/* Copyright (C) 2000-2004 MySQL AB & MySQL Finland AB & TCX DataKonsult AB This program is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program; if not, write to the Free Software Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA */ /* mysql_select and join optimization */ #ifdef USE_PRAGMA_IMPLEMENTATION #pragma implementation // gcc: Class implementation #endif #include "mysql_priv.h" #include "sql_select.h" #include "sql_cursor.h" #include <m_ctype.h> #include <hash.h> #include <ft_global.h> const char *join_type_str[]={ "UNKNOWN","system","const","eq_ref","ref", "MAYBE_REF","ALL","range","index","fulltext", "ref_or_null","unique_subquery","index_subquery", "index_merge" }; struct st_sargable_param; static void optimize_keyuse(JOIN *join, DYNAMIC_ARRAY *keyuse_array); static bool make_join_statistics(JOIN *join, TABLE_LIST *leaves, COND *conds, DYNAMIC_ARRAY *keyuse); static bool update_ref_and_keys(THD *thd, DYNAMIC_ARRAY *keyuse, JOIN_TAB *join_tab, uint tables, COND *conds, COND_EQUAL *cond_equal, table_map table_map, SELECT_LEX *select_lex, st_sargable_param **sargables); static int sort_keyuse(KEYUSE *a,KEYUSE *b); static void set_position(JOIN *join,uint index,JOIN_TAB *table,KEYUSE *key); static bool create_ref_for_key(JOIN *join, JOIN_TAB *j, KEYUSE *org_keyuse, table_map used_tables); static void choose_plan(JOIN *join,table_map join_tables); static void best_access_path(JOIN *join, JOIN_TAB *s, THD *thd, table_map remaining_tables, uint idx, double record_count, double read_time); static void optimize_straight_join(JOIN *join, table_map join_tables); static void greedy_search(JOIN *join, table_map remaining_tables, uint depth, uint prune_level); static void best_extension_by_limited_search(JOIN *join, table_map remaining_tables, uint idx, double record_count, double read_time, uint depth, uint prune_level); static uint determine_search_depth(JOIN* join); static int join_tab_cmp(const void* ptr1, const void* ptr2); static int join_tab_cmp_straight(const void* ptr1, const void* ptr2); /* TODO: 'find_best' is here only temporarily until 'greedy_search' is tested and approved. */ static void find_best(JOIN *join,table_map rest_tables,uint index, double record_count,double read_time); static uint cache_record_length(JOIN *join,uint index); static double prev_record_reads(JOIN *join,table_map found_ref); static bool get_best_combination(JOIN *join); static store_key *get_store_key(THD *thd, KEYUSE *keyuse, table_map used_tables, KEY_PART_INFO *key_part, char *key_buff, uint maybe_null); static bool make_simple_join(JOIN *join,TABLE *tmp_table); static void make_outerjoin_info(JOIN *join); static bool make_join_select(JOIN *join,SQL_SELECT *select,COND *item); static void make_join_readinfo(JOIN *join,uint options); static bool only_eq_ref_tables(JOIN *join, ORDER *order, table_map tables); static void update_depend_map(JOIN *join); static void update_depend_map(JOIN *join, ORDER *order); static ORDER *remove_const(JOIN *join,ORDER *first_order,COND *cond, bool change_list, bool *simple_order); static int return_zero_rows(JOIN *join, select_result *res,TABLE_LIST *tables, List<Item> &fields, bool send_row, uint select_options, const char *info, Item *having); static COND *build_equal_items(THD *thd, COND *cond, COND_EQUAL *inherited, List<TABLE_LIST> *join_list, COND_EQUAL **cond_equal_ref); static COND* substitute_for_best_equal_field(COND *cond, COND_EQUAL *cond_equal, void *table_join_idx); static COND *simplify_joins(JOIN *join, List<TABLE_LIST> *join_list, COND *conds, bool top); static bool check_interleaving_with_nj(JOIN_TAB *last, JOIN_TAB *next); static void restore_prev_nj_state(JOIN_TAB *last); static void reset_nj_counters(List<TABLE_LIST> *join_list); static uint build_bitmap_for_nested_joins(List<TABLE_LIST> *join_list, uint first_unused); static COND *optimize_cond(JOIN *join, COND *conds, List<TABLE_LIST> *join_list, Item::cond_result *cond_value); static bool resolve_nested_join (TABLE_LIST *table); static bool const_expression_in_where(COND *conds,Item *item, Item **comp_item); static bool open_tmp_table(TABLE *table); static bool create_myisam_tmp_table(TABLE *table,TMP_TABLE_PARAM *param, ulong options); static int do_select(JOIN *join,List<Item> *fields,TABLE *tmp_table, Procedure *proc); static enum_nested_loop_state evaluate_join_record(JOIN *join, JOIN_TAB *join_tab, int error, my_bool *report_error); static enum_nested_loop_state evaluate_null_complemented_join_record(JOIN *join, JOIN_TAB *join_tab); static enum_nested_loop_state flush_cached_records(JOIN *join, JOIN_TAB *join_tab, bool skip_last); static enum_nested_loop_state end_send(JOIN *join, JOIN_TAB *join_tab, bool end_of_records); static enum_nested_loop_state end_send_group(JOIN *join, JOIN_TAB *join_tab, bool end_of_records); static enum_nested_loop_state end_write(JOIN *join, JOIN_TAB *join_tab, bool end_of_records); static enum_nested_loop_state end_update(JOIN *join, JOIN_TAB *join_tab, bool end_of_records); static enum_nested_loop_state end_unique_update(JOIN *join, JOIN_TAB *join_tab, bool end_of_records); static enum_nested_loop_state end_write_group(JOIN *join, JOIN_TAB *join_tab, bool end_of_records); static int test_if_group_changed(List<Cached_item> &list); static int join_read_const_table(JOIN_TAB *tab, POSITION *pos); static int join_read_system(JOIN_TAB *tab); static int join_read_const(JOIN_TAB *tab); static int join_read_key(JOIN_TAB *tab); static int join_read_always_key(JOIN_TAB *tab); static int join_read_last_key(JOIN_TAB *tab); static int join_no_more_records(READ_RECORD *info); static int join_read_next(READ_RECORD *info); static int join_init_quick_read_record(JOIN_TAB *tab); static int test_if_quick_select(JOIN_TAB *tab); static int join_init_read_record(JOIN_TAB *tab); static int join_read_first(JOIN_TAB *tab); static int join_read_next(READ_RECORD *info); static int join_read_next_same(READ_RECORD *info); static int join_read_last(JOIN_TAB *tab); static int join_read_prev_same(READ_RECORD *info); static int join_read_prev(READ_RECORD *info); static int join_ft_read_first(JOIN_TAB *tab); static int join_ft_read_next(READ_RECORD *info); static int join_read_always_key_or_null(JOIN_TAB *tab); static int join_read_next_same_or_null(READ_RECORD *info); static COND *make_cond_for_table(COND *cond,table_map table, table_map used_table); static Item* part_of_refkey(TABLE *form,Field *field); uint find_shortest_key(TABLE *table, const key_map *usable_keys); static bool test_if_skip_sort_order(JOIN_TAB *tab,ORDER *order, ha_rows select_limit, bool no_changes); static bool list_contains_unique_index(TABLE *table, bool (*find_func) (Field *, void *), void *data); static bool find_field_in_item_list (Field *field, void *data); static bool find_field_in_order_list (Field *field, void *data); static int create_sort_index(THD *thd, JOIN *join, ORDER *order, ha_rows filesort_limit, ha_rows select_limit); static int remove_duplicates(JOIN *join,TABLE *entry,List<Item> &fields, Item *having); static int remove_dup_with_compare(THD *thd, TABLE *entry, Field **field, ulong offset,Item *having); static int remove_dup_with_hash_index(THD *thd,TABLE *table, uint field_count, Field **first_field, ulong key_length,Item *having); static int join_init_cache(THD *thd,JOIN_TAB *tables,uint table_count); static ulong used_blob_length(CACHE_FIELD **ptr); static bool store_record_in_cache(JOIN_CACHE *cache); static void reset_cache_read(JOIN_CACHE *cache); static void reset_cache_write(JOIN_CACHE *cache); static void read_cached_record(JOIN_TAB *tab); static bool cmp_buffer_with_ref(JOIN_TAB *tab); static bool setup_new_fields(THD *thd, List<Item> &fields, List<Item> &all_fields, ORDER *new_order); static ORDER *create_distinct_group(THD *thd, Item **ref_pointer_array, ORDER *order, List<Item> &fields, bool *all_order_by_fields_used); static bool test_if_subpart(ORDER *a,ORDER *b); static TABLE *get_sort_by_table(ORDER *a,ORDER *b,TABLE_LIST *tables); static void calc_group_buffer(JOIN *join,ORDER *group); static bool make_group_fields(JOIN *main_join, JOIN *curr_join); static bool alloc_group_fields(JOIN *join,ORDER *group); // Create list for using with tempory table static bool change_to_use_tmp_fields(THD *thd, Item **ref_pointer_array, List<Item> &new_list1, List<Item> &new_list2, uint elements, List<Item> &items); // Create list for using with tempory table static bool change_refs_to_tmp_fields(THD *thd, Item **ref_pointer_array, List<Item> &new_list1, List<Item> &new_list2, uint elements, List<Item> &items); static void init_tmptable_sum_functions(Item_sum **func); static void update_tmptable_sum_func(Item_sum **func,TABLE *tmp_table); static void copy_sum_funcs(Item_sum **func_ptr, Item_sum **end); static bool add_ref_to_table_cond(THD *thd, JOIN_TAB *join_tab); static bool setup_sum_funcs(THD *thd, Item_sum **func_ptr); static bool init_sum_functions(Item_sum **func, Item_sum **end); static bool update_sum_func(Item_sum **func); static void select_describe(JOIN *join, bool need_tmp_table,bool need_order, bool distinct, const char *message=NullS); static Item *remove_additional_cond(Item* conds); static void add_group_and_distinct_keys(JOIN *join, JOIN_TAB *join_tab); /* This handles SELECT with and without UNION */ bool handle_select(THD *thd, LEX *lex, select_result *result, ulong setup_tables_done_option) { bool res; register SELECT_LEX *select_lex = &lex->select_lex; DBUG_ENTER("handle_select"); if (select_lex->next_select() || select_lex->master_unit()->fake_select_lex) res= mysql_union(thd, lex, result, &lex->unit, setup_tables_done_option); else { SELECT_LEX_UNIT *unit= &lex->unit; unit->set_limit(unit->global_parameters); /* 'options' of mysql_select will be set in JOIN, as far as JOIN for every PS/SP execution new, we will not need reset this flag if setup_tables_done_option changed for next rexecution */ res= mysql_select(thd, &select_lex->ref_pointer_array, (TABLE_LIST*) select_lex->table_list.first, select_lex->with_wild, select_lex->item_list, select_lex->where, select_lex->order_list.elements + select_lex->group_list.elements, (ORDER*) select_lex->order_list.first, (ORDER*) select_lex->group_list.first, select_lex->having, (ORDER*) lex->proc_list.first, select_lex->options | thd->options | setup_tables_done_option, result, unit, select_lex); } DBUG_PRINT("info",("res: %d report_error: %d", res, thd->net.report_error)); res|= thd->net.report_error; if (unlikely(res)) { /* If we had a another error reported earlier then this will be ignored */ result->send_error(ER_UNKNOWN_ERROR, ER(ER_UNKNOWN_ERROR)); result->abort(); } DBUG_RETURN(res); } /* Function to setup clauses without sum functions */ inline int setup_without_group(THD *thd, Item **ref_pointer_array, TABLE_LIST *tables, TABLE_LIST *leaves, List<Item> &fields, List<Item> &all_fields, COND **conds, ORDER *order, ORDER *group, bool *hidden_group_fields) { int res; nesting_map save_allow_sum_func=thd->lex->allow_sum_func ; DBUG_ENTER("setup_without_group"); thd->lex->allow_sum_func&= ~(1 << thd->lex->current_select->nest_level); res= setup_conds(thd, tables, leaves, conds); thd->lex->allow_sum_func|= 1 << thd->lex->current_select->nest_level; res= res || setup_order(thd, ref_pointer_array, tables, fields, all_fields, order); thd->lex->allow_sum_func&= ~(1 << thd->lex->current_select->nest_level); res= res || setup_group(thd, ref_pointer_array, tables, fields, all_fields, group, hidden_group_fields); thd->lex->allow_sum_func= save_allow_sum_func; DBUG_RETURN(res); } /***************************************************************************** Check fields, find best join, do the select and output fields. mysql_select assumes that all tables are already opened *****************************************************************************/ /* Prepare of whole select (including sub queries in future). return -1 on error 0 on success */ int JOIN::prepare(Item ***rref_pointer_array, TABLE_LIST *tables_init, uint wild_num, COND *conds_init, uint og_num, ORDER *order_init, ORDER *group_init, Item *having_init, ORDER *proc_param_init, SELECT_LEX *select_lex_arg, SELECT_LEX_UNIT *unit_arg) { DBUG_ENTER("JOIN::prepare"); // to prevent double initialization on EXPLAIN if (optimized) DBUG_RETURN(0); conds= conds_init; order= order_init; group_list= group_init; having= having_init; proc_param= proc_param_init; tables_list= tables_init; select_lex= select_lex_arg; select_lex->join= this; join_list= &select_lex->top_join_list; union_part= (unit_arg->first_select()->next_select() != 0); /* If we have already executed SELECT, then it have not sense to prevent its table from update (see unique_table()) */ if (thd->derived_tables_processing) select_lex->exclude_from_table_unique_test= TRUE; /* Check that all tables, fields, conds and order are ok */ if ((!(select_options & OPTION_SETUP_TABLES_DONE) && setup_tables_and_check_access(thd, &select_lex->context, join_list, tables_list, &conds, &select_lex->leaf_tables, FALSE, SELECT_ACL, SELECT_ACL)) || setup_wild(thd, tables_list, fields_list, &all_fields, wild_num) || select_lex->setup_ref_array(thd, og_num) || setup_fields(thd, (*rref_pointer_array), fields_list, 1, &all_fields, 1) || setup_without_group(thd, (*rref_pointer_array), tables_list, select_lex->leaf_tables, fields_list, all_fields, &conds, order, group_list, &hidden_group_fields)) DBUG_RETURN(-1); /* purecov: inspected */ ref_pointer_array= *rref_pointer_array; if (having) { nesting_map save_allow_sum_func= thd->lex->allow_sum_func; thd->where="having clause"; thd->lex->allow_sum_func|= 1 << select_lex_arg->nest_level; select_lex->having_fix_field= 1; bool having_fix_rc= (!having->fixed && (having->fix_fields(thd, &having) || having->check_cols(1))); select_lex->having_fix_field= 0; if (having_fix_rc || thd->net.report_error) DBUG_RETURN(-1); /* purecov: inspected */ thd->lex->allow_sum_func= save_allow_sum_func; } if (!thd->lex->view_prepare_mode) { Item_subselect *subselect; /* Is it subselect? */ if ((subselect= select_lex->master_unit()->item)) { Item_subselect::trans_res res; if ((res= subselect->select_transformer(this)) != Item_subselect::RES_OK) { select_lex->fix_prepare_information(thd, &conds, &having); DBUG_RETURN((res == Item_subselect::RES_ERROR)); } } } select_lex->fix_prepare_information(thd, &conds, &having); if (having && having->with_sum_func) having->split_sum_func2(thd, ref_pointer_array, all_fields, &having, TRUE); if (select_lex->inner_sum_func_list) { Item_sum *end=select_lex->inner_sum_func_list; Item_sum *item_sum= end; do { item_sum= item_sum->next; item_sum->split_sum_func2(thd, ref_pointer_array, all_fields, item_sum->ref_by, FALSE); } while (item_sum != end); } if (setup_ftfuncs(select_lex)) /* should be after having->fix_fields */ DBUG_RETURN(-1); /* Check if one one uses a not constant column with group functions and no GROUP BY. TODO: Add check of calculation of GROUP functions and fields: SELECT COUNT(*)+table.col1 from table1; */ { if (!group_list) { uint flag=0; List_iterator_fast<Item> it(fields_list); Item *item; while ((item= it++)) { if (item->with_sum_func) flag|=1; else if (!(flag & 2) && !item->const_during_execution()) flag|=2; } if (flag == 3) { my_message(ER_MIX_OF_GROUP_FUNC_AND_FIELDS, ER(ER_MIX_OF_GROUP_FUNC_AND_FIELDS), MYF(0)); DBUG_RETURN(-1); } } TABLE_LIST *table_ptr; for (table_ptr= select_lex->leaf_tables; table_ptr; table_ptr= table_ptr->next_leaf) tables++; } { /* Caclulate the number of groups */ send_group_parts= 0; for (ORDER *group_tmp= group_list ; group_tmp ; group_tmp= group_tmp->next) send_group_parts++; } procedure= setup_procedure(thd, proc_param, result, fields_list, &error); if (error) goto err; /* purecov: inspected */ if (procedure) { if (setup_new_fields(thd, fields_list, all_fields, procedure->param_fields)) goto err; /* purecov: inspected */ if (procedure->group) { if (!test_if_subpart(procedure->group,group_list)) { /* purecov: inspected */ my_message(ER_DIFF_GROUPS_PROC, ER(ER_DIFF_GROUPS_PROC), MYF(0)); /* purecov: inspected */ goto err; /* purecov: inspected */ } } #ifdef NOT_NEEDED else if (!group_list && procedure->flags & PROC_GROUP) { my_message(ER_NO_GROUP_FOR_PROC, MYF(0)); goto err; } #endif if (order && (procedure->flags & PROC_NO_SORT)) { /* purecov: inspected */ my_message(ER_ORDER_WITH_PROC, ER(ER_ORDER_WITH_PROC), MYF(0)); /* purecov: inspected */ goto err; /* purecov: inspected */ } } /* Init join struct */ count_field_types(&tmp_table_param, all_fields, 0); ref_pointer_array_size= all_fields.elements*sizeof(Item*); this->group= group_list != 0; unit= unit_arg; #ifdef RESTRICTED_GROUP if (sum_func_count && !group_list && (func_count || field_count)) { my_message(ER_WRONG_SUM_SELECT,ER(ER_WRONG_SUM_SELECT),MYF(0)); goto err; } #endif if (!procedure && result && result->prepare(fields_list, unit_arg)) goto err; /* purecov: inspected */ if (select_lex->olap == ROLLUP_TYPE && rollup_init()) goto err; if (alloc_func_list()) goto err; DBUG_RETURN(0); // All OK err: delete procedure; /* purecov: inspected */ procedure= 0; DBUG_RETURN(-1); /* purecov: inspected */ } /* test if it is known for optimisation IN subquery SYNOPSYS JOIN::test_in_subselect where - pointer for variable in which conditions should be stored if subquery is known RETURN 1 - known 0 - unknown */ bool JOIN::test_in_subselect(Item **where) { if (conds->type() == Item::FUNC_ITEM && ((Item_func *)this->conds)->functype() == Item_func::EQ_FUNC && ((Item_func *)conds)->arguments()[0]->type() == Item::REF_ITEM && ((Item_func *)conds)->arguments()[1]->type() == Item::FIELD_ITEM) { join_tab->info= "Using index"; *where= 0; return 1; } if (conds->type() == Item::COND_ITEM && ((class Item_func *)this->conds)->functype() == Item_func::COND_AND_FUNC) { if ((*where= remove_additional_cond(conds))) join_tab->info= "Using index; Using where"; else join_tab->info= "Using index"; return 1; } return 0; } /* global select optimisation. return 0 - success 1 - error error code saved in field 'error' */ int JOIN::optimize() { DBUG_ENTER("JOIN::optimize"); // to prevent double initialization on EXPLAIN if (optimized) DBUG_RETURN(0); optimized= 1; if (thd->lex->orig_sql_command != SQLCOM_SHOW_STATUS) thd->status_var.last_query_cost= 0.0; row_limit= ((select_distinct || order || group_list) ? HA_POS_ERROR : unit->select_limit_cnt); /* select_limit is used to decide if we are likely to scan the whole table */ select_limit= unit->select_limit_cnt; if (having || (select_options & OPTION_FOUND_ROWS)) select_limit= HA_POS_ERROR; do_send_rows = (unit->select_limit_cnt) ? 