
                                                make_prev_keypart_map(tab->ref.key_parts),
                                                HA_READ_KEY_EXACT);
    }
    if (error)
    {
      table->status= STATUS_NOT_FOUND;
      mark_as_null_row(tab->table);
      empty_record(table);
      if (error != HA_ERR_KEY_NOT_FOUND && error != HA_ERR_END_OF_FILE)
	return report_error(table, error);
      return -1;
    }
    update_virtual_fields(tab->join->thd, table);
    store_record(table,record[1]);
  }
  else if (!(table->status & ~STATUS_NULL_ROW))	// Only happens with left join
  {
    table->status=0;
    restore_record(table,record[1]);			// restore old record
  }
  table->null_row=0;
  return table->status ? -1 : 0;
}

/*
  eq_ref access method implementation: "read_first" function

  SYNOPSIS
    join_read_key()
      tab  JOIN_TAB of the accessed table

  DESCRIPTION
    This is "read_fist" function for the eq_ref access method. The difference
    from ref access function is that is that it has a one-element lookup 
    cache (see cmp_buffer_with_ref)

  RETURN
    0  - Ok
   -1  - Row not found 
    1  - Error
*/


static int
join_read_key(JOIN_TAB *tab)
{
  return join_read_key2(tab->join->thd, tab, tab->table, &tab->ref);
}


/*
  eq_ref access handler but generalized a bit to support TABLE and TABLE_REF
  not from the join_tab. See join_read_key for detailed synopsis.
*/
int join_read_key2(THD *thd, JOIN_TAB *tab, TABLE *table, TABLE_REF *table_ref)
{
  int error;
  if (!table->file->inited)
  {
    table->file->ha_index_init(table_ref->key, (tab ? tab->sorted : TRUE));
  }

  /* TODO: Why don't we do "Late NULLs Filtering" here? */
  if (cmp_buffer_with_ref(thd, table, table_ref) ||
      (table->status & (STATUS_GARBAGE | STATUS_NO_PARENT | STATUS_NULL_ROW)))
  {
    if (table_ref->key_err)
    {
      table->status=STATUS_NOT_FOUND;
      return -1;
    }
    /*
      Moving away from the current record. Unlock the row
      in the handler if it did not match the partial WHERE.
    */
    if (tab && tab->ref.has_record && tab->ref.use_count == 0)
    {
      tab->read_record.file->unlock_row();
      table_ref->has_record= FALSE;
    }
    error=table->file->ha_index_read_map(table->record[0],
                                  table_ref->key_buff,
                                  make_prev_keypart_map(table_ref->key_parts),
                                  HA_READ_KEY_EXACT);
    if (error && error != HA_ERR_KEY_NOT_FOUND && error != HA_ERR_END_OF_FILE)
      return report_error(table, error);

    if (! error)
    {
      table_ref->has_record= TRUE;
      table_ref->use_count= 1;
    }
  }
  else if (table->status == 0)
  {
    DBUG_ASSERT(table_ref->has_record);
    table_ref->use_count++;
  }
  table->null_row=0;
  return table->status ? -1 : 0;
}


/**
  Since join_read_key may buffer a record, do not unlock
  it if it was not used in this invocation of join_read_key().
  Only count locks, thus remembering if the record was left unused,
  and unlock already when pruning the current value of
  TABLE_REF buffer.
  @sa join_read_key()
*/

static void
join_read_key_unlock_row(st_join_table *tab)
{
  DBUG_ASSERT(tab->ref.use_count);
  if (tab->ref.use_count)
    tab->ref.use_count--;
}

/*
  ref access method implementation: "read_first" function

  SYNOPSIS
    join_read_always_key()
      tab  JOIN_TAB of the accessed table

  DESCRIPTION
    This is "read_fist" function for the "ref" access method.
   
    The functon must leave the index initialized when it returns.
    ref_or_null access implementation depends on that.

  RETURN
    0  - Ok
   -1  - Row not found 
    1  - Error
*/

static int
join_read_always_key(JOIN_TAB *tab)
{
  int error;
  TABLE *table= tab->table;

  /* Initialize the index first */
  if (!table->file->inited)
  {
    if ((error= table->file->ha_index_init(tab->ref.key, tab->sorted)))
    {
      table->file->print_error(error, MYF(0));/* purecov: inspected */
      return(1);                              /* purecov: inspected */
    }
  }

  if (cp_buffer_from_ref(tab->join->thd, table, &tab->ref))
    return -1;
  if ((error= table->file->ha_index_read_map(table->record[0],
                                             tab->ref.key_buff,
                                             make_prev_keypart_map(tab->ref.key_parts),
                                             HA_READ_KEY_EXACT)))
  {
    if (error != HA_ERR_KEY_NOT_FOUND && error != HA_ERR_END_OF_FILE)
      return report_error(table, error);
    return -1; /* purecov: inspected */
  }
  return 0;
}


/**
  This function is used when optimizing away ORDER BY in 
  SELECT * FROM t1 WHERE a=1 ORDER BY a DESC,b DESC.
*/
  
static int
join_read_last_key(JOIN_TAB *tab)
{
  int error;
  TABLE *table= tab->table;

  if (!table->file->inited)
  {
    if ((error= table->file->ha_index_init(tab->ref.key, tab->sorted)))
    {
      table->file->print_error(error, MYF(0));/* purecov: inspected */
      return(1);                              /* purecov: inspected */
    }
  }
  if (cp_buffer_from_ref(tab->join->thd, table, &tab->ref))
    return -1;
  if ((error= table->file->ha_index_read_map(table->record[0],
                                            tab->ref.key_buff,
                                     make_prev_keypart_map(tab->ref.key_parts),
                                            HA_READ_PREFIX_LAST)))
  {
    if (error != HA_ERR_KEY_NOT_FOUND && error != HA_ERR_END_OF_FILE)
      return report_error(table, error);
    return -1; /* purecov: inspected */
  }
  return 0;
}


	/* ARGSUSED */
static int
join_no_more_records(READ_RECORD *info __attribute__((unused)))
{
  return -1;
}


static int
join_read_next_same(READ_RECORD *info)
{
  int error;
  TABLE *table= info->table;
  JOIN_TAB *tab=table->reginfo.join_tab;

  if ((error= table->file->ha_index_next_same(table->record[0],
                                              tab->ref.key_buff,
                                              tab->ref.key_length)))
  {
    if (error != HA_ERR_END_OF_FILE)
      return report_error(table, error);
    table->status= STATUS_GARBAGE;
    return -1;
  }
  return 0;
}


static int
join_read_prev_same(READ_RECORD *info)
{
  int error;
  TABLE *table= info->table;
  JOIN_TAB *tab=table->reginfo.join_tab;

  if ((error= table->file->ha_index_prev(table->record[0])))
    return report_error(table, error);
  if (key_cmp_if_same(table, tab->ref.key_buff, tab->ref.key,
                      tab->ref.key_length))
  {
    table->status=STATUS_NOT_FOUND;
    error= -1;
  }
  return error;
}


static int
join_init_quick_read_record(JOIN_TAB *tab)
{
  if (test_if_quick_select(tab) == -1)
    return -1;					/* No possible records */
  return join_init_read_record(tab);
}


int init_read_record_seq(JOIN_TAB *tab)
{
  tab->read_record.read_record= rr_sequential;
  if (tab->read_record.file->ha_rnd_init_with_error(1))
    return 1;
  return (*tab->read_record.read_record)(&tab->read_record);
}

static int
test_if_quick_select(JOIN_TAB *tab)
{
  delete tab->select->quick;
  tab->select->quick=0;
  return tab->select->test_quick_select(tab->join->thd, tab->keys,
					(table_map) 0, HA_POS_ERROR, 0,
                                        FALSE);
}


static 
bool test_if_use_dynamic_range_scan(JOIN_TAB *join_tab)
{
    return (join_tab->use_quick == 2 && test_if_quick_select(join_tab) > 0);
}

int join_init_read_record(JOIN_TAB *tab)
{
  if (tab->select && tab->select->quick && tab->select->quick->reset())
    return 1;
  if (init_read_record(&tab->read_record, tab->join->thd, tab->table,
                       tab->select,1,1, FALSE))
    return 1;
  return (*tab->read_record.read_record)(&tab->read_record);
}

int
join_read_record_no_init(JOIN_TAB *tab)
{
  Copy_field *save_copy, *save_copy_end;
  
  save_copy=     tab->read_record.copy_field;
  save_copy_end= tab->read_record.copy_field_end;
  
  init_read_record(&tab->read_record, tab->join->thd, tab->table,
		   tab->select,1,1, FALSE);

  tab->read_record.copy_field=     save_copy;
  tab->read_record.copy_field_end= save_copy_end;
  tab->read_record.read_record= rr_sequential_and_unpack;

  return (*tab->read_record.read_record)(&tab->read_record);
}

static int
join_read_first(JOIN_TAB *tab)
{
  int error= 0;
  TABLE *table=tab->table;
  if (table->covering_keys.is_set(tab->index) && !table->no_keyread &&
      !table->key_read)
    table->enable_keyread();
  tab->table->status=0;
  tab->read_record.read_record=join_read_next;
  tab->read_record.table=table;
  tab->read_record.file=table->file;
  tab->read_record.index=tab->index;
  tab->read_record.record=table->record[0];
  if (!table->file->inited)
    error= table->file->ha_index_init(tab->index, tab->sorted);
  if (!error)
    error= table->file->prepare_index_scan();
  if (error || (error=tab->table->file->ha_index_first(tab->table->record[0])))
  {
    if (error != HA_ERR_KEY_NOT_FOUND && error != HA_ERR_END_OF_FILE)
      report_error(table, error);
    return -1;
  }
  return 0;
}


static int
join_read_next(READ_RECORD *info)
{
  int error;
  if ((error= info->file->ha_index_next(info->record)))
    return report_error(info->table, error);

  return 0;
}


static int
join_read_last(JOIN_TAB *tab)
{
  TABLE *table=tab->table;
  int error= 0;
  if (table->covering_keys.is_set(tab->index) && !table->no_keyread &&
      !table->key_read)
    table->enable_keyread();
  tab->table->status=0;
  tab->read_record.read_record=join_read_prev;
  tab->read_record.table=table;
  tab->read_record.file=table->file;
  tab->read_record.index=tab->index;
  tab->read_record.record=table->record[0];
  if (!table->file->inited)
    error= table->file->ha_index_init(tab->index, 1);
  if (!error)
    error= table->file->prepare_index_scan();
  if (error || (error= tab->table->file->ha_index_last(tab->table->record[0])))
    return report_error(table, error);

  return 0;
}


static int
join_read_prev(READ_RECORD *info)
{
  int error;
  if ((error= info->file->ha_index_prev(info->record)))
    return report_error(info->table, error);
  return 0;
}


static int
join_ft_read_first(JOIN_TAB *tab)
{
  int error;
  TABLE *table= tab->table;

  if (!table->file->inited &&
      (error= table->file->ha_index_init(tab->ref.key, 1)))
  {
    table->file->print_error(error, MYF(0));  /* purecov: inspected */
    return(1);                                /* purecov: inspected */
  }
#if NOT_USED_YET
  /* as ft-key doesn't use store_key's, see also FT_SELECT::init() */
  if (cp_buffer_from_ref(tab->join->thd, table, &tab->ref))
    return -1;                             
#endif
  table->file->ft_init();

  if ((error= table->file->ha_ft_read(table->record[0])))
    return report_error(table, error);
  return 0;
}

static int
join_ft_read_next(READ_RECORD *info)
{
  int error;
  if ((error= info->file->ha_ft_read(info->table->record[0])))
    return report_error(info->table, error);
  return 0;
}


/**
  Reading of key with key reference and one part that may be NULL.
*/

int
join_read_always_key_or_null(JOIN_TAB *tab)
{
  int res;

  /* First read according to key which is NOT NULL */
  *tab->ref.null_ref_key= 0;			// Clear null byte
  if ((res= join_read_always_key(tab)) >= 0)
    return res;

  /* Then read key with null value */
  *tab->ref.null_ref_key= 1;			// Set null byte
  return safe_index_read(tab);
}


int
join_read_next_same_or_null(READ_RECORD *info)
{
  int error;
  if ((error= join_read_next_same(info)) >= 0)
    return error;
  JOIN_TAB *tab= info->table->reginfo.join_tab;

  /* Test if we have already done a read after null key */
  if (*tab->ref.null_ref_key)
    return -1;					// All keys read
  *tab->ref.null_ref_key= 1;			// Set null byte
  return safe_index_read(tab);			// then read null keys
}


/*****************************************************************************
  DESCRIPTION
    Functions that end one nested loop iteration. Different functions
    are used to support GROUP BY clause and to redirect records
    to a table (e.g. in case of SELECT into a temporary table) or to the
    network client.

  RETURN VALUES
    NESTED_LOOP_OK           - the record has been successfully handled
    NESTED_LOOP_ERROR        - a fatal error (like table corruption)
                               was detected
    NESTED_LOOP_KILLED       - thread shutdown was requested while processing
                               the record
    NESTED_LOOP_QUERY_LIMIT  - the record has been successfully handled;
                               additionally, the nested loop produced the
                               number of rows specified in the LIMIT clause
                               for the query
    NESTED_LOOP_CURSOR_LIMIT - the record has been successfully handled;
                               additionally, there is a cursor and the nested
                               loop algorithm produced the number of rows
                               that is specified for current cursor fetch
                               operation.
   All return values except NESTED_LOOP_OK abort the nested loop.
*****************************************************************************/

/* ARGSUSED */
static enum_nested_loop_state
end_send(JOIN *join, JOIN_TAB *join_tab __attribute__((unused)),
	 bool end_of_records)
{
  DBUG_ENTER("end_send");
  if (!end_of_records)
  {
    int error;
    if (join->having && join->having->val_int() == 0)
      DBUG_RETURN(NESTED_LOOP_OK);               // Didn't match having
    error=0;
    if (join->procedure)
      error=join->procedure->send_row(join->procedure_fields_list);
    else if (join->do_send_rows)
      error=join->result->send_data(*join->fields);
    if (error)
      DBUG_RETURN(NESTED_LOOP_ERROR); /* purecov: inspected */
    if (++join->send_records >= join->unit->select_limit_cnt &&
	join->do_send_rows)
    {
      if (join->select_options & OPTION_FOUND_ROWS)
      {
	JOIN_TAB *jt=join->join_tab;
	if ((join->tables == 1) && !join->tmp_table && !join->sort_and_group
	    && !join->send_group_parts && !join->having && !jt->select_cond &&
	    !(jt->select && jt->select->quick) &&
	    (jt->table->file->ha_table_flags() & HA_STATS_RECORDS_IS_EXACT) &&
            (jt->ref.key < 0))
	{
	  /* Join over all rows in table;  Return number of found rows */
	  TABLE *table=jt->table;

	  join->select_options ^= OPTION_FOUND_ROWS;
	  if (table->sort.record_pointers ||
	      (table->sort.io_cache && my_b_inited(table->sort.io_cache)))
	  {
	    /* Using filesort */
	    join->send_records= table->sort.found_records;
	  }
	  else
	  {
	    table->file->info(HA_STATUS_VARIABLE);
	    join->send_records= table->file->stats.records;
	  }
	}
	else 
	{
	  join->do_send_rows= 0;
	  if (join->unit->fake_select_lex)
	    join->unit->fake_select_lex->select_limit= 0;
	  DBUG_RETURN(NESTED_LOOP_OK);
	}
      }
      DBUG_RETURN(NESTED_LOOP_QUERY_LIMIT);      // Abort nicely
    }
    else if (join->send_records >= join->fetch_limit)
    {
      /*
        There is a server side cursor and all rows for
        this fetch request are sent.
      */
      DBUG_RETURN(NESTED_LOOP_CURSOR_LIMIT);
    }
  }
  else
  {
    if (join->procedure && join->procedure->end_of_records())
      DBUG_RETURN(NESTED_LOOP_ERROR);
  }
  DBUG_RETURN(NESTED_LOOP_OK);
}


	/* ARGSUSED */
enum_nested_loop_state
end_send_group(JOIN *join, JOIN_TAB *join_tab __attribute__((unused)),
	       bool end_of_records)
{
  int idx= -1;
  enum_nested_loop_state ok_code= NESTED_LOOP_OK;
  DBUG_ENTER("end_send_group");

  if (!join->first_record || end_of_records ||
      (idx=test_if_group_changed(join->group_fields)) >= 0)
  {
    if (join->first_record || 
        (end_of_records && !join->group && !join->group_optimized_away))
    {
      if (join->procedure)
	join->procedure->end_group();
      if (idx < (int) join->send_group_parts)
      {
	int error=0;
	if (join->procedure)
	{
	  if (join->having && join->having->val_int() == 0)
	    error= -1;				// Didn't satisfy having
 	  else
	  {
	    if (join->do_send_rows)
	      error=join->procedure->send_row(*join->fields) ? 1 : 0;
	    join->send_records++;
	  }
	  if (end_of_records && join->procedure->end_of_records())
	    error= 1;				// Fatal error
	}
	else
	{
	  if (!join->first_record)
	  {
            List_iterator_fast<Item> it(*join->fields);
            Item *item;
            DBUG_PRINT("info", ("no matching rows"));

	    /* No matching rows for group function */
	    join->clear();
            join->no_rows_in_result_called= 1;

            while ((item= it++))
              item->no_rows_in_result();
	  }
	  if (join->having && join->having->val_int() == 0)
	    error= -1;				// Didn't satisfy having
	  else
	  {
	    if (join->do_send_rows)
	      error=join->result->send_data(*join->fields) ? 1 : 0;
	    join->send_records++;
	  }
	  if (join->rollup.state != ROLLUP::STATE_NONE && error <= 0)
	  {
	    if (join->rollup_send_data((uint) (idx+1)))
	      error= 1;
	  }
	}
	if (error > 0)
          DBUG_RETURN(NESTED_LOOP_ERROR);        /* purecov: inspected */
	if (end_of_records)
	  DBUG_RETURN(NESTED_LOOP_OK);
	if (join->send_records >= join->unit->select_limit_cnt &&
	    join->do_send_rows)
	{
	  if (!(join->select_options & OPTION_FOUND_ROWS))
	    DBUG_RETURN(NESTED_LOOP_QUERY_LIMIT); // Abort nicely
	  join->do_send_rows=0;
	  join->unit->select_limit_cnt = HA_POS_ERROR;
        }
        else if (join->send_records >= join->fetch_limit)
        {
          /*
            There is a server side cursor and all rows
            for this fetch request are sent.
          */
          /*
            Preventing code duplication. When finished with the group reset
            the group functions and copy_fields. We fall through. bug #11904
          */
          ok_code= NESTED_LOOP_CURSOR_LIMIT;
        }
      }
    }
    else
    {
      if (end_of_records)
	DBUG_RETURN(NESTED_LOOP_OK);
      join->first_record=1;
      VOID(test_if_group_changed(join->group_fields));
    }
    if (idx < (int) join->send_group_parts)
    {
      /*
        This branch is executed also for cursors which have finished their
        fetch limit - the reason for ok_code.
      */
      copy_fields(&join->tmp_table_param);
      if (init_sum_functions(join->sum_funcs, join->sum_funcs_end[idx+1]))
	DBUG_RETURN(NESTED_LOOP_ERROR);
      if (join->procedure)
	join->procedure->add();
      DBUG_RETURN(ok_code);
    }
  }
  if (update_sum_func(join->sum_funcs))
    DBUG_RETURN(NESTED_LOOP_ERROR);
  if (join->procedure)
    join->procedure->add();
  DBUG_RETURN(NESTED_LOOP_OK);
}


	/* ARGSUSED */
static enum_nested_loop_state
end_write(JOIN *join, JOIN_TAB *join_tab __attribute__((unused)),
	  bool end_of_records)
{
  TABLE *table=join->tmp_table;
  DBUG_ENTER("end_write");

  if (join->thd->killed)			// Aborted by user
  {
    join->thd->send_kill_message();
    DBUG_RETURN(NESTED_LOOP_KILLED);             /* purecov: inspected */
  }
  if (!end_of_records)
  {
    copy_fields(&join->tmp_table_param);
    if (copy_funcs(join->tmp_table_param.items_to_copy, join->thd))
      DBUG_RETURN(NESTED_LOOP_ERROR);           /* purecov: inspected */

#ifdef TO_BE_DELETED
    if (!table->uniques)			// If not unique handling
    {
      /* Copy null values from group to row */
      ORDER   *group;
      for (group=table->group ; group ; group=group->next)
      {
	Item *item= *group->item;
	if (item->maybe_null)
	{
	  Field *field=item->get_tmp_table_field();
	  field->ptr[-1]= (uchar) (field->is_null() ? 1 : 0);
	}
      }
    }
#endif
    if (!join->having || join->having->val_int())
    {
      int error;
      join->found_records++;
      if ((error= table->file->ha_write_tmp_row(table->record[0])))
      {
        if (!table->file->is_fatal_error(error, HA_CHECK_DUP))
	  goto end;
	if (create_internal_tmp_table_from_heap(join->thd, table, 
                                                join->tmp_table_param.start_recinfo,
                                                &join->tmp_table_param.recinfo,
                                                error,1))
	  DBUG_RETURN(NESTED_LOOP_ERROR);        // Not a table_is_full error
	table->s->uniques=0;			// To ensure rows are the same
      }
      if (++join->send_records >= join->tmp_table_param.end_write_records &&
	  join->do_send_rows)
      {
	if (!(join->select_options & OPTION_FOUND_ROWS))
	  DBUG_RETURN(NESTED_LOOP_QUERY_LIMIT);
	join->do_send_rows=0;
	join->unit->select_limit_cnt = HA_POS_ERROR;
	DBUG_RETURN(NESTED_LOOP_OK);
      }
    }
  }
end:
  DBUG_RETURN(NESTED_LOOP_OK);
}

/* ARGSUSED */
/** Group by searching after group record and updating it if possible. */

static enum_nested_loop_state
end_update(JOIN *join, JOIN_TAB *join_tab __attribute__((unused)),
	   bool end_of_records)
{
  TABLE *table=join->tmp_table;
  ORDER   *group;
  int	  error;
  DBUG_ENTER("end_update");

  if (end_of_records)
    DBUG_RETURN(NESTED_LOOP_OK);
  if (join->thd->killed)			// Aborted by user
  {
    join->thd->send_kill_message();
    DBUG_RETURN(NESTED_LOOP_KILLED);             /* purecov: inspected */
  }

  join->found_records++;
  copy_fields(&join->tmp_table_param);		// Groups are copied twice.
  /* Make a key of group index */
  for (group=table->group ; group ; group=group->next)
  {
    Item *item= *group->item;
    item->save_org_in_field(group->field);
    /* Store in the used key if the field was 0 */
    if (item->maybe_null)
      group->buff[-1]= (char) group->field->is_null();
  }
  if (!table->file->ha_index_read_map(table->record[1],
                                      join->tmp_table_param.group_buff,
                                      HA_WHOLE_KEY,
                                      HA_READ_KEY_EXACT))
  {						/* Update old record */
    restore_record(table,record[1]);
    update_tmptable_sum_func(join->sum_funcs,table);
    if ((error= table->file->ha_update_row(table->record[1],
                                           table->record[0])))
    {
      table->file->print_error(error,MYF(0));	/* purecov: inspected */
      DBUG_RETURN(NESTED_LOOP_ERROR);            /* purecov: inspected */
    }
    DBUG_RETURN(NESTED_LOOP_OK);
  }

  /*
    Copy null bits from group key to table
    We can't copy all data as the key may have different format
    as the row data (for example as with VARCHAR keys)
  */
  KEY_PART_INFO *key_part;
  for (group=table->group,key_part=table->key_info[0].key_part;
       group ;
       group=group->next,key_part++)
  {
    if (key_part->null_bit)
      memcpy(table->record[0]+key_part->offset, group->buff, 1);
  }
  init_tmptable_sum_functions(join->sum_funcs);
  if (copy_funcs(join->tmp_table_param.items_to_copy, join->thd))
    DBUG_RETURN(NESTED_LOOP_ERROR);           /* purecov: inspected */
  if ((error= table->file->ha_write_tmp_row(table->record[0])))
  {
    if (create_internal_tmp_table_from_heap(join->thd, table,
                                            join->tmp_table_param.start_recinfo,
                                            &join->tmp_table_param.recinfo,
                                            error, 0))
      DBUG_RETURN(NESTED_LOOP_ERROR);            // Not a table_is_full error
    /* Change method to update rows */
    if ((error= table->file->ha_index_init(0, 0)))
    {
      table->file->print_error(error, MYF(0));/* purecov: inspected */
      DBUG_RETURN(NESTED_LOOP_ERROR);         /* purecov: inspected */
    }
    join->join_tab[join->tables-1].next_select=end_unique_update;
  }
  join->send_records++;
  DBUG_RETURN(NESTED_LOOP_OK);
}


/** Like end_update, but this is done with unique constraints instead of keys.  */

static enum_nested_loop_state
end_unique_update(JOIN *join, JOIN_TAB *join_tab __attribute__((unused)),
		  bool end_of_records)
{
  TABLE *table=join->tmp_table;
  int	  error;
  DBUG_ENTER("end_unique_update");

  if (end_of_records)
    DBUG_RETURN(NESTED_LOOP_OK);
  if (join->thd->killed)			// Aborted by user
  {
    join->thd->send_kill_message();
    DBUG_RETURN(NESTED_LOOP_KILLED);             /* purecov: inspected */
  }

  init_tmptable_sum_functions(join->sum_funcs);
  copy_fields(&join->tmp_table_param);		// Groups are copied twice.
  if (copy_funcs(join->tmp_table_param.items_to_copy, join->thd))
    DBUG_RETURN(NESTED_LOOP_ERROR);           /* purecov: inspected */

  if (!(error= table->file->ha_write_tmp_row(table->record[0])))
    join->send_records++;			// New group
  else
  {
    if ((int) table->file->get_dup_key(error) < 0)
    {
      table->file->print_error(error,MYF(0));	/* purecov: inspected */
      DBUG_RETURN(NESTED_LOOP_ERROR);            /* purecov: inspected */
    }
    if (table->file->ha_rnd_pos(table->record[1],table->file->dup_ref))
    {
      table->file->print_error(error,MYF(0));	/* purecov: inspected */
      DBUG_RETURN(NESTED_LOOP_ERROR);            /* purecov: inspected */
    }
    restore_record(table,record[1]);
    update_tmptable_sum_func(join->sum_funcs,table);
    if ((error= table->file->ha_update_row(table->record[1],
                                           table->record[0])))
    {
      table->file->print_error(error,MYF(0));	/* purecov: inspected */
      DBUG_RETURN(NESTED_LOOP_ERROR);            /* purecov: inspected */
    }
  }
  DBUG_RETURN(NESTED_LOOP_OK);
}


	/* ARGSUSED */
enum_nested_loop_state
end_write_group(JOIN *join, JOIN_TAB *join_tab __attribute__((unused)),
		bool end_of_records)
{
  TABLE *table=join->tmp_table;
  int	  idx= -1;
  DBUG_ENTER("end_write_group");

  if (join->thd->killed)
  {						// Aborted by user
    join->thd->send_kill_message();
    DBUG_RETURN(NESTED_LOOP_KILLED);             /* purecov: inspected */
  }
  if (!join->first_record || end_of_records ||
      (idx=test_if_group_changed(join->group_fields)) >= 0)
  {
    if (join->first_record || (end_of_records && !join->group))
    {
      if (join->procedure)
	join->procedure->end_group();
      int send_group_parts= join->send_group_parts;
      if (idx < send_group_parts)
      {
	if (!join->first_record)
	{
	  /* No matching rows for group function */
	  join->clear();
	}
        copy_sum_funcs(join->sum_funcs,
                       join->sum_funcs_end[send_group_parts]);
	if (!join->having || join->having->val_int())
	{
          int error= table->file->ha_write_tmp_row(table->record[0]);
          if (error && 
              create_internal_tmp_table_from_heap(join->thd, table,
                                                  join->tmp_table_param.start_recinfo,
                                                  &join->tmp_table_param.recinfo,
                                                  error, 0))
	    DBUG_RETURN(NESTED_LOOP_ERROR);
        }
        if (join->rollup.state != ROLLUP::STATE_NONE)
	{
	  if (join->rollup_write_data((uint) (idx+1), table))
	    DBUG_RETURN(NESTED_LOOP_ERROR);
	}
	if (end_of_records)
	  DBUG_RETURN(NESTED_LOOP_OK);
      }
    }
    else
    {
      if (end_of_records)
	DBUG_RETURN(NESTED_LOOP_OK);
      join->first_record=1;
      VOID(test_if_group_changed(join->group_fields));
    }
    if (idx < (int) join->send_group_parts)
    {
      copy_fields(&join->tmp_table_param);
      if (copy_funcs(join->tmp_table_param.items_to_copy, join->thd))
	DBUG_RETURN(NESTED_LOOP_ERROR);
      if (init_sum_functions(join->sum_funcs, join->sum_funcs_end[idx+1]))
	DBUG_RETURN(NESTED_LOOP_ERROR);
      if (join->procedure)
	join->procedure->add();
      DBUG_RETURN(NESTED_LOOP_OK);
    }
  }
  if (update_sum_func(join->sum_funcs))
    DBUG_RETURN(NESTED_LOOP_ERROR);
  if (join->procedure)
    join->procedure->add();
  DBUG_RETURN(NESTED_LOOP_OK);
}


/*****************************************************************************
  Remove calculation with tables that aren't yet read. Remove also tests
  against fields that are read through key where the table is not a
  outer join table.
  We can't remove tests that are made against columns which are stored
  in sorted order.
*****************************************************************************/

/**
  Check if a given equality is guaranteed to be true by use of ref access
  
  SYNOPSIS
    test_if_ref()
      root_cond
      left_item
      right_item

  DESCRIPTION
    Check if the given "left_item = right_item" equality is guaranteed to be
    true by use of [eq_]ref access method.

    We need root_cond as we can't remove ON expressions even if employed ref 
    access guarantees that they are true. This is because  TODO

  RETURN
    TRUE   if right_item is used removable reference key on left_item
    FALSE  Otherwise
    
*/

bool test_if_ref(Item *root_cond, Item_field *left_item,Item *right_item)
{
  Field *field=left_item->field;
  JOIN_TAB *join_tab= field->table->reginfo.join_tab;
  // No need to change const test
  if (!field->table->const_table && join_tab &&
      !join_tab->is_ref_for_hash_join() &&
      (!join_tab->first_inner ||
       *join_tab->first_inner->on_expr_ref == root_cond))
  {
    // Cond guards
    for (uint i = 0; i < join_tab->ref.key_parts; i++)
    {
      if (join_tab->ref.cond_guards[i])
      {
        return FALSE;
      }
    }
    //
    Item *ref_item=part_of_refkey(field->table,field);
    if (ref_item && ref_item->eq(right_item,1))
    {
      right_item= right_item->real_item();
      if (right_item->type() == Item::FIELD_ITEM)
	return (field->eq_def(((Item_field *) right_item)->field));
      /* remove equalities injected by IN->EXISTS transformation */
      else if (right_item->type() == Item::CACHE_ITEM)
        return ((Item_cache *)right_item)->eq_def (field);
      if (right_item->const_item() && !(right_item->is_null()))
      {
	/*
	  We can remove binary fields and numerical fields except float,
	  as float comparison isn't 100 % secure
	  We have to keep normal strings to be able to check for end spaces
	*/
	if (field->binary() &&
	    field->real_type() != MYSQL_TYPE_STRING &&
	    field->real_type() != MYSQL_TYPE_VARCHAR &&
	    (field->type() != MYSQL_TYPE_FLOAT || field->decimals() == 0))
	{
	  return !store_val_in_field(field, right_item, CHECK_FIELD_WARN);
	}
      }
    }
  }
  return 0;					// keep test
}



/*
  Extract a condition that can be checked after reading given table
  
  SYNOPSIS
    make_cond_for_table()
      cond         Condition to analyze
      tables       Tables for which "current field values" are available (this
                   includes used_table)
      used_table   Table that we're extracting the condition for (may 
                   also include PSEUDO_TABLE_BITS
      exclude_expensive_cond  Do not push expensive conditions
      retain_ref_cond         Retain ref conditions

  DESCRIPTION
    Extract the condition that can be checked after reading the table
    specified in 'used_table', given that current-field values for tables
    specified in 'tables' bitmap are available.

    The function assumes that
      - Constant parts of the condition has already been checked.
      - Condition that could be checked for tables in 'tables' has already 
        been checked.
        
    The function takes into account that some parts of the condition are
    guaranteed to be true by employed 'ref' access methods (the code that
    does this is located at the end, search down for "EQ_FUNC").


  SEE ALSO 
    make_cond_for_info_schema uses similar algorithm

  RETURN
    Extracted condition
*/

static Item *
make_cond_for_table(Item *cond, table_map tables, table_map used_table,
                    bool exclude_expensive_cond, bool retain_ref_cond)
{
  return make_cond_for_table_from_pred(cond, cond, tables, used_table,
                                       exclude_expensive_cond,
                                       retain_ref_cond);
}


static Item *
make_cond_for_table_from_pred(Item *root_cond, Item *cond,
                              table_map tables, table_map used_table,
                              bool exclude_expensive_cond,
                              bool retain_ref_cond)

{
  if (used_table && !(cond->used_tables() & used_table) &&
      /*
        Exclude constant conditions not checked at optimization time if
        the table we are pushing conditions to is the first one.
        As a result, such conditions are not considered as already checked
        and will be checked at execution time, attached to the first table.

        psergey: TODO: "used_table & 1" doesn't make sense in nearly any
        context. Look at setup_table_map(), table bits reflect the order 
        the tables were encountered by the parser. Check what we should
        replace this condition with.
      */
      !((used_table & 1) && cond->is_expensive()))
    return (COND*) 0;				// Already checked

  if (cond->type() == Item::COND_ITEM)
  {
    if (((Item_cond*) cond)->functype() == Item_func::COND_AND_FUNC)
    {
      /* Create new top level AND item */
      Item_cond_and *new_cond=new Item_cond_and;
      if (!new_cond)
	return (COND*) 0;			// OOM /* purecov: inspected */
      List_iterator<Item> li(*((Item_cond*) cond)->argument_list());
      Item *item;
      while ((item=li++))
      {
	Item *fix=make_cond_for_table_from_pred(root_cond, item, 
                                                tables, used_table,
                                                exclude_expensive_cond,
                                                retain_ref_cond);
	if (fix)
	  new_cond->argument_list()->push_back(fix);
      }
      switch (new_cond->argument_list()->elements) {
      case 0:
	return (COND*) 0;			// Always true
      case 1:
	return new_cond->argument_list()->head();
      default:
	/*
	  Item_cond_and do not need fix_fields for execution, its parameters
	  are fixed or do not need fix_fields, too
	*/
	new_cond->quick_fix_field();
	new_cond->used_tables_cache=
	  ((Item_cond_and*) cond)->used_tables_cache &
	  tables;
	return new_cond;
      }
    }
    else
    {						// Or list
      Item_cond_or *new_cond=new Item_cond_or;
      if (!new_cond)
	return (COND*) 0;			// OOM /* purecov: inspected */
      List_iterator<Item> li(*((Item_cond*) cond)->argument_list());
      Item *item;
      while ((item=li++))
      {
	Item *fix=make_cond_for_table_from_pred(root_cond, item,
                                                tables, 0L,
                                                exclude_expensive_cond,
                                                retain_ref_cond);
	if (!fix)
	  return (COND*) 0;			// Always true
	new_cond->argument_list()->push_back(fix);
      }
      /*
	Item_cond_and do not need fix_fields for execution, its parameters
	are fixed or do not need fix_fields, too
      */
      new_cond->quick_fix_field();
      new_cond->used_tables_cache= ((Item_cond_or*) cond)->used_tables_cache;
      new_cond->top_level_item();
      return new_cond;
    }
  }

  /*
    Because the following test takes a while and it can be done
    table_count times, we mark each item that we have examined with the result
    of the test
  */
  if ((cond->marker == 3 && !retain_ref_cond) || 
      (cond->used_tables() & ~tables) ||
      /*
        When extracting constant conditions, treat expensive conditions as
        non-constant, so that they are not evaluated at optimization time.
      */
      (!used_table && exclude_expensive_cond && cond->is_expensive()))
    return (COND*) 0;				// Can't check this yet

  if (cond->marker == 2 || cond->eq_cmp_result() == Item::COND_OK)
    return cond;				// Not boolean op

  if (cond->type() == Item::FUNC_ITEM && 
      ((Item_func*) cond)->functype() == Item_func::EQ_FUNC)
  {
    Item *left_item=	((Item_func*) cond)->arguments()[0]->real_item();
    Item *right_item= ((Item_func*) cond)->arguments()[1]->real_item();
    if (left_item->type() == Item::FIELD_ITEM && !retain_ref_cond &&
	test_if_ref(root_cond, (Item_field*) left_item,right_item))
    {
      cond->marker=3;			// Checked when read
      return (COND*) 0;
    }
    if (right_item->type() == Item::FIELD_ITEM && !retain_ref_cond &&
	test_if_ref(root_cond, (Item_field*) right_item,left_item))
    {
      cond->marker=3;			// Checked when read
      return (COND*) 0;
    }
  }
  cond->marker=2;
  return cond;
}


/*
  The difference of this from make_cond_for_table() is that we're in the
  following state:
    1. conditions referring to 'tables' have been checked
    2. conditions referring to sjm_tables have been checked, too
    3. We need condition that couldn't be checked in #1 or #2 but 
       can be checked when we get both (tables | sjm_tables).

*/

static COND *
make_cond_after_sjm(Item *root_cond, Item *cond, table_map tables, 
                    table_map sjm_tables)
{
  /*
    We assume that conditions that refer to only join prefix tables or 
    sjm_tables have already been checked.
  */
  if ((!(cond->used_tables() & ~tables) || 
       !(cond->used_tables() & ~sjm_tables)))
    return (COND*) 0;				// Already checked

  /* AND/OR recursive descent */
  if (cond->type() == Item::COND_ITEM)
  {
    if (((Item_cond*) cond)->functype() == Item_func::COND_AND_FUNC)
    {
      /* Create new top level AND item */
      Item_cond_and *new_cond=new Item_cond_and;
      if (!new_cond)
	return (COND*) 0;			// OOM /* purecov: inspected */
      List_iterator<Item> li(*((Item_cond*) cond)->argument_list());
      Item *item;
      while ((item=li++))
      {
	Item *fix=make_cond_after_sjm(root_cond, item, tables, sjm_tables);
	if (fix)
	  new_cond->argument_list()->push_back(fix);
      }
      switch (new_cond->argument_list()->elements) {
      case 0:
	return (COND*) 0;			// Always true
      case 1:
	return new_cond->argument_list()->head();
      default:
	/*
	  Item_cond_and do not need fix_fields for execution, its parameters
	  are fixed or do not need fix_fields, too
	*/
	new_cond->quick_fix_field();
	new_cond->used_tables_cache=
	  ((Item_cond_and*) cond)->used_tables_cache &
	  tables;
	return new_cond;
      }
    }
    else
    {						// Or list
      Item_cond_or *new_cond=new Item_cond_or;
      if (!new_cond)
	return (COND*) 0;			// OOM /* purecov: inspected */
      List_iterator<Item> li(*((Item_cond*) cond)->argument_list());
      Item *item;
      while ((item=li++))
      {
	Item *fix= make_cond_after_sjm(root_cond, item, tables, 0L);
	if (!fix)
	  return (COND*) 0;			// Always true
	new_cond->argument_list()->push_back(fix);
      }
      /*
	Item_cond_and do not need fix_fields for execution, its parameters
	are fixed or do not need fix_fields, too
      */
      new_cond->quick_fix_field();
      new_cond->used_tables_cache= ((Item_cond_or*) cond)->used_tables_cache;
      new_cond->top_level_item();
      return new_cond;
    }
  }

  /*
    Because the following test takes a while and it can be done
    table_count times, we mark each item that we have examined with the result
    of the test
  */

  if (cond->marker == 3 || (cond->used_tables() & ~(tables | sjm_tables)))
    return (COND*) 0;				// Can't check this yet
  if (cond->marker == 2 || cond->eq_cmp_result() == Item::COND_OK)
    return cond;				// Not boolean op

  /* 
    Remove equalities that are guaranteed to be true by use of 'ref' access
    method
  */
  if (((Item_func*) cond)->functype() == Item_func::EQ_FUNC)
  {
    Item *left_item= ((Item_func*) cond)->arguments()[0]->real_item();
    Item *right_item= ((Item_func*) cond)->arguments()[1]->real_item();
    if (left_item->type() == Item::FIELD_ITEM &&
	test_if_ref(root_cond, (Item_field*) left_item,right_item))
    {
      cond->marker=3;			// Checked when read
      return (COND*) 0;
    }
    if (right_item->type() == Item::FIELD_ITEM &&
	test_if_ref(root_cond, (Item_field*) right_item,left_item))
    {
      cond->marker=3;			// Checked when read
      return (COND*) 0;
    }
  }
  cond->marker=2;
  return cond;
}


static Item *
part_of_refkey(TABLE *table,Field *field)
{
  JOIN_TAB *join_tab= table->reginfo.join_tab;
  if (!join_tab)
    return (Item*) 0;             // field from outer non-select (UPDATE,...)

  uint ref_parts= join_tab->ref.key_parts;
  if (ref_parts)
  {
    
    uint key= join_tab->ref.key;
    KEY *key_info= join_tab->get_keyinfo_by_key_no(key);
    KEY_PART_INFO *key_part= key_info->key_part;

    for (uint part=0 ; part < ref_parts ; part++,key_part++)
      if (field->eq(key_part->field) &&
	  !(key_part->key_part_flag & (HA_PART_KEY_SEG | HA_NULL_PART)))
	return join_tab->ref.items[part];
  }
  return (Item*) 0;
}


/**
  Test if one can use the key to resolve ORDER BY.

  @param order                 Sort order
  @param table                 Table to sort
  @param idx                   Index to check
  @param used_key_parts        Return value for used key parts.


  @note
    used_key_parts is set to correct key parts used if return value != 0
    (On other cases, used_key_part may be changed)
    Note that the value may actually be greater than the number of index 
    key parts. This can happen for storage engines that have the primary 
    key parts as a suffix for every secondary key.

  @retval
    1   key is ok.
  @retval
    0   Key can't be used
  @retval
    -1   Reverse key can be used
*/

static int test_if_order_by_key(ORDER *order, TABLE *table, uint idx,
				uint *used_key_parts)
{
  KEY_PART_INFO *key_part,*key_part_end;
  key_part=table->key_info[idx].key_part;
  key_part_end=key_part+table->key_info[idx].key_parts;
  key_part_map const_key_parts=table->const_key_parts[idx];
  int reverse=0;
  my_bool on_pk_suffix= FALSE;
  DBUG_ENTER("test_if_order_by_key");

  for (; order ; order=order->next, const_key_parts>>=1)
  {
    Field *field=((Item_field*) (*order->item)->real_item())->field;
    int flag;

    /*
      Skip key parts that are constants in the WHERE clause.
      These are already skipped in the ORDER BY by const_expression_in_where()
    */
    for (; const_key_parts & 1 ; const_key_parts>>= 1)
      key_part++; 

    if (key_part == key_part_end)
    {
      /* 
        We are at the end of the key. Check if the engine has the primary
        key as a suffix to the secondary keys. If it has continue to check
        the primary key as a suffix.
      */
      if (!on_pk_suffix &&
          (table->file->ha_table_flags() & HA_PRIMARY_KEY_IN_READ_INDEX) &&
          table->s->primary_key != MAX_KEY &&
          table->s->primary_key != idx)
      {
        on_pk_suffix= TRUE;
        key_part= table->key_info[table->s->primary_key].key_part;
        key_part_end=key_part+table->key_info[table->s->primary_key].key_parts;
        const_key_parts=table->const_key_parts[table->s->primary_key];

        for (; const_key_parts & 1 ; const_key_parts>>= 1)
          key_part++; 
        /*
         The primary and secondary key parts were all const (i.e. there's
         one row).  The sorting doesn't matter.
        */
        if (key_part == key_part_end && reverse == 0)
        {
          *used_key_parts= 0;
          DBUG_RETURN(1);
        }
      }
      else
        DBUG_RETURN(0);
    }

    if (key_part->field != field)
      DBUG_RETURN(0);

    /* set flag to 1 if we can use read-next on key, else to -1 */
    flag= ((order->asc == !(key_part->key_part_flag & HA_REVERSE_SORT)) ?
           1 : -1);
    if (reverse && flag != reverse)
      DBUG_RETURN(0);
    reverse=flag;				// Remember if reverse
    key_part++;
  }
  if (on_pk_suffix)
  {
    uint used_key_parts_secondary= table->key_info[idx].key_parts;
    uint used_key_parts_pk=
      (uint) (key_part - table->key_info[table->s->primary_key].key_part);
    *used_key_parts= used_key_parts_pk + used_key_parts_secondary;

    if (reverse == -1 &&
        (!(table->file->index_flags(idx, used_key_parts_secondary - 1, 1) &
           HA_READ_PREV) ||
         !(table->file->index_flags(table->s->primary_key,
                                    used_key_parts_pk - 1, 1) & HA_READ_PREV)))
      reverse= 0;                               // Index can't be used
  }
  else
  {
    *used_key_parts= (uint) (key_part - table->key_info[idx].key_part);
    if (reverse == -1 && 
        !(table->file->index_flags(idx, *used_key_parts-1, 1) & HA_READ_PREV))
      reverse= 0;                               // Index can't be used
  }
  DBUG_RETURN(reverse);
}


/**
  Find shortest key suitable for full table scan.