1 : 0; // Ignore errors of execution if option IGNORE present if (thd->lex->ignore) thd->lex->current_select->no_error= 1; #ifdef HAVE_REF_TO_FIELDS // Not done yet /* Add HAVING to WHERE if possible */ if (having && !group_list && !sum_func_count) { if (!conds) { conds= having; having= 0; } else if ((conds=new Item_cond_and(conds,having))) { /* Item_cond_and can't be fixed after creation, so we do not check conds->fixed */ conds->fix_fields(thd, &conds); conds->change_ref_to_fields(thd, tables_list); conds->top_level_item(); having= 0; } } #endif SELECT_LEX *sel= thd->lex->current_select; if (sel->first_cond_optimization) { /* The following code will allocate the new items in a permanent MEMROOT for prepared statements and stored procedures. */ Query_arena *arena= thd->stmt_arena, backup; if (arena->is_conventional()) arena= 0; // For easier test else thd->set_n_backup_active_arena(arena, &backup); sel->first_cond_optimization= 0; /* Convert all outer joins to inner joins if possible */ conds= simplify_joins(this, join_list, conds, TRUE); build_bitmap_for_nested_joins(join_list, 0); sel->prep_where= conds ? conds->copy_andor_structure(thd) : 0; if (arena) thd->restore_active_arena(arena, &backup); } conds= optimize_cond(this, conds, join_list, &cond_value); if (thd->net.report_error) { error= 1; DBUG_PRINT("error",("Error from optimize_cond")); DBUG_RETURN(1); } { Item::cond_result having_value; having= optimize_cond(this, having, join_list, &having_value); if (thd->net.report_error) { error= 1; DBUG_PRINT("error",("Error from optimize_cond")); DBUG_RETURN(1); } if (cond_value == Item::COND_FALSE || having_value == Item::COND_FALSE || (!unit->select_limit_cnt && !(select_options & OPTION_FOUND_ROWS))) { /* Impossible cond */ DBUG_PRINT("info", (having_value == Item::COND_FALSE ? "Impossible HAVING" : "Impossible WHERE")); zero_result_cause= having_value == Item::COND_FALSE ? "Impossible HAVING" : "Impossible WHERE"; error= 0; DBUG_RETURN(0); } } /* Optimize count(*), min() and max() */ if (tables_list && tmp_table_param.sum_func_count && ! group_list) { int res; /* opt_sum_query() returns -1 if no rows match to the WHERE conditions, or 1 if all items were resolved, or 0, or an error number HA_ERR_... */ if ((res=opt_sum_query(select_lex->leaf_tables, all_fields, conds))) { if (res > 1) { thd->fatal_error(); error= res; DBUG_PRINT("error",("Error from opt_sum_query")); DBUG_RETURN(1); } if (res < 0) { DBUG_PRINT("info",("No matching min/max row")); zero_result_cause= "No matching min/max row"; error=0; DBUG_RETURN(0); } DBUG_PRINT("info",("Select tables optimized away")); zero_result_cause= "Select tables optimized away"; tables_list= 0; // All tables resolved /* Extract all table-independent conditions and replace the WHERE clause with them. All other conditions were computed by opt_sum_query and the MIN/MAX/COUNT function(s) have been replaced by constants, so there is no need to compute the whole WHERE clause again. Notice that make_cond_for_table() will always succeed to remove all computed conditions, because opt_sum_query() is applicable only to conjunctions. Preserve conditions for EXPLAIN. */ if (conds && !(thd->lex->describe & DESCRIBE_EXTENDED)) { COND *table_independent_conds= make_cond_for_table(conds, PSEUDO_TABLE_BITS, 0); DBUG_EXECUTE("where", print_where(table_independent_conds, "where after opt_sum_query()");); conds= table_independent_conds; } } } if (!tables_list) { DBUG_PRINT("info",("No tables")); error= 0; DBUG_RETURN(0); } error= -1; // Error is sent to client sort_by_table= get_sort_by_table(order, group_list, select_lex->leaf_tables); /* Calculate how to do the join */ thd->proc_info= "statistics"; if (make_join_statistics(this, select_lex->leaf_tables, conds, &keyuse) || thd->is_fatal_error) { DBUG_PRINT("error",("Error: make_join_statistics() failed")); DBUG_RETURN(1); } /* Remove distinct if only const tables */ select_distinct= select_distinct && (const_tables != tables); thd->proc_info= "preparing"; if (result->initialize_tables(this)) { DBUG_PRINT("error",("Error: initialize_tables() failed")); DBUG_RETURN(1); // error == -1 } if (const_table_map != found_const_table_map && !(select_options & SELECT_DESCRIBE) && (!conds || !(conds->used_tables() & RAND_TABLE_BIT) || select_lex->master_unit() == &thd->lex->unit)) // upper level SELECT { zero_result_cause= "no matching row in const table"; DBUG_PRINT("error",("Error: %s", zero_result_cause)); error= 0; DBUG_RETURN(0); } if (!(thd->options & OPTION_BIG_SELECTS) && best_read > (double) thd->variables.max_join_size && !(select_options & SELECT_DESCRIBE)) { /* purecov: inspected */ my_message(ER_TOO_BIG_SELECT, ER(ER_TOO_BIG_SELECT), MYF(0)); error= -1; DBUG_RETURN(1); } if (const_tables && !thd->locked_tables && !(select_options & SELECT_NO_UNLOCK)) mysql_unlock_some_tables(thd, table, const_tables); if (!conds && outer_join) { /* Handle the case where we have an OUTER JOIN without a WHERE */ conds=new Item_int((longlong) 1,1); // Always true } select= make_select(*table, const_table_map, const_table_map, conds, 1, &error); if (error) { /* purecov: inspected */ error= -1; /* purecov: inspected */ DBUG_PRINT("error",("Error: make_select() failed")); DBUG_RETURN(1); } reset_nj_counters(join_list); make_outerjoin_info(this); /* Among the equal fields belonging to the same multiple equality choose the one that is to be retrieved first and substitute all references to these in where condition for a reference for the selected field. */ if (conds) { conds= substitute_for_best_equal_field(conds, cond_equal, map2table); conds->update_used_tables(); DBUG_EXECUTE("where", print_where(conds, "after substitute_best_equal");); } /* Permorm the the optimization on fields evaluation mentioned above for all on expressions. */ for (JOIN_TAB *tab= join_tab + const_tables; tab < join_tab + tables ; tab++) { if (*tab->on_expr_ref) { *tab->on_expr_ref= substitute_for_best_equal_field(*tab->on_expr_ref, tab->cond_equal, map2table); (*tab->on_expr_ref)->update_used_tables(); } } if (make_join_select(this, select, conds)) { zero_result_cause= "Impossible WHERE noticed after reading const tables"; DBUG_RETURN(0); // error == 0 } error= -1; /* if goto err */ /* Optimize distinct away if possible */ { ORDER *org_order= order; order=remove_const(this, order,conds,1, &simple_order); /* If we are using ORDER BY NULL or ORDER BY const_expression, return result in any order (even if we are using a GROUP BY) */ if (!order && org_order) skip_sort_order= 1; } /* Check if we can optimize away GROUP BY/DISTINCT. We can do that if there are no aggregate functions and the fields in DISTINCT clause (if present) and/or columns in GROUP BY (if present) contain direct references to all key parts of an unique index (in whatever order). Note that the unique keys for DISTINCT and GROUP BY should not be the same (as long as they are unique). The FROM clause must contain a single non-constant table. */ if (tables - const_tables == 1 && (group_list || select_distinct) && !tmp_table_param.sum_func_count && (!join_tab[const_tables].select || !join_tab[const_tables].select->quick || join_tab[const_tables].select->quick->get_type() != QUICK_SELECT_I::QS_TYPE_GROUP_MIN_MAX)) { if (group_list && list_contains_unique_index(join_tab[const_tables].table, find_field_in_order_list, (void *) group_list)) { group_list= 0; group= 0; } if (select_distinct && list_contains_unique_index(join_tab[const_tables].table, find_field_in_item_list, (void *) &fields_list)) { select_distinct= 0; } } if (group_list || tmp_table_param.sum_func_count) { if (! hidden_group_fields && rollup.state == ROLLUP::STATE_NONE) select_distinct=0; } else if (select_distinct && tables - const_tables == 1) { /* We are only using one table. In this case we change DISTINCT to a GROUP BY query if: - The GROUP BY can be done through indexes (no sort) and the ORDER BY only uses selected fields. (In this case we can later optimize away GROUP BY and ORDER BY) - We are scanning the whole table without LIMIT This can happen if: - We are using CALC_FOUND_ROWS - We are using an ORDER BY that can't be optimized away. We don't want to use this optimization when we are using LIMIT because in this case we can just create a temporary table that holds LIMIT rows and stop when this table is full. */ JOIN_TAB *tab= &join_tab[const_tables]; bool all_order_fields_used; if (order) skip_sort_order= test_if_skip_sort_order(tab, order, select_limit, 1); if ((group_list=create_distinct_group(thd, select_lex->ref_pointer_array, order, fields_list, &all_order_fields_used))) { bool skip_group= (skip_sort_order && test_if_skip_sort_order(tab, group_list, select_limit, 1) != 0); if ((skip_group && all_order_fields_used) || select_limit == HA_POS_ERROR || (order && !skip_sort_order)) { /* Change DISTINCT to GROUP BY */ select_distinct= 0; no_order= !order; if (all_order_fields_used) { if (order && skip_sort_order) { /* Force MySQL to read the table in sorted order to get result in ORDER BY order. */ tmp_table_param.quick_group=0; } order=0; } group=1; // For end_write_group } else group_list= 0; } else if (thd->is_fatal_error) // End of memory DBUG_RETURN(1); } simple_group= 0; { ORDER *old_group_list; group_list= remove_const(this, (old_group_list= group_list), conds, rollup.state == ROLLUP::STATE_NONE, &simple_group); if (old_group_list && !group_list) select_distinct= 0; } if (!group_list && group) { order=0; // The output has only one row simple_order=1; select_distinct= 0; // No need in distinct for 1 row } calc_group_buffer(this, group_list); send_group_parts= tmp_table_param.group_parts; /* Save org parts */ if (procedure && procedure->group) { group_list= procedure->group= remove_const(this, procedure->group, conds, 1, &simple_group); calc_group_buffer(this, group_list); } if (test_if_subpart(group_list, order) || (!group_list && tmp_table_param.sum_func_count)) order=0; // Can't use sort on head table if using row cache if (full_join) { if (group_list) simple_group=0; if (order) simple_order=0; } /* Check if we need to create a temporary table. This has to be done if all tables are not already read (const tables) and one of the following conditions holds: - We are using DISTINCT (simple distinct's are already optimized away) - We are using an ORDER BY or GROUP BY on fields not in the first table - We are using different ORDER BY and GROUP BY orders - The user wants us to buffer the result. */ need_tmp= (const_tables != tables && ((select_distinct || !simple_order || !simple_group) || (group_list && order) || test(select_options & OPTION_BUFFER_RESULT))); // No cache for MATCH make_join_readinfo(this, (select_options & (SELECT_DESCRIBE | SELECT_NO_JOIN_CACHE)) | (select_lex->ftfunc_list->elements ? SELECT_NO_JOIN_CACHE : 0)); /* Perform FULLTEXT search before all regular searches */ if (!(select_options & SELECT_DESCRIBE)) init_ftfuncs(thd, select_lex, test(order)); /* is this simple IN subquery? */ if (!group_list && !order && unit->item && unit->item->substype() == Item_subselect::IN_SUBS && tables == 1 && conds && !unit->first_select()->next_select()) { if (!having) { Item *where= 0; if (join_tab[0].type == JT_EQ_REF && join_tab[0].ref.items[0]->name == in_left_expr_name) { if (test_in_subselect(&where)) { join_tab[0].type= JT_UNIQUE_SUBQUERY; error= 0; DBUG_RETURN(unit->item-> change_engine(new subselect_uniquesubquery_engine(thd, join_tab, unit->item, where))); } } else if (join_tab[0].type == JT_REF && join_tab[0].ref.items[0]->name == in_left_expr_name) { if (test_in_subselect(&where)) { join_tab[0].type= JT_INDEX_SUBQUERY; error= 0; DBUG_RETURN(unit->item-> change_engine(new subselect_indexsubquery_engine(thd, join_tab, unit->item, where, 0))); } } } else if (join_tab[0].type == JT_REF_OR_NULL && join_tab[0].ref.items[0]->name == in_left_expr_name && having->type() == Item::FUNC_ITEM && ((Item_func *) having)->functype() == Item_func::ISNOTNULLTEST_FUNC) { join_tab[0].type= JT_INDEX_SUBQUERY; error= 0; if ((conds= remove_additional_cond(conds))) join_tab->info= "Using index; Using where"; else join_tab->info= "Using index"; DBUG_RETURN(unit->item-> change_engine(new subselect_indexsubquery_engine(thd, join_tab, unit->item, conds, 1))); } } /* Need to tell Innobase that to play it safe, it should fetch all columns of the tables: this is because MySQL may build row pointers for the rows, and for all columns of the primary key the field->query_id has not necessarily been set to thd->query_id by MySQL. */ #ifdef HAVE_INNOBASE_DB if (need_tmp || select_distinct || group_list || order) { for (uint i_h = const_tables; i_h < tables; i_h++) { TABLE* table_h = join_tab[i_h].table; table_h->file->extra(HA_EXTRA_RETRIEVE_PRIMARY_KEY); } } #endif DBUG_EXECUTE("info",TEST_join(this);); if (const_tables != tables) { /* Because filesort always does a full table scan or a quick range scan we must add the removed reference to the select for the table. We only need to do this when we have a simple_order or simple_group as in other cases the join is done before the sort. */ if ((order || group_list) && join_tab[const_tables].type != JT_ALL && join_tab[const_tables].type != JT_FT && join_tab[const_tables].type != JT_REF_OR_NULL && (order && simple_order || group_list && simple_group)) { if (add_ref_to_table_cond(thd,&join_tab[const_tables])) DBUG_RETURN(1); } if (!(select_options & SELECT_BIG_RESULT) && ((group_list && (!simple_group || !test_if_skip_sort_order(&join_tab[const_tables], group_list, unit->select_limit_cnt, 0))) || select_distinct) && tmp_table_param.quick_group && !procedure) { need_tmp=1; simple_order=simple_group=0; // Force tmp table without sort } if (order) { /* Force using of tmp table if sorting by a SP or UDF function due to their expensive and probably non-deterministic nature. */ for (ORDER *tmp_order= order; tmp_order ; tmp_order=tmp_order->next) { Item *item= *tmp_order->item; if (item->walk(&Item::is_expensive_processor,(byte*)0)) { /* Force tmp table without sort */ need_tmp=1; simple_order=simple_group=0; break; } } } } tmp_having= having; if (select_options & SELECT_DESCRIBE) { error= 0; DBUG_RETURN(0); } having= 0; /* The loose index scan access method guarantees that all grouping or duplicate row elimination (for distinct) is already performed during data retrieval, and that all MIN/MAX functions are already computed for each group. Thus all MIN/MAX functions should be treated as regular functions, and there is no need to perform grouping in the main execution loop. Notice that currently loose index scan is applicable only for single table queries, thus it is sufficient to test only the first join_tab element of the plan for its access method. */ if (join_tab->is_using_loose_index_scan()) tmp_table_param.precomputed_group_by= TRUE; /* Create a tmp table if distinct or if the sort is too complicated */ if (need_tmp) { DBUG_PRINT("info",("Creating tmp table")); thd->proc_info="Creating tmp table"; init_items_ref_array(); tmp_table_param.hidden_field_count= (all_fields.elements - fields_list.elements); ORDER *tmp_group= ((!simple_group && !procedure && !(test_flags & TEST_NO_KEY_GROUP)) ? group_list : (ORDER*) 0); /* Pushing LIMIT to the temporary table creation is not applicable when there is ORDER BY or GROUP BY or there is no GROUP BY, but there are aggregate functions, because in all these cases we need all result rows. */ ha_rows tmp_rows_limit= ((order == 0 || skip_sort_order || test(select_options & OPTION_BUFFER_RESULT)) && !tmp_group && !thd->lex->current_select->with_sum_func) ? select_limit : HA_POS_ERROR; if (!(exec_tmp_table1 = create_tmp_table(thd, &tmp_table_param, all_fields, tmp_group, group_list ? 0 : select_distinct, group_list && simple_group, select_options, tmp_rows_limit, (char *) ""))) DBUG_RETURN(1); /* We don't have to store rows in temp table that doesn't match HAVING if: - we are sorting the table and writing complete group rows to the temp table. - We are using DISTINCT without resolving the distinct as a GROUP BY on all columns. If having is not handled here, it will be checked before the row is sent to the client. */ if (tmp_having && (sort_and_group || (exec_tmp_table1->distinct && !group_list))) having= tmp_having; /* if group or order on first table, sort first */ if (group_list && simple_group) { DBUG_PRINT("info",("Sorting for group")); thd->proc_info="Sorting for group"; if (create_sort_index(thd, this, group_list, HA_POS_ERROR, HA_POS_ERROR) || alloc_group_fields(this, group_list) || make_sum_func_list(all_fields, fields_list, 1) || setup_sum_funcs(thd, sum_funcs)) DBUG_RETURN(1); group_list=0; } else { if (make_sum_func_list(all_fields, fields_list, 0) || setup_sum_funcs(thd, sum_funcs)) DBUG_RETURN(1); if (!group_list && ! exec_tmp_table1->distinct && order && simple_order) { DBUG_PRINT("info",("Sorting for order")); thd->proc_info="Sorting for order"; if (create_sort_index(thd, this, order, HA_POS_ERROR, HA_POS_ERROR)) DBUG_RETURN(1); order=0; } } /* Optimize distinct when used on some of the tables SELECT DISTINCT t1.a FROM t1,t2 WHERE t1.b=t2.b In this case we can stop scanning t2 when we have found one t1.a */ if (exec_tmp_table1->distinct) { table_map used_tables= thd->used_tables; JOIN_TAB *last_join_tab= join_tab+tables-1; do { if (used_tables & last_join_tab->table->map) break; last_join_tab->not_used_in_distinct=1; } while (last_join_tab-- != join_tab); /* Optimize "select distinct b from t1 order by key_part_1 limit #" */ if (order && skip_sort_order) { /* Should always succeed */ if (test_if_skip_sort_order(&join_tab[const_tables], order, unit->select_limit_cnt, 0)) order=0; } } if (select_lex->uncacheable && !is_top_level_join()) { /* If this join belongs to an uncacheable subquery */ if (!(tmp_join= (JOIN*)thd->alloc(sizeof(JOIN)))) DBUG_RETURN(-1); error= 0; // Ensure that tmp_join.error= 0 restore_tmp(); } } error= 0; DBUG_RETURN(0); } /* Restore values in temporary join */ void JOIN::restore_tmp() { memcpy(tmp_join, this, (size_t) sizeof(JOIN)); } int JOIN::reinit() { DBUG_ENTER("JOIN::reinit"); unit->offset_limit_cnt= (ha_rows)(select_lex->offset_limit ? select_lex->offset_limit->val_uint() : ULL(0)); first_record= 0; if (exec_tmp_table1) { exec_tmp_table1->file->extra(HA_EXTRA_RESET_STATE); exec_tmp_table1->file->delete_all_rows(); free_io_cache(exec_tmp_table1); filesort_free_buffers(exec_tmp_table1); } if (exec_tmp_table2) { exec_tmp_table2->file->extra(HA_EXTRA_RESET_STATE); exec_tmp_table2->file->delete_all_rows(); free_io_cache(exec_tmp_table2); filesort_free_buffers(exec_tmp_table2); } if (items0) set_items_ref_array(items0); if (join_tab_save) memcpy(join_tab, join_tab_save, sizeof(JOIN_TAB) * tables); if (tmp_join) restore_tmp(); /* Reset of sum functions */ if (sum_funcs) { Item_sum *func, **func_ptr= sum_funcs; while ((func= *(func_ptr++))) func->clear(); } DBUG_RETURN(0); } bool JOIN::save_join_tab() { if (!join_tab_save && select_lex->master_unit()->uncacheable) { if (!(join_tab_save= (JOIN_TAB*)thd->memdup((gptr) join_tab, sizeof(JOIN_TAB) * tables))) return 1; } return 0; } /* Exec select */ void JOIN::exec() { List<Item> *columns_list= &fields_list; int tmp_error; DBUG_ENTER("JOIN::exec"); error= 0; if (procedure) { procedure_fields_list= fields_list; if (procedure->change_columns(procedure_fields_list) || result->prepare(procedure_fields_list, unit)) { thd->limit_found_rows= thd->examined_row_count= 0; DBUG_VOID_RETURN; } columns_list= &procedure_fields_list; } (void) result->prepare2(); // Currently, this cannot fail. if (!tables_list && (tables || !select_lex->with_sum_func)) { // Only test of functions if (select_options & SELECT_DESCRIBE) select_describe(this, FALSE, FALSE, FALSE, (zero_result_cause?zero_result_cause:"No tables used")); else { result->send_fields(*columns_list, Protocol::SEND_NUM_ROWS | Protocol::SEND_EOF); /* We have to test for 'conds' here as the WHERE may not be constant even if we don't have any tables for prepared statements or if conds uses something like 'rand()'. */ if (cond_value != Item::COND_FALSE && (!conds || conds->val_int()) && (!having || having->val_int())) { if (do_send_rows && (procedure ? (procedure->send_row(procedure_fields_list) || procedure->end_of_records()) : result->send_data(fields_list))) error= 1; else { error= (int) result->send_eof(); send_records= ((select_options & OPTION_FOUND_ROWS) ? 1 : thd->sent_row_count); } } else { error=(int) result->send_eof(); send_records= 0; } } /* Single select (without union) always returns 0 or 1 row */ thd->limit_found_rows= send_records; thd->examined_row_count= 0; DBUG_VOID_RETURN; } /* Don't reset the found rows count if there're no tables as FOUND_ROWS() may be called. Never reset the examined row count here. It must be accumulated from all join iterations of all join parts. */ if (tables) thd->limit_found_rows= 0; if (zero_result_cause) { (void) return_zero_rows(this, result, select_lex->leaf_tables, *columns_list, send_row_on_empty_set(), select_options, zero_result_cause, having); DBUG_VOID_RETURN; } if (select_options & SELECT_DESCRIBE) { /* Check if we managed to optimize ORDER BY away and don't use temporary table to resolve ORDER BY: in that case, we only may need to do filesort for GROUP BY. */ if (!order && !no_order && (!skip_sort_order || !need_tmp)) { /* Reset 'order' to 'group_list' and reinit variables describing 'order' */ order= group_list; simple_order= simple_group; skip_sort_order= 0; } if (order && (order != group_list || !(select_options & SELECT_BIG_RESULT)) && (const_tables == tables || ((simple_order || skip_sort_order) && test_if_skip_sort_order(&join_tab[const_tables], order, select_limit, 0)))) order=0; having= tmp_having; select_describe(this, need_tmp, order != 0 && !skip_sort_order, select_distinct, !tables ? "No tables used" : NullS); DBUG_VOID_RETURN; } JOIN *curr_join= this; List<Item> *curr_all_fields= &all_fields; List<Item> *curr_fields_list= &fields_list; TABLE *curr_tmp_table= 0; /* Initialize examined rows here because the values from all join parts must be accumulated in examined_row_count. Hence every join iteration must count from zero. */ curr_join->examined_rows= 0; if ((curr_join->select_lex->options & OPTION_SCHEMA_TABLE) && get_schema_tables_result(curr_join)) { DBUG_VOID_RETURN; } /* Create a tmp table if distinct or if the sort is too complicated */ if (need_tmp) { if (tmp_join) { /* We are in a non cacheable sub query. Get the saved join structure after optimization. (curr_join may have been modified during last exection and we need to reset it) */ curr_join= tmp_join; } curr_tmp_table= exec_tmp_table1; /* Copy data to the temporary table */ thd->proc_info= "Copying to tmp table"; DBUG_PRINT("info", ("%s", thd->proc_info)); if ((tmp_error= do_select(curr_join, (List<Item> *) 0, curr_tmp_table, 0))) { error= tmp_error; DBUG_VOID_RETURN; } curr_tmp_table->file->info(HA_STATUS_VARIABLE); if (curr_join->having) curr_join->having= curr_join->tmp_having= 0; // Allready done /* Change sum_fields reference to calculated fields in tmp_table */ curr_join->all_fields= *curr_all_fields; if (!items1) { items1= items0 + all_fields.elements; if (sort_and_group || curr_tmp_table->group) { if (change_to_use_tmp_fields(thd, items1, tmp_fields_list1, tmp_all_fields1, fields_list.elements, all_fields)) DBUG_VOID_RETURN; } else { if (change_refs_to_tmp_fields(thd, items1, tmp_fields_list1, tmp_all_fields1, fields_list.elements, all_fields)) DBUG_VOID_RETURN; } curr_join->tmp_all_fields1= tmp_all_fields1; curr_join->tmp_fields_list1= tmp_fields_list1; curr_join->items1= items1; } curr_all_fields= &tmp_all_fields1; curr_fields_list= &tmp_fields_list1; curr_join->set_items_ref_array(items1); if (sort_and_group || curr_tmp_table->group) { curr_join->tmp_table_param.field_count+= curr_join->tmp_table_param.sum_func_count+ curr_join->tmp_table_param.func_count; curr_join->tmp_table_param.sum_func_count= curr_join->tmp_table_param.func_count= 0; } else { curr_join->tmp_table_param.field_count+= curr_join->tmp_table_param.func_count; curr_join->tmp_table_param.func_count= 0; } // procedure can't be used inside subselect => we do nothing special for it if (procedure) procedure->update_refs(); if (curr_tmp_table->group) { // Already grouped if (!curr_join->order && !curr_join->no_order && !skip_sort_order) curr_join->order= curr_join->group_list; /* order by group */ curr_join->group_list= 0; } /* If we have different sort & group then we must sort the data by group and copy it to another tmp table This code is also used if we are using distinct something we haven't been able to store in the temporary table yet like SEC_TO_TIME(SUM(...)). */ if (curr_join->group_list && (!test_if_subpart(curr_join->group_list, curr_join->order) || curr_join->select_distinct) || (curr_join->select_distinct && curr_join->tmp_table_param.using_indirect_summary_function)) { /* Must copy to another table */ DBUG_PRINT("info",("Creating group table")); /* Free first data from old join */ curr_join->join_free(); if (make_simple_join(curr_join, curr_tmp_table)) DBUG_VOID_RETURN; calc_group_buffer(curr_join, group_list); count_field_types(&curr_join->tmp_table_param, curr_join->tmp_all_fields1, curr_join->select_distinct && !curr_join->group_list); curr_join->tmp_table_param.hidden_field_count= (curr_join->tmp_all_fields1.elements- curr_join->tmp_fields_list1.elements); if (exec_tmp_table2) curr_tmp_table= exec_tmp_table2; else { /* group data to new table */ /* If the access method is loose index scan then all MIN/MAX functions are precomputed, and should be treated as regular functions. See extended comment in JOIN::exec. */ if (curr_join->join_tab->is_using_loose_index_scan()) curr_join->tmp_table_param.precomputed_group_by= TRUE; if (!(curr_tmp_table= exec_tmp_table2= create_tmp_table(thd, &curr_join->tmp_table_param, *curr_all_fields, (ORDER*) 0, curr_join->select_distinct && !curr_join->group_list, 1, curr_join->select_options, HA_POS_ERROR, (char *) ""))) DBUG_VOID_RETURN; curr_join->exec_tmp_table2= exec_tmp_table2; } if (curr_join->group_list) { thd->proc_info= "Creating sort index"; if (curr_join->join_tab == join_tab && save_join_tab()) { DBUG_VOID_RETURN; } if (create_sort_index(thd, curr_join, curr_join->group_list, HA_POS_ERROR, HA_POS_ERROR) || make_group_fields(this, curr_join)) { DBUG_VOID_RETURN; } sortorder= curr_join->sortorder; } thd->proc_info="Copying to group table"; DBUG_PRINT("info", ("%s", thd->proc_info)); tmp_error= -1; if (curr_join != this) { if (sum_funcs2) { curr_join->sum_funcs= sum_funcs2; curr_join->sum_funcs_end= sum_funcs_end2; } else { curr_join->alloc_func_list(); sum_funcs2= curr_join->sum_funcs; sum_funcs_end2= curr_join->sum_funcs_end; } } if (curr_join->make_sum_func_list(*curr_all_fields, *curr_fields_list, 1, TRUE)) DBUG_VOID_RETURN; curr_join->group_list= 0; if (setup_sum_funcs(curr_join->thd, curr_join->sum_funcs) || (tmp_error= do_select(curr_join, (List<Item> *) 0, curr_tmp_table, 0))) { error= tmp_error; DBUG_VOID_RETURN; } end_read_record(&curr_join->join_tab->read_record); curr_join->const_tables= curr_join->tables; // Mark free for cleanup() curr_join->join_tab[0].table= 0; // Table is freed // No sum funcs anymore if (!items2) { items2= items1 + all_fields.elements; if (change_to_use_tmp_fields(thd, items2, tmp_fields_list2, tmp_all_fields2, fields_list.elements, tmp_all_fields1)) DBUG_VOID_RETURN; curr_join->tmp_fields_list2= tmp_fields_list2; curr_join->tmp_all_fields2= tmp_all_fields2; } curr_fields_list= &curr_join->tmp_fields_list2; curr_all_fields= &curr_join->tmp_all_fields2; curr_join->set_items_ref_array(items2); curr_join->tmp_table_param.field_count+= curr_join->tmp_table_param.sum_func_count; curr_join->tmp_table_param.sum_func_count= 0; } if (curr_tmp_table->distinct) curr_join->select_distinct=0; /* Each row is unique */ curr_join->join_free(); /* Free quick selects */ if (curr_join->select_distinct && ! curr_join->group_list) { thd->proc_info="Removing duplicates"; if (curr_join->tmp_having) curr_join->tmp_having->update_used_tables(); if (remove_duplicates(curr_join, curr_tmp_table, *curr_fields_list, curr_join->tmp_having)) DBUG_VOID_RETURN; curr_join->tmp_having=0; curr_join->select_distinct=0; } curr_tmp_table->reginfo.lock_type= TL_UNLOCK; if (make_simple_join(curr_join, curr_tmp_table)) DBUG_VOID_RETURN; calc_group_buffer(curr_join, curr_join->group_list); count_field_types(&curr_join->tmp_table_param, *curr_all_fields, 0); } if (procedure) count_field_types(&curr_join->tmp_table_param, *curr_all_fields, 0); if (curr_join->group || curr_join->tmp_table_param.sum_func_count || (procedure && (procedure->flags & PROC_GROUP))) { if (make_group_fields(this, curr_join)) { DBUG_VOID_RETURN; } if (!items3) { if (!items0) init_items_ref_array(); items3= ref_pointer_array + (all_fields.elements*4); setup_copy_fields(thd, &curr_join->tmp_table_param, items3, tmp_fields_list3, tmp_all_fields3, curr_fields_list->elements, *curr_all_fields); tmp_table_param.save_copy_funcs= curr_join->tmp_table_param.copy_funcs; tmp_table_param.save_copy_field= curr_join->tmp_table_param.copy_field; tmp_table_param.save_copy_field_end= curr_join->tmp_table_param.copy_field_end; curr_join->tmp_all_fields3= tmp_all_fields3; curr_join->tmp_fields_list3= tmp_fields_list3; } else { curr_join->tmp_table_param.copy_funcs= tmp_table_param.save_copy_funcs; curr_join->tmp_table_param.copy_field= tmp_table_param.save_copy_field; curr_join->tmp_table_param.copy_field_end= tmp_table_param.save_copy_field_end; } curr_fields_list= &tmp_fields_list3; curr_all_fields= &tmp_all_fields3; curr_join->set_items_ref_array(items3); if (curr_join->make_sum_func_list(*curr_all_fields, *curr_fields_list, 1, TRUE) || setup_sum_funcs(curr_join->thd, curr_join->sum_funcs) || thd->is_fatal_error) DBUG_VOID_RETURN; } if (curr_join->group_list || curr_join->order) { DBUG_PRINT("info",("Sorting for send_fields")); thd->proc_info="Sorting result"; /* If we have already done the group, add HAVING to sorted table */ if (curr_join->tmp_having && ! curr_join->group_list && ! curr_join->sort_and_group) { // Some tables may have been const curr_join->tmp_having->update_used_tables(); JOIN_TAB *curr_table= &curr_join->join_tab[curr_join->const_tables]; table_map used_tables= (curr_join->const_table_map | curr_table->table->map); Item* sort_table_cond= make_cond_for_table(curr_join->tmp_having, used_tables, used_tables); if (sort_table_cond) { if (!curr_table->select) if (!(curr_table->select= new SQL_SELECT)) DBUG_VOID_RETURN; if (!curr_table->select->cond) curr_table->select->cond= sort_table_cond; else // This should never happen { if (!