  @param table                 Table to scan
  @param usable_keys           Allowed keys

  @return
    MAX_KEY     no suitable key found
    key index   otherwise
*/

uint find_shortest_key(TABLE *table, const key_map *usable_keys)
{
  double min_cost= DBL_MAX;
  uint best= MAX_KEY;
  if (!usable_keys->is_clear_all())
  {
    for (uint nr=0; nr < table->s->keys ; nr++)
    {
      if (usable_keys->is_set(nr))
      {
        double cost= table->file->keyread_time(nr, 1, table->file->records());
        if (cost < min_cost)
        {
          min_cost= cost;
          best=nr;
        }
      }
    }
  }
  return best;
}

/**
  Test if a second key is the subkey of the first one.

  @param key_part              First key parts
  @param ref_key_part          Second key parts
  @param ref_key_part_end      Last+1 part of the second key

  @note
    Second key MUST be shorter than the first one.

  @retval
    1	is a subkey
  @retval
    0	no sub key
*/

inline bool 
is_subkey(KEY_PART_INFO *key_part, KEY_PART_INFO *ref_key_part,
	  KEY_PART_INFO *ref_key_part_end)
{
  for (; ref_key_part < ref_key_part_end; key_part++, ref_key_part++)
    if (!key_part->field->eq(ref_key_part->field))
      return 0;
  return 1;
}

/**
  Test if we can use one of the 'usable_keys' instead of 'ref' key
  for sorting.

  @param ref			Number of key, used for WHERE clause
  @param usable_keys		Keys for testing

  @return
    - MAX_KEY			If we can't use other key
    - the number of found key	Otherwise
*/

static uint
test_if_subkey(ORDER *order, TABLE *table, uint ref, uint ref_key_parts,
	       const key_map *usable_keys)
{
  uint nr;
  uint min_length= (uint) ~0;
  uint best= MAX_KEY;
  uint not_used;
  KEY_PART_INFO *ref_key_part= table->key_info[ref].key_part;
  KEY_PART_INFO *ref_key_part_end= ref_key_part + ref_key_parts;

  for (nr= 0 ; nr < table->s->keys ; nr++)
  {
    if (usable_keys->is_set(nr) &&
	table->key_info[nr].key_length < min_length &&
	table->key_info[nr].key_parts >= ref_key_parts &&
	is_subkey(table->key_info[nr].key_part, ref_key_part,
		  ref_key_part_end) &&
	test_if_order_by_key(order, table, nr, &not_used))
    {
      min_length= table->key_info[nr].key_length;
      best= nr;
    }
  }
  return best;
}


/**
  Check if GROUP BY/DISTINCT can be optimized away because the set is
  already known to be distinct.

  Used in removing the GROUP BY/DISTINCT of the following types of
  statements:
  @code
    SELECT [DISTINCT] <unique_key_cols>... FROM <single_table_ref>
      [GROUP BY <unique_key_cols>,...]
  @endcode

    If (a,b,c is distinct)
    then <any combination of a,b,c>,{whatever} is also distinct

    This function checks if all the key parts of any of the unique keys
    of the table are referenced by a list : either the select list
    through find_field_in_item_list or GROUP BY list through
    find_field_in_order_list.
    If the above holds and the key parts cannot contain NULLs then we 
    can safely remove the GROUP BY/DISTINCT,
    as no result set can be more distinct than an unique key.

  @param table                The table to operate on.
  @param find_func            function to iterate over the list and search
                              for a field

  @retval
    1                    found
  @retval
    0                    not found.
*/

static bool
list_contains_unique_index(TABLE *table,
                          bool (*find_func) (Field *, void *), void *data)
{
  for (uint keynr= 0; keynr < table->s->keys; keynr++)
  {
    if (keynr == table->s->primary_key ||
         (table->key_info[keynr].flags & HA_NOSAME))
    {
      KEY *keyinfo= table->key_info + keynr;
      KEY_PART_INFO *key_part, *key_part_end;

      for (key_part=keyinfo->key_part,
           key_part_end=key_part+ keyinfo->key_parts;
           key_part < key_part_end;
           key_part++)
      {
        if (key_part->field->maybe_null() ||
            !find_func(key_part->field, data))
          break;
      }
      if (key_part == key_part_end)
        return 1;
    }
  }
  return 0;
}


/**
  Helper function for list_contains_unique_index.
  Find a field reference in a list of ORDER structures.
  Finds a direct reference of the Field in the list.

  @param field                The field to search for.
  @param data                 ORDER *.The list to search in

  @retval
    1                    found
  @retval
    0                    not found.
*/

static bool
find_field_in_order_list (Field *field, void *data)
{
  ORDER *group= (ORDER *) data;
  bool part_found= 0;
  for (ORDER *tmp_group= group; tmp_group; tmp_group=tmp_group->next)
  {
    Item *item= (*tmp_group->item)->real_item();
    if (item->type() == Item::FIELD_ITEM &&
        ((Item_field*) item)->field->eq(field))
    {
      part_found= 1;
      break;
    }
  }
  return part_found;
}


/**
  Helper function for list_contains_unique_index.
  Find a field reference in a dynamic list of Items.
  Finds a direct reference of the Field in the list.

  @param[in] field             The field to search for.
  @param[in] data              List<Item> *.The list to search in

  @retval
    1                    found
  @retval
    0                    not found.
*/

static bool
find_field_in_item_list (Field *field, void *data)
{
  List<Item> *fields= (List<Item> *) data;
  bool part_found= 0;
  List_iterator<Item> li(*fields);
  Item *item;

  while ((item= li++))
  {
    if (item->type() == Item::FIELD_ITEM &&
        ((Item_field*) item)->field->eq(field))
    {
      part_found= 1;
      break;
    }
  }
  return part_found;
}


/**
  Test if we can skip the ORDER BY by using an index.

  If we can use an index, the JOIN_TAB / tab->select struct
  is changed to use the index.

  The index must cover all fields in <order>, or it will not be considered.

  @param no_changes No changes will be made to the query plan.

  @todo
    - sergeyp: Results of all index merge selects actually are ordered 
    by clustered PK values.

  @retval
    0    We have to use filesort to do the sorting
  @retval
    1    We can use an index.
*/

static bool
test_if_skip_sort_order(JOIN_TAB *tab,ORDER *order,ha_rows select_limit,
			bool no_changes, const key_map *map)
{
  int ref_key;
  uint ref_key_parts;
  int order_direction;
  uint used_key_parts;
  TABLE *table=tab->table;
  SQL_SELECT *select=tab->select;
  key_map usable_keys;
  QUICK_SELECT_I *save_quick= 0;
  COND *orig_select_cond= 0;
  DBUG_ENTER("test_if_skip_sort_order");
  LINT_INIT(ref_key_parts);

  /*
    Keys disabled by ALTER TABLE ... DISABLE KEYS should have already
    been taken into account.
  */
  usable_keys= *map;

  for (ORDER *tmp_order=order; tmp_order ; tmp_order=tmp_order->next)
  {
    Item *item= (*tmp_order->item)->real_item();
    if (item->type() != Item::FIELD_ITEM)
    {
      usable_keys.clear_all();
      DBUG_RETURN(0);
    }
    usable_keys.intersect(((Item_field*) item)->field->part_of_sortkey);
    if (usable_keys.is_clear_all())
      goto use_filesort;					// No usable keys
  }

  ref_key= -1;
  /* Test if constant range in WHERE */
  if (tab->ref.key >= 0 && tab->ref.key_parts)
  {
    ref_key=	   tab->ref.key;
    ref_key_parts= tab->ref.key_parts;
    if (tab->type == JT_REF_OR_NULL || tab->type == JT_FT)
      goto use_filesort;
  }
  else if (select && select->quick)		// Range found by opt_range
  {
    int quick_type= select->quick->get_type();
    save_quick= select->quick;
    /* 
      assume results are not ordered when index merge is used 
      TODO: sergeyp: Results of all index merge selects actually are ordered 
      by clustered PK values.
    */
  
    if (quick_type == QUICK_SELECT_I::QS_TYPE_INDEX_MERGE ||
        quick_type == QUICK_SELECT_I::QS_TYPE_INDEX_INTERSECT || 
        quick_type == QUICK_SELECT_I::QS_TYPE_ROR_UNION || 
        quick_type == QUICK_SELECT_I::QS_TYPE_ROR_INTERSECT)
      goto use_filesort;
    ref_key=	   select->quick->index;
    ref_key_parts= select->quick->used_key_parts;
  }

  if (ref_key >= 0)
  {
    /*
      We come here when there is a REF key.
    */
    if (!usable_keys.is_set(ref_key))
    {
      /*
	We come here when ref_key is not among usable_keys
      */
      uint new_ref_key;
      /*
	If using index only read, only consider other possible index only
	keys
      */
      if (table->covering_keys.is_set(ref_key))
	usable_keys.intersect(table->covering_keys);
      if (tab->pre_idx_push_select_cond)
        orig_select_cond= tab->set_cond(tab->pre_idx_push_select_cond);

      if ((new_ref_key= test_if_subkey(order, table, ref_key, ref_key_parts,
				       &usable_keys)) < MAX_KEY)
      {
	/* Found key that can be used to retrieve data in sorted order */
	if (tab->ref.key >= 0)
	{
          /*
            We'll use ref access method on key new_ref_key. In general case 
            the index search tuple for new_ref_key will be different (e.g.
            when one index is defined as (part1, part2, ...) and another as
            (part1, part2(N), ...) and the WHERE clause contains 
            "part1 = const1 AND part2=const2". 
            So we build tab->ref from scratch here.
          */
          KEYUSE *keyuse= tab->keyuse;
          while (keyuse->key != new_ref_key && keyuse->table == tab->table)
            keyuse++;

          if (create_ref_for_key(tab->join, tab, keyuse, 
                                 tab->join->const_table_map))
            goto use_filesort;

          pick_table_access_method(tab);
	}
	else
	{
          /*
            The range optimizer constructed QUICK_RANGE for ref_key, and
            we want to use instead new_ref_key as the index. We can't
            just change the index of the quick select, because this may
            result in an incosistent QUICK_SELECT object. Below we
            create a new QUICK_SELECT from scratch so that all its
            parameres are set correctly by the range optimizer.
           */
          key_map new_ref_key_map;
          new_ref_key_map.clear_all();  // Force the creation of quick select
          new_ref_key_map.set_bit(new_ref_key); // only for new_ref_key.

          if (select->test_quick_select(tab->join->thd, new_ref_key_map, 0,
                                        (tab->join->select_options &
                                         OPTION_FOUND_ROWS) ?
                                        HA_POS_ERROR :
                                        tab->join->unit->select_limit_cnt,0,
                                        TRUE) <=
              0)
            goto use_filesort;
	}
        ref_key= new_ref_key;
      }
    }
    /* Check if we get the rows in requested sorted order by using the key */
    if (usable_keys.is_set(ref_key) &&
        (order_direction= test_if_order_by_key(order,table,ref_key,
					       &used_key_parts)))
      goto check_reverse_order;
  }
  {
    /*
      Check whether there is an index compatible with the given order
      usage of which is cheaper than usage of the ref_key index (ref_key>=0)
      or a table scan.
      It may be the case if ORDER/GROUP BY is used with LIMIT.
    */
    uint nr;
    key_map keys;
    uint best_key_parts;
    uint saved_best_key_parts= 0;
    int best_key_direction;
    ha_rows best_records;
    double read_time;
    int best_key= -1;
    bool is_best_covering= FALSE;
    double fanout= 1;
    JOIN *join= tab->join;
    uint tablenr= tab - join->join_tab;
    ha_rows table_records= table->file->stats.records;
    bool group= join->group && order == join->group_list;
    ha_rows ref_key_quick_rows= HA_POS_ERROR;
    LINT_INIT(best_key_parts);
    LINT_INIT(best_key_direction);
    LINT_INIT(best_records); 

    /*
      If not used with LIMIT, only use keys if the whole query can be
      resolved with a key;  This is because filesort() is usually faster than
      retrieving all rows through an index.
    */
    if (select_limit >= table_records)
    {
      keys= *table->file->keys_to_use_for_scanning();
      keys.merge(table->covering_keys);

      /*
	We are adding here also the index specified in FORCE INDEX clause, 
	if any.
        This is to allow users to use index in ORDER BY.
      */
      if (table->force_index) 
	keys.merge(group ? table->keys_in_use_for_group_by :
                           table->keys_in_use_for_order_by);
      keys.intersect(usable_keys);
    }
    else
      keys= usable_keys;

    if (ref_key >= 0 && table->covering_keys.is_set(ref_key))
      ref_key_quick_rows= table->quick_rows[ref_key];

    read_time= join->best_positions[tablenr].read_time;
    for (uint i= tablenr+1; i < join->tables; i++)
      fanout*= join->best_positions[i].records_read; // fanout is always >= 1

    for (nr=0; nr < table->s->keys ; nr++)
    {
      int direction;

      if (keys.is_set(nr) &&
          (direction= test_if_order_by_key(order, table, nr, &used_key_parts)))
      {
        /*
          At this point we are sure that ref_key is a non-ordering
          key (where "ordering key" is a key that will return rows
          in the order required by ORDER BY).
        */
        DBUG_ASSERT (ref_key != (int) nr);

        bool is_covering= table->covering_keys.is_set(nr) ||
                          (nr == table->s->primary_key &&
                          table->file->primary_key_is_clustered());
	
        /* 
          Don't use an index scan with ORDER BY without limit.
          For GROUP BY without limit always use index scan
          if there is a suitable index. 
          Why we hold to this asymmetry hardly can be explained
          rationally. It's easy to demonstrate that using
          temporary table + filesort could be cheaper for grouping
          queries too.
	*/ 
        if (is_covering ||
            select_limit != HA_POS_ERROR || 
            (ref_key < 0 && (group || table->force_index)))
        { 
          double rec_per_key;
          double index_scan_time;
          KEY *keyinfo= tab->table->key_info+nr;
          if (select_limit == HA_POS_ERROR)
            select_limit= table_records;
          if (group)
          {
            /* 
              Used_key_parts can be larger than keyinfo->key_parts
              when using a secondary index clustered with a primary 
              key (e.g. as in Innodb). 
              See Bug #28591 for details.
            */  
             uint used_index_parts= keyinfo->key_parts;
             uint used_pk_parts= 0;
             if (used_key_parts > used_index_parts)
               used_pk_parts= used_key_parts-used_index_parts;
             rec_per_key= keyinfo->rec_per_key[used_key_parts-1];
             /* Take into account the selectivity of the used pk prefix */
             if (used_pk_parts)
	     {
               KEY *pkinfo=tab->table->key_info+table->s->primary_key;
               /*
                 If the values of of records per key for the prefixes
                 of the primary key are considered unknown we assume
                 they are equal to 1.
	       */
               if (used_key_parts == pkinfo->key_parts ||
                   pkinfo->rec_per_key[0] == 0)
                 rec_per_key= 1;                 
               if (rec_per_key > 1)
	       {
                 rec_per_key*= pkinfo->rec_per_key[used_pk_parts-1];
                 rec_per_key/= pkinfo->rec_per_key[0];
                 /* 
                   The value of rec_per_key for the extended key has
                   to be adjusted accordingly if some components of
                   the secondary key are included in the primary key.
	         */
                  for(uint i= 0; i < used_pk_parts; i++)
	         {
		   if (pkinfo->key_part[i].field->key_start.is_set(nr))
		   {
                     /* 
                       We presume here that for any index rec_per_key[i] != 0
                       if rec_per_key[0] != 0.
		     */
                     DBUG_ASSERT(pkinfo->rec_per_key[i]);
                     rec_per_key*= pkinfo->rec_per_key[i-1];
                     rec_per_key/= pkinfo->rec_per_key[i];
                   }
	         }
               }    
             }
             set_if_bigger(rec_per_key, 1);
            /*
              With a grouping query each group containing on average
              rec_per_key records produces only one row that will
              be included into the result set.
	    */  
            if (select_limit > table_records/rec_per_key)
                select_limit= table_records;
            else
              select_limit= (ha_rows) (select_limit*rec_per_key);
          }
          /* 
            If tab=tk is not the last joined table tn then to get first
            L records from the result set we can expect to retrieve
            only L/fanout(tk,tn) where fanout(tk,tn) says how many
            rows in the record set on average will match each row tk.
            Usually our estimates for fanouts are too pessimistic.
            So the estimate for L/fanout(tk,tn) will be too optimistic
            and as result we'll choose an index scan when using ref/range
            access + filesort will be cheaper.
	  */
          select_limit= (ha_rows) (select_limit < fanout ?
                                   1 : select_limit/fanout);
          /*
            We assume that each of the tested indexes is not correlated
            with ref_key. Thus, to select first N records we have to scan
            N/selectivity(ref_key) index entries. 
            selectivity(ref_key) = #scanned_records/#table_records =
            table->quick_condition_rows/table_records.
            In any case we can't select more than #table_records.
            N/(table->quick_condition_rows/table_records) > table_records 
            <=> N > table->quick_condition_rows.
          */ 
          if (select_limit > table->quick_condition_rows)
            select_limit= table_records;
          else
            select_limit= (ha_rows) (select_limit *
                                     (double) table_records /
                                      table->quick_condition_rows);
          rec_per_key= keyinfo->rec_per_key[keyinfo->key_parts-1];
          set_if_bigger(rec_per_key, 1);
          /*
            Here we take into account the fact that rows are
            accessed in sequences rec_per_key records in each.
            Rows in such a sequence are supposed to be ordered
            by rowid/primary key. When reading the data
            in a sequence we'll touch not more pages than the
            table file contains.
            TODO. Use the formula for a disk sweep sequential access
            to calculate the cost of accessing data rows for one 
            index entry.
	  */
          index_scan_time= select_limit/rec_per_key *
	                   min(rec_per_key, table->file->scan_time());
          if ((ref_key < 0 && is_covering) || 
              (ref_key < 0 && (group || table->force_index)) ||
              index_scan_time < read_time)
          {
            ha_rows quick_records= table_records;
            if ((is_best_covering && !is_covering) ||
                (is_covering && ref_key_quick_rows < select_limit))
              continue;
            if (table->quick_keys.is_set(nr))
              quick_records= table->quick_rows[nr];
            if (best_key < 0 ||
                (select_limit <= min(quick_records,best_records) ?
                 keyinfo->key_parts < best_key_parts :
                 quick_records < best_records))
            {
              best_key= nr;
              best_key_parts= keyinfo->key_parts;
              saved_best_key_parts= used_key_parts;
              best_records= quick_records;
              is_best_covering= is_covering;
              best_key_direction= direction; 
            }
          }   
	}      
      }
    }

    /*
      filesort() and join cache are usually faster than reading in 
      index order and not using join cache, except in case that chosen
      index is clustered primary key.
    */
    if ((select_limit >= table_records) &&
        (tab->type == JT_ALL &&
         tab->join->tables > tab->join->const_tables + 1) &&
         ((unsigned) best_key != table->s->primary_key ||
          !table->file->primary_key_is_clustered()))
      DBUG_RETURN(0);

    if (best_key >= 0)
    {
      bool quick_created= FALSE;
      if (table->quick_keys.is_set(best_key) && best_key != ref_key)
      {
        key_map map;
        map.clear_all();       // Force the creation of quick select
        map.set_bit(best_key); // only best_key.
        quick_created=         
          select->test_quick_select(join->thd, map, 0,
                                    join->select_options & OPTION_FOUND_ROWS ?
                                    HA_POS_ERROR :
                                    join->unit->select_limit_cnt,
                                    TRUE, FALSE) > 0;
      }
      if (!no_changes)
      {
        /* 
           If ref_key used index tree reading only ('Using index' in EXPLAIN),
           and best_key doesn't, then revert the decision.
        */
        if (!table->covering_keys.is_set(best_key))
          table->disable_keyread();
        if (!quick_created)
	{
          tab->index= best_key;
          tab->read_first_record= best_key_direction > 0 ?
                                  join_read_first:join_read_last;
          tab->type=JT_NEXT;           // Read with index_first(), index_next()
          if (select && select->quick)
          {
            delete select->quick;
            select->quick= 0;
          }
          if (table->covering_keys.is_set(best_key) && ! table->key_read)
            table->enable_keyread();
          if (tab->pre_idx_push_select_cond)
          {
            COND *tmp_cond= tab->pre_idx_push_select_cond;
            if (orig_select_cond)
            {
              tmp_cond= and_conds(tmp_cond, orig_select_cond);
              tmp_cond->quick_fix_field();
            }
            tab->set_cond(tmp_cond);
            /* orig_select_cond was merged, no need to restore original one. */
            orig_select_cond= 0;
          }
          table->file->ha_index_or_rnd_end();
          if (join->select_options & SELECT_DESCRIBE)
          {
            tab->ref.key= -1;
            tab->ref.key_parts= 0;
            if (select_limit < table_records) 
              tab->limit= select_limit;
          }
        }
        else if (tab->type != JT_ALL)
        {
          /*
            We're about to use a quick access to the table.
            We need to change the access method so as the quick access
            method is actually used.
          */
          DBUG_ASSERT(tab->select->quick);
          tab->type=JT_ALL;
          tab->use_quick=1;
          tab->ref.key= -1;
          tab->ref.key_parts=0;		// Don't use ref key.
          tab->read_first_record= join_init_read_record;
          if (tab->is_using_loose_index_scan())
            join->tmp_table_param.precomputed_group_by= TRUE;
          /*
            TODO: update the number of records in join->best_positions[tablenr]
          */
        }
      }
      order_direction= best_key_direction;
      /*
        saved_best_key_parts is actual number of used keyparts found by the
        test_if_order_by_key function. It could differ from keyinfo->key_parts,
        thus we have to restore it in case of desc order as it affects
        QUICK_SELECT_DESC behaviour.
      */
      used_key_parts= (order_direction == -1) ?
        saved_best_key_parts :  best_key_parts;
    }
    else
      goto use_filesort; 
  } 

check_reverse_order:                  
  if (order_direction == -1)		// If ORDER BY ... DESC
  {
    if (select && select->quick)
    {
      /*
	Don't reverse the sort order, if it's already done.
        (In some cases test_if_order_by_key() can be called multiple times
      */
      if (!select->quick->reverse_sorted())
      {
        QUICK_SELECT_DESC *tmp;
        bool error= FALSE;
        int quick_type= select->quick->get_type();
        if (quick_type == QUICK_SELECT_I::QS_TYPE_INDEX_MERGE ||
            quick_type == QUICK_SELECT_I::QS_TYPE_INDEX_INTERSECT ||
            quick_type == QUICK_SELECT_I::QS_TYPE_ROR_INTERSECT ||
            quick_type == QUICK_SELECT_I::QS_TYPE_ROR_UNION ||
            quick_type == QUICK_SELECT_I::QS_TYPE_GROUP_MIN_MAX)
        {
          tab->limit= 0;
          select->quick= save_quick;
          goto use_filesort;                   // Use filesort
        }
            