(curr_table->select->cond= new Item_cond_and(curr_table->select->cond, sort_table_cond))) DBUG_VOID_RETURN; /* Item_cond_and do not need fix_fields for execution, its parameters are fixed or do not need fix_fields, too */ curr_table->select->cond->quick_fix_field(); } curr_table->select_cond= curr_table->select->cond; curr_table->select_cond->top_level_item(); DBUG_EXECUTE("where",print_where(curr_table->select->cond, "select and having");); curr_join->tmp_having= make_cond_for_table(curr_join->tmp_having, ~ (table_map) 0, ~used_tables); DBUG_EXECUTE("where",print_where(curr_join->tmp_having, "having after sort");); } } { if (group) curr_join->select_limit= HA_POS_ERROR; else { /* We can abort sorting after thd->select_limit rows if we there is no WHERE clause for any tables after the sorted one. */ JOIN_TAB *curr_table= &curr_join->join_tab[curr_join->const_tables+1]; JOIN_TAB *end_table= &curr_join->join_tab[curr_join->tables]; for (; curr_table < end_table ; curr_table++) { /* table->keyuse is set in the case there was an original WHERE clause on the table that was optimized away. */ if (curr_table->select_cond || (curr_table->keyuse && !curr_table->first_inner)) { /* We have to sort all rows */ curr_join->select_limit= HA_POS_ERROR; break; } } } if (curr_join->join_tab == join_tab && save_join_tab()) { DBUG_VOID_RETURN; } /* Here we sort rows for ORDER BY/GROUP BY clause, if the optimiser chose FILESORT to be faster than INDEX SCAN or there is no suitable index present. Note, that create_sort_index calls test_if_skip_sort_order and may finally replace sorting with index scan if there is a LIMIT clause in the query. XXX: it's never shown in EXPLAIN! OPTION_FOUND_ROWS supersedes LIMIT and is taken into account. */ if (create_sort_index(thd, curr_join, curr_join->group_list ? curr_join->group_list : curr_join->order, curr_join->select_limit, (select_options & OPTION_FOUND_ROWS ? HA_POS_ERROR : unit->select_limit_cnt))) DBUG_VOID_RETURN; sortorder= curr_join->sortorder; } } /* XXX: When can we have here thd->net.report_error not zero? */ if (thd->net.report_error) { error= thd->net.report_error; DBUG_VOID_RETURN; } curr_join->having= curr_join->tmp_having; curr_join->fields= curr_fields_list; curr_join->procedure= procedure; if (is_top_level_join() && thd->cursor && tables != const_tables) { /* We are here if this is JOIN::exec for the last select of the main unit and the client requested to open a cursor. We check that not all tables are constant because this case is not handled by do_select() separately, and this case is not implemented for cursors yet. */ DBUG_ASSERT(error == 0); /* curr_join is used only for reusable joins - that is, to perform SELECT for each outer row (like in subselects). This join is main, so we know for sure that curr_join == join. */ DBUG_ASSERT(curr_join == this); /* Open cursor for the last join sweep */ error= thd->cursor->open(this); } else { thd->proc_info="Sending data"; DBUG_PRINT("info", ("%s", thd->proc_info)); result->send_fields((procedure ? curr_join->procedure_fields_list : *curr_fields_list), Protocol::SEND_NUM_ROWS | Protocol::SEND_EOF); error= do_select(curr_join, curr_fields_list, NULL, procedure); thd->limit_found_rows= curr_join->send_records; } /* Accumulate the counts from all join iterations of all join parts. */ thd->examined_row_count+= curr_join->examined_rows; DBUG_PRINT("counts", ("thd->examined_row_count: %lu", (ulong) thd->examined_row_count)); DBUG_VOID_RETURN; } /* Clean up join. Return error that hold JOIN. */ int JOIN::destroy() { DBUG_ENTER("JOIN::destroy"); select_lex->join= 0; if (tmp_join) { if (join_tab != tmp_join->join_tab) { JOIN_TAB *tab, *end; for (tab= join_tab, end= tab+tables ; tab != end ; tab++) { tab->cleanup(); } } tmp_join->tmp_join= 0; tmp_table_param.copy_field=0; DBUG_RETURN(tmp_join->destroy()); } cond_equal= 0; cleanup(1); if (exec_tmp_table1) free_tmp_table(thd, exec_tmp_table1); if (exec_tmp_table2) free_tmp_table(thd, exec_tmp_table2); delete select; delete_dynamic(&keyuse); delete procedure; DBUG_RETURN(error); } /* An entry point to single-unit select (a select without UNION). SYNOPSIS mysql_select() thd thread handler rref_pointer_array a reference to ref_pointer_array of the top-level select_lex for this query tables list of all tables used in this query. The tables have been pre-opened. wild_num number of wildcards used in the top level select of this query. For example statement SELECT *, t1.*, catalog.t2.* FROM t0, t1, t2; has 3 wildcards. fields list of items in SELECT list of the top-level select e.g. SELECT a, b, c FROM t1 will have Item_field for a, b and c in this list. conds top level item of an expression representing WHERE clause of the top level select og_num total number of ORDER BY and GROUP BY clauses arguments order linked list of ORDER BY agruments group linked list of GROUP BY arguments having top level item of HAVING expression proc_param list of PROCEDUREs select_options select options (BIG_RESULT, etc) result an instance of result set handling class. This object is responsible for send result set rows to the client or inserting them into a table. select_lex the only SELECT_LEX of this query unit top-level UNIT of this query UNIT is an artificial object created by the parser for every SELECT clause. e.g. SELECT * FROM t1 WHERE a1 IN (SELECT * FROM t2) has 2 unions. RETURN VALUE FALSE success TRUE an error */ bool mysql_select(THD *thd, Item ***rref_pointer_array, TABLE_LIST *tables, uint wild_num, List<Item> &fields, COND *conds, uint og_num, ORDER *order, ORDER *group, Item *having, ORDER *proc_param, ulong select_options, select_result *result, SELECT_LEX_UNIT *unit, SELECT_LEX *select_lex) { bool err; bool free_join= 1; DBUG_ENTER("mysql_select"); select_lex->context.resolve_in_select_list= TRUE; JOIN *join; if (select_lex->join != 0) { join= select_lex->join; /* is it single SELECT in derived table, called in derived table creation */ if (select_lex->linkage != DERIVED_TABLE_TYPE || (select_options & SELECT_DESCRIBE)) { if (select_lex->linkage != GLOBAL_OPTIONS_TYPE) { //here is EXPLAIN of subselect or derived table if (join->change_result(result)) { DBUG_RETURN(TRUE); } } else { if (err= join->prepare(rref_pointer_array, tables, wild_num, conds, og_num, order, group, having, proc_param, select_lex, unit)) { goto err; } } } free_join= 0; join->select_options= select_options; } else { if (!(join= new JOIN(thd, fields, select_options, result))) DBUG_RETURN(TRUE); thd->proc_info="init"; thd->used_tables=0; // Updated by setup_fields if (err= join->prepare(rref_pointer_array, tables, wild_num, conds, og_num, order, group, having, proc_param, select_lex, unit)) { goto err; } } if ((err= join->optimize())) { goto err; // 1 } if (thd->lex->describe & DESCRIBE_EXTENDED) { join->conds_history= join->conds; join->having_history= (join->having?join->having:join->tmp_having); } if (thd->net.report_error) goto err; join->exec(); if (thd->cursor && thd->cursor->is_open()) { /* A cursor was opened for the last sweep in exec(). We are here only if this is mysql_select for top-level SELECT_LEX_UNIT and there were no error. */ free_join= 0; } if (thd->lex->describe & DESCRIBE_EXTENDED) { select_lex->where= join->conds_history; select_lex->having= join->having_history; } err: if (free_join) { thd->proc_info="end"; err|= select_lex->cleanup(); DBUG_RETURN(err || thd->net.report_error); } DBUG_RETURN(join->error); } /***************************************************************************** Create JOIN_TABS, make a guess about the table types, Approximate how many records will be used in each table *****************************************************************************/ static ha_rows get_quick_record_count(THD *thd, SQL_SELECT *select, TABLE *table, const key_map *keys,ha_rows limit) { int error; DBUG_ENTER("get_quick_record_count"); if (select) { select->head=table; table->reginfo.impossible_range=0; if ((error= select->test_quick_select(thd, *(key_map *)keys,(table_map) 0, limit, 0)) == 1) DBUG_RETURN(select->quick->records); if (error == -1) { table->reginfo.impossible_range=1; DBUG_RETURN(0); } DBUG_PRINT("warning",("Couldn't use record count on const keypart")); } DBUG_RETURN(HA_POS_ERROR); /* This shouldn't happend */ } /* This structure is used to collect info on potentially sargable predicates in order to check whether they become sargable after reading const tables. We form a bitmap of indexes that can be used for sargable predicates. Only such indexes are involved in range analysis. */ typedef struct st_sargable_param { Field *field; /* field against which to check sargability */ Item **arg_value; /* values of potential keys for lookups */ uint num_values; /* number of values in the above array */ } SARGABLE_PARAM; /* Calculate the best possible join and initialize the join structure RETURN VALUES 0 ok 1 Fatal error */ static bool make_join_statistics(JOIN *join, TABLE_LIST *tables, COND *conds, DYNAMIC_ARRAY *keyuse_array) { int error; TABLE *table; uint i,table_count,const_count,key; table_map found_const_table_map, all_table_map, found_ref, refs; key_map const_ref, eq_part; TABLE **table_vector; JOIN_TAB *stat,*stat_end,*s,**stat_ref; KEYUSE *keyuse,*start_keyuse; table_map outer_join=0; SARGABLE_PARAM *sargables= 0; JOIN_TAB *stat_vector[MAX_TABLES+1]; DBUG_ENTER("make_join_statistics"); table_count=join->tables; stat=(JOIN_TAB*) join->thd->calloc(sizeof(JOIN_TAB)*table_count); stat_ref=(JOIN_TAB**) join->thd->alloc(sizeof(JOIN_TAB*)*MAX_TABLES); table_vector=(TABLE**) join->thd->alloc(sizeof(TABLE*)*(table_count*2)); if (!stat || !stat_ref || !table_vector) DBUG_RETURN(1); // Eom /* purecov: inspected */ join->best_ref=stat_vector; stat_end=stat+table_count; found_const_table_map= all_table_map=0; const_count=0; for (s= stat, i= 0; tables; s++, tables= tables->next_leaf, i++) { TABLE_LIST *embedding= tables->embedding; stat_vector[i]=s; s->keys.init(); s->const_keys.init(); s->checked_keys.init(); s->needed_reg.init(); table_vector[i]=s->table=table=tables->table; table->pos_in_table_list= tables; error= table->file->info(HA_STATUS_VARIABLE | HA_STATUS_NO_LOCK); if(error) { table->file->print_error(error, MYF(0)); DBUG_RETURN(1); } table->quick_keys.clear_all(); table->reginfo.join_tab=s; table->reginfo.not_exists_optimize=0; bzero((char*) table->const_key_parts, sizeof(key_part_map)*table->s->keys); all_table_map|= table->map; s->join=join; s->info=0; // For describe s->dependent= tables->dep_tables; s->key_dependent= 0; if (tables->schema_table) table->file->records= 2; s->on_expr_ref= &tables->on_expr; if (*s->on_expr_ref) { /* s is the only inner table of an outer join */ if (!table->file->records && !embedding) { // Empty table s->dependent= 0; // Ignore LEFT JOIN depend. set_position(join,const_count++,s,(KEYUSE*) 0); continue; } outer_join|= table->map; s->embedding_map= 0; for (;embedding; embedding= embedding->embedding) s->embedding_map|= embedding->nested_join->nj_map; continue; } if (embedding) { /* s belongs to a nested join, maybe to several embedded joins */ s->embedding_map= 0; do { NESTED_JOIN *nested_join= embedding->nested_join; s->embedding_map|=nested_join->nj_map; s->dependent|= embedding->dep_tables; embedding= embedding->embedding; outer_join|= nested_join->used_tables; } while (embedding); continue; } if ((table->s->system || table->file->records <= 1) && ! s->dependent && !(table->file->table_flags() & HA_NOT_EXACT_COUNT) && !table->fulltext_searched) { set_position(join,const_count++,s,(KEYUSE*) 0); } } stat_vector[i]=0; join->outer_join=outer_join; if (join->outer_join) { /* Build transitive closure for relation 'to be dependent on'. This will speed up the plan search for many cases with outer joins, as well as allow us to catch illegal cross references/ Warshall's algorithm is used to build the transitive closure. As we use bitmaps to represent the relation the complexity of the algorithm is O((number of tables)^2). */ for (i= 0, s= stat ; i < table_count ; i++, s++) { for (uint j= 0 ; j < table_count ; j++) { table= stat[j].table; if (s->dependent & table->map) s->dependent |= table->reginfo.join_tab->dependent; } if (s->dependent) s->table->maybe_null= 1; } /* Catch illegal cross references for outer joins */ for (i= 0, s= stat ; i < table_count ; i++, s++) { if (s->dependent & s->table->map) { join->tables=0; // Don't use join->table my_message(ER_WRONG_OUTER_JOIN, ER(ER_WRONG_OUTER_JOIN), MYF(0)); DBUG_RETURN(1); } s->key_dependent= s->dependent; } } if (conds || outer_join) if (update_ref_and_keys(join->thd, keyuse_array, stat, join->tables, conds, join->cond_equal, ~outer_join, join->select_lex, &sargables)) DBUG_RETURN(1); /* Read tables with 0 or 1 rows (system tables) */ join->const_table_map= 0; for (POSITION *p_pos=join->positions, *p_end=p_pos+const_count; p_pos < p_end ; p_pos++) { int tmp; s= p_pos->table; s->type=JT_SYSTEM; join->const_table_map|=s->table->map; if ((tmp=join_read_const_table(s, p_pos))) { if (tmp > 0) DBUG_RETURN(1); // Fatal error } else found_const_table_map|= s->table->map; } /* loop until no more const tables are found */ int ref_changed; do { more_const_tables_found: ref_changed = 0; found_ref=0; /* We only have to loop from stat_vector + const_count as set_position() will move all const_tables first in stat_vector */ for (JOIN_TAB **pos=stat_vector+const_count ; (s= *pos) ; pos++) { table=s->table; /* If equi-join condition by a key is null rejecting and after a substitution of a const table the key value happens to be null then we can state that there are no matches for this equi-join. */ if ((keyuse= s->keyuse) && *s->on_expr_ref) { while (keyuse->table == table) { if (!(keyuse->val->used_tables() & ~join->const_table_map) && keyuse->val->is_null() && keyuse->null_rejecting) { s->type= JT_CONST; mark_as_null_row(table); found_const_table_map|= table->map; join->const_table_map|= table->map; set_position(join,const_count++,s,(KEYUSE*) 0); goto more_const_tables_found; } keyuse++; } } if (s->dependent) // If dependent on some table { // All dep. must be constants if (s->dependent & ~(found_const_table_map)) continue; if (table->file->records <= 1L && !(table->file->table_flags() & HA_NOT_EXACT_COUNT) && !table->pos_in_table_list->embedding) { // system table int tmp= 0; s->type=JT_SYSTEM; join->const_table_map|=table->map; set_position(join,const_count++,s,(KEYUSE*) 0); if ((tmp= join_read_const_table(s, join->positions+const_count-1))) { if (tmp > 0) DBUG_RETURN(1); // Fatal error } else found_const_table_map|= table->map; continue; } } /* check if table can be read by key or table only uses const refs */ if ((keyuse=s->keyuse)) { s->type= JT_REF; while (keyuse->table == table) { start_keyuse=keyuse; key=keyuse->key; s->keys.set_bit(key); // QQ: remove this ? refs=0; const_ref.clear_all(); eq_part.clear_all(); do { if (keyuse->val->type() != Item::NULL_ITEM && !keyuse->optimize) { if (!((~found_const_table_map) & keyuse->used_tables)) const_ref.set_bit(keyuse->keypart); else refs|=keyuse->used_tables; eq_part.set_bit(keyuse->keypart); } keyuse++; } while (keyuse->table == table && keyuse->key == key); if (eq_part.is_prefix(table->key_info[key].key_parts) && !table->fulltext_searched && !table->pos_in_table_list->embedding) { if ((table->key_info[key].flags & (HA_NOSAME | HA_END_SPACE_KEY)) == HA_NOSAME) { if (const_ref == eq_part) { // Found everything for ref. int tmp; ref_changed = 1; s->type= JT_CONST; join->const_table_map|=table->map; set_position(join,const_count++,s,start_keyuse); if (create_ref_for_key(join, s, start_keyuse, found_const_table_map)) DBUG_RETURN(1); if ((tmp=join_read_const_table(s, join->positions+const_count-1))) { if (tmp > 0) DBUG_RETURN(1); // Fatal error } else found_const_table_map|= table->map; break; } else found_ref|= refs; // Table is const if all refs are const } else if (const_ref == eq_part) s->const_keys.set_bit(key); } } } } } while (join->const_table_map & found_ref && ref_changed); /* Update info on indexes that can be used for search lookups as reading const tables may has added new sargable predicates. */ if (const_count && sargables) { for( ; sargables->field ; sargables++) { Field *field= sargables->field; JOIN_TAB *stat= field->table->reginfo.join_tab; key_map possible_keys= field->key_start; possible_keys.intersect(field->table->keys_in_use_for_query); bool is_const= 1; for (uint i=0; i< sargables->num_values; i++) is_const&= sargables->arg_value[i]->const_item(); if (is_const) stat[0].const_keys.merge(possible_keys); } } /* Calc how many (possible) matched records in each table */ for (s=stat ; s < stat_end ; s++) { if (s->type == JT_SYSTEM || s->type == JT_CONST) { /* Only one matching row */ s->found_records=s->records=s->read_time=1; s->worst_seeks=1.0; continue; } /* Approximate found rows and time to read them */ s->found_records=s->records=s->table->file->records; s->read_time=(ha_rows) s->table->file->scan_time(); /* Set a max range of how many seeks we can expect when using keys This is can't be to high as otherwise we are likely to use table scan. */ s->worst_seeks= min((double) s->found_records / 10, (double) s->read_time*3); if (s->worst_seeks < 2.0) // Fix for small tables s->worst_seeks=2.0; /* Add to stat->const_keys those indexes for which all group fields or all select distinct fields participate in one index. */ add_group_and_distinct_keys(join, s); if (!s->const_keys.is_clear_all() && !s->table->pos_in_table_list->embedding) { ha_rows records; SQL_SELECT *select; select= make_select(s->table, found_const_table_map, found_const_table_map, *s->on_expr_ref ? *s->on_expr_ref : conds, 1, &error); if (!select) DBUG_RETURN(1); records= get_quick_record_count(join->thd, select, s->table, &s->const_keys, join->row_limit); s->quick=select->quick; s->needed_reg=select->needed_reg; select->quick=0; if (records == 0 && s->table->reginfo.impossible_range) { /* Impossible WHERE or ON expression In case of ON, we mark that the we match one empty NULL row. In case of WHERE, don't set found_const_table_map to get the caller to abort with a zero row result. */ join->const_table_map|= s->table->map; set_position(join,const_count++,s,(KEYUSE*) 0); s->type= JT_CONST; if (*s->on_expr_ref) { /* Generate empty row */ s->info= "Impossible ON condition"; found_const_table_map|= s->table->map; s->type= JT_CONST; mark_as_null_row(s->table); // All fields are NULL } } if (records != HA_POS_ERROR) { s->found_records=records; s->read_time= (ha_rows) (s->quick ? s->quick->read_time : 0.0); } delete select; } } join->join_tab=stat; join->map2table=stat_ref; join->table= join->all_tables=table_vector; join->const_tables=const_count; join->found_const_table_map=found_const_table_map; /* Find an optimal join order of the non-constant tables. */ if (join->const_tables != join->tables) { optimize_keyuse(join, keyuse_array); choose_plan(join, all_table_map & ~join->const_table_map); } else { memcpy((gptr) join->best_positions,(gptr) join->positions, sizeof(POSITION)*join->const_tables); join->best_read=1.0; } /* Generate an execution plan from the found optimal join order. */ DBUG_RETURN(join->thd->killed || get_best_combination(join)); } /***************************************************************************** Check with keys are used and with tables references with tables Updates in stat: keys Bitmap of all used keys const_keys Bitmap of all keys with may be used with quick_select keyuse Pointer to possible keys *****************************************************************************/ typedef struct key_field_t { // Used when finding key fields Field *field; Item *val; // May be empty if diff constant uint level; uint optimize; bool eq_func; /* If true, the condition this struct represents will not be satisfied when val IS NULL. */ bool null_rejecting; } KEY_FIELD; /* Values in optimize */ #define KEY_OPTIMIZE_EXISTS 1 #define KEY_OPTIMIZE_REF_OR_NULL 2 /* Merge new key definitions to old ones, remove those not used in both This is called for OR between different levels To be able to do 'ref_or_null' we merge a comparison of a column and 'column IS NULL' to one test. This is useful for sub select queries that are internally transformed to something like: SELECT * FROM t1 WHERE t1.key=outer_ref_field or t1.key IS NULL KEY_FIELD::null_rejecting is processed as follows: result has null_rejecting=true if it is set for both ORed references. for example: (t2.key = t1.field OR t2.key = t1.field) -> null_rejecting=true (t2.key = t1.field OR t2.key <=> t1.field) -> null_rejecting=false */ static KEY_FIELD * merge_key_fields(KEY_FIELD *start,KEY_FIELD *new_fields,KEY_FIELD *end, uint and_level) { if (start == new_fields) return start; // Impossible or if (new_fields == end) return start; // No new fields, skip all KEY_FIELD *first_free=new_fields; /* Mark all found fields in old array */ for (; new_fields != end ; new_fields++) { for (KEY_FIELD *old=start ; old != first_free ; old++) { if (old->field == new_fields->field) { /* NOTE: below const_item() call really works as "!used_tables()", i.e. it can return FALSE where it is feasible to make it return TRUE. The cause is as follows: Some of the tables are already known to be const tables (the detection code is in make_join_statistics(), above the update_ref_and_keys() call), but we didn't propagate information about this: TABLE::const_table is not set to TRUE, and Item::update_used_tables() hasn't been called for each item. The result of this is that we're missing some 'ref' accesses. TODO: OptimizerTeam: Fix this */ if (!new_fields->val->const_item()) { /* If the value matches, we can use the key reference. If not, we keep it until we have examined all new values */ if (old->val->eq(new_fields->val, old->field->binary())) { old->level= and_level; old->optimize= ((old->optimize & new_fields->optimize & KEY_OPTIMIZE_EXISTS) | ((old->optimize | new_fields->optimize) & KEY_OPTIMIZE_REF_OR_NULL)); old->null_rejecting= (old->null_rejecting && new_fields->null_rejecting); } } else if (old->eq_func && new_fields->eq_func && old->val->eq(new_fields->val, old->field->binary())) { old->level= and_level; old->optimize= ((old->optimize & new_fields->optimize & KEY_OPTIMIZE_EXISTS) | ((old->optimize | new_fields->optimize) & KEY_OPTIMIZE_REF_OR_NULL)); old->null_rejecting= (old->null_rejecting && new_fields->null_rejecting); } else if (old->eq_func && new_fields->eq_func && ((old->val->const_item() && old->val->is_null()) || new_fields->val->is_null())) { /* field = expression OR field IS NULL */ old->level= and_level; old->optimize= KEY_OPTIMIZE_REF_OR_NULL; /* Remember the NOT NULL value unless the value does not depend on other tables. */ if (!old->val->used_tables() && old->val->is_null()) old->val= new_fields->val; /* The referred expression can be NULL: */ old->null_rejecting= 0; } else { /* We are comparing two different const. In this case we can't use a key-lookup on this so it's better to remove the value and let the range optimzier handle it */ if (old == --first_free) // If last item break; *old= *first_free; // Remove old value old--; // Retry this value } } } } /* Remove all not used items */ for (KEY_FIELD *old=start ; old != first_free ;) { if (old->level != and_level) { // Not used in all levels if (old == --first_free) break; *old= *first_free; // Remove old value continue; } old++; } return first_free; } /* Add a possible key to array of possible keys if it's usable as a key SYNPOSIS add_key_field() key_fields Pointer to add key, if usable and_level And level, to be stored in KEY_FIELD cond Condition predicate field Field used in comparision eq_func True if we used =, <=> or IS NULL value Value used for comparison with field usable_tables Tables which can be used for key optimization sargables IN/OUT Array of found sargable candidates NOTES If we are doing a NOT NULL comparison on a NOT NULL field in a outer join table, we store this to be able to do not exists optimization later. RETURN *key_fields is incremented if we stored a key in the array */ static void add_key_field(KEY_FIELD **key_fields,uint and_level, Item_func *cond, Field *field, bool eq_func, Item **value, uint num_values, table_map usable_tables, SARGABLE_PARAM **sargables) { uint exists_optimize= 0; if (!(field->flags & PART_KEY_FLAG)) { // Don't remove column IS NULL on a LEFT JOIN table if (!eq_func || (*value)->type() != Item::NULL_ITEM || !field->table->maybe_null || field->null_ptr) return; // Not a key. Skip it exists_optimize= KEY_OPTIMIZE_EXISTS; DBUG_ASSERT(num_values == 1); } else { table_map used_tables=0; bool optimizable=0; for (uint i=0; i<num_values; i++) { used_tables|=(value[i])->used_tables(); if (!((value[i])->used_tables() & (field->table->map | RAND_TABLE_BIT))) optimizable=1; } if (!optimizable) return; if (!(usable_tables & field->table->map)) { if (!eq_func || (*value)->type() != Item::NULL_ITEM || !field->table->maybe_null || field->null_ptr) return; // Can't use left join optimize exists_optimize= KEY_OPTIMIZE_EXISTS; } else { JOIN_TAB *stat=field->table->reginfo.join_tab; key_map possible_keys=field->key_start; possible_keys.intersect(field->table->keys_in_use_for_query); stat[0].keys.merge(possible_keys); // Add possible keys /* Save the following cases: Field op constant Field LIKE constant where constant doesn't start with a wildcard Field = field2 where field2 is in a different table Field op formula Field IS NULL Field IS NOT NULL Field BETWEEN ... Field IN ... */ stat[0].key_dependent|=used_tables; bool is_const=1; for (uint i=0; i<num_values; i++) is_const&= value[i]->const_item(); if (is_const) stat[0].const_keys.merge(possible_keys); else if (!eq_func) { /* Save info to be able check whether this predicate can be considered as sargable for range analisis after reading const tables. We do not save info about equalities as update_const_equal_items will take care of updating info on keys from sargable equalities. */ (*sargables)--; (*sargables)->field= field; (*sargables)->arg_value= value; (*sargables)->num_values= num_values; } /* We can't always use indexes when comparing a string index to a number. cmp_type() is checked to allow compare of dates to numbers. eq_func is NEVER true when num_values > 1 */ if (!eq_func) { /* Additional optimization: if we're processing "t.key BETWEEN c1 AND c1" then proceed as if we were processing "t.key = c1". TODO: This is a very limited fix. A more generic fix is possible. There are 2 options: A) Make equality propagation code be able to handle BETWEEN (including cases like t1.key BETWEEN t2.key AND t3.key) B) Make range optimizer to infer additional "t.key = c" equalities and use them in equality propagation process (see details in OptimizerKBAndTodo) */ if ((cond->functype() != Item_func::BETWEEN) || ((Item_func_between*) cond)->negated || !value[0]->eq(value[1], field->binary())) return; eq_func= TRUE; } if (field->result_type() == STRING_RESULT) { if ((*value)->result_type() != STRING_RESULT) { if (field->cmp_type() != (*value)->result_type()) return; } else { /* We can't use indexes if the effective collation of the operation differ from the field collation. We also cannot use index on a text column, as the column may contain 'x' 'x\t' 'x ' and 'read_next_same' will stop after 'x' when searching for WHERE col='x ' */ if (field->cmp_type() == STRING_RESULT && (((Field_str*)field)->charset() != cond->compare_collation() || ((*value)->type() != Item::NULL_ITEM && (field->flags & BLOB_FLAG) && !field->binary()))) return; } } } } /* For the moment eq_func is always true. This slot is reserved for future extensions where we want to remembers other things than just eq comparisons */ DBUG_ASSERT(eq_func); /* Store possible eq field */ (*key_fields)->field= field; (*key_fields)->eq_func= eq_func; (*key_fields)->val= *value; (*key_fields)->level= and_level; (*key_fields)->optimize= exists_optimize; /* If the condition has form "tbl.keypart = othertbl.field" and othertbl.field can be NULL, there will be no matches if othertbl.field has NULL value. We use null_rejecting in add_not_null_conds() to add 'othertbl.field IS NOT NULL' to tab->select_cond. */ (*key_fields)->null_rejecting= ((cond->functype() == Item_func::EQ_FUNC || cond->functype() == Item_func::MULT_EQUAL_FUNC) && ((*value)->type() == Item::FIELD_ITEM) && ((Item_field*)*value)->field->maybe_null()); (*key_fields)++; } /* Add possible keys to array of possible keys originated from a simple predicate SYNPOSIS add_key_equal_fields() key_fields Pointer to add key, if usable and_level And level, to be stored in KEY_FIELD cond Condition predicate field Field used in comparision eq_func True if we used =, <=> or IS NULL value Value used for comparison with field Is NULL for BETWEEN and IN usable_tables Tables which can be used for key optimization sargables IN/OUT Array of found sargable candidates NOTES If field items f1 and f2 belong to the same multiple equality and a key is added for f1, the the same key is added for f2. RETURN *key_fields is incremented if we stored a key in the array */ static void add_key_equal_fields(KEY_FIELD **key_fields, uint and_level, Item_func *cond, Item_field *field_item, bool eq_func, Item **val, uint num_values, table_map usable_tables, SARGABLE_PARAM **sargables) { Field *field= field_item->field; add_key_field(key_fields, and_level, cond, field, eq_func, val, num_values, usable_tables, sargables); Item_equal *item_equal= field_item->item_equal; if (item_equal) { /* Add to the set of possible key values every substitution of the field for an equal field included into item_equal */ Item_equal_iterator it(*item_equal); Item_field *item; while ((item= it++)) { if (!field->eq(item->field)) { add_key_field(key_fields, and_level, cond, item->field, eq_func, val, num_values, usable_tables, sargables); } } } } static void add_key_fields(KEY_FIELD **key_fields,uint *and_level, COND *cond, table_map usable_tables, SARGABLE_PARAM **sargables) { if (cond->type() == Item_func::COND_ITEM) { List_iterator_fast<Item> li(*((Item_cond*) cond)->argument_list()); KEY_FIELD *org_key_fields= *key_fields; if (((Item_cond*) cond)->functype() == Item_func::COND_AND_FUNC) { Item *item; while ((item=li++)) add_key_fields(key_fields,and_level,item,usable_tables,sargables); for (; org_key_fields != *key_fields ; org_key_fields++) org_key_fields->level= *and_level; } else { (*and_level)++; add_key_fields(key_fields,and_level,li++,usable_tables,sargables); Item *item; while ((item=li++)) { KEY_FIELD *start_key_fields= *key_fields; (*and_level)++; add_key_fields(key_fields,and_level,item,usable_tables,sargables); *key_fields=merge_key_fields(org_key_fields,start_key_fields, *key_fields,++(*and_level)); } } return; } /* If item is of type 'field op field/constant' add it to key_fields */ if (cond->type() != Item::FUNC_ITEM) return; Item_func *cond_func= (Item_func*) cond; switch (cond_func->select_optimize()) { case Item_func::OPTIMIZE_NONE: break; case Item_func::OPTIMIZE_KEY: { Item **values; // BETWEEN, IN, NE if (cond_func->key_item()->real_item()->type() == Item::FIELD_ITEM && !(cond_func->used_tables() & OUTER_REF_TABLE_BIT)) { values= cond_func->arguments()+1; if (cond_func->functype() == Item_func::NE_FUNC && cond_func->arguments()[1]->real_item()->type() == Item::FIELD_ITEM && !(cond_func->arguments()[0]->used_tables() & OUTER_REF_TABLE_BIT)) values--; DBUG_ASSERT(cond_func->functype() != Item_func::IN_FUNC || cond_func->argument_count() != 2); add_key_equal_fields(key_fields, *and_level, cond_func, (Item_field*) (cond_func->key_item()->real_item()), 0, values, cond_func->argument_count()-1, usable_tables, sargables); } if (cond_func->functype() == Item_func::BETWEEN) { values= cond_func->arguments(); for (uint i= 1 ; i < cond_func->argument_count() ; i++) { Item_field *field_item; if (cond_func->arguments()[i]->real_item()->type() == Item::FIELD_ITEM && !(cond_func->arguments()[i]->used_tables() & OUTER_REF_TABLE_BIT)) { field_item= (Item_field *) (cond_func->arguments()[i]->real_item()); add_key_equal_fields(key_fields, *and_level, cond_func, field_item, 0, values, 1, usable_tables, sargables); } } } break; } case Item_func::OPTIMIZE_OP: { bool equal_func=(cond_func->functype() == Item_func::EQ_FUNC || cond_func->functype() == Item_func::EQUAL_FUNC); if (cond_func->arguments()[0]->real_item()->type() == Item::FIELD_ITEM && !(cond_func->arguments()[0]->used_tables() & OUTER_REF_TABLE_BIT)) { add_key_equal_fields(key_fields, *and_level, cond_func, (Item_field*) (cond_func->arguments()[0])->real_item(), equal_func, cond_func->arguments()+1, 1, usable_tables, sargables); } if (cond_func->arguments()[1]->real_item()->type() == Item::FIELD_ITEM && cond_func->functype() != Item_func::LIKE_FUNC && !(cond_func->arguments()[1]->used_tables() & OUTER_REF_TABLE_BIT)) { add_key_equal_fields(key_fields, *and_level, cond_func, (Item_field*) (cond_func->arguments()[1])->real_item(), equal_func, cond_func->arguments(),1,usable_tables, sargables); } break; } case Item_func::OPTIMIZE_NULL: /* column_name IS [NOT] NULL */ if (cond_func->arguments()[0]->real_item()->type() == Item::FIELD_ITEM && !(cond_func->used_tables() & OUTER_REF_TABLE_BIT)) { Item *tmp=new Item_null; if (unlikely(!tmp)) // Should never be true return; add_key_equal_fields(key_fields, *and_level, cond_func, (Item_field*) (cond_func->arguments()[0])->real_item(), cond_func->functype() == Item_func::ISNULL_FUNC, &tmp, 1, usable_tables, sargables); } break; case Item_func::OPTIMIZE_EQUAL: Item_equal *item_equal= (Item_equal *) cond; Item *const_item= item_equal->get_const(); Item_equal_iterator it(*item_equal); Item_field *item; if (const_item) { /* For each field field1 from item_equal consider the equality field1=const_item as a condition allowing an index access of the table with field1 by the keys value of field1. */ while ((item= it++)) { add_key_field(key_fields, *and_level, cond_func, item->field, TRUE, &const_item, 1, usable_tables, sargables); } } else { /* Consider all pairs of different fields included into item_equal. For each of them (field1, field1) consider the equality field1=field2 as a condition allowing an index access of the table with field1 by the keys value of field2. */ Item_equal_iterator fi(*item_equal); while ((item= fi++)) { Field *field= item->field; while ((item= it++)) { if (!field->eq(item->field)) { add_key_field(key_fields, *and_level, cond_func, field, TRUE, (Item **) &item, 1, usable_tables, sargables); } } it.rewind(); } } break; } } /* Add all keys with uses 'field' for some keypart If field->and_level != and_level then only mark key_part as const_part */ static uint max_part_bit(key_part_map bits) { uint found; for (found=0; bits & 1 ; found++,bits>>=1) ; return found; } static void add_key_part(DYNAMIC_ARRAY *keyuse_array,KEY_FIELD *key_field) { Field *field=key_field->field; TABLE *form= field->table; KEYUSE keyuse; if (key_field->eq_func && !(key_field->optimize & KEY_OPTIMIZE_EXISTS)) { for (uint key=0 ; key < form->s->keys ; key++) { if (!(form->keys_in_use_for_query.is_set(key))) continue; if (form->key_info[key].flags & HA_FULLTEXT) continue; // ToDo: ft-keys in non-ft queries. SerG uint key_parts= (uint) form->key_info[key].key_parts; for (uint part=0 ; part < key_parts ; part++) { if (field->eq(form->key_info[key].key_part[part].field)) { keyuse.table= field->table; keyuse.val = key_field->val; keyuse.key = key; keyuse.keypart=part; keyuse.keypart_map= (key_part_map) 1 << part; keyuse.used_tables=key_field->val->used_tables(); keyuse.optimize= key_field->optimize & KEY_OPTIMIZE_REF_OR_NULL; keyuse.null_rejecting= key_field->null_rejecting; VOID(insert_dynamic(keyuse_array,(gptr) &keyuse)); } } } } } #define FT_KEYPART (MAX_REF_PARTS+10) static void add_ft_keys(DYNAMIC_ARRAY *keyuse_array, JOIN_TAB *stat,COND *cond,table_map usable_tables) { Item_func_match *cond_func=NULL; if (!cond) return; if (cond->type() == Item::FUNC_ITEM) { Item_func *func=(Item_func *)cond; Item_func::Functype functype= func->functype(); if (functype == Item_func::FT_FUNC) cond_func=(Item_func_match *)cond; else if (func->arg_count == 2) { Item_func *arg0=(Item_func *)(func->arguments()[0]), *arg1=(Item_func *)(func->arguments()[1]); if (arg1->const_item() && ((functype == Item_func::GE_FUNC && arg1->val_real() > 0) || (functype == Item_func::GT_FUNC && arg1->val_real() >=0)) && arg0->type() == Item::FUNC_ITEM && arg0->functype() == Item_func::FT_FUNC) cond_func=(Item_func_match *) arg0; else if (arg0->const_item() && ((functype == Item_func::LE_FUNC && arg0->val_real() > 0) || (functype == Item_func::LT_FUNC && arg0->val_real() >=0)) && arg1->type() == Item::FUNC_ITEM && arg1->functype() == Item_func::FT_FUNC) cond_func=(Item_func_match *) arg1; } } else if (cond->type() == Item::COND_ITEM) { List_iterator_fast<Item> li(*((Item_cond*) cond)->argument_list()); if (((Item_cond*) cond)->functype() == Item_func::COND_AND_FUNC) { Item *item; while ((item=li++)) add_ft_keys(keyuse_array,stat,item,usable_tables); } } if (!cond_func || cond_func->key == NO_SUCH_KEY || !