        /* ORDER BY range_key DESC */
	tmp= new QUICK_SELECT_DESC((QUICK_RANGE_SELECT*)(select->quick),
                                    used_key_parts, &error);
	if (!tmp || error)
	{
	  delete tmp;
          select->quick= save_quick;
          tab->limit= 0;
	  goto use_filesort;		// Reverse sort not supported
	}
	select->quick=tmp;
      }
    }
    else if (tab->type != JT_NEXT && tab->type != JT_REF_OR_NULL &&
             tab->ref.key >= 0 && tab->ref.key_parts <= used_key_parts)
    {
      /*
	SELECT * FROM t1 WHERE a=1 ORDER BY a DESC,b DESC

	Use a traversal function that starts by reading the last row
	with key part (A) and then traverse the index backwards.
      */
      tab->read_first_record= join_read_last_key;
      tab->read_record.read_record= join_read_prev_same;
    }
  }
  else if (select && select->quick)
    select->quick->need_sorted_output();
  if (orig_select_cond)
    tab->set_cond(orig_select_cond);
  DBUG_RETURN(1);
use_filesort:
  if (orig_select_cond)
    tab->set_cond(orig_select_cond);
  DBUG_RETURN(0);
}


/*
  If not selecting by given key, create an index how records should be read

  SYNOPSIS
   create_sort_index()
     thd		Thread handler
     tab		Table to sort (in join structure)
     order		How table should be sorted
     filesort_limit	Max number of rows that needs to be sorted
     select_limit	Max number of rows in final output
		        Used to decide if we should use index or not
     is_order_by        true if we are sorting on ORDER BY, false if GROUP BY
                        Used to decide if we should use index or not     


  IMPLEMENTATION
   - If there is an index that can be used, 'tab' is modified to use
     this index.
   - If no index, create with filesort() an index file that can be used to
     retrieve rows in order (should be done with 'read_record').
     The sorted data is stored in tab->table and will be freed when calling
     free_io_cache(tab->table).

  RETURN VALUES
    0		ok
    -1		Some fatal error
    1		No records
*/

static int
create_sort_index(THD *thd, JOIN *join, ORDER *order,
		  ha_rows filesort_limit, ha_rows select_limit,
                  bool is_order_by)
{
  uint length= 0;
  ha_rows examined_rows;
  TABLE *table;
  SQL_SELECT *select;
  JOIN_TAB *tab;
  DBUG_ENTER("create_sort_index");

  if (join->tables == join->const_tables)
    DBUG_RETURN(0);				// One row, no need to sort
  tab=    join->join_tab + join->const_tables;
  table=  tab->table;
  select= tab->select;

  /*
    When there is SQL_BIG_RESULT do not sort using index for GROUP BY,
    and thus force sorting on disk unless a group min-max optimization
    is going to be used as it is applied now only for one table queries
    with covering indexes.
  */
  if ((order != join->group_list || 
       !(join->select_options & SELECT_BIG_RESULT) ||
       (select && select->quick &&
        select->quick->get_type() == QUICK_SELECT_I::QS_TYPE_GROUP_MIN_MAX)) &&
      test_if_skip_sort_order(tab,order,select_limit,0, 
                              is_order_by ?  &table->keys_in_use_for_order_by :
                              &table->keys_in_use_for_group_by))
    DBUG_RETURN(0);
  for (ORDER *ord= join->order; ord; ord= ord->next)
    length++;
  if (!(join->sortorder= 
        make_unireg_sortorder(order, &length, join->sortorder)))
    goto err;				/* purecov: inspected */

  table->sort.io_cache=(IO_CACHE*) my_malloc(sizeof(IO_CACHE),
                                             MYF(MY_WME | MY_ZEROFILL));
  table->status=0;				// May be wrong if quick_select

  // If table has a range, move it to select
  if (select && !select->quick && tab->ref.key >= 0)
  {
    if (tab->quick)
    {
      select->quick=tab->quick;
      tab->quick=0;
      /* 
        We can only use 'Only index' if quick key is same as ref_key
        and in index_merge 'Only index' cannot be used
      */
      if (((uint) tab->ref.key != select->quick->index))
        table->disable_keyread();
    }
    else
    {
      /*
	We have a ref on a const;  Change this to a range that filesort
	can use.
	For impossible ranges (like when doing a lookup on NULL on a NOT NULL
	field, quick will contain an empty record set.
      */
      if (!(select->quick= (tab->type == JT_FT ?
			    get_ft_select(thd, table, tab->ref.key) :
			    get_quick_select_for_ref(thd, table, &tab->ref, 
                                                     tab->found_records))))
	goto err;
    }
  }

  /* Fill schema tables with data before filesort if it's necessary */
  if ((join->select_lex->options & OPTION_SCHEMA_TABLE) &&
      get_schema_tables_result(join, PROCESSED_BY_CREATE_SORT_INDEX))
    goto err;

  if (table->s->tmp_table)
    table->file->info(HA_STATUS_VARIABLE);	// Get record count
  table->sort.found_records=filesort(thd, table,join->sortorder, length,
                                     select, filesort_limit, 0,
                                     &examined_rows);
  tab->records= table->sort.found_records;	// For SQL_CALC_ROWS
  if (select)
  {
    /*
      We need to preserve tablesort's output resultset here, because
      QUICK_INDEX_MERGE_SELECT::~QUICK_INDEX_MERGE_SELECT (called by
      SQL_SELECT::cleanup()) may free it assuming it's the result of the quick
      select operation that we no longer need. Note that all the other parts of
      this data structure are cleaned up when
      QUICK_INDEX_MERGE_SELECT::get_next encounters end of data, so the next
      SQL_SELECT::cleanup() call changes sort.io_cache alone.
    */
    IO_CACHE *tablesort_result_cache;

    tablesort_result_cache= table->sort.io_cache;
    table->sort.io_cache= NULL;

    select->cleanup();				// filesort did select
    tab->select= 0;
    table->quick_keys.clear_all();  // as far as we cleanup select->quick
    table->intersect_keys.clear_all();
    table->sort.io_cache= tablesort_result_cache;
  }
  tab->set_select_cond(NULL, __LINE__);
  tab->last_inner= 0;
  tab->first_unmatched= 0;
  tab->type=JT_ALL;				// Read with normal read_record
  tab->read_first_record= join_init_read_record;
  tab->join->examined_rows+=examined_rows;
  table->disable_keyread(); // Restore if we used indexes
  DBUG_RETURN(table->sort.found_records == HA_POS_ERROR);
err:
  DBUG_RETURN(-1);
}

#ifdef NOT_YET
/**
  Add the HAVING criteria to table->select.
*/

static bool fix_having(JOIN *join, Item **having)
{
  (*having)->update_used_tables();	// Some tables may have been const
  JOIN_TAB *table=&join->join_tab[join->const_tables];
  table_map used_tables= join->const_table_map | table->table->map;

  DBUG_EXECUTE("where",print_where(*having,"having", QT_ORDINARY););
  Item* sort_table_cond=make_cond_for_table(*having, used_tables, used_tables,
                                            FALSE, FALSE);
  if (sort_table_cond)
  {
    if (!table->select)
      if (!(table->select=new SQL_SELECT))
	return 1;
    if (!table->select->cond)
      table->select->cond=sort_table_cond;
    else					// This should never happen
      if (!(table->select->cond= new Item_cond_and(table->select->cond,
						   sort_table_cond)) ||
	  table->select->cond->fix_fields(join->thd, &table->select->cond))
	return 1;
    table->set_select_cond(table->select->cond, __LINE__);
    table->select_cond->top_level_item();
    DBUG_EXECUTE("where",print_where(table->select_cond,
				     "select and having",
                                     QT_ORDINARY););
    *having= make_cond_for_table(*having,~ (table_map) 0,~used_tables,
                                 FALSE, FALSE);
    DBUG_EXECUTE("where",
                 print_where(*having,"having after make_cond", QT_ORDINARY););
  }
  return 0;
}
#endif


/*****************************************************************************
  Remove duplicates from tmp table
  This should be recoded to add a unique index to the table and remove
  duplicates
  Table is a locked single thread table
  fields is the number of fields to check (from the end)
*****************************************************************************/

static bool compare_record(TABLE *table, Field **ptr)
{
  for (; *ptr ; ptr++)
  {
    if ((*ptr)->cmp_offset(table->s->rec_buff_length))
      return 1;
  }
  return 0;
}

static bool copy_blobs(Field **ptr)
{
  for (; *ptr ; ptr++)
  {
    if ((*ptr)->flags & BLOB_FLAG)
      if (((Field_blob *) (*ptr))->copy())
	return 1;				// Error
  }
  return 0;
}

static void free_blobs(Field **ptr)
{
  for (; *ptr ; ptr++)
  {
    if ((*ptr)->flags & BLOB_FLAG)
      ((Field_blob *) (*ptr))->free();
  }
}


static int
remove_duplicates(JOIN *join, TABLE *entry,List<Item> &fields, Item *having)
{
  int error;
  ulong reclength,offset;
  uint field_count;
  THD *thd= join->thd;
  DBUG_ENTER("remove_duplicates");

  entry->reginfo.lock_type=TL_WRITE;

  /* Calculate how many saved fields there is in list */
  field_count=0;
  List_iterator<Item> it(fields);
  Item *item;
  while ((item=it++))
  {
    if (item->get_tmp_table_field() && ! item->const_item())
      field_count++;
  }

  if (!field_count && !(join->select_options & OPTION_FOUND_ROWS) && !having) 
  {                    // only const items with no OPTION_FOUND_ROWS
    join->unit->select_limit_cnt= 1;		// Only send first row
    DBUG_RETURN(0);
  }
  Field **first_field=entry->field+entry->s->fields - field_count;
  offset= (field_count ? 
           entry->field[entry->s->fields - field_count]->
           offset(entry->record[0]) : 0);
  reclength=entry->s->reclength-offset;

  free_io_cache(entry);				// Safety
  entry->file->info(HA_STATUS_VARIABLE);
  if (entry->s->db_type() == heap_hton ||
      (!entry->s->blob_fields &&
       ((ALIGN_SIZE(reclength) + HASH_OVERHEAD) * entry->file->stats.records <
	thd->variables.sortbuff_size)))
    error=remove_dup_with_hash_index(join->thd, entry,
				     field_count, first_field,
				     reclength, having);
  else
    error=remove_dup_with_compare(join->thd, entry, first_field, offset,
				  having);

  free_blobs(first_field);
  DBUG_RETURN(error);
}


static int remove_dup_with_compare(THD *thd, TABLE *table, Field **first_field,
				   ulong offset, Item *having)
{
  handler *file=table->file;
  char *org_record,*new_record;
  uchar *record;
  int error;
  ulong reclength= table->s->reclength-offset;
  DBUG_ENTER("remove_dup_with_compare");

  org_record=(char*) (record=table->record[0])+offset;
  new_record=(char*) table->record[1]+offset;

  if (file->ha_rnd_init_with_error(1))
    DBUG_RETURN(1);

  error= file->ha_rnd_next(record);
  for (;;)
  {
    if (thd->killed)
    {
      thd->send_kill_message();
      error=0;
      goto err;
    }
    if (error)
    {
      if (error == HA_ERR_RECORD_DELETED)
      {
        error= file->ha_rnd_next(record);
        continue;
      }
      if (error == HA_ERR_END_OF_FILE)
	break;
      goto err;
    }
    if (having && !having->val_int())
    {
      if ((error= file->ha_delete_row(record)))
	goto err;
      error= file->ha_rnd_next(record);
      continue;
    }
    if (copy_blobs(first_field))
    {
      my_message(ER_OUTOFMEMORY, ER(ER_OUTOFMEMORY), MYF(0));
      error=0;
      goto err;
    }
    memcpy(new_record,org_record,reclength);

    /* Read through rest of file and mark duplicated rows deleted */
    bool found=0;
    for (;;)
    {
      if ((error= file->ha_rnd_next(record)))
      {
	if (error == HA_ERR_RECORD_DELETED)
	  continue;
	if (error == HA_ERR_END_OF_FILE)
	  break;
	goto err;
      }
      if (compare_record(table, first_field) == 0)
      {
	if ((error= file->ha_delete_row(record)))
	  goto err;
      }
      else if (!found)
      {
	found=1;
        if ((error= file->remember_rnd_pos()))
          goto err;
      }
    }
    if (!found)
      break;					// End of file
    /* Restart search on saved row */
    error=file->restart_rnd_next(record);
  }

  file->extra(HA_EXTRA_NO_CACHE);
  DBUG_RETURN(0);
err:
  file->extra(HA_EXTRA_NO_CACHE);
  if (error)
    file->print_error(error,MYF(0));
  DBUG_RETURN(1);
}


/**
  Generate a hash index for each row to quickly find duplicate rows.

  @note
    Note that this will not work on tables with blobs!
*/

static int remove_dup_with_hash_index(THD *thd, TABLE *table,
				      uint field_count,
				      Field **first_field,
				      ulong key_length,
				      Item *having)
{
  uchar *key_buffer, *key_pos, *record=table->record[0];
  int error;
  handler *file= table->file;
  ulong extra_length= ALIGN_SIZE(key_length)-key_length;
  uint *field_lengths,*field_length;
  HASH hash;
  DBUG_ENTER("remove_dup_with_hash_index");

  if (!my_multi_malloc(MYF(MY_WME),
		       &key_buffer,
		       (uint) ((key_length + extra_length) *
			       (long) file->stats.records),
		       &field_lengths,
		       (uint) (field_count*sizeof(*field_lengths)),
		       NullS))
    DBUG_RETURN(1);

  {
    Field **ptr;
    ulong total_length= 0;
    for (ptr= first_field, field_length=field_lengths ; *ptr ; ptr++)
    {
      uint length= (*ptr)->sort_length();
      (*field_length++)= length;
      total_length+= length;
    }
    DBUG_PRINT("info",("field_count: %u  key_length: %lu  total_length: %lu",
                       field_count, key_length, total_length));
    DBUG_ASSERT(total_length <= key_length);
    key_length= total_length;
    extra_length= ALIGN_SIZE(key_length)-key_length;
  }

  if (hash_init(&hash, &my_charset_bin, (uint) file->stats.records, 0, 
		key_length, (hash_get_key) 0, 0, 0))
  {
    my_free((char*) key_buffer,MYF(0));
    DBUG_RETURN(1);
  }

  if ((error= file->ha_rnd_init(1)))
    goto err;

  key_pos=key_buffer;
  for (;;)
  {
    uchar *org_key_pos;
    if (thd->killed)
    {
      thd->send_kill_message();
      error=0;
      goto err;
    }
    if ((error= file->ha_rnd_next(record)))
    {
      if (error == HA_ERR_RECORD_DELETED)
	continue;
      if (error == HA_ERR_END_OF_FILE)
	break;
      goto err;
    }
    if (having && !having->val_int())
    {
      if ((error= file->ha_delete_row(record)))
	goto err;
      continue;
    }

    /* copy fields to key buffer */
    org_key_pos= key_pos;
    field_length=field_lengths;
    for (Field **ptr= first_field ; *ptr ; ptr++)
    {
      (*ptr)->sort_string(key_pos,*field_length);
      key_pos+= *field_length++;
    }
    /* Check if it exists before */
    if (hash_search(&hash, org_key_pos, key_length))
    {
      /* Duplicated found ; Remove the row */
      if ((error= file->ha_delete_row(record)))
	goto err;
    }
    else
    {
      if (my_hash_insert(&hash, org_key_pos))
        goto err;
    }
    key_pos+=extra_length;
  }
  my_free((char*) key_buffer,MYF(0));
  hash_free(&hash);
  file->extra(HA_EXTRA_NO_CACHE);
  (void) file->ha_rnd_end();
  DBUG_RETURN(0);

err:
  my_free((char*) key_buffer,MYF(0));
  hash_free(&hash);
  file->extra(HA_EXTRA_NO_CACHE);
  (void) file->ha_rnd_end();
  if (error)
    file->print_error(error,MYF(0));
  DBUG_RETURN(1);
}


SORT_FIELD *make_unireg_sortorder(ORDER *order, uint *length,
                                  SORT_FIELD *sortorder)
{
  uint count;
  SORT_FIELD *sort,*pos;
  DBUG_ENTER("make_unireg_sortorder");

  count=0;
  for (ORDER *tmp = order; tmp; tmp=tmp->next)
    count++;
  if (!sortorder)
    sortorder= (SORT_FIELD*) sql_alloc(sizeof(SORT_FIELD) *
                                       (max(count, *length) + 1));
  pos= sort= sortorder;

  if (!pos)
    return 0;

  for (;order;order=order->next,pos++)
  {
    Item *item= order->item[0]->real_item();
    pos->field= 0; pos->item= 0;
    if (item->type() == Item::FIELD_ITEM)
      pos->field= ((Item_field*) item)->field;
    else if (item->type() == Item::SUM_FUNC_ITEM && !item->const_item())
      pos->field= ((Item_sum*) item)->get_tmp_table_field();
    else if (item->type() == Item::COPY_STR_ITEM)
    {						// Blob patch
      pos->item= ((Item_copy*) item)->get_item();
    }
    else
      pos->item= *order->item;
    pos->reverse=! order->asc;
  }
  *length=count;
  DBUG_RETURN(sort);
}



/*
  eq_ref: Create the lookup key and check if it is the same as saved key




  SYNOPSIS
    cmp_buffer_with_ref()
      tab      Join tab of the accessed table
      table    The table to read.  This is usually tab->table, except for 
               semi-join when we might need to make a lookup in a temptable
               instead.
      tab_ref  The structure with methods to collect index lookup tuple. 
               This is usually table->ref, except for the case of when we're 
               doing lookup into semi-join materialization table.

  DESCRIPTION 
    Used by eq_ref access method: create the index lookup key and check if 
    we've used this key at previous lookup (If yes, we don't need to repeat
    the lookup - the record has been already fetched)

  RETURN 
    TRUE   No cached record for the key, or failed to create the key (due to
           out-of-domain error)
    FALSE  The created key is the same as the previous one (and the record 
           is already in table->record)
*/

static bool
cmp_buffer_with_ref(THD *thd, TABLE *table, TABLE_REF *tab_ref)
{
  bool no_prev_key;
  if (!tab_ref->disable_cache)
  {
    if (!(no_prev_key= tab_ref->key_err))
    {
      /* Previous access found a row. Copy its key */
      memcpy(tab_ref->key_buff2, tab_ref->key_buff, tab_ref->key_length);
    }
  }
  else 
    no_prev_key= TRUE;
  if ((tab_ref->key_err= cp_buffer_from_ref(thd, table, tab_ref)) ||
      no_prev_key)
    return 1;
  return memcmp(tab_ref->key_buff2, tab_ref->key_buff, tab_ref->key_length)
    != 0;
}


bool
cp_buffer_from_ref(THD *thd, TABLE *table, TABLE_REF *ref)
{
  enum enum_check_fields save_count_cuted_fields= thd->count_cuted_fields;
  thd->count_cuted_fields= CHECK_FIELD_IGNORE;
  my_bitmap_map *old_map= dbug_tmp_use_all_columns(table, table->write_set);
  bool result= 0;

  for (store_key **copy=ref->key_copy ; *copy ; copy++)
  {
    if ((*copy)->copy() & 1)
    {
      result= 1;
      break;
    }
  }
  thd->count_cuted_fields= save_count_cuted_fields;
  dbug_tmp_restore_column_map(table->write_set, old_map);
  return result;
}


/*****************************************************************************
  Group and order functions
*****************************************************************************/

/**
  Resolve an ORDER BY or GROUP BY column reference.

  Given a column reference (represented by 'order') from a GROUP BY or ORDER
  BY clause, find the actual column it represents. If the column being
  resolved is from the GROUP BY clause, the procedure searches the SELECT
  list 'fields' and the columns in the FROM list 'tables'. If 'order' is from
  the ORDER BY clause, only the SELECT list is being searched.

  If 'order' is resolved to an Item, then order->item is set to the found
  Item. If there is no item for the found column (that is, it was resolved
  into a table field), order->item is 'fixed' and is added to all_fields and
  ref_pointer_array.

  ref_pointer_array and all_fields are updated.