(usable_tables & cond_func->table->map)) return; KEYUSE keyuse; keyuse.table= cond_func->table; keyuse.val = cond_func; keyuse.key = cond_func->key; keyuse.keypart= FT_KEYPART; keyuse.used_tables=cond_func->key_item()->used_tables(); keyuse.optimize= 0; keyuse.keypart_map= 0; VOID(insert_dynamic(keyuse_array,(gptr) &keyuse)); } static int sort_keyuse(KEYUSE *a,KEYUSE *b) { int res; if (a->table->tablenr != b->table->tablenr) return (int) (a->table->tablenr - b->table->tablenr); if (a->key != b->key) return (int) (a->key - b->key); if (a->keypart != b->keypart) return (int) (a->keypart - b->keypart); // Place const values before other ones if ((res= test((a->used_tables & ~OUTER_REF_TABLE_BIT)) - test((b->used_tables & ~OUTER_REF_TABLE_BIT)))) return res; /* Place rows that are not 'OPTIMIZE_REF_OR_NULL' first */ return (int) ((a->optimize & KEY_OPTIMIZE_REF_OR_NULL) - (b->optimize & KEY_OPTIMIZE_REF_OR_NULL)); } /* Add to KEY_FIELD array all 'ref' access candidates within nested join SYNPOSIS add_key_fields_for_nj() nested_join_table IN Nested join pseudo-table to process end INOUT End of the key field array and_level INOUT And-level sargables IN/OUT Array of found sargable candidates DESCRIPTION This function populates KEY_FIELD array with entries generated from the ON condition of the given nested join, and does the same for nested joins contained within this nested join. NOTES We can add accesses to the tables that are direct children of this nested join (1), and are not inner tables w.r.t their neighbours (2). Example for #1 (outer brackets pair denotes nested join this function is invoked for): ... LEFT JOIN (t1 LEFT JOIN (t2 ... ) ) ON cond Example for #2: ... LEFT JOIN (t1 LEFT JOIN t2 ) ON cond In examples 1-2 for condition cond, we can add 'ref' access candidates to t1 only. Example #3: ... LEFT JOIN (t1, t2 LEFT JOIN t3 ON inner_cond) ON cond Here we can add 'ref' access candidates for t1 and t2, but not for t3. */ static void add_key_fields_for_nj(TABLE_LIST *nested_join_table, KEY_FIELD **end, uint *and_level, SARGABLE_PARAM **sargables) { List_iterator<TABLE_LIST> li(nested_join_table->nested_join->join_list); table_map tables= 0; TABLE_LIST *table; DBUG_ASSERT(nested_join_table->nested_join); while ((table= li++)) { if (table->nested_join) add_key_fields_for_nj(table, end, and_level, sargables); else if (!table->on_expr) tables |= table->table->map; } add_key_fields(end, and_level, nested_join_table->on_expr, tables, sargables); } /* Update keyuse array with all possible keys we can use to fetch rows SYNOPSIS update_ref_and_keys() thd keyuse OUT Put here ordered array of KEYUSE structures join_tab Array in tablenr_order tables Number of tables in join cond WHERE condition (note that the function analyzes join_tab[i]->on_expr too) normal_tables Tables not inner w.r.t some outer join (ones for which we can make ref access based the WHERE clause) select_lex current SELECT sargables OUT Array of found sargable candidates RETURN 0 - OK 1 - Out of memory. */ static bool update_ref_and_keys(THD *thd, DYNAMIC_ARRAY *keyuse,JOIN_TAB *join_tab, uint tables, COND *cond, COND_EQUAL *cond_equal, table_map normal_tables, SELECT_LEX *select_lex, SARGABLE_PARAM **sargables) { uint and_level,i,found_eq_constant; KEY_FIELD *key_fields, *end, *field; uint sz; uint m= 1; if (cond_equal && cond_equal->max_members) m= cond_equal->max_members; /* We use the same piece of memory to store both KEY_FIELD and SARGABLE_PARAM structure. KEY_FIELD values are placed at the beginning this memory while SARGABLE_PARAM values are put at the end. All predicates that are used to fill arrays of KEY_FIELD and SARGABLE_PARAM structures have at most 2 arguments except BETWEEN predicates that have 3 arguments and IN predicates. This any predicate if it's not BETWEEN/IN can be used directly to fill at most 2 array elements, either of KEY_FIELD or SARGABLE_PARAM type. For a BETWEEN predicate 3 elements can be filled as this predicate is considered as saragable with respect to each of its argument. An IN predicate can require at most 1 element as currently it is considered as sargable only for its first argument. Multiple equality can add elements that are filled after substitution of field arguments by equal fields. There can be not more than cond_equal->max_members such substitutions. */ sz= max(sizeof(KEY_FIELD),sizeof(SARGABLE_PARAM))* (((thd->lex->current_select->cond_count+1)*2 + thd->lex->current_select->between_count)*m+1); if (!(key_fields=(KEY_FIELD*) thd->alloc(sz))) return TRUE; /* purecov: inspected */ and_level= 0; field= end= key_fields; *sargables= (SARGABLE_PARAM *) key_fields + (sz - sizeof((*sargables)[0].field))/sizeof(SARGABLE_PARAM); /* set a barrier for the array of SARGABLE_PARAM */ (*sargables)[0].field= 0; if (my_init_dynamic_array(keyuse,sizeof(KEYUSE),20,64)) return TRUE; if (cond) { add_key_fields(&end,&and_level,cond,normal_tables,sargables); for (; field != end ; field++) { add_key_part(keyuse,field); /* Mark that we can optimize LEFT JOIN */ if (field->val->type() == Item::NULL_ITEM && !field->field->real_maybe_null()) field->field->table->reginfo.not_exists_optimize=1; } } for (i=0 ; i < tables ; i++) { /* Block the creation of keys for inner tables of outer joins. Here only the outer joins that can not be converted to inner joins are left and all nests that can be eliminated are flattened. In the future when we introduce conditional accesses for inner tables in outer joins these keys will be taken into account as well. */ if (*join_tab[i].on_expr_ref) add_key_fields(&end,&and_level,*join_tab[i].on_expr_ref, join_tab[i].table->map,sargables); } /* Process ON conditions for the nested joins */ { List_iterator<TABLE_LIST> li(*join_tab->join->join_list); TABLE_LIST *table; while ((table= li++)) { if (table->nested_join) add_key_fields_for_nj(table, &end, &and_level, sargables); } } /* fill keyuse with found key parts */ for ( ; field != end ; field++) add_key_part(keyuse,field); if (select_lex->ftfunc_list->elements) { add_ft_keys(keyuse,join_tab,cond,normal_tables); } /* Sort the array of possible keys and remove the following key parts: - ref if there is a keypart which is a ref and a const. (e.g. if there is a key(a,b) and the clause is a=3 and b=7 and b=t2.d, then we skip the key part corresponding to b=t2.d) - keyparts without previous keyparts (e.g. if there is a key(a,b,c) but only b < 5 (or a=2 and c < 3) is used in the query, we drop the partial key parts from consideration). Special treatment for ft-keys. */ if (keyuse->elements) { KEYUSE end,*prev,*save_pos,*use; qsort(keyuse->buffer,keyuse->elements,sizeof(KEYUSE), (qsort_cmp) sort_keyuse); bzero((char*) &end,sizeof(end)); /* Add for easy testing */ VOID(insert_dynamic(keyuse,(gptr) &end)); use=save_pos=dynamic_element(keyuse,0,KEYUSE*); prev=&end; found_eq_constant=0; for (i=0 ; i < keyuse->elements-1 ; i++,use++) { if (!use->used_tables) use->table->const_key_parts[use->key]|= use->keypart_map; if (use->keypart != FT_KEYPART) { if (use->key == prev->key && use->table == prev->table) { if (prev->keypart+1 < use->keypart || prev->keypart == use->keypart && found_eq_constant) continue; /* remove */ } else if (use->keypart != 0) // First found must be 0 continue; } *save_pos= *use; prev=use; found_eq_constant= !use->used_tables; /* Save ptr to first use */ if (!use->table->reginfo.join_tab->keyuse) use->table->reginfo.join_tab->keyuse=save_pos; use->table->reginfo.join_tab->checked_keys.set_bit(use->key); save_pos++; } i=(uint) (save_pos-(KEYUSE*) keyuse->buffer); VOID(set_dynamic(keyuse,(gptr) &end,i)); keyuse->elements=i; } return FALSE; } /* Update some values in keyuse for faster choose_plan() loop */ static void optimize_keyuse(JOIN *join, DYNAMIC_ARRAY *keyuse_array) { KEYUSE *end,*keyuse= dynamic_element(keyuse_array, 0, KEYUSE*); for (end= keyuse+ keyuse_array->elements ; keyuse < end ; keyuse++) { table_map map; /* If we find a ref, assume this table matches a proportional part of this table. For example 100 records matching a table with 5000 records gives 5000/100 = 50 records per key Constant tables are ignored. To avoid bad matches, we don't make ref_table_rows less than 100. */ keyuse->ref_table_rows= ~(ha_rows) 0; // If no ref if (keyuse->used_tables & (map= (keyuse->used_tables & ~join->const_table_map & ~OUTER_REF_TABLE_BIT))) { uint tablenr; for (tablenr=0 ; ! (map & 1) ; map>>=1, tablenr++) ; if (map == 1) // Only one table { TABLE *tmp_table=join->all_tables[tablenr]; keyuse->ref_table_rows= max(tmp_table->file->records, 100); } } /* Outer reference (external field) is constant for single executing of subquery */ if (keyuse->used_tables == OUTER_REF_TABLE_BIT) keyuse->ref_table_rows= 1; } } /* Discover the indexes that can be used for GROUP BY or DISTINCT queries. SYNOPSIS add_group_and_distinct_keys() join join_tab DESCRIPTION If the query has a GROUP BY clause, find all indexes that contain all GROUP BY fields, and add those indexes to join->const_keys. If the query has a DISTINCT clause, find all indexes that contain all SELECT fields, and add those indexes to join->const_keys. This allows later on such queries to be processed by a QUICK_GROUP_MIN_MAX_SELECT. RETURN None */ static void add_group_and_distinct_keys(JOIN *join, JOIN_TAB *join_tab) { List<Item_field> indexed_fields; List_iterator<Item_field> indexed_fields_it(indexed_fields); ORDER *cur_group; Item_field *cur_item; key_map possible_keys(0); if (join->group_list) { /* Collect all query fields referenced in the GROUP clause. */ for (cur_group= join->group_list; cur_group; cur_group= cur_group->next) (*cur_group->item)->walk(&Item::collect_item_field_processor, (byte*) &indexed_fields); } else if (join->select_distinct) { /* Collect all query fields referenced in the SELECT clause. */ List<Item> &select_items= join->fields_list; List_iterator<Item> select_items_it(select_items); Item *item; while ((item= select_items_it++)) item->walk(&Item::collect_item_field_processor, (byte*) &indexed_fields); } else return; if (indexed_fields.elements == 0) return; /* Intersect the keys of all group fields. */ cur_item= indexed_fields_it++; possible_keys.merge(cur_item->field->part_of_key); while ((cur_item= indexed_fields_it++)) { possible_keys.intersect(cur_item->field->part_of_key); } if (!possible_keys.is_clear_all()) join_tab->const_keys.merge(possible_keys); } /***************************************************************************** Go through all combinations of not marked tables and find the one which uses least records *****************************************************************************/ /* Save const tables first as used tables */ static void set_position(JOIN *join,uint idx,JOIN_TAB *table,KEYUSE *key) { join->positions[idx].table= table; join->positions[idx].key=key; join->positions[idx].records_read=1.0; /* This is a const table */ /* Move the const table as down as possible in best_ref */ JOIN_TAB **pos=join->best_ref+idx+1; JOIN_TAB *next=join->best_ref[idx]; for (;next != table ; pos++) { JOIN_TAB *tmp=pos[0]; pos[0]=next; next=tmp; } join->best_ref[idx]=table; } /* Find the best access path for an extension of a partial execution plan and add this path to the plan. SYNOPSIS best_access_path() join pointer to the structure providing all context info for the query s the table to be joined by the function thd thread for the connection that submitted the query remaining_tables set of tables not included into the partial plan yet idx the length of the partial plan record_count estimate for the number of records returned by the partial plan read_time the cost of the partial plan DESCRIPTION The function finds the best access path to table 's' from the passed partial plan where an access path is the general term for any means to access the data in 's'. An access path may use either an index or a scan, whichever is cheaper. The input partial plan is passed via the array 'join->positions' of length 'idx'. The chosen access method for 's' and its cost are stored in 'join->positions[idx]'. RETURN None */ static void best_access_path(JOIN *join, JOIN_TAB *s, THD *thd, table_map remaining_tables, uint idx, double record_count, double read_time) { KEYUSE *best_key= 0; uint best_max_key_part= 0; my_bool found_constraint= 0; double best= DBL_MAX; double best_time= DBL_MAX; double records= DBL_MAX; double tmp; ha_rows rec; DBUG_ENTER("best_access_path"); if (s->keyuse) { /* Use key if possible */ TABLE *table= s->table; KEYUSE *keyuse,*start_key=0; double best_records= DBL_MAX; uint max_key_part=0; /* Test how we can use keys */ rec= s->records/MATCHING_ROWS_IN_OTHER_TABLE; // Assumed records/key for (keyuse=s->keyuse ; keyuse->table == table ;) { key_part_map found_part= 0; table_map found_ref= 0; uint key= keyuse->key; KEY *keyinfo= table->key_info+key; bool ft_key= (keyuse->keypart == FT_KEYPART); /* Bitmap of keyparts where the ref access is over 'keypart=const': */ key_part_map const_part= 0; /* The or-null keypart in ref-or-null access: */ key_part_map ref_or_null_part= 0; /* Calculate how many key segments of the current key we can use */ start_key= keyuse; do { /* for each keypart */ uint keypart= keyuse->keypart; table_map best_part_found_ref= 0; double best_prev_record_reads= DBL_MAX; do { if (!(remaining_tables & keyuse->used_tables) && !(ref_or_null_part && (keyuse->optimize & KEY_OPTIMIZE_REF_OR_NULL))) { found_part|= keyuse->keypart_map; if (!(keyuse->used_tables & ~join->const_table_map)) const_part|= keyuse->keypart_map; double tmp= prev_record_reads(join, (found_ref | keyuse->used_tables)); if (tmp < best_prev_record_reads) { best_part_found_ref= keyuse->used_tables & ~join->const_table_map; best_prev_record_reads= tmp; } if (rec > keyuse->ref_table_rows) rec= keyuse->ref_table_rows; /* If there is one 'key_column IS NULL' expression, we can use this ref_or_null optimisation of this field */ if (keyuse->optimize & KEY_OPTIMIZE_REF_OR_NULL) ref_or_null_part |= keyuse->keypart_map; } keyuse++; } while (keyuse->table == table && keyuse->key == key && keyuse->keypart == keypart); found_ref|= best_part_found_ref; } while (keyuse->table == table && keyuse->key == key); /* Assume that that each key matches a proportional part of table. */ if (!found_part && !ft_key) continue; // Nothing usable found if (rec < MATCHING_ROWS_IN_OTHER_TABLE) rec= MATCHING_ROWS_IN_OTHER_TABLE; // Fix for small tables /* ft-keys require special treatment */ if (ft_key) { /* Really, there should be records=0.0 (yes!) but 1.0 would be probably safer */ tmp= prev_record_reads(join, found_ref); records= 1.0; } else { found_constraint= 1; /* Check if we found full key */ if (found_part == PREV_BITS(uint,keyinfo->key_parts) && !ref_or_null_part) { /* use eq key */ max_key_part= (uint) ~0; if ((keyinfo->flags & (HA_NOSAME | HA_NULL_PART_KEY)) == HA_NOSAME) { tmp = prev_record_reads(join, found_ref); records=1.0; } else { if (!found_ref) { /* We found a const key */ /* ReuseRangeEstimateForRef-1: We get here if we've found a ref(const) (c_i are constants): "(keypart1=c1) AND ... AND (keypartN=cN)" [ref_const_cond] If range optimizer was able to construct a "range" access on this index, then its condition "quick_cond" was eqivalent to ref_const_cond (*), and we can re-use E(#rows) from the range optimizer. Proof of (*): By properties of range and ref optimizers quick_cond will be equal or tighther than ref_const_cond. ref_const_cond already covers "smallest" possible interval - a singlepoint interval over all keyparts. Therefore, quick_cond is equivalent to ref_const_cond (if it was an empty interval we wouldn't have got here). */ if (table->quick_keys.is_set(key)) records= (double) table->quick_rows[key]; else { /* quick_range couldn't use key! */ records= (double) s->records/rec; } } else { if (!(records=keyinfo->rec_per_key[keyinfo->key_parts-1])) { /* Prefer longer keys */ records= ((double) s->records / (double) rec * (1.0 + ((double) (table->s->max_key_length-keyinfo->key_length) / (double) table->s->max_key_length))); if (records < 2.0) records=2.0; /* Can't be as good as a unique */ } /* ReuseRangeEstimateForRef-2: We get here if we could not reuse E(#rows) from range optimizer. Make another try: If range optimizer produced E(#rows) for a prefix of the ref access we're considering, and that E(#rows) is lower then our current estimate, make an adjustment. The criteria of when we can make an adjustment is a special case of the criteria used in ReuseRangeEstimateForRef-3. */ if (table->quick_keys.is_set(key) && const_part & (1 << table->quick_key_parts[key]) && table->quick_n_ranges[key] == 1 && records > (double) table->quick_rows[key]) { records= (double) table->quick_rows[key]; } } /* Limit the number of matched rows */ tmp= records; set_if_smaller(tmp, (double) thd->variables.max_seeks_for_key); if (table->used_keys.is_set(key)) { /* we can use only index tree */ uint keys_per_block= table->file->block_size/2/ (keyinfo->key_length+table->file->ref_length)+1; tmp= record_count*(tmp+keys_per_block-1)/keys_per_block; } else tmp= record_count*min(tmp,s->worst_seeks); } } else { /* Use as much key-parts as possible and a uniq key is better than a not unique key Set tmp to (previous record count) * (records / combination) */ if ((found_part & 1) && (!(table->file->index_flags(key, 0, 0) & HA_ONLY_WHOLE_INDEX) || found_part == PREV_BITS(uint,keyinfo->key_parts))) { max_key_part= max_part_bit(found_part); /* ReuseRangeEstimateForRef-3: We're now considering a ref[or_null] access via (t.keypart1=e1 AND ... AND t.keypartK=eK) [ OR (same-as-above but with one cond replaced with "t.keypart_i IS NULL")] (**) Try re-using E(#rows) from "range" optimizer: We can do so if "range" optimizer used the same intervals as in (**). The intervals used by range optimizer may be not available at this point (as "range" access might have choosen to create quick select over another index), so we can't compare them to (**). We'll make indirect judgements instead. The sufficient conditions for re-use are: (C1) All e_i in (**) are constants, i.e. found_ref==FALSE. (if this is not satisfied we have no way to know which ranges will be actually scanned by 'ref' until we execute the join) (C2) max #key parts in 'range' access == K == max_key_part (this is apparently a necessary requirement) We also have a property that "range optimizer produces equal or tighter set of scan intervals than ref(const) optimizer". Each of the intervals in (**) are "tightest possible" intervals when one limits itself to using keyparts 1..K (which we do in #2). From here it follows that range access used either one, or both of the (I1) and (I2) intervals: (t.keypart1=c1 AND ... AND t.keypartK=eK) (I1) (same-as-above but with one cond replaced with "t.keypart_i IS NULL") (I2) The remaining part is to exclude the situation where range optimizer used one interval while we're considering ref-or-null and looking for estimate for two intervals. This is done by last limitation: (C3) "range optimizer used (have ref_or_null?2:1) intervals" */ if (table->quick_keys.is_set(key) && !found_ref && //(C1) table->quick_key_parts[key] == max_key_part && //(C2) table->quick_n_ranges[key] == 1+test(ref_or_null_part)) //(C3) { tmp= records= (double) table->quick_rows[key]; } else { /* Check if we have statistic about the distribution */ if ((records= keyinfo->rec_per_key[max_key_part-1])) tmp= records; else { /* Assume that the first key part matches 1% of the file and that the whole key matches 10 (duplicates) or 1 (unique) records. Assume also that more key matches proportionally more records This gives the formula: records = (x * (b-a) + a*c-b)/(c-1) b = records matched by whole key a = records matched by first key part (1% of all records?) c = number of key parts in key x = used key parts (1 <= x <= c) */ double rec_per_key; if (!(rec_per_key=(double) keyinfo->rec_per_key[keyinfo->key_parts-1])) rec_per_key=(double) s->records/rec+1; if (!s->records) tmp = 0; else if (rec_per_key/(double) s->records >= 0.01) tmp = rec_per_key; else { double a=s->records*0.01; if (keyinfo->key_parts > 1) tmp= (max_key_part * (rec_per_key - a) + a*keyinfo->key_parts - rec_per_key)/ (keyinfo->key_parts-1); else tmp= a; set_if_bigger(tmp,1.0); } records = (ulong) tmp; } if (ref_or_null_part) { /* We need to do two key searches to find key */ tmp *= 2.0; records *= 2.0; } /* ReuseRangeEstimateForRef-4: We get here if we could not reuse E(#rows) from range optimizer. Make another try: If range optimizer produced E(#rows) for a prefix of the ref access we're considering, and that E(#rows) is lower then our current estimate, make the adjustment. The decision whether we can re-use the estimate from the range optimizer is the same as in ReuseRangeEstimateForRef-3, applied to first table->quick_key_parts[key] key parts. */ if (table->quick_keys.is_set(key) && table->quick_key_parts[key] <= max_key_part && const_part & (1 << table->quick_key_parts[key]) && table->quick_n_ranges[key] == 1 + test(ref_or_null_part & const_part) && records > (double) table->quick_rows[key]) { tmp= records= (double) table->quick_rows[key]; } } /* Limit the number of matched rows */ set_if_smaller(tmp, (double) thd->variables.max_seeks_for_key); if (table->used_keys.is_set(key)) { /* we can use only index tree */ uint keys_per_block= table->file->block_size/2/ (keyinfo->key_length+table->file->ref_length)+1; tmp= record_count*(tmp+keys_per_block-1)/keys_per_block; } else tmp= record_count*min(tmp,s->worst_seeks); } else tmp= best_time; // Do nothing } } /* not ft_key */ if (tmp < best_time - records/(double) TIME_FOR_COMPARE) { best_time= tmp + records/(double) TIME_FOR_COMPARE; best= tmp; best_records= records; best_key= start_key; best_max_key_part= max_key_part; } } records= best_records; } /* Don't test table scan if it can't be better. Prefer key lookup if we would use the same key for scanning. Don't do a table scan on InnoDB tables, if we can read the used parts of the row from any of the used index. This is because table scans uses index and we would not win anything by using a table scan. A word for word translation of the below if-statement in psergey's understanding: we check if we should use table scan if: (1) The found 'ref' access produces more records than a table scan (or index scan, or quick select), or 'ref' is more expensive than any of them. (2) This doesn't hold: the best way to perform table scan is to to perform 'range' access using index IDX, and the best way to perform 'ref' access is to use the same index IDX, with the same or more key parts. (note: it is not clear how this rule is/should be extended to index_merge quick selects) (3) See above note about InnoDB. (4) NOT ("FORCE INDEX(...)" is used for table and there is 'ref' access path, but there is no quick select) If the condition in the above brackets holds, then the only possible "table scan" access method is ALL/index (there is no quick select). Since we have a 'ref' access path, and FORCE INDEX instructs us to choose it over ALL/index, there is no need to consider a full table scan. */ if ((records >= s->found_records || best > s->read_time) && // (1) !(s->quick && best_key && s->quick->index == best_key->key && // (2) best_max_key_part >= s->table->quick_key_parts[best_key->key]) &&// (2) !((s->table->file->table_flags() & HA_TABLE_SCAN_ON_INDEX) && // (3) ! s->table->used_keys.is_clear_all() && best_key) && // (3) !(s->table->force_index && best_key && !s->quick)) // (4) { // Check full join ha_rows rnd_records= s->found_records; /* If there is a restriction on the table, assume that 25% of the rows can be skipped on next part. This is to force tables that this table depends on before this table */ if (found_constraint) rnd_records-= rnd_records/4; /* Range optimizer never proposes a RANGE if it isn't better than FULL: so if RANGE is present, it's always preferred to FULL. Here we estimate its cost. */ if (s->quick) { /* For each record we: - read record range through 'quick' - skip rows which does not satisfy WHERE constraints */ tmp= record_count * (s->quick->read_time + (s->found_records - rnd_records)/(double) TIME_FOR_COMPARE); } else { /* Estimate cost of reading table. */ tmp= s->table->file->scan_time(); if (s->table->map & join->outer_join) // Can't use join cache { /* For each record we have to: - read the whole table record - skip rows which does not satisfy join condition */ tmp= record_count * (tmp + (s->records - rnd_records)/(double) TIME_FOR_COMPARE); } else { /* We read the table as many times as join buffer becomes full. */ tmp*= (1.0 + floor((double) cache_record_length(join,idx) * record_count / (double) thd->variables.join_buff_size)); /* We don't make full cartesian product between rows in the scanned table and existing records because we skip all rows from the scanned table, which does not satisfy join condition when we read the table (see flush_cached_records for details). Here we take into account cost to read and skip these records. */ tmp+= (s->records - rnd_records)/(double) TIME_FOR_COMPARE; } } /* We estimate the cost of evaluating WHERE clause for found records as record_count * rnd_records / TIME_FOR_COMPARE. This cost plus tmp give us total cost of using TABLE SCAN */ if (best == DBL_MAX || (tmp + record_count/(double) TIME_FOR_COMPARE*rnd_records < best + record_count/(double) TIME_FOR_COMPARE*records)) { /* If the table has a range (s->quick is set) make_join_select() will ensure that this will be used */ best= tmp; records= rows2double(rnd_records); best_key= 0; } } /* Update the cost information for the current partial plan */ join->positions[idx].records_read= records; join->positions[idx].read_time= best; join->positions[idx].key= best_key; join->positions[idx].table= s; if (!best_key && idx == join->const_tables && s->table == join->sort_by_table && join->unit->select_limit_cnt >= records) join->sort_by_table= (TABLE*) 1; // Must use temporary table DBUG_VOID_RETURN; } /* Selects and invokes a search strategy for an optimal query plan. SYNOPSIS choose_plan() join pointer to the structure providing all context info for the query join_tables set of the tables in the query DESCRIPTION The function checks user-configurable parameters that control the search strategy for an optimal plan, selects the search method and then invokes it. Each specific optimization procedure stores the final optimal plan in the array 'join->best_positions', and the cost of the plan in 'join->best_read'. RETURN None */ static void choose_plan(JOIN *join, table_map join_tables) { uint search_depth= join->thd->variables.optimizer_search_depth; uint prune_level= join->thd->variables.optimizer_prune_level; bool straight_join= join->select_options & SELECT_STRAIGHT_JOIN; DBUG_ENTER("choose_plan"); join->cur_embedding_map= 0; reset_nj_counters(join->join_list); /* if (SELECT_STRAIGHT_JOIN option is set) reorder tables so dependent tables come after tables they depend on, otherwise keep tables in the order they were specified in the query else Apply heuristic: pre-sort all access plans with respect to the number of records accessed. */ qsort(join->best_ref + join->const_tables, join->tables - join->const_tables, sizeof(JOIN_TAB*), straight_join?join_tab_cmp_straight:join_tab_cmp); if (straight_join) { optimize_straight_join(join, join_tables); } else { if (search_depth == MAX_TABLES+2) { /* TODO: 'MAX_TABLES+2' denotes the old implementation of find_best before the greedy version. Will be removed when greedy_search is approved. */ join->best_read= DBL_MAX; find_best(join, join_tables, join->const_tables, 1.0, 0.0); } else { if (search_depth == 0) /* Automatically determine a reasonable value for 'search_depth' */ search_depth= determine_search_depth(join); greedy_search(join, join_tables, search_depth, prune_level); } } /* Store the cost of this query into a user variable Don't update last_query_cost for 'show status' command */ if (join->thd->lex->orig_sql_command != SQLCOM_SHOW_STATUS) join->thd->status_var.last_query_cost= join->best_read; DBUG_VOID_RETURN; } /* Compare two JOIN_TAB objects based on the number of accessed records. SYNOPSIS join_tab_cmp() ptr1 pointer to first JOIN_TAB object ptr2 pointer to second JOIN_TAB object RETURN 1 if first is bigger -1 if second is bigger 0 if equal */ static int join_tab_cmp(const void* ptr1, const void* ptr2) { JOIN_TAB *jt1= *(JOIN_TAB**) ptr1; JOIN_TAB *jt2= *(JOIN_TAB**) ptr2; if (jt1->dependent & jt2->table->map) return 1; if (jt2->dependent & jt1->table->map) return -1; if (jt1->found_records > jt2->found_records) return 1; if (jt1->found_records < jt2->found_records) return -1; return jt1 > jt2 ? 1 : (jt1 < jt2 ? -1 : 0); } /* Same as join_tab_cmp, but for use with SELECT_STRAIGHT_JOIN. */ static int join_tab_cmp_straight(const void* ptr1, const void* ptr2) { JOIN_TAB *jt1= *(JOIN_TAB**) ptr1; JOIN_TAB *jt2= *(JOIN_TAB**) ptr2; if (jt1->dependent & jt2->table->map) return 1; if (jt2->dependent & jt1->table->map) return -1; return jt1 > jt2 ? 1 : (jt1 < jt2 ? -1 : 0); } /* Heuristic procedure to automatically guess a reasonable degree of exhaustiveness for the greedy search procedure. SYNOPSIS determine_search_depth() join pointer to the structure providing all context info for the query DESCRIPTION The procedure estimates the optimization time and selects a search depth big enough to result in a near-optimal QEP, that doesn't take too long to find. If the number of tables in the query exceeds some constant, then search_depth is set to this constant. NOTES This is an extremely simplistic implementation that serves as a stub for a more advanced analysis of the join. Ideally the search depth should be determined by learning from previous query optimizations, because it will depend on the CPU power (and other factors). RETURN A positive integer that specifies the search depth (and thus the exhaustiveness) of the depth-first search algorithm used by 'greedy_search'. */ static uint determine_search_depth(JOIN *join) { uint table_count= join->tables - join->const_tables; uint search_depth; /* TODO: this value should be determined dynamically, based on statistics: */ uint max_tables_for_exhaustive_opt= 7; if (table_count <= max_tables_for_exhaustive_opt) search_depth= table_count+1; // use exhaustive for small number of tables else /* TODO: this value could be determined by some mapping of the form: depth : table_count -> [max_tables_for_exhaustive_opt..MAX_EXHAUSTIVE] */ search_depth= max_tables_for_exhaustive_opt; // use greedy search return search_depth; } /* Select the best ways to access the tables in a query without reordering them. SYNOPSIS optimize_straight_join() join pointer to the structure providing all context info for the query join_tables set of the tables in the query DESCRIPTION Find the best access paths for each query table and compute their costs according to their order in the array 'join->best_ref' (thus without reordering the join tables). The function calls sequentially 'best_access_path' for each table in the query to select the best table access method. The final optimal plan is stored in the array 'join->best_positions', and the corresponding cost in 'join->best_read'. NOTES This function can be applied to: - queries with STRAIGHT_JOIN - internally to compute the cost of an arbitrary QEP Thus 'optimize_straight_join' can be used at any stage of the query optimization process to finalize a QEP as it is. RETURN None */ static void optimize_straight_join(JOIN *join, table_map join_tables) { JOIN_TAB *s; uint idx= join->const_tables; double record_count= 1.0; double read_time= 0.0; for (JOIN_TAB **pos= join->best_ref + idx ; (s= *pos) ; pos++) { /* Find the best access method from 's' to the current partial plan */ best_access_path(join, s, join->thd, join_tables, idx, record_count, read_time); /* compute the cost of the new plan extended with 's' */ record_count*= join->positions[idx].records_read; read_time+= join->positions[idx].read_time; join_tables&= ~(s->table->map); ++idx; } read_time+= record_count / (double) TIME_FOR_COMPARE; if (join->sort_by_table && join->sort_by_table != join->positions[join->const_tables].table->table) read_time+= record_count; // We have to make a temp table memcpy((gptr) join->best_positions, (gptr) join->positions, sizeof(POSITION)*idx); join->best_read= read_time; } /* Find a good, possibly optimal, query execution plan (QEP) by a greedy search. SYNOPSIS join pointer to the structure providing all context info for the query remaining_tables set of tables not included into the partial plan yet search_depth controlls the exhaustiveness of the search prune_level the pruning heuristics that should be applied during search DESCRIPTION The search procedure uses a hybrid greedy/exhaustive search with controlled exhaustiveness. The search is performed in N = card(remaining_tables) steps. Each step evaluates how promising is each of the unoptimized tables, selects the most promising table, and extends the current partial QEP with that table. Currenly the most 'promising' table is the one with least expensive extension. There are two extreme cases: 1. When (card(remaining_tables) < search_depth), the estimate finds the best complete continuation of the partial QEP. This continuation can be used directly as a result of the search. 