  @param[in] thd		     Pointer to current thread structure
  @param[in,out] ref_pointer_array  All select, group and order by fields
  @param[in] tables                 List of tables to search in (usually
    FROM clause)
  @param[in] order                  Column reference to be resolved
  @param[in] fields                 List of fields to search in (usually
    SELECT list)
  @param[in,out] all_fields         All select, group and order by fields
  @param[in] is_group_field         True if order is a GROUP field, false if
    ORDER by field

  @retval
    FALSE if OK
  @retval
    TRUE  if error occurred
*/

static bool
find_order_in_list(THD *thd, Item **ref_pointer_array, TABLE_LIST *tables,
                   ORDER *order, List<Item> &fields, List<Item> &all_fields,
                   bool is_group_field)
{
  Item *order_item= *order->item; /* The item from the GROUP/ORDER caluse. */
  Item::Type order_item_type;
  Item **select_item; /* The corresponding item from the SELECT clause. */
  Field *from_field;  /* The corresponding field from the FROM clause. */
  uint counter;
  enum_resolution_type resolution;

  /*
    Local SP variables may be int but are expressions, not positions.
    (And they can't be used before fix_fields is called for them).
  */
  if (order_item->type() == Item::INT_ITEM && order_item->basic_const_item())
  {						/* Order by position */
    uint count= (uint) order_item->val_int();
    if (!count || count > fields.elements)
    {
      my_error(ER_BAD_FIELD_ERROR, MYF(0),
               order_item->full_name(), thd->where);
      return TRUE;
    }
    order->item= ref_pointer_array + count - 1;
    order->in_field_list= 1;
    order->counter= count;
    order->counter_used= 1;
    return FALSE;
  }
  /* Lookup the current GROUP/ORDER field in the SELECT clause. */
  select_item= find_item_in_list(order_item, fields, &counter,
                                 REPORT_EXCEPT_NOT_FOUND, &resolution);
  if (!select_item)
    return TRUE; /* The item is not unique, or some other error occured. */


  /* Check whether the resolved field is not ambiguos. */
  if (select_item != not_found_item)
  {
    Item *view_ref= NULL;
    /*
      If we have found field not by its alias in select list but by its
      original field name, we should additionaly check if we have conflict
      for this name (in case if we would perform lookup in all tables).
    */
    if (resolution == RESOLVED_BEHIND_ALIAS && !order_item->fixed &&
        order_item->fix_fields(thd, order->item))
      return TRUE;

    /* Lookup the current GROUP field in the FROM clause. */
    order_item_type= order_item->type();
    from_field= (Field*) not_found_field;
    if ((is_group_field && order_item_type == Item::FIELD_ITEM) ||
        order_item_type == Item::REF_ITEM)
    {
      from_field= find_field_in_tables(thd, (Item_ident*) order_item, tables,
                                       NULL, &view_ref, IGNORE_ERRORS, TRUE,
                                       FALSE);
      if (!from_field)
        from_field= (Field*) not_found_field;
    }

    if (from_field == not_found_field ||
        (from_field != view_ref_found ?
         /* it is field of base table => check that fields are same */
         ((*select_item)->type() == Item::FIELD_ITEM &&
          ((Item_field*) (*select_item))->field->eq(from_field)) :
         /*
           in is field of view table => check that references on translation
           table are same
         */
         ((*select_item)->type() == Item::REF_ITEM &&
          view_ref->type() == Item::REF_ITEM &&
          ((Item_ref *) (*select_item))->ref ==
          ((Item_ref *) view_ref)->ref)))
    {
      /*
        If there is no such field in the FROM clause, or it is the same field
        as the one found in the SELECT clause, then use the Item created for
        the SELECT field. As a result if there was a derived field that
        'shadowed' a table field with the same name, the table field will be
        chosen over the derived field.
      */
      order->item= ref_pointer_array + counter;
      order->in_field_list=1;
      return FALSE;
    }
    else
    {
      /*
        There is a field with the same name in the FROM clause. This
        is the field that will be chosen. In this case we issue a
        warning so the user knows that the field from the FROM clause
        overshadows the column reference from the SELECT list.
      */
      push_warning_printf(thd, MYSQL_ERROR::WARN_LEVEL_WARN, ER_NON_UNIQ_ERROR,
                          ER(ER_NON_UNIQ_ERROR),
                          ((Item_ident*) order_item)->field_name,
                          current_thd->where);
    }
  }

  order->in_field_list=0;
  /*
    The call to order_item->fix_fields() means that here we resolve
    'order_item' to a column from a table in the list 'tables', or to
    a column in some outer query. Exactly because of the second case
    we come to this point even if (select_item == not_found_item),
    inspite of that fix_fields() calls find_item_in_list() one more
    time.

    We check order_item->fixed because Item_func_group_concat can put
    arguments for which fix_fields already was called.    
  */
  if (!order_item->fixed &&
      (order_item->fix_fields(thd, order->item) ||
       (order_item= *order->item)->check_cols(1) ||
       thd->is_fatal_error))
    return TRUE; /* Wrong field. */

  uint el= all_fields.elements;
  all_fields.push_front(order_item); /* Add new field to field list. */
  ref_pointer_array[el]= order_item;
  order->item= ref_pointer_array + el;
  return FALSE;
}


/**
  Change order to point at item in select list.

  If item isn't a number and doesn't exits in the select list, add it the
  the field list.
*/

int setup_order(THD *thd, Item **ref_pointer_array, TABLE_LIST *tables,
		List<Item> &fields, List<Item> &all_fields, ORDER *order)
{
  thd->where="order clause";
  for (; order; order=order->next)
  {
    if (find_order_in_list(thd, ref_pointer_array, tables, order, fields,
			   all_fields, FALSE))
      return 1;
  }
  return 0;
}


/**
  Intitialize the GROUP BY list.

  @param thd			Thread handler
  @param ref_pointer_array	We store references to all fields that was
                               not in 'fields' here.
  @param fields		All fields in the select part. Any item in
                               'order' that is part of these list is replaced
                               by a pointer to this fields.
  @param all_fields		Total list of all unique fields used by the
                               select. All items in 'order' that was not part
                               of fields will be added first to this list.
  @param order			The fields we should do GROUP BY on.
  @param hidden_group_fields	Pointer to flag that is set to 1 if we added
                               any fields to all_fields.

  @todo
    change ER_WRONG_FIELD_WITH_GROUP to more detailed
    ER_NON_GROUPING_FIELD_USED

  @retval
    0  ok
  @retval
    1  error (probably out of memory)
*/

int
setup_group(THD *thd, Item **ref_pointer_array, TABLE_LIST *tables,
	    List<Item> &fields, List<Item> &all_fields, ORDER *order,
	    bool *hidden_group_fields)
{
  *hidden_group_fields=0;
  ORDER *ord;

  if (!order)
    return 0;				/* Everything is ok */

  uint org_fields=all_fields.elements;

  thd->where="group statement";
  enum_parsing_place save_place= thd->lex->current_select->parsing_place;
  thd->lex->current_select->parsing_place= IN_GROUP_BY;
  for (ord= order; ord; ord= ord->next)
  {
    if (find_order_in_list(thd, ref_pointer_array, tables, ord, fields,
			   all_fields, TRUE))
      return 1;
    (*ord->item)->marker= UNDEF_POS;		/* Mark found */
    if ((*ord->item)->with_sum_func)
    {
      my_error(ER_WRONG_GROUP_FIELD, MYF(0), (*ord->item)->full_name());
      return 1;
    }
  }
  thd->lex->current_select->parsing_place= save_place;

  if (thd->variables.sql_mode & MODE_ONLY_FULL_GROUP_BY)
  {
    /*
      Don't allow one to use fields that is not used in GROUP BY
      For each select a list of field references that aren't under an
      aggregate function is created. Each field in this list keeps the
      position of the select list expression which it belongs to.

      First we check an expression from the select list against the GROUP BY
      list. If it's found there then it's ok. It's also ok if this expression
      is a constant or an aggregate function. Otherwise we scan the list
      of non-aggregated fields and if we'll find at least one field reference
      that belongs to this expression and doesn't occur in the GROUP BY list
      we throw an error. If there are no fields in the created list for a
      select list expression this means that all fields in it are used under
      aggregate functions.
    */
    Item *item;
    Item_field *field;
    int cur_pos_in_select_list= 0;
    List_iterator<Item> li(fields);
    List_iterator<Item_field> naf_it(thd->lex->current_select->non_agg_fields);

    field= naf_it++;
    while (field && (item=li++))
    {
      if (item->type() != Item::SUM_FUNC_ITEM && item->marker >= 0 &&
          !item->const_item() &&
          !(item->real_item()->type() == Item::FIELD_ITEM &&
            item->used_tables() & OUTER_REF_TABLE_BIT))
      {
        while (field)
        {
          /* Skip fields from previous expressions. */
          if (field->marker < cur_pos_in_select_list)
            goto next_field;
          /* Found a field from the next expression. */
          if (field->marker > cur_pos_in_select_list)
            break;
          /*
            Check whether the field occur in the GROUP BY list.
            Throw the error later if the field isn't found.
          */
          for (ord= order; ord; ord= ord->next)
            if ((*ord->item)->eq((Item*)field, 0))
              goto next_field;
          /*
            TODO: change ER_WRONG_FIELD_WITH_GROUP to more detailed
            ER_NON_GROUPING_FIELD_USED
          */
          my_error(ER_WRONG_FIELD_WITH_GROUP, MYF(0), field->full_name());
          return 1;
next_field:
          field= naf_it++;
        }
      }
      cur_pos_in_select_list++;
    }
  }
  if (org_fields != all_fields.elements)
    *hidden_group_fields=1;			// group fields is not used
  return 0;
}

/**
  Add fields with aren't used at start of field list.

  @return
    FALSE if ok
*/

static bool
setup_new_fields(THD *thd, List<Item> &fields,
		 List<Item> &all_fields, ORDER *new_field)
{
  Item	  **item;
  uint counter;
  enum_resolution_type not_used;
  DBUG_ENTER("setup_new_fields");

  thd->mark_used_columns= MARK_COLUMNS_READ;       // Not really needed, but...
  for (; new_field ; new_field= new_field->next)
  {
    if ((item= find_item_in_list(*new_field->item, fields, &counter,
				 IGNORE_ERRORS, &not_used)))
      new_field->item=item;			/* Change to shared Item */
    else
    {
      thd->where="procedure list";
      if ((*new_field->item)->fix_fields(thd, new_field->item))
	DBUG_RETURN(1); /* purecov: inspected */
      all_fields.push_front(*new_field->item);
      new_field->item=all_fields.head_ref();
    }
  }
  DBUG_RETURN(0);
}

/**
  Create a group by that consist of all non const fields.

  Try to use the fields in the order given by 'order' to allow one to
  optimize away 'order by'.
*/

static ORDER *
create_distinct_group(THD *thd, Item **ref_pointer_array,
                      ORDER *order_list, List<Item> &fields,
                      List<Item> &all_fields,
		      bool *all_order_by_fields_used)
{
  List_iterator<Item> li(fields);
  Item *item, **orig_ref_pointer_array= ref_pointer_array;
  ORDER *order,*group,**prev;

  *all_order_by_fields_used= 1;
  while ((item=li++))
    item->marker=0;			/* Marker that field is not used */

  prev= &group;  group=0;
  for (order=order_list ; order; order=order->next)
  {
    if (order->in_field_list)
    {
      ORDER *ord=(ORDER*) thd->memdup((char*) order,sizeof(ORDER));
      if (!ord)
	return 0;
      *prev=ord;
      prev= &ord->next;
      (*ord->item)->marker=1;
    }
    else
      *all_order_by_fields_used= 0;
  }

  li.rewind();
  while ((item=li++))
  {
    if (!item->const_item() && !item->with_sum_func && !item->marker)
    {
      /* 
        Don't put duplicate columns from the SELECT list into the 
        GROUP BY list.
      */
      ORDER *ord_iter;
      for (ord_iter= group; ord_iter; ord_iter= ord_iter->next)
        if ((*ord_iter->item)->eq(item, 1))
          goto next_item;
      
      ORDER *ord=(ORDER*) thd->calloc(sizeof(ORDER));
      if (!ord)
	return 0;

      if (item->type() == Item::FIELD_ITEM &&
          item->field_type() == MYSQL_TYPE_BIT)
      {
        /*
          Because HEAP tables can't index BIT fields we need to use an
          additional hidden field for grouping because later it will be
          converted to a LONG field. Original field will remain of the
          BIT type and will be returned to a client.
        */
        Item_field *new_item= new Item_field(thd, (Item_field*)item);
        int el= all_fields.elements;
        orig_ref_pointer_array[el]= new_item;
        all_fields.push_front(new_item);
        ord->item= orig_ref_pointer_array + el;
      }
      else
      {
        /*
          We have here only field_list (not all_field_list), so we can use
          simple indexing of ref_pointer_array (order in the array and in the
          list are same)
        */
        ord->item= ref_pointer_array;
      }
      ord->asc=1;
      *prev=ord;
      prev= &ord->next;
    }
next_item:
    ref_pointer_array++;
  }
  *prev=0;
  return group;
}


/**
  Update join with count of the different type of fields.
*/

void
count_field_types(SELECT_LEX *select_lex, TMP_TABLE_PARAM *param, 
                  List<Item> &fields, bool reset_with_sum_func)
{
  List_iterator<Item> li(fields);
  Item *field;

  param->field_count=param->sum_func_count=param->func_count=
    param->hidden_field_count=0;
  param->quick_group=1;
  while ((field=li++))
  {
    Item::Type real_type= field->real_item()->type();
    if (real_type == Item::FIELD_ITEM)
      param->field_count++;
    else if (real_type == Item::SUM_FUNC_ITEM)
    {
      if (! field->const_item())
      {
	Item_sum *sum_item=(Item_sum*) field->real_item();
        if (!sum_item->depended_from() ||
            sum_item->depended_from() == select_lex)
        {
          if (!sum_item->quick_group)
            param->quick_group=0;			// UDF SUM function
          param->sum_func_count++;

          for (uint i=0 ; i < sum_item->get_arg_count() ; i++)
          {
            if (sum_item->get_arg(i)->real_item()->type() == Item::FIELD_ITEM)
              param->field_count++;
            else
              param->func_count++;
          }
        }
        param->func_count++;
      }
    }
    else
    {
      param->func_count++;
      if (reset_with_sum_func)
	field->with_sum_func=0;
    }
  }
}


/**
  Return 1 if second is a subpart of first argument.

  If first parts has different direction, change it to second part
  (group is sorted like order)
*/

static bool
test_if_subpart(ORDER *a,ORDER *b)
{
  for (; a && b; a=a->next,b=b->next)
  {
    if ((*a->item)->eq(*b->item,1))
      a->asc=b->asc;
    else
      return 0;
  }
  return test(!b);
}

/**
  Return table number if there is only one table in sort order
  and group and order is compatible, else return 0.
*/

static TABLE *
get_sort_by_table(ORDER *a,ORDER *b,TABLE_LIST *tables)
{
  table_map map= (table_map) 0;
  DBUG_ENTER("get_sort_by_table");

  if (!a)
    a=b;					// Only one need to be given
  else if (!b)
    b=a;

  for (; a && b; a=a->next,b=b->next)
  {
    if (!(*a->item)->eq(*b->item,1))
      DBUG_RETURN(0);
    map|=a->item[0]->used_tables();
  }
  if (!map || (map & (RAND_TABLE_BIT | OUTER_REF_TABLE_BIT)))
    DBUG_RETURN(0);

  for (; !(map & tables->table->map); tables= tables->next_leaf) ;
  if (map != tables->table->map)
    DBUG_RETURN(0);				// More than one table
  DBUG_PRINT("exit",("sort by table: %d",tables->table->tablenr));
  DBUG_RETURN(tables->table);
}


/**
  calc how big buffer we need for comparing group entries.
*/

static void
calc_group_buffer(JOIN *join,ORDER *group)
{
  uint key_length=0, parts=0, null_parts=0;

  if (group)
    join->group= 1;
  for (; group ; group=group->next)
  {
    Item *group_item= *group->item;
    Field *field= group_item->get_tmp_table_field();
    if (field)
    {
      enum_field_types type;
      if ((type= field->type()) == MYSQL_TYPE_BLOB)
	key_length+=MAX_BLOB_WIDTH;		// Can't be used as a key
      else if (type == MYSQL_TYPE_VARCHAR || type == MYSQL_TYPE_VAR_STRING)
        key_length+= field->field_length + HA_KEY_BLOB_LENGTH;
      else if (type == MYSQL_TYPE_BIT)
      {
        /* Bit is usually stored as a longlong key for group fields */
        key_length+= 8;                         // Big enough
      }
      else
	key_length+= field->pack_length();
    }
    else
    { 
      switch (group_item->result_type()) {
      case REAL_RESULT:
        key_length+= sizeof(double);
        break;
      case INT_RESULT:
        key_length+= sizeof(longlong);
        break;
      case DECIMAL_RESULT:
        key_length+= my_decimal_get_binary_size(group_item->max_length - 
                                                (group_item->decimals ? 1 : 0),
                                                group_item->decimals);
        break;
      case STRING_RESULT:
      {
        enum enum_field_types type= group_item->field_type();
        /*
          As items represented as DATE/TIME fields in the group buffer
          have STRING_RESULT result type, we increase the length 
          by 8 as maximum pack length of such fields.
        */
        if (type == MYSQL_TYPE_TIME ||
            type == MYSQL_TYPE_DATE ||
            type == MYSQL_TYPE_DATETIME ||
            type == MYSQL_TYPE_TIMESTAMP)
        {
          key_length+= 8;
        }
        else
        {
          /*
            Group strings are taken as varstrings and require an length field.
            A field is not yet created by create_tmp_field()
            and the sizes should match up.
          */
          key_length+= group_item->max_length + HA_KEY_BLOB_LENGTH;
        }
        break;
      }
      default:
        /* This case should never be choosen */
        DBUG_ASSERT(0);
        my_error(ER_OUT_OF_RESOURCES, MYF(0));
        join->thd->fatal_error();
      }
    }
    parts++;
    if (group_item->maybe_null)
      null_parts++;
  }
  join->tmp_table_param.group_length=key_length+null_parts;
  join->tmp_table_param.group_parts=parts;
  join->tmp_table_param.group_null_parts=null_parts;
}


/**
  allocate group fields or take prepared (cached).

  @param main_join   join of current select
  @param curr_join   current join (join of current select or temporary copy
                     of it)

  @retval
    0   ok
  @retval
    1   failed
*/

static bool
make_group_fields(JOIN *main_join, JOIN *curr_join)
{
  if (main_join->group_fields_cache.elements)
  {
    curr_join->group_fields= main_join->group_fields_cache;
    curr_join->sort_and_group= 1;
  }
  else
  {
    if (alloc_group_fields(curr_join, curr_join->group_list))
      return (1);
    main_join->group_fields_cache= curr_join->group_fields;
  }
  return (0);
}


/**
  Get a list of buffers for saveing last group.

  Groups are saved in reverse order for easyer check loop.
*/

static bool
alloc_group_fields(JOIN *join,ORDER *group)
{
  if (group)
  {
    for (; group ; group=group->next)
    {
      Cached_item *tmp=new_Cached_item(join->thd, *group->item, TRUE);
      if (!tmp || join->group_fields.push_front(tmp))
	return TRUE;
    }
  }
  join->sort_and_group=1;			/* Mark for do_select */
  return FALSE;
}



/*
  Test if a single-row cache of items changed, and update the cache.

  @details Test if a list of items that typically represents a result
  row has changed. If the value of some item changed, update the cached
  value for this item.
  
  @param list list of <item, cached_value> pairs stored as Cached_item.

  @return -1 if no item changed
  @return index of the first item that changed
*/

int test_if_item_cache_changed(List<Cached_item> &list)
{
  DBUG_ENTER("test_if_item_cache_changed");
  List_iterator<Cached_item> li(list);
  int idx= -1,i;
  Cached_item *buff;

  for (i=(int) list.elements-1 ; (buff=li++) ; i--)
  {
    if (buff->cmp())
      idx=i;
  }
  DBUG_PRINT("info", ("idx: %d", idx));
  DBUG_RETURN(idx);
}



static int
test_if_group_changed(List<Cached_item> &list)
{
  DBUG_ENTER("test_if_group_changed");
  List_iterator<Cached_item> li(list);
  int idx= -1,i;
  Cached_item *buff;

  for (i=(int) list.elements-1 ; (buff=li++) ; i--)
  {
    if (buff->cmp())
      idx=i;
  }
  DBUG_PRINT("info", ("idx: %d", idx));
  DBUG_RETURN(idx);
}


/**
  Setup copy_fields to save fields at start of new group.

  Setup copy_fields to save fields at start of new group

  Only FIELD_ITEM:s and FUNC_ITEM:s needs to be saved between groups.
  Change old item_field to use a new field with points at saved fieldvalue
  This function is only called before use of send_fields.

  @param thd                   THD pointer
  @param param                 temporary table parameters
  @param ref_pointer_array     array of pointers to top elements of filed list
  @param res_selected_fields   new list of items of select item list
  @param res_all_fields        new list of all items
  @param elements              number of elements in select item list
  @param all_fields            all fields list

  @todo
    In most cases this result will be sent to the user.
    This should be changed to use copy_int or copy_real depending
    on how the value is to be used: In some cases this may be an
    argument in a group function, like: IF(ISNULL(col),0,COUNT(*))

  @retval
    0     ok
  @retval
    !=0   error
*/

bool
setup_copy_fields(THD *thd, TMP_TABLE_PARAM *param,
		  Item **ref_pointer_array,
		  List<Item> &res_selected_fields, List<Item> &res_all_fields,
		  uint elements, List<Item> &all_fields)
{
  Item *pos;
  List_iterator_fast<Item> li(all_fields);
  Copy_field *copy= NULL;
  IF_DBUG(Copy_field *copy_start);
  res_selected_fields.empty();
  res_all_fields.empty();
  List_iterator_fast<Item> itr(res_all_fields);
  List<Item> extra_funcs;
  uint i, border= all_fields.elements - elements;
  DBUG_ENTER("setup_copy_fields");

  if (param->field_count && 
      !(copy=param->copy_field= new Copy_field[param->field_count]))
    goto err2;

  param->copy_funcs.empty();
  IF_DBUG(copy_start= copy);
  for (i= 0; (pos= li++); i++)
  {
    Field *field;
    uchar *tmp;
    Item *real_pos= pos->real_item();
    /*
      Aggregate functions can be substituted for fields (by e.g. temp tables).
      We need to filter those substituted fields out.
    */
    if (real_pos->type() == Item::FIELD_ITEM &&
        !(real_pos != pos &&
          ((Item_ref *)pos)->ref_type() == Item_ref::AGGREGATE_REF))
    {
      Item_field *item;
      if (!(item= new Item_field(thd, ((Item_field*) real_pos))))
	goto err;
      if (pos->type() == Item::REF_ITEM)
      {
        /* preserve the names of the ref when dereferncing */
        Item_ref *ref= (Item_ref *) pos;
        item->db_name= ref->db_name;
        item->table_name= ref->table_name;
        item->name= ref->name;
      }
      pos= item;
      if (item->field->flags & BLOB_FLAG)
      {
	if (!(pos= new Item_copy_string(pos)))
	  goto err;
       /*
         Item_copy_string::copy for function can call 
         Item_copy_string::val_int for blob via Item_ref.
         But if Item_copy_string::copy for blob isn't called before,
         it's value will be wrong
         so let's insert Item_copy_string for blobs in the beginning of 
         copy_funcs
         (to see full test case look at having.test, BUG #4358) 
       */
	if (param->copy_funcs.push_front(pos))
	  goto err;
      }
      else
      {
	/* 
	   set up save buffer and change result_field to point at 
	   saved value
	*/
	field= item->field;
	item->result_field=field->new_field(thd->mem_root,field->table, 1);
        /*
          We need to allocate one extra byte for null handling and
          another extra byte to not get warnings from purify in
          Field_string::val_int
        */
	if (!(tmp= (uchar*) sql_alloc(field->pack_length()+2)))
	  goto err;
        if (copy)
        {
          DBUG_ASSERT (param->field_count > (uint) (copy - copy_start));
          copy->set(tmp, item->result_field);
          item->result_field->move_field(copy->to_ptr,copy->to_null_ptr,1);
#ifdef HAVE_valgrind
          copy->to_ptr[copy->from_length]= 0;
#endif
          copy++;
        }
      }
    }
    else if ((real_pos->type() == Item::FUNC_ITEM ||
	      real_pos->type() == Item::SUBSELECT_ITEM ||
              (real_pos->get_cached_item() &&
               real_pos->get_cached_item()->type() == Item::SUBSELECT_ITEM) ||
	      real_pos->type() == Item::CACHE_ITEM ||
	      real_pos->type() == Item::COND_ITEM) &&
	     !real_pos->with_sum_func)
    {						// Save for send fields
      pos= real_pos;
      /* TODO:
	 In most cases this result will be sent to the user.
	 This should be changed to use copy_int or copy_real depending
	 on how the value is to be used: In some cases this may be an
	 argument in a group function, like: IF(ISNULL(col),0,COUNT(*))
      */
      if (!(pos=new Item_copy_string(pos)))
	goto err;
      if (i < border)                           // HAVING, ORDER and GROUP BY
      {
        if (extra_funcs.push_back(pos))
          goto err;
      }
      else if (param->copy_funcs.push_back(pos))
	goto err;
    }
    res_all_fields.push_back(pos);
    ref_pointer_array[((i < border)? all_fields.elements-i-1 : i-border)]=
      pos;
  }
  param->copy_field_end= copy;

  for (i= 0; i < border; i++)
    itr++;
  itr.sublist(res_selected_fields, elements);
  /*
    Put elements from HAVING, ORDER BY and GROUP BY last to ensure that any
    reference used in these will resolve to a item that is already calculated
  */
  param->copy_funcs.concat(&extra_funcs);

  DBUG_RETURN(0);

 err:
  if (copy)
    delete [] param->copy_field;			// This is never 0
  param->copy_field=0;
err2:
  DBUG_RETURN(TRUE);
}


/**
  Make a copy of all simple SELECT'ed items.

  This is done at the start of a new group so that we can retrieve
  these later when the group changes.
*/

void
copy_fields(TMP_TABLE_PARAM *param)
{
  Copy_field *ptr=param->copy_field;
  Copy_field *end=param->copy_field_end;

  for (; ptr != end; ptr++)
    (*ptr->do_copy)(ptr);

  List_iterator_fast<Item> it(param->copy_funcs);
  Item_copy_string *item;
  while ((item = (Item_copy_string*) it++))
    item->copy();
}


/**
  Make an array of pointers to sum_functions to speed up
  sum_func calculation.

  @retval
    0	ok
  @retval
    1	Error
*/

bool JOIN::alloc_func_list()
{
  uint func_count, group_parts;
  DBUG_ENTER("alloc_func_list");

  func_count= tmp_table_param.sum_func_count;
  /*
    If we are using rollup, we need a copy of the summary functions for
    each level
  */
  if (rollup.state != ROLLUP::STATE_NONE)
    func_count*= (send_group_parts+1);

  group_parts= send_group_parts;
  /*
    If distinct, reserve memory for possible
    disctinct->group_by optimization
  */
  if (select_distinct)
  {
    group_parts+= fields_list.elements;
    /*
      If the ORDER clause is specified then it's possible that
      it also will be optimized, so reserve space for it too
    */
    if (order)
    {
      ORDER *ord;
      for (ord= order; ord; ord= ord->next)
        group_parts++;
    }
  }

  /* This must use calloc() as rollup_make_fields depends on this */
  sum_funcs= (Item_sum**) thd->calloc(sizeof(Item_sum**) * (func_count+1) +
				      sizeof(Item_sum***) * (group_parts+1));
  sum_funcs_end= (Item_sum***) (sum_funcs+func_count+1);
  DBUG_RETURN(sum_funcs == 0);
}


/**
  Initialize 'sum_funcs' array with all Item_sum objects.

  @param field_list        All items
  @param send_fields       Items in select list
  @param before_group_by   Set to 1 if this is called before GROUP BY handling
  @param recompute         Set to TRUE if sum_funcs must be recomputed

  @retval
    0  ok
  @retval
    1  error
*/

bool JOIN::make_sum_func_list(List<Item> &field_list, List<Item> &send_fields,
			      bool before_group_by, bool recompute)
{
  List_iterator_fast<Item> it(field_list);
  Item_sum **func;
  Item *item;
  DBUG_ENTER("make_sum_func_list");

  if (*sum_funcs && !recompute)
    DBUG_RETURN(FALSE); /* We have already initialized sum_funcs. */

  func= sum_funcs;
  while ((item=it++))
  {
    if (item->type() == Item::SUM_FUNC_ITEM && !item->const_item() &&
        (!((Item_sum*) item)->depended_from() ||
         ((Item_sum *)item)->depended_from() == select_lex))
      *func++= (Item_sum*) item;
  }
  if (before_group_by && rollup.state == ROLLUP::STATE_INITED)
  {
    rollup.state= ROLLUP::STATE_READY;
    if (rollup_make_fields(field_list, send_fields, &func))
      DBUG_RETURN(TRUE);			// Should never happen
  }
  else if (rollup.state == ROLLUP::STATE_NONE)
  {
    for (uint i=0 ; i <= send_group_parts ;i++)
      sum_funcs_end[i]= func;
  }
  else if (rollup.state == ROLLUP::STATE_READY)
    DBUG_RETURN(FALSE);                         // Don't put end marker
  *func=0;					// End marker
  DBUG_RETURN(FALSE);
}


/**
  Change all funcs and sum_funcs to fields in tmp table, and create
  new list of all items.

  @param thd                   THD pointer
  @param ref_pointer_array     array of pointers to top elements of filed list
  @param res_selected_fields   new list of items of select item list
  @param res_all_fields        new list of all items
  @param elements              number of elements in select item list
  @param all_fields            all fields list

  @retval
    0     ok
  @retval
    !=0   error
*/

static bool
change_to_use_tmp_fields(THD *thd, Item **ref_pointer_array,
			 List<Item> &res_selected_fields,
			 List<Item> &res_all_fields,
			 uint elements, List<Item> &all_fields)
{
  List_iterator_fast<Item> it(all_fields);
  Item *item_field,*item;
  DBUG_ENTER("change_to_use_tmp_fields");

  res_selected_fields.empty();
  res_all_fields.empty();

  uint i, border= all_fields.elements - elements;
  for (i= 0; (item= it++); i++)
  {
    Field *field;

    if ((item->with_sum_func && item->type() != Item::SUM_FUNC_ITEM) ||
        (item->type() == Item::FUNC_ITEM &&
         ((Item_func*)item)->functype() == Item_func::SUSERVAR_FUNC))
      item_field= item;
    else
    {
      if (item->type() == Item::FIELD_ITEM)
      {
	item_field= item->get_tmp_table_item(thd);
      }
      else if ((field= item->get_tmp_table_field()))
      {
	if (item->type() == Item::SUM_FUNC_ITEM && field->table->group)
	  item_field= ((Item_sum*) item)->result_item(field);
	else
	  item_field= (Item*) new Item_field(field);
	if (!item_field)
	  DBUG_RETURN(TRUE);                    // Fatal error

        if (item->real_item()->type() != Item::FIELD_ITEM)
          field->orig_table= 0;
	item_field->name= item->name;
        if (item->type() == Item::REF_ITEM)
        {
          Item_field *ifield= (Item_field *) item_field;
          Item_ref *iref= (Item_ref *) item;
          ifield->table_name= iref->table_name;
          ifield->db_name= iref->db_name;
        }
#ifndef DBUG_OFF
	if (!item_field->name)
	{
	  char buff[256];
	  String str(buff,sizeof(buff),&my_charset_bin);
	  str.length(0);
          str.extra_allocation(1024);
	  item->print(&str, QT_ORDINARY);
	  item_field->name= sql_strmake(str.ptr(),str.length());
	}
#endif
      }
      else
	item_field= item;
    }
    res_all_fields.push_back(item_field);
    ref_pointer_array[((i < border)? all_fields.elements-i-1 : i-border)]=
      item_field;
  }

  List_iterator_fast<Item> itr(res_all_fields);
  for (i= 0; i < border; i++)
    itr++;
  itr.sublist(res_selected_fields, elements);
  DBUG_RETURN(FALSE);
}


/**
  Change all sum_func refs to fields to point at fields in tmp table.
  Change all funcs to be fields in tmp table.

  @param thd                   THD pointer
  @param ref_pointer_array     array of pointers to top elements of filed list
  @param res_selected_fields   new list of items of select item list
  @param res_all_fields        new list of all items
  @param elements              number of elements in select item list
  @param all_fields            all fields list

  @retval
    0	ok
  @retval
    1	error
*/

static bool
change_refs_to_tmp_fields(THD *thd, Item **ref_pointer_array,
			  List<Item> &res_selected_fields,
			  List<Item> &res_all_fields, uint elements,
			  List<Item> &all_fields)
{
  List_iterator_fast<Item> it(all_fields);
  Item *item, *new_item;
  res_selected_fields.empty();
  res_all_fields.empty();

  uint i, border= all_fields.elements - elements;
  for (i= 0; (item= it++); i++)
  {
    res_all_fields.push_back(new_item= item->get_tmp_table_item(thd));
    ref_pointer_array[((i < border)? all_fields.elements-i-1 : i-border)]=
      new_item;
  }

  List_iterator_fast<Item> itr(res_all_fields);
  for (i= 0; i < border; i++)
    itr++;
  itr.sublist(res_selected_fields, elements);

  return thd->is_fatal_error;
}



/******************************************************************************
  Code for calculating functions
******************************************************************************/


/**
  Call ::setup for all sum functions.

  @param thd           thread handler
  @param func_ptr      sum function list

  @retval
    FALSE  ok
  @retval
    TRUE   error
*/

static bool setup_sum_funcs(THD *thd, Item_sum **func_ptr)
{
  Item_sum *func;
  DBUG_ENTER("setup_sum_funcs");
  while ((func= *(func_ptr++)))
  {
    if (func->setup(thd))
      DBUG_RETURN(TRUE);
  }
  DBUG_RETURN(FALSE);
}


static void
init_tmptable_sum_functions(Item_sum **func_ptr)
{
  Item_sum *func;
  while ((func= *(func_ptr++)))
    func->reset_field();
}


/** Update record 0 in tmp_table from record 1. */

static void
update_tmptable_sum_func(Item_sum **func_ptr,
			 TABLE *tmp_table __attribute__((unused)))
{
  Item_sum *func;
  while ((func= *(func_ptr++)))
    func->update_field();
}


/** Copy result of sum functions to record in tmp_table. */

static void
copy_sum_funcs(Item_sum **func_ptr, Item_sum **end_ptr)
{
  for (; func_ptr != end_ptr ; func_ptr++)
    (void) (*func_ptr)->save_in_result_field(1);
  return;
}


static bool
init_sum_functions(Item_sum **func_ptr, Item_sum **end_ptr)
{
  for (; func_ptr != end_ptr ;func_ptr++)
  {
    if ((*func_ptr)->reset())
      return 1;
  }
  /* If rollup, calculate the upper sum levels */
  for ( ; *func_ptr ; func_ptr++)
  {
    if ((*func_ptr)->add())
      return 1;
  }
  return 0;
}


static bool
update_sum_func(Item_sum **func_ptr)
{
  Item_sum *func;
  for (; (func= (Item_sum*) *func_ptr) ; func_ptr++)
    if (func->add())
      return 1;
  return 0;
}

/** 
  Copy result of functions to record in tmp_table. 

  Uses the thread pointer to check for errors in 
  some of the val_xxx() methods called by the 
  save_in_result_field() function.
  TODO: make the Item::val_xxx() return error code

  @param func_ptr  array of the function Items to copy to the tmp table
  @param thd       pointer to the current thread for error checking
  @retval
    FALSE if OK
  @retval
    TRUE on error  
*/

bool
copy_funcs(Item **func_ptr, const THD *thd)
{
  Item *func;
  for (; (func = *func_ptr) ; func_ptr++)
  {
    func->save_in_result_field(1);
    /*
      Need to check the THD error state because Item::val_xxx() don't
      return error code, but can generate errors
      TODO: change it for a real status check when Item::val_xxx()
      are extended to return status code.
    */  
    if (thd->is_error())
      return TRUE;
  }
  return FALSE;
}


/**
  Create a condition for a const reference and add this to the
  currenct select for the table.
*/

static bool add_ref_to_table_cond(THD *thd, JOIN_TAB *join_tab)
{
  DBUG_ENTER("add_ref_to_table_cond");
  if (!join_tab->ref.key_parts)
    DBUG_RETURN(FALSE);

  Item_cond_and *cond=new Item_cond_and();
  TABLE *table=join_tab->table;
  int error= 0;
  if (!cond)
    DBUG_RETURN(TRUE);

  for (uint i=0 ; i < join_tab->ref.key_parts ; i++)
  {
    Field *field=table->field[table->key_info[join_tab->ref.key].key_part[i].
			      fieldnr-1];
    Item *value=join_tab->ref.items[i];
    cond->add(new Item_func_equal(new Item_field(field), value));
  }
  if (thd->is_fatal_error)
    DBUG_RETURN(TRUE);

  if (!cond->fixed)
  {
    Item *tmp_item= (Item*) cond;
    cond->fix_fields(thd, &tmp_item);
    DBUG_ASSERT(cond == tmp_item);
  }
  if (join_tab->select)
  {
    if (join_tab->select->cond)
      error=(int) cond->add(join_tab->select->cond);
    join_tab->select->cond= cond;
    join_tab->set_select_cond(cond, __LINE__);
  }
  else if ((join_tab->select= make_select(join_tab->table, 0, 0, cond, 0,
                                          &error)))
    join_tab->set_select_cond(cond, __LINE__);

  DBUG_RETURN(error ? TRUE : FALSE);
}


/**
  Free joins of subselect of this select.

  @param thd      THD pointer
  @param select   pointer to st_select_lex which subselects joins we will free
*/

void free_underlaid_joins(THD *thd, SELECT_LEX *select)
{
  for (SELECT_LEX_UNIT *unit= select->first_inner_unit();
       unit;
       unit= unit->next_unit())
    unit->cleanup();
}

/****************************************************************************
  ROLLUP handling
****************************************************************************/

/**
  Replace occurences of group by fields in an expression by ref items.

  The function replaces occurrences of group by fields in expr
  by ref objects for these fields unless they are under aggregate
  functions.
  The function also corrects value of the the maybe_null attribute
  for the items of all subexpressions containing group by fields.

  @b EXAMPLES
    @code
      SELECT a+1 FROM t1 GROUP BY a WITH ROLLUP
      SELECT SUM(a)+a FROM t1 GROUP BY a WITH ROLLUP 
  @endcode

  @b IMPLEMENTATION

    The function recursively traverses the tree of the expr expression,
    looks for occurrences of the group by fields that are not under
    aggregate functions and replaces them for the corresponding ref items.

  @note
    This substitution is needed GROUP BY queries with ROLLUP if
    SELECT list contains expressions over group by attributes.

  @param thd                  reference to the context
  @param expr                 expression to make replacement
  @param group_list           list of references to group by items
  @param changed        out:  returns 1 if item contains a replaced field item

  @todo
    - TODO: Some functions are not null-preserving. For those functions
    updating of the maybe_null attribute is an overkill. 

  @retval
    0	if ok
  @retval
    1   on error
*/

static bool change_group_ref(THD *thd, Item_func *expr, ORDER *group_list,
                             bool *changed)
{
  if (expr->arg_count)
  {
    Name_resolution_context *context= &thd->lex->current_select->context;
    Item **arg,**arg_end;
    bool arg_changed= FALSE;
    for (arg= expr->arguments(),
         arg_end= expr->arguments()+expr->arg_count;
         arg != arg_end; arg++)
    {
      Item *item= *arg;
      if (item->type() == Item::FIELD_ITEM || item->type() == Item::REF_ITEM)
      {
        ORDER *group_tmp;
        for (group_tmp= group_list; group_tmp; group_tmp= group_tmp->next)
        {
          if (item->eq(*group_tmp->item,0))
          {
            Item *new_item;
            if (!(new_item= new Item_ref(context, group_tmp->item, 0,
                                        item->name)))
              return 1;                                 // fatal_error is set
            thd->change_item_tree(arg, new_item);
            arg_changed= TRUE;
          }
        }
      }
      else if (item->type() == Item::FUNC_ITEM)
      {
        if (change_group_ref(thd, (Item_func *) item, group_list, &arg_changed))
          return 1;
      }
    }
    if (arg_changed)
    {
      expr->maybe_null= 1;
      expr->in_rollup= 1;
      *changed= TRUE;
    }
  }
  return 0;
}


/** Allocate memory needed for other rollup functions. */

bool JOIN::rollup_init()
{
  uint i,j;
  Item **ref_array;

  tmp_table_param.quick_group= 0;	// Can't create groups in tmp table
  rollup.state= ROLLUP::STATE_INITED;

  /*
    Create pointers to the different sum function groups
    These are updated by rollup_make_fields()
  */
  tmp_table_param.group_parts= send_group_parts;

  if (!(rollup.null_items= (Item_null_result**) thd->alloc((sizeof(Item*) +
                                                sizeof(Item**) +
                                                sizeof(List<Item>) +
				                ref_pointer_array_size)
				                * send_group_parts )))
    return 1;
  
  rollup.fields= (List<Item>*) (rollup.null_items + send_group_parts);
  rollup.ref_pointer_arrays= (Item***) (rollup.fields + send_group_parts);
  ref_array= (Item**) (rollup.ref_pointer_arrays+send_group_parts);

  /*
    Prepare space for field list for the different levels
    These will be filled up in rollup_make_fields()
  */
  for (i= 0 ; i < send_group_parts ; i++)
  {
    rollup.null_items[i]= new (thd->mem_root) Item_null_result();
    List<Item> *rollup_fields= &rollup.fields[i];
    rollup_fields->empty();
    rollup.ref_pointer_arrays[i]= ref_array;
    ref_array+= all_fields.elements;
  }
  for (i= 0 ; i < send_group_parts; i++)
  {
    for (j=0 ; j < fields_list.elements ; j++)
      rollup.fields[i].push_back(rollup.null_items[i]);
  }
  List_iterator<Item> it(all_fields);
  Item *item;
  while ((item= it++))
  {
    ORDER *group_tmp;
    bool found_in_group= 0;

    for (group_tmp= group_list; group_tmp; group_tmp= group_tmp->next)
    {
      if (*group_tmp->item == item)
      {
        item->maybe_null= 1;
        item->in_rollup= 1;
        found_in_group= 1;
        break;
      }
    }
    if (item->type() == Item::FUNC_ITEM && !found_in_group)
    {
      bool changed= FALSE;
      if (change_group_ref(thd, (Item_func *) item, group_list, &changed))
        return 1;
      /*
        We have to prevent creation of a field in a temporary table for
        an expression that contains GROUP BY attributes.
        Marking the expression item as 'with_sum_func' will ensure this.
      */ 
      if (changed)
        item->with_sum_func= 1;
    }
  }
  return 0;
}

/**
   Wrap all constant Items in GROUP BY list.

   For ROLLUP queries each constant item referenced in GROUP BY list
   is wrapped up into an Item_func object yielding the same value
   as the constant item. The objects of the wrapper class are never
   considered as constant items and besides they inherit all
   properties of the Item_result_field class.
   This wrapping allows us to ensure writing constant items
   into temporary tables whenever the result of the ROLLUP
   operation has to be written into a temporary table, e.g. when
   ROLLUP is used together with DISTINCT in the SELECT list.
   Usually when creating temporary tables for a intermidiate
   result we do not include fields for constant expressions.

   @retval
     0  if ok
   @retval
     1  on error
*/

bool JOIN::rollup_process_const_fields()
{
  ORDER *group_tmp;
  Item *item;
  List_iterator<Item> it(all_fields);

  for (group_tmp= group_list; group_tmp; group_tmp= group_tmp->next)
  {
    if (!(*group_tmp->item)->const_item())
      continue;
    while ((item= it++))
    {
      if (*group_tmp->item == item)
      {
        Item* new_item= new Item_func_rollup_const(item);
        if (!new_item)
          return 1;
        new_item->fix_fields(thd, (Item **) 0);
        thd->change_item_tree(it.ref(), new_item);
        for (ORDER *tmp= group_tmp; tmp; tmp= tmp->next)
        {
          if (*tmp->item == item)
            thd->change_item_tree(tmp->item, new_item);
        }
        break;
      }
    }
    it.rewind();
  }
  return 0;
}
  

/**
  Fill up rollup structures with pointers to fields to use.

  Creates copies of item_sum items for each sum level.

  @param fields_arg		List of all fields (hidden and real ones)
  @param sel_fields		Pointer to selected fields
  @param func			Store here a pointer to all fields

  @retval
    0	if ok;
    In this case func is pointing to next not used element.
  @retval
    1    on error
*/

bool JOIN::rollup_make_fields(List<Item> &fields_arg, List<Item> &sel_fields,
			      Item_sum ***func)
{
  List_iterator_fast<Item> it(fields_arg);
  Item *first_field= sel_fields.head();
  uint level;

  /*
    Create field lists for the different levels

    The idea here is to have a separate field list for each rollup level to
    avoid all runtime checks of which columns should be NULL.

    The list is stored in reverse order to get sum function in such an order
    in func that it makes it easy to reset them with init_sum_functions()

    Assuming:  SELECT a, b, c SUM(b) FROM t1 GROUP BY a,b WITH ROLLUP

    rollup.fields[0] will contain list where a,b,c is NULL
    rollup.fields[1] will contain list where b,c is NULL
    ...
    rollup.ref_pointer_array[#] points to fields for rollup.fields[#]
    ...
    sum_funcs_end[0] points to all sum functions
    sum_funcs_end[1] points to all sum functions, except grand totals
    ...
  */

  for (level=0 ; level < send_group_parts ; level++)
  {
    uint i;
    uint pos= send_group_parts - level -1;
    bool real_fields= 0;
    Item *item;
    List_iterator<Item> new_it(rollup.fields[pos]);
    Item **ref_array_start= rollup.ref_pointer_arrays[pos];
    ORDER *start_group;

    /* Point to first hidden field */
    Item **ref_array= ref_array_start + fields_arg.elements-1;

    /* Remember where the sum functions ends for the previous level */
    sum_funcs_end[pos+1]= *func;

    /* Find the start of the group for this level */
    for (i= 0, start_group= group_list ;
	 i++ < pos ;
	 start_group= start_group->next)
      ;

    it.rewind();
    while ((item= it++))
    {
      if (item == first_field)
      {
	real_fields= 1;				// End of hidden fields
	ref_array= ref_array_start;
      }

      if (item->type() == Item::SUM_FUNC_ITEM && !item->const_item() &&
          (!((Item_sum*) item)->depended_from() ||
           ((Item_sum *)item)->depended_from() == select_lex))
          
      {
	/*
	  This is a top level summary function that must be replaced with
	  a sum function that is reset for this level.

	  NOTE: This code creates an object which is not that nice in a
	  sub select.  Fortunately it's not common to have rollup in
	  sub selects.
	*/
	item= item->copy_or_same(thd);
	((Item_sum*) item)->make_unique();
	*(*func)= (Item_sum*) item;
	(*func)++;
      }
      else 
      {
	/* Check if this is something that is part of this group by */
	ORDER *group_tmp;
	for (group_tmp= start_group, i= pos ;
             group_tmp ; group_tmp= group_tmp->next, i++)
	{
          if (*group_tmp->item == item)
	  {
	    /*
	      This is an element that is used by the GROUP BY and should be
	      set to NULL in this level
	    */
            Item_null_result *null_item= new (thd->mem_root) Item_null_result();
            if (!null_item)
              return 1;
	    item->maybe_null= 1;		// Value will be null sometimes
            null_item->result_field= item->get_tmp_table_field();
            item= null_item;
	    break;
	  }
	}
      }
      *ref_array= item;
      if (real_fields)
      {
	(void) new_it++;			// Point to next item
	new_it.replace(item);			// Replace previous
	ref_array++;
      }
      else
	ref_array--;
    }
  }
  sum_funcs_end[0]= *func;			// Point to last function
  return 0;
}

/**
  Send all rollup levels higher than the current one to the client.

  @b SAMPLE
    @code
      SELECT a, b, c SUM(b) FROM t1 GROUP BY a,b WITH ROLLUP
  @endcode

  @param idx		Level we are on:
                        - 0 = Total sum level
                        - 1 = First group changed  (a)
                        - 2 = Second group changed (a,b)

  @retval
    0   ok
  @retval
    1   If send_data_failed()
*/

int JOIN::rollup_send_data(uint idx)
{
  uint i;
  for (i= send_group_parts ; i-- > idx ; )
  {
    /* Get reference pointers to sum functions in place */
    memcpy((char*) ref_pointer_array,
	   (char*) rollup.ref_pointer_arrays[i],
	   ref_pointer_array_size);
    if ((!having || having->val_int()))
    {
      if (send_records < unit->select_limit_cnt && do_send_rows &&
	  result->send_data(rollup.fields[i]))
	return 1;
      send_records++;
    }
  }
  /* Restore ref_pointer_array */
  set_items_ref_array(current_ref_pointer_array);
  return 0;
}

/**
  Write all rollup levels higher than the current one to a temp table.

  @b SAMPLE
    @code
      SELECT a, b, SUM(c) FROM t1 GROUP BY a,b WITH ROLLUP
  @endcode

  @param idx                 Level we are on:
                               - 0 = Total sum level
                               - 1 = First group changed  (a)
                               - 2 = Second group changed (a,b)
  @param table               reference to temp table

  @retval
    0   ok
  @retval
    1   if write_data_failed()
*/

int JOIN::rollup_write_data(uint idx, TABLE *table_arg)
{
  uint i;
  for (i= send_group_parts ; i-- > idx ; )
  {
    /* Get reference pointers to sum functions in place */
    memcpy((char*) ref_pointer_array,
	   (char*) rollup.ref_pointer_arrays[i],
	   ref_pointer_array_size);
    if ((!having || having->val_int()))
    {
      int write_error;
      Item *item;
      List_iterator_fast<Item> it(rollup.fields[i]);
      while ((item= it++))
      {
        if (item->type() == Item::NULL_ITEM && item->is_result_field())
          item->save_in_result_field(1);
      }
      copy_sum_funcs(sum_funcs_end[i+1], sum_funcs_end[i]);
      if ((write_error= table_arg->file->ha_write_tmp_row(table_arg->record[0])))
      {
	if (create_internal_tmp_table_from_heap(thd, table_arg, 
                                                tmp_table_param.start_recinfo,
                                                &tmp_table_param.recinfo,
                                                write_error, 0))
	  return 1;		     
      }
    }
  }
  /* Restore ref_pointer_array */
  set_items_ref_array(current_ref_pointer_array);
  return 0;
}

/**
  clear results if there are not rows found for group
  (end_send_group/end_write_group)
*/

void JOIN::clear()
{
  clear_tables(this);
  copy_fields(&tmp_table_param);

  if (sum_funcs)
  {
    Item_sum *func, **func_ptr= sum_funcs;
    while ((func= *(func_ptr++)))
      func->clear();
  }
}

/**
  EXPLAIN handling.

  Send a description about what how the select will be done to stdout.
*/

static void select_describe(JOIN *join, bool need_tmp_table, bool need_order,
			    bool distinct,const char *message)
{
  List<Item> field_list;
  List<Item> item_list;
  THD *thd=join->thd;
  select_result *result=join->result;
  Item *item_null= new Item_null();
  CHARSET_INFO *cs= system_charset_info;
  int quick_type;
  DBUG_ENTER("select_describe");
  DBUG_PRINT("info", ("Select 0x%lx, type %s, message %s",
		      (ulong)join->select_lex, join->select_lex->type,
		      message ? message : "NULL"));
  /* Don't log this into the slow query log */
  thd->server_status&= ~(SERVER_QUERY_NO_INDEX_USED | SERVER_QUERY_NO_GOOD_INDEX_USED);
  join->unit->offset_limit_cnt= 0;

  /* 
    NOTE: the number/types of items pushed into item_list must be in sync with
    EXPLAIN column types as they're "defined" in THD::send_explain_fields()
  */
  if (message)
  {
    item_list.push_back(new Item_int((int32)
				     join->select_lex->select_number));
    item_list.push_back(new Item_string(join->select_lex->type,
					strlen(join->select_lex->type), cs));
    for (uint i=0 ; i < 7; i++)
      item_list.push_back(item_null);
    if (join->thd->lex->describe & DESCRIBE_PARTITIONS)
      item_list.push_back(item_null);
    if (join->thd->lex->describe & DESCRIBE_EXTENDED)
      item_list.push_back(item_null);
  
    item_list.push_back(new Item_string(message,strlen(message),cs));
    if (result->send_data(item_list))
      join->error= 1;
  }
  else if (join->select_lex == join->unit->fake_select_lex)
  {
    /* 
      here we assume that the query will return at least two rows, so we
      show "filesort" in EXPLAIN. Of course, sometimes we'll be wrong
      and no filesort will be actually done, but executing all selects in
      the UNION to provide precise EXPLAIN information will hardly be
      appreciated :)
    */
    char table_name_buffer[SAFE_NAME_LEN];
    item_list.empty();
    /* id */
    item_list.push_back(new Item_null);
    /* select_type */
    item_list.push_back(new Item_string(join->select_lex->type,
					strlen(join->select_lex->type),
					cs));
    /* table */
    {
      SELECT_LEX *sl= join->unit->first_select();
      uint len= 6, lastop= 0;
      memcpy(table_name_buffer, STRING_WITH_LEN("<union"));
      for (; sl && len + lastop + 5 < NAME_LEN; sl= sl->next_select())
      {
        len+= lastop;
        lastop= my_snprintf(table_name_buffer + len, NAME_LEN - len,
                            "%u,", sl->select_number);
      }
      if (sl || len + lastop >= NAME_LEN)
      {
        memcpy(table_name_buffer + len, STRING_WITH_LEN("...>") + 1);
        len+= 4;
      }
      else
      {
        len+= lastop;
        table_name_buffer[len - 1]= '>';  // change ',' to '>'
      }
      item_list.push_back(new Item_string(table_name_buffer, len, cs));
    }
    /* partitions */
    if (join->thd->lex->describe & DESCRIBE_PARTITIONS)
      item_list.push_back(item_null);
    /* type */
    item_list.push_back(new Item_string(join_type_str[JT_ALL],
					  strlen(join_type_str[JT_ALL]),
					  cs));
    /* possible_keys */
    item_list.push_back(item_null);
    /* key*/
    item_list.push_back(item_null);
    /* key_len */
    item_list.push_back(item_null);
    /* ref */
    item_list.push_back(item_null);
    /* in_rows */
    if (join->thd->lex->describe & DESCRIBE_EXTENDED)
      item_list.push_back(item_null);
    /* rows */
    item_list.push_back(item_null);
    /* extra */
    if (join->unit->global_parameters->order_list.first)
      item_list.push_back(new Item_string("Using filesort",
					  14, cs));
    else
      item_list.push_back(new Item_string("", 0, cs));

    if (result->send_data(item_list))
      join->error= 1;
  }
  else
  {
    table_map used_tables=0;

    bool printing_materialize_nest= FALSE;
    uint select_id= join->select_lex->select_number;

    List_iterator<JOIN_TAB_RANGE> it(join->join_tab_ranges);
    JOIN_TAB_RANGE *jt_range;
    while ((jt_range= it++))
    {
    if (jt_range != join->join_tab_ranges.head())
    {
      select_id= jt_range->start->emb_sj_nest->sj_subq_pred->get_identifier();
      printing_materialize_nest= TRUE;
    }

    for (JOIN_TAB *tab= jt_range->start + 0; tab < jt_range->end; tab++)
    {
      TABLE *table=tab->table;
      TABLE_LIST *table_list= tab->table->pos_in_table_list;
      char buff[512]; 
      char buff1[512], buff2[512], buff3[512], buff4[512];
      char keylen_str_buf[64];
      my_bool key_read;
      String extra(buff, sizeof(buff),cs);
      char table_name_buffer[SAFE_NAME_LEN];
      String tmp1(buff1,sizeof(buff1),cs);
      String tmp2(buff2,sizeof(buff2),cs);
      String tmp3(buff3,sizeof(buff3),cs);
      String tmp4(buff4,sizeof(buff4),cs);
      char hash_key_prefix[]= "#hash#";
      KEY *key_info= 0;
      uint key_len= 0;
      bool is_hj= tab->type == JT_HASH || tab->type ==JT_HASH_NEXT;

      extra.length(0);
      tmp1.length(0);
      tmp2.length(0);
      tmp3.length(0);
      tmp4.length(0);
      quick_type= -1;

      /* Don't show eliminated tables */
      if (table->map & join->eliminated_tables)
      {
        used_tables|=table->map;
        continue;
      }

      item_list.empty();
      /* id */
      item_list.push_back(new Item_uint((uint32)select_id));
      /* select_type */
      const char* stype= printing_materialize_nest? "SUBQUERY" : 
                                                    join->select_lex->type;
      item_list.push_back(new Item_string(stype, strlen(stype), cs));
      
      if ((tab->type == JT_ALL || tab->type == JT_HASH) &&
           tab->select && tab->select->quick)
      {
        quick_type= tab->select->quick->get_type();
        if ((quick_type == QUICK_SELECT_I::QS_TYPE_INDEX_MERGE) ||
            (quick_type == QUICK_SELECT_I::QS_TYPE_INDEX_INTERSECT) ||
            (quick_type == QUICK_SELECT_I::QS_TYPE_ROR_INTERSECT) ||
            (quick_type == QUICK_SELECT_I::QS_TYPE_ROR_UNION))
          tab->type= tab->type == JT_ALL ? JT_INDEX_MERGE : JT_HASH_INDEX_MERGE;
        else
	  tab->type= tab->type == JT_ALL ? JT_RANGE : JT_HASH_RANGE;
      }

      /* table */
      if (table->derived_select_number)
      {
	/* Derived table name generation */
	int len= my_snprintf(table_name_buffer, sizeof(table_name_buffer)-1,
			     "<derived%u>",
			     table->derived_select_number);
	item_list.push_back(new Item_string(table_name_buffer, len, cs));
      }
      else if (tab->bush_children)
      {
        JOIN_TAB *ctab= tab->bush_children->start;
        /* table */
        int len= my_snprintf(table_name_buffer, 
                             sizeof(table_name_buffer)-1,
                             "<subquery%d>", 
                             ctab->emb_sj_nest->sj_subq_pred->get_identifier());
	item_list.push_back(new Item_string(table_name_buffer, len, cs));
      }
      else
      {
        TABLE_LIST *real_table= table->pos_in_table_list; 
	item_list.push_back(new Item_string(real_table->alias,
					    strlen(real_table->alias),
					    cs));
      }
      /* "partitions" column */
      if (join->thd->lex->describe & DESCRIBE_PARTITIONS)
      {
#ifdef WITH_PARTITION_STORAGE_ENGINE
        partition_info *part_info;
        if (!table->derived_select_number && 
            (part_info= table->part_info))
        {          
          Item_string *item_str= new Item_string(cs);
          make_used_partitions_str(part_info, &item_str->str_value);
          item_list.push_back(item_str);
        }
        else
          item_list.push_back(item_null);
#else
        /* just produce empty column if partitioning is not compiled in */
        item_list.push_back(item_null); 
#endif
      }
      /* "type" column */
      item_list.push_back(new Item_string(join_type_str[tab->type],
					  strlen(join_type_str[tab->type]),
					  cs));
      /* Build "possible_keys" value and add it to item_list */
      if (!tab->keys.is_clear_all())
      {
        uint j;
        for (j=0 ; j < table->s->keys ; j++)
        {
          if (tab->keys.is_set(j))
          {
            if (tmp1.length())
              tmp1.append(',');
            tmp1.append(table->key_info[j].name, 
			strlen(table->key_info[j].name),
			system_charset_info);
          }
        }
      }
      if (tmp1.length())
	item_list.push_back(new Item_string(tmp1.ptr(),tmp1.length(),cs));
      else
	item_list.push_back(item_null);

      /* Build "key", "key_len", and "ref" values and add them to item_list */
      if (tab->type == JT_NEXT)
      {
	key_info= table->key_info+tab->index;
        key_len= key_info->key_length;
      }
      else if (tab->ref.key_parts)
      {
	key_info= tab->get_keyinfo_by_key_no(tab->ref.key);
        key_len= tab->ref.key_length;
      }
      if (key_info)
      {
        register uint length;
        if (is_hj)
          tmp2.append(hash_key_prefix, strlen(hash_key_prefix), cs);
        tmp2.append(key_info->name,  strlen(key_info->name), cs);
        length= (longlong10_to_str(key_len, keylen_str_buf, 10) - 
                 keylen_str_buf);
        tmp3.append(keylen_str_buf, length, cs);
        if (tab->ref.key_parts)
	{
	  for (store_key **ref=tab->ref.key_copy ; *ref ; ref++)
	  {
	    if (tmp4.length())
	      tmp4.append(',');
	    tmp4.append((*ref)->name(), strlen((*ref)->name()), cs);
          }
        }
      }
      if (is_hj && tab->type != JT_HASH)
      {
        tmp2.append(':');
        tmp3.append(':');
      }
      if (tab->type == JT_HASH_NEXT)
      {
        register uint length;
	key_info= table->key_info+tab->index;
        key_len= key_info->key_length;
        tmp2.append(key_info->name,  strlen(key_info->name), cs);
        length= (longlong10_to_str(key_len, keylen_str_buf, 10) - 
                 keylen_str_buf);
        tmp3.append(keylen_str_buf, length, cs);
      }         
      if (tab->select && tab->select->quick)
        tab->select->quick->add_keys_and_lengths(&tmp2, &tmp3);
      if (key_info || (tab->select && tab->select->quick))
      {
        if (tmp2.length())
          item_list.push_back(new Item_string(tmp2.ptr(),tmp2.length(),cs));
        else
          item_list.push_back(item_null);
        if (tmp3.length())
          item_list.push_back(new Item_string(tmp3.ptr(),tmp3.length(),cs));
        else
          item_list.push_back(item_null);
        if (key_info && tab->type != JT_NEXT)
          item_list.push_back(new Item_string(tmp4.ptr(),tmp4.length(),cs));
        else
          item_list.push_back(item_null);
      }
      else
      {
        if (table_list && /* SJM bushes don't have table_list */
            table_list->schema_table &&
            table_list->schema_table->i_s_requested_object & OPTIMIZE_I_S_TABLE)
        {
          const char *tmp_buff;
          int f_idx;
          if (table_list->has_db_lookup_value)
          {
            f_idx= table_list->schema_table->idx_field1;
            tmp_buff= table_list->schema_table->fields_info[f_idx].field_name;
            tmp2.append(tmp_buff, strlen(tmp_buff), cs);
          }          
          if (table_list->has_table_lookup_value)
          {
            if (table_list->has_db_lookup_value)
              tmp2.append(',');
            f_idx= table_list->schema_table->idx_field2;
            tmp_buff= table_list->schema_table->fields_info[f_idx].field_name;
            tmp2.append(tmp_buff, strlen(tmp_buff), cs);
          }
          if (tmp2.length())
            item_list.push_back(new Item_string(tmp2.ptr(),tmp2.length(),cs));
          else
            item_list.push_back(item_null);
        }
        else
          item_list.push_back(item_null);
	item_list.push_back(item_null);
	item_list.push_back(item_null);
      }
      
      /* Add "rows" field to item_list. */
      if (table_list /* SJM bushes don't have table_list */ &&
          table_list->schema_table)
      {
        /* in_rows */
        if (join->thd->lex->describe & DESCRIBE_EXTENDED)
          item_list.push_back(item_null);
        /* rows */
        item_list.push_back(item_null);
      }
      else
      {
        ha_rows examined_rows;
        if (tab->select && tab->select->quick)
          examined_rows= tab->select->quick->records;
        else if (tab->type == JT_NEXT || tab->type == JT_ALL || is_hj)
        {
          if (tab->limit)
            examined_rows= tab->limit;
          else
          {
            if (!tab->table->pos_in_table_list ||
                tab->table->is_filled_at_execution()) // temporary, is_filled_at_execution
            {
              examined_rows= tab->records;
            }
            else
            {
              /*
                handler->info(HA_STATUS_VARIABLE) has been called in
                make_join_statistics()
              */
              examined_rows= tab->table->file->stats.records;
            }
          }
        }
        else
          examined_rows=(ha_rows)tab->records_read; 
 
        item_list.push_back(new Item_int((longlong) (ulonglong) examined_rows, 
                                         MY_INT64_NUM_DECIMAL_DIGITS));

        /* Add "filtered" field to item_list. */
        if (join->thd->lex->describe & DESCRIBE_EXTENDED)
        {
          /*
            psergey-todo: 
              in the code above, we cast to integer when asssigning to
              examined_rows. 
              In the code below, we may divide original value but result of
              conversion of the same value to integer, which may produce a
              value that's greater than 100%, which looks very odd.
              I'm not fixing this right away because that might trigger a wave
              of small EXPLAIN EXTENDED output changes, which I don't have time
              to deal with right now.
          */
          float f= 0.0; 
          if (examined_rows)
            f= (float) (100.0 * tab->records_read/*join->best_positions[i].records_read*/ /
                        examined_rows);
          item_list.push_back(new Item_float(f, 2));
        }
      }

      /* Build "Extra" field and add it to item_list. */
      key_read=table->key_read;
      if ((tab->type == JT_NEXT || tab->type == JT_CONST) &&
          table->covering_keys.is_set(tab->index))
	key_read=1;
      if (quick_type == QUICK_SELECT_I::QS_TYPE_ROR_INTERSECT &&
          !((QUICK_ROR_INTERSECT_SELECT*)tab->select->quick)->need_to_fetch_row)
        key_read=1;
        
      if (tab->info)
	item_list.push_back(new Item_string(tab->info,strlen(tab->info),cs));
      else if (tab->packed_info & TAB_INFO_HAVE_VALUE)
      {
        if (tab->packed_info & TAB_INFO_USING_INDEX)
          extra.append(STRING_WITH_LEN("; Using index"));
        if (tab->packed_info & TAB_INFO_USING_WHERE)
          extra.append(STRING_WITH_LEN("; Using where"));
        if (tab->packed_info & TAB_INFO_FULL_SCAN_ON_NULL)
          extra.append(STRING_WITH_LEN("; Full scan on NULL key"));
        /* Skip initial "; "*/
        const char *str= extra.ptr();
        uint32 len= extra.length();
        if (len)
        {
          str += 2;
          len -= 2;
        }
	item_list.push_back(new Item_string(str, len, cs));
      }
      else
      {
        uint keyno= MAX_KEY;
        if (tab->ref.key_parts)
          keyno= tab->ref.key;
        else if (tab->select && tab->select->quick)
          keyno = tab->select->quick->index;

        if (keyno != MAX_KEY && keyno == table->file->pushed_idx_cond_keyno &&
            table->file->pushed_idx_cond)
          extra.append(STRING_WITH_LEN("; Using index condition"));
        else if (tab->cache_idx_cond)
          extra.append(STRING_WITH_LEN("; Using index condition(BKA)"));

        if (quick_type == QUICK_SELECT_I::QS_TYPE_ROR_UNION || 
            quick_type == QUICK_SELECT_I::QS_TYPE_ROR_INTERSECT ||
            quick_type == QUICK_SELECT_I::QS_TYPE_INDEX_INTERSECT ||
            quick_type == QUICK_SELECT_I::QS_TYPE_INDEX_MERGE)
        {
          extra.append(STRING_WITH_LEN("; Using "));
          tab->select->quick->add_info_string(&extra);
        }
	if (tab->select)
	{
	  if (tab->use_quick == 2)
	  {
            /* 4 bits per 1 hex digit + terminating '\0' */
            char buf[MAX_KEY / 4 + 1];
            extra.append(STRING_WITH_LEN("; Range checked for each "
                                         "record (index map: 0x"));
            extra.append(tab->keys.print(buf));
            extra.append(')');
	  }
	  else if (tab->select->cond)
          {
            const COND *pushed_cond= tab->table->file->pushed_cond;

            if (thd->variables.engine_condition_pushdown && pushed_cond)
            {
              extra.append(STRING_WITH_LEN("; Using where with pushed "
                                           "condition"));
              if (thd->lex->describe & DESCRIBE_EXTENDED)
              {
                extra.append(STRING_WITH_LEN(": "));
                ((COND *)pushed_cond)->print(&extra, QT_ORDINARY);
              }
            }
            else
              extra.append(STRING_WITH_LEN("; Using where"));
          }
	}
        if (table_list /* SJM bushes don't have table_list */ &&
            table_list->schema_table &&
            table_list->schema_table->i_s_requested_object & OPTIMIZE_I_S_TABLE)
        {
          if (!table_list->table_open_method)
            extra.append(STRING_WITH_LEN("; Skip_open_table"));
          else if (table_list->table_open_method == OPEN_FRM_ONLY)
            extra.append(STRING_WITH_LEN("; Open_frm_only"));
          else
            extra.append(STRING_WITH_LEN("; Open_full_table"));
          if (table_list->has_db_lookup_value &&
              table_list->has_table_lookup_value)
            extra.append(STRING_WITH_LEN("; Scanned 0 databases"));
          else if (table_list->has_db_lookup_value ||
                   table_list->has_table_lookup_value)
            extra.append(STRING_WITH_LEN("; Scanned 1 database"));
          else
            extra.append(STRING_WITH_LEN("; Scanned all databases"));
        }
	if (key_read)
        {
          if (quick_type == QUICK_SELECT_I::QS_TYPE_GROUP_MIN_MAX)
            extra.append(STRING_WITH_LEN("; Using index for group-by"));
          else
            extra.append(STRING_WITH_LEN("; Using index"));
        }
	if (table->reginfo.not_exists_optimize)
	  extra.append(STRING_WITH_LEN("; Not exists"));

        if (quick_type == QUICK_SELECT_I::QS_TYPE_RANGE &&
            !(((QUICK_RANGE_SELECT*)(tab->select->quick))->mrr_flags &
             HA_MRR_USE_DEFAULT_IMPL))
        {
	  extra.append(STRING_WITH_LEN("; Using MRR"));
        }

	if (need_tmp_table)
	{
	  need_tmp_table=0;
	  extra.append(STRING_WITH_LEN("; Using temporary"));
	}
	if (need_order)
	{
	  need_order=0;
	  extra.append(STRING_WITH_LEN("; Using filesort"));
	}
	if (distinct & test_all_bits(used_tables,thd->used_tables))
	  extra.append(STRING_WITH_LEN("; Distinct"));
        if (tab->loosescan_match_tab)
        {
          extra.append(STRING_WITH_LEN("; LooseScan"));
        }

        if (tab->flush_weedout_table)
          extra.append(STRING_WITH_LEN("; Start temporary"));
        if (tab->check_weed_out_table)
          extra.append(STRING_WITH_LEN("; End temporary"));
        else if (tab->do_firstmatch)
        {
          if (tab->do_firstmatch == join->join_tab - 1)
            extra.append(STRING_WITH_LEN("; FirstMatch"));
          else
          {
            extra.append(STRING_WITH_LEN("; FirstMatch("));
            TABLE *prev_table=tab->do_firstmatch->table;
            if (prev_table->derived_select_number)
            {
              char namebuf[NAME_LEN];
              /* Derived table name generation */
              int len= my_snprintf(namebuf, sizeof(namebuf)-1,
                                   "<derived%u>",
                                   prev_table->derived_select_number);
              extra.append(namebuf, len);
            }
            else
              extra.append(prev_table->pos_in_table_list->alias);
            extra.append(STRING_WITH_LEN(")"));
          }
        }

        for (uint part= 0; part < tab->ref.key_parts; part++)
        {
          if (tab->ref.cond_guards[part])
          {
            extra.append(STRING_WITH_LEN("; Full scan on NULL key"));
            break;
          }
        }

        if (tab->cache)
	{
          extra.append(STRING_WITH_LEN("; Using join buffer"));
          tab->cache->print_explain_comment(&extra);
        }
        
        /* Skip initial "; "*/
        const char *str= extra.ptr();
        uint32 len= extra.length();
        if (len)
        {
          str += 2;
          len -= 2;
        }
	item_list.push_back(new Item_string(str, len, cs));
      }
      
      // For next iteration
      used_tables|=table->map;
      if (result->send_data(item_list))
	join->error= 1;
    }
    }
  }
  for (SELECT_LEX_UNIT *unit= join->select_lex->first_inner_unit();
       unit;
       unit= unit->next_unit())
  {
    /*
      This fix_fields() call is to handle an edge case like this:
       
        SELECT ... UNION SELECT ... ORDER BY (SELECT ...)
      
      for such queries, we'll get here before having called
      subquery_expr->fix_fields(), which will cause failure to
    */
    if (unit->item && !unit->item->fixed)
    {
      Item *ref= unit->item;
      if (unit->item->fix_fields(thd, &ref))
        DBUG_VOID_RETURN;
      DBUG_ASSERT(ref == unit->item);
    }

    /* 
      Display subqueries only if they are not parts of eliminated WHERE/ON
      clauses.
    */
    if (!(unit->item && unit->item->eliminated))
    {
      if (mysql_explain_union(thd, unit, result))
        DBUG_VOID_RETURN;
    }
  }
  DBUG_VOID_RETURN;
}


bool mysql_explain_union(THD *thd, SELECT_LEX_UNIT *unit, select_result *result)
{
  DBUG_ENTER("mysql_explain_union");
  bool res= 0;
  SELECT_LEX *first= unit->first_select();

  for (SELECT_LEX *sl= first;
       sl;
       sl= sl->next_select())
  {
    // drop UNCACHEABLE_EXPLAIN, because it is for internal usage only
    uint8 uncacheable= (sl->uncacheable & ~UNCACHEABLE_EXPLAIN);
    sl->type= (((&thd->lex->select_lex)==sl)?
	       (sl->first_inner_unit() || sl->next_select() ? 
		"PRIMARY" : "SIMPLE"):
	       ((sl == first)?
		((sl->linkage == DERIVED_TABLE_TYPE) ?
		 "DERIVED":
		 ((uncacheable & UNCACHEABLE_DEPENDENT) ?
		  "DEPENDENT SUBQUERY":
		  (uncacheable?"UNCACHEABLE SUBQUERY":
		   "SUBQUERY"))):
		((uncacheable & UNCACHEABLE_DEPENDENT) ?
		 "DEPENDENT UNION":
		 uncacheable?"UNCACHEABLE UNION":
		 "UNION")));
    sl->options|= SELECT_DESCRIBE;
  }
  if (unit->is_union())
  {
    unit->fake_select_lex->select_number= UINT_MAX; // jost for initialization
    unit->fake_select_lex->type= "UNION RESULT";
    unit->fake_select_lex->options|= SELECT_DESCRIBE;
    if (!(res= unit->prepare(thd, result, SELECT_NO_UNLOCK | SELECT_DESCRIBE)))
      res= unit->exec();
  }
  else
  {
    thd->lex->current_select= first;
    unit->set_limit(unit->global_parameters);
    res= mysql_select(thd, &first->ref_pointer_array,
			first->table_list.first,
			first->with_wild, first->item_list,
			first->where,
			first->order_list.elements +
			first->group_list.elements,
			first->order_list.first,
			first->group_list.first,
			first->having,
			thd->lex->proc_list.first,
			first->options | thd->options | SELECT_DESCRIBE,
			result, unit, first);
  }
  DBUG_RETURN(res || thd->is_error());
}


static void print_table_array(THD *thd, 
                              table_map eliminated_tables,
                              String *str, TABLE_LIST **table, 
                              TABLE_LIST **end,
                              enum_query_type query_type)
{
  (*table)->print(thd, eliminated_tables, str, query_type);

  for (TABLE_LIST **tbl= table + 1; tbl < end; tbl++)
  {
    TABLE_LIST *curr= *tbl;
    
    /*
      The "eliminated_tables &&" check guards againist the case of 
      printing the query for CREATE VIEW. We do that without having run 
      JOIN::optimize() and so will have nested_join->used_tables==0.
    */
    if (eliminated_tables &&
        ((curr->table && (curr->table->map & eliminated_tables)) ||
         (curr->nested_join && !(curr->nested_join->used_tables &
                                ~eliminated_tables))))
    {
      continue;
    }

    if (curr->outer_join)
    {
      /* MySQL converts right to left joins */
      str->append(STRING_WITH_LEN(" left join "));
    }
    else if (curr->straight)
      str->append(STRING_WITH_LEN(" straight_join "));
    else if (curr->sj_inner_tables)
      str->append(STRING_WITH_LEN(" semi join "));
    else
      str->append(STRING_WITH_LEN(" join "));
    curr->print(thd, eliminated_tables, str, query_type);
    if (curr->on_expr)
    {
      str->append(STRING_WITH_LEN(" on("));
      curr->on_expr->print(str, query_type);
      str->append(')');
    }
  }
}


/**
  Print joins from the FROM clause.

  @param thd     thread handler
  @param str     string where table should be printed
  @param tables  list of tables in join
  @query_type    type of the query is being generated
*/

static void print_join(THD *thd,
                       table_map eliminated_tables,
                       String *str,
                       List<TABLE_LIST> *tables,
                       enum_query_type query_type)
{
  /* List is reversed => we should reverse it before using */
  List_iterator_fast<TABLE_LIST> ti(*tables);
  TABLE_LIST **table= (TABLE_LIST **)thd->alloc(sizeof(TABLE_LIST*) *
                                                tables->elements);
  if (table == 0)
    return;  // out of memory

  for (TABLE_LIST **t= table + (tables->elements - 1); t >= table; t--)
    *t= ti++;

  DBUG_ASSERT(tables->elements >= 1);
  /*
    Assert that the first table in the list isn't eliminated. This comes from
    the fact that the first table can't be inner table of an outer join.
  */
  DBUG_ASSERT(!eliminated_tables || 
              !(((*table)->table && ((*table)->table->map & eliminated_tables)) ||
                ((*table)->nested_join && !((*table)->nested_join->used_tables &
                                           ~eliminated_tables))));
  /* 
    If the first table is a semi-join nest, swap it with something that is
    not a semi-join nest.
  */
  if ((*table)->sj_inner_tables)
  {
    TABLE_LIST **end= table + tables->elements;
    for (TABLE_LIST **t2= table; t2!=end; t2++)
    {
      if (!(*t2)->sj_inner_tables)
      {
        TABLE_LIST *tmp= *t2;
        *t2= *table;
        *table= tmp;
        break;
      }
    }
  }
  print_table_array(thd, eliminated_tables, str, table, 
                    table + tables->elements, query_type);
}

/**
  @brief Print an index hint

  @details Prints out the USE|FORCE|IGNORE index hint.

  @param      thd         the current thread
  @param[out] str         appends the index hint here
  @param      hint        what the hint is (as string : "USE INDEX"|
                          "FORCE INDEX"|"IGNORE INDEX")
  @param      hint_length the length of the string in 'hint'
  @param      indexes     a list of index names for the hint
*/

void 
Index_hint::print(THD *thd, String *str)
{
  switch (type)
  {
    case INDEX_HINT_IGNORE: str->append(STRING_WITH_LEN("IGNORE INDEX")); break;
    case INDEX_HINT_USE:    str->append(STRING_WITH_LEN("USE INDEX")); break;
    case INDEX_HINT_FORCE:  str->append(STRING_WITH_LEN("FORCE INDEX")); break;
  }
  str->append (STRING_WITH_LEN(" ("));
  if (key_name.length)
  {
    if (thd && !my_strnncoll(system_charset_info,
                             (const uchar *)key_name.str, key_name.length, 
                             (const uchar *)primary_key_name, 
                             strlen(primary_key_name)))
      str->append(primary_key_name);
    else
      append_identifier(thd, str, key_name.str, key_name.length);
  }
  str->append(')');
}


/**
  Print table as it should be in join list.

  @param str   string where table should be printed
*/

void TABLE_LIST::print(THD *thd, table_map eliminated_tables, String *str, 
                       enum_query_type query_type)
{
  if (nested_join)
  {
    str->append('(');
    print_join(thd, eliminated_tables, str, &nested_join->join_list, query_type);
    str->append(')');
  }
  else if (jtbm_subselect)
  {
    str->append(STRING_WITH_LEN(" <materialize> ("));
    subselect_hash_sj_engine *hash_engine;
    hash_engine= (subselect_hash_sj_engine*)jtbm_subselect->engine;
    hash_engine->materialize_engine->print(str, query_type);
    str->append(')');
  }
  else
  {
    const char *cmp_name;                         // Name to compare with alias
    if (view_name.str)
    {
      // A view

      if (!(belong_to_view &&
            belong_to_view->compact_view_format))
      {
        append_identifier(thd, str, view_db.str, view_db.length);
        str->append('.');
      }
      append_identifier(thd, str, view_name.str, view_name.length);
      cmp_name= view_name.str;
    }
    else if (derived)
    {
      // A derived table
      str->append('(');
      derived->print(str, query_type);
      str->append(')');
      cmp_name= "";                               // Force printing of alias
    }
    else
    {
      // A normal table

      if (!(belong_to_view &&
            belong_to_view->compact_view_format))
      {
        append_identifier(thd, str, db, db_length);
        str->append('.');
      }
      if (schema_table)
      {
        append_identifier(thd, str, schema_table_name,
                          strlen(schema_table_name));
        cmp_name= schema_table_name;
      }
      else
      {
        append_identifier(thd, str, table_name, table_name_length);
        cmp_name= table_name;
      }
    }
    if (my_strcasecmp(table_alias_charset, cmp_name, alias))
    {
      char t_alias_buff[MAX_ALIAS_NAME];
      const char *t_alias= alias;

      str->append(' ');
      if (lower_case_table_names== 1)
      {
        if (alias && alias[0])
        {
          strmov(t_alias_buff, alias);
          my_casedn_str(files_charset_info, t_alias_buff);
          t_alias= t_alias_buff;
        }
      }

      append_identifier(thd, str, t_alias, strlen(t_alias));
    }

    if (index_hints)
    {
      List_iterator<Index_hint> it(*index_hints);
      Index_hint *hint;

      while ((hint= it++))
      {
        str->append (STRING_WITH_LEN(" "));
        hint->print (thd, str);
      }
    }
  }
}


void st_select_lex::print(THD *thd, String *str, enum_query_type query_type)
{
  DBUG_ASSERT(thd);

  str->append(STRING_WITH_LEN("select "));

  /* First add options */
  if (options & SELECT_STRAIGHT_JOIN)
    str->append(STRING_WITH_LEN("straight_join "));
  if ((thd->lex->lock_option == TL_READ_HIGH_PRIORITY) &&
      (this == &thd->lex->select_lex))
    str->append(STRING_WITH_LEN("high_priority "));
  if (options & SELECT_DISTINCT)
    str->append(STRING_WITH_LEN("distinct "));
  if (options & SELECT_SMALL_RESULT)
    str->append(STRING_WITH_LEN("sql_small_result "));
  if (options & SELECT_BIG_RESULT)
    str->append(STRING_WITH_LEN("sql_big_result "));
  if (options & OPTION_BUFFER_RESULT)
    str->append(STRING_WITH_LEN("sql_buffer_result "));
  if (options & OPTION_FOUND_ROWS)
    str->append(STRING_WITH_LEN("sql_calc_found_rows "));
  switch (sql_cache)
  {
    case SQL_NO_CACHE:
      str->append(STRING_WITH_LEN("sql_no_cache "));
      break;
    case SQL_CACHE:
      str->append(STRING_WITH_LEN("sql_cache "));
      break;
    case SQL_CACHE_UNSPECIFIED:
      break;
    default:
      DBUG_ASSERT(0);
  }

  //Item List
  bool first= 1;
  List_iterator_fast<Item> it(item_list);
  Item *item;
  while ((item= it++))
  {
    if (first)
      first= 0;
    else
      str->append(',');

    if (is_subquery_function() && item->is_autogenerated_name)
    {
      /*
        Do not print auto-generated aliases in subqueries. It has no purpose
        in a view definition or other contexts where the query is printed.
      */
      item->print(str, query_type);
    }
    else
      item->print_item_w_name(str, query_type);
  }

  /*
    from clause
    TODO: support USING/FORCE/IGNORE index
  */
  if (table_list.elements)
  {
    str->append(STRING_WITH_LEN(" from "));
    /* go through join tree */
    print_join(thd, join? join->eliminated_tables: 0, str, &top_join_list, query_type);
  }
  else if (where)
  {
    /*
      "SELECT 1 FROM DUAL WHERE 2" should not be printed as 
      "SELECT 1 WHERE 2": the 1st syntax is valid, but the 2nd is not.
    */
    str->append(STRING_WITH_LEN(" from DUAL "));
  }

  // Where
  Item *cur_where= where;
  if (join)
    cur_where= join->conds;
  if (cur_where || cond_value != Item::COND_UNDEF)
  {
    str->append(STRING_WITH_LEN(" where "));
    if (cur_where)
      cur_where->print(str, query_type);
    else
      str->append(cond_value != Item::COND_FALSE ? "1" : "0");
  }

  // group by & olap
  if (group_list.elements)
  {
    str->append(STRING_WITH_LEN(" group by "));
    print_order(str, group_list.first, query_type);
    switch (olap)
    {
      case CUBE_TYPE:
	str->append(STRING_WITH_LEN(" with cube"));
	break;
      case ROLLUP_TYPE:
	str->append(STRING_WITH_LEN(" with rollup"));
	break;
      default:
	;  //satisfy compiler
    }
  }

  // having
  Item *cur_having= having;
  if (join)
    cur_having= join->having;

  if (cur_having || having_value != Item::COND_UNDEF)
  {
    str->append(STRING_WITH_LEN(" having "));
    if (cur_having)
      cur_having->print(str, query_type);
    else
      str->append(having_value != Item::COND_FALSE ? "1" : "0");
  }

  if (order_list.elements)
  {
    str->append(STRING_WITH_LEN(" order by "));
    print_order(str, order_list.first, query_type);
  }

  // limit
  print_limit(thd, str, query_type);

  // PROCEDURE unsupported here
}


/**
  change select_result object of JOIN.

  @param res		new select_result object

  @retval
    FALSE   OK
  @retval
    TRUE    error
*/

bool JOIN::change_result(select_result *res)
{
  DBUG_ENTER("JOIN::change_result");
  result= res;
  if (!procedure && (result->prepare(fields_list, select_lex->master_unit()) ||
                     result->prepare2()))
  {
    DBUG_RETURN(TRUE);
  }
  DBUG_RETURN(FALSE);
}


/**
  @brief
  Set allowed types of join caches that can be used for join operations

  @details
  The function sets a bitmap of allowed join buffers types in the field
  allowed_join_cache_types of this JOIN structure:
    bit 1 is set if tjoin buffers are allowed to be incremental
    bit 2 is set if the join buffers are allowed to be hashed
    but 3 is set if the join buffers are allowed to be used for BKA
  join algorithms.
  The allowed types are read from system variables.
  Besides the function sets maximum allowed join cache level that is
  also read from a system variable.
*/

void JOIN::set_allowed_join_cache_types()
{
  allowed_join_cache_types= 0;
  if (optimizer_flag(thd, OPTIMIZER_SWITCH_JOIN_CACHE_INCREMENTAL))
    allowed_join_cache_types|= JOIN_CACHE_INCREMENTAL_BIT;
  if (optimizer_flag(thd, OPTIMIZER_SWITCH_JOIN_CACHE_HASHED))
    allowed_join_cache_types|= JOIN_CACHE_HASHED_BIT;
  if (optimizer_flag(thd, OPTIMIZER_SWITCH_JOIN_CACHE_BKA))
    allowed_join_cache_types|= JOIN_CACHE_BKA_BIT;
  allowed_semijoin_with_cache=
    optimizer_flag(thd, OPTIMIZER_SWITCH_SEMIJOIN_WITH_CACHE);
  allowed_outer_join_with_cache=
    optimizer_flag(thd, OPTIMIZER_SWITCH_OUTER_JOIN_WITH_CACHE);
  max_allowed_join_cache_level= thd->variables.join_cache_level;
}


/**
  @} (end of group Query_Optimizer)
*/