2. When (search_depth == 1) the 'best_extension_by_limited_search' consideres the extension of the current QEP with each of the remaining unoptimized tables. All other cases are in-between these two extremes. Thus the parameter 'search_depth' controlls the exhaustiveness of the search. The higher the value, the longer the optimizaton time and possibly the better the resulting plan. The lower the value, the fewer alternative plans are estimated, but the more likely to get a bad QEP. All intermediate and final results of the procedure are stored in 'join': join->positions modified for every partial QEP that is explored join->best_positions modified for the current best complete QEP join->best_read modified for the current best complete QEP join->best_ref might be partially reordered The final optimal plan is stored in 'join->best_positions', and its corresponding cost in 'join->best_read'. NOTES The following pseudocode describes the algorithm of 'greedy_search': procedure greedy_search input: remaining_tables output: pplan; { pplan = <>; do { (t, a) = best_extension(pplan, remaining_tables); pplan = concat(pplan, (t, a)); remaining_tables = remaining_tables - t; } while (remaining_tables != {}) return pplan; } where 'best_extension' is a placeholder for a procedure that selects the most "promising" of all tables in 'remaining_tables'. Currently this estimate is performed by calling 'best_extension_by_limited_search' to evaluate all extensions of the current QEP of size 'search_depth', thus the complexity of 'greedy_search' mainly depends on that of 'best_extension_by_limited_search'. If 'best_extension()' == 'best_extension_by_limited_search()', then the worst-case complexity of this algorithm is <= O(N*N^search_depth/search_depth). When serch_depth >= N, then the complexity of greedy_search is O(N!). In the future, 'greedy_search' might be extended to support other implementations of 'best_extension', e.g. some simpler quadratic procedure. RETURN None */ static void greedy_search(JOIN *join, table_map remaining_tables, uint search_depth, uint prune_level) { double record_count= 1.0; double read_time= 0.0; uint idx= join->const_tables; // index into 'join->best_ref' uint best_idx; uint size_remain; // cardinality of remaining_tables POSITION best_pos; JOIN_TAB *best_table; // the next plan node to be added to the curr QEP DBUG_ENTER("greedy_search"); /* number of tables that remain to be optimized */ size_remain= my_count_bits(remaining_tables); do { /* Find the extension of the current QEP with the lowest cost */ join->best_read= DBL_MAX; best_extension_by_limited_search(join, remaining_tables, idx, record_count, read_time, search_depth, prune_level); if (size_remain <= search_depth) { /* 'join->best_positions' contains a complete optimal extension of the current partial QEP. */ DBUG_EXECUTE("opt", print_plan(join, join->tables, record_count, read_time, read_time, "optimal");); DBUG_VOID_RETURN; } /* select the first table in the optimal extension as most promising */ best_pos= join->best_positions[idx]; best_table= best_pos.table; /* Each subsequent loop of 'best_extension_by_limited_search' uses 'join->positions' for cost estimates, therefore we have to update its value. */ join->positions[idx]= best_pos; /* find the position of 'best_table' in 'join->best_ref' */ best_idx= idx; JOIN_TAB *pos= join->best_ref[best_idx]; while (pos && best_table != pos) pos= join->best_ref[++best_idx]; DBUG_ASSERT((pos != NULL)); // should always find 'best_table' /* move 'best_table' at the first free position in the array of joins */ swap_variables(JOIN_TAB*, join->best_ref[idx], join->best_ref[best_idx]); /* compute the cost of the new plan extended with 'best_table' */ record_count*= join->positions[idx].records_read; read_time+= join->positions[idx].read_time; remaining_tables&= ~(best_table->table->map); --size_remain; ++idx; DBUG_EXECUTE("opt", print_plan(join, join->tables, record_count, read_time, read_time, "extended");); } while (TRUE); } /* Find a good, possibly optimal, query execution plan (QEP) by a possibly exhaustive search. SYNOPSIS best_extension_by_limited_search() join pointer to the structure providing all context info for the query remaining_tables set of tables not included into the partial plan yet idx length of the partial QEP in 'join->positions'; since a depth-first search is used, also corresponds to the current depth of the search tree; also an index in the array 'join->best_ref'; record_count estimate for the number of records returned by the best partial plan read_time the cost of the best partial plan search_depth maximum depth of the recursion and thus size of the found optimal plan (0 < search_depth <= join->tables+1). prune_level pruning heuristics that should be applied during optimization (values: 0 = EXHAUSTIVE, 1 = PRUNE_BY_TIME_OR_ROWS) DESCRIPTION The procedure searches for the optimal ordering of the query tables in set 'remaining_tables' of size N, and the corresponding optimal access paths to each table. The choice of a table order and an access path for each table constitutes a query execution plan (QEP) that fully specifies how to execute the query. The maximal size of the found plan is controlled by the parameter 'search_depth'. When search_depth == N, the resulting plan is complete and can be used directly as a QEP. If search_depth < N, the found plan consists of only some of the query tables. Such "partial" optimal plans are useful only as input to query optimization procedures, and cannot be used directly to execute a query. The algorithm begins with an empty partial plan stored in 'join->positions' and a set of N tables - 'remaining_tables'. Each step of the algorithm evaluates the cost of the partial plan extended by all access plans for each of the relations in 'remaining_tables', expands the current partial plan with the access plan that results in lowest cost of the expanded partial plan, and removes the corresponding relation from 'remaining_tables'. The algorithm continues until it either constructs a complete optimal plan, or constructs an optimal plartial plan with size = search_depth. The final optimal plan is stored in 'join->best_positions'. The corresponding cost of the optimal plan is in 'join->best_read'. NOTES The procedure uses a recursive depth-first search where the depth of the recursion (and thus the exhaustiveness of the search) is controlled by the parameter 'search_depth'. The pseudocode below describes the algorithm of 'best_extension_by_limited_search'. The worst-case complexity of this algorithm is O(N*N^search_depth/search_depth). When serch_depth >= N, then the complexity of greedy_search is O(N!). procedure best_extension_by_limited_search( pplan in, // in, partial plan of tables-joined-so-far pplan_cost, // in, cost of pplan remaining_tables, // in, set of tables not referenced in pplan best_plan_so_far, // in/out, best plan found so far best_plan_so_far_cost,// in/out, cost of best_plan_so_far search_depth) // in, maximum size of the plans being considered { for each table T from remaining_tables { // Calculate the cost of using table T as above cost = complex-series-of-calculations; // Add the cost to the cost so far. pplan_cost+= cost; if (pplan_cost >= best_plan_so_far_cost) // pplan_cost already too great, stop search continue; pplan= expand pplan by best_access_method; remaining_tables= remaining_tables - table T; if (remaining_tables is not an empty set and search_depth > 1) { best_extension_by_limited_search(pplan, pplan_cost, remaining_tables, best_plan_so_far, best_plan_so_far_cost, search_depth - 1); } else { best_plan_so_far_cost= pplan_cost; best_plan_so_far= pplan; } } } IMPLEMENTATION When 'best_extension_by_limited_search' is called for the first time, 'join->best_read' must be set to the largest possible value (e.g. DBL_MAX). The actual implementation provides a way to optionally use pruning heuristic (controlled by the parameter 'prune_level') to reduce the search space by skipping some partial plans. The parameter 'search_depth' provides control over the recursion depth, and thus the size of the resulting optimal plan. RETURN None */ static void best_extension_by_limited_search(JOIN *join, table_map remaining_tables, uint idx, double record_count, double read_time, uint search_depth, uint prune_level) { THD *thd= join->thd; if (thd->killed) // Abort return; DBUG_ENTER("best_extension_by_limited_search"); /* 'join' is a partial plan with lower cost than the best plan so far, so continue expanding it further with the tables in 'remaining_tables'. */ JOIN_TAB *s; double best_record_count= DBL_MAX; double best_read_time= DBL_MAX; DBUG_EXECUTE("opt", print_plan(join, idx, record_count, read_time, read_time, "part_plan");); for (JOIN_TAB **pos= join->best_ref + idx ; (s= *pos) ; pos++) { table_map real_table_bit= s->table->map; if ((remaining_tables & real_table_bit) && !(remaining_tables & s->dependent) && (!idx || !check_interleaving_with_nj(join->positions[idx-1].table, s))) { double current_record_count, current_read_time; /* Find the best access method from 's' to the current partial plan */ best_access_path(join, s, thd, remaining_tables, idx, record_count, read_time); /* Compute the cost of extending the plan with 's' */ current_record_count= record_count * join->positions[idx].records_read; current_read_time= read_time + join->positions[idx].read_time; /* Expand only partial plans with lower cost than the best QEP so far */ if ((current_read_time + current_record_count / (double) TIME_FOR_COMPARE) >= join->best_read) { DBUG_EXECUTE("opt", print_plan(join, idx+1, current_record_count, read_time, (current_read_time + current_record_count / (double) TIME_FOR_COMPARE), "prune_by_cost");); restore_prev_nj_state(s); continue; } /* Prune some less promising partial plans. This heuristic may miss the optimal QEPs, thus it results in a non-exhaustive search. */ if (prune_level == 1) { if (best_record_count > current_record_count || best_read_time > current_read_time || idx == join->const_tables && // 's' is the first table in the QEP s->table == join->sort_by_table) { if (best_record_count >= current_record_count && best_read_time >= current_read_time && /* TODO: What is the reasoning behind this condition? */ (!(s->key_dependent & remaining_tables) || join->positions[idx].records_read < 2.0)) { best_record_count= current_record_count; best_read_time= current_read_time; } } else { DBUG_EXECUTE("opt", print_plan(join, idx+1, current_record_count, read_time, current_read_time, "pruned_by_heuristic");); restore_prev_nj_state(s); continue; } } if ( (search_depth > 1) && (remaining_tables & ~real_table_bit) ) { /* Recursively expand the current partial plan */ swap_variables(JOIN_TAB*, join->best_ref[idx], *pos); best_extension_by_limited_search(join, remaining_tables & ~real_table_bit, idx + 1, current_record_count, current_read_time, search_depth - 1, prune_level); if (thd->killed) DBUG_VOID_RETURN; swap_variables(JOIN_TAB*, join->best_ref[idx], *pos); } else { /* 'join' is either the best partial QEP with 'search_depth' relations, or the best complete QEP so far, whichever is smaller. */ current_read_time+= current_record_count / (double) TIME_FOR_COMPARE; if (join->sort_by_table && join->sort_by_table != join->positions[join->const_tables].table->table) /* We have to make a temp table */ current_read_time+= current_record_count; if ((search_depth == 1) || (current_read_time < join->best_read)) { memcpy((gptr) join->best_positions, (gptr) join->positions, sizeof(POSITION) * (idx + 1)); join->best_read= current_read_time - 0.001; } DBUG_EXECUTE("opt", print_plan(join, idx+1, current_record_count, read_time, current_read_time, "full_plan");); } restore_prev_nj_state(s); } } DBUG_VOID_RETURN; } /* TODO: this function is here only temporarily until 'greedy_search' is tested and accepted. */ static void find_best(JOIN *join,table_map rest_tables,uint idx,double record_count, double read_time) { ha_rows rec; double tmp; THD *thd= join->thd; if (!rest_tables) { DBUG_PRINT("best",("read_time: %g record_count: %g",read_time, record_count)); read_time+=record_count/(double) TIME_FOR_COMPARE; if (join->sort_by_table && join->sort_by_table != join->positions[join->const_tables].table->table) read_time+=record_count; // We have to make a temp table if (read_time < join->best_read) { memcpy((gptr) join->best_positions,(gptr) join->positions, sizeof(POSITION)*idx); join->best_read= read_time - 0.001; } return; } if (read_time+record_count/(double) TIME_FOR_COMPARE >= join->best_read) return; /* Found better before */ JOIN_TAB *s; double best_record_count=DBL_MAX,best_read_time=DBL_MAX; for (JOIN_TAB **pos=join->best_ref+idx ; (s=*pos) ; pos++) { table_map real_table_bit=s->table->map; if ((rest_tables & real_table_bit) && !(rest_tables & s->dependent) && (!idx|| !check_interleaving_with_nj(join->positions[idx-1].table, s))) { double records, best; best_access_path(join, s, thd, rest_tables, idx, record_count, read_time); records= join->positions[idx].records_read; best= join->positions[idx].read_time; /* Go to the next level only if there hasn't been a better key on this level! This will cut down the search for a lot simple cases! */ double current_record_count=record_count*records; double current_read_time=read_time+best; if (best_record_count > current_record_count || best_read_time > current_read_time || idx == join->const_tables && s->table == join->sort_by_table) { if (best_record_count >= current_record_count && best_read_time >= current_read_time && (!(s->key_dependent & rest_tables) || records < 2.0)) { best_record_count=current_record_count; best_read_time=current_read_time; } swap_variables(JOIN_TAB*, join->best_ref[idx], *pos); find_best(join,rest_tables & ~real_table_bit,idx+1, current_record_count,current_read_time); if (thd->killed) return; swap_variables(JOIN_TAB*, join->best_ref[idx], *pos); } restore_prev_nj_state(s); if (join->select_options & SELECT_STRAIGHT_JOIN) break; // Don't test all combinations } } } /* Find how much space the prevous read not const tables takes in cache */ static void calc_used_field_length(THD *thd, JOIN_TAB *join_tab) { uint null_fields,blobs,fields,rec_length; null_fields=blobs=fields=rec_length=0; Field **f_ptr,*field; for (f_ptr=join_tab->table->field ; (field= *f_ptr) ; f_ptr++) { if (field->query_id == thd->query_id) { uint flags=field->flags; fields++; rec_length+=field->pack_length(); if (flags & BLOB_FLAG) blobs++; if (!(flags & NOT_NULL_FLAG)) null_fields++; } } if (null_fields) rec_length+=(join_tab->table->s->null_fields+7)/8; if (join_tab->table->maybe_null) rec_length+=sizeof(my_bool); if (blobs) { uint blob_length=(uint) (join_tab->table->file->mean_rec_length- (join_tab->table->s->reclength- rec_length)); rec_length+=(uint) max(4,blob_length); } join_tab->used_fields=fields; join_tab->used_fieldlength=rec_length; join_tab->used_blobs=blobs; } static uint cache_record_length(JOIN *join,uint idx) { uint length=0; JOIN_TAB **pos,**end; THD *thd=join->thd; for (pos=join->best_ref+join->const_tables,end=join->best_ref+idx ; pos != end ; pos++) { JOIN_TAB *join_tab= *pos; if (!join_tab->used_fieldlength) /* Not calced yet */ calc_used_field_length(thd, join_tab); length+=join_tab->used_fieldlength; } return length; } static double prev_record_reads(JOIN *join,table_map found_ref) { double found=1.0; found_ref&= ~OUTER_REF_TABLE_BIT; for (POSITION *pos=join->positions ; found_ref ; pos++) { if (pos->table->table->map & found_ref) { found_ref&= ~pos->table->table->map; found*=pos->records_read; } } return found; } /***************************************************************************** Set up join struct according to best position. *****************************************************************************/ static bool get_best_combination(JOIN *join) { uint i,tablenr; table_map used_tables; JOIN_TAB *join_tab,*j; KEYUSE *keyuse; uint table_count; THD *thd=join->thd; DBUG_ENTER("get_best_combination"); table_count=join->tables; if (!(join->join_tab=join_tab= (JOIN_TAB*) thd->alloc(sizeof(JOIN_TAB)*table_count))) DBUG_RETURN(TRUE); join->full_join=0; used_tables= OUTER_REF_TABLE_BIT; // Outer row is already read for (j=join_tab, tablenr=0 ; tablenr < table_count ; tablenr++,j++) { TABLE *form; *j= *join->best_positions[tablenr].table; form=join->table[tablenr]=j->table; used_tables|= form->map; form->reginfo.join_tab=j; if (!*j->on_expr_ref) form->reginfo.not_exists_optimize=0; // Only with LEFT JOIN DBUG_PRINT("info",("type: %d", j->type)); if (j->type == JT_CONST) continue; // Handled in make_join_stat.. j->ref.key = -1; j->ref.key_parts=0; if (j->type == JT_SYSTEM) continue; if (j->keys.is_clear_all() || !(keyuse= join->best_positions[tablenr].key)) { j->type=JT_ALL; if (tablenr != join->const_tables) join->full_join=1; } else if (create_ref_for_key(join, j, keyuse, used_tables)) DBUG_RETURN(TRUE); // Something went wrong } for (i=0 ; i < table_count ; i++) join->map2table[join->join_tab[i].table->tablenr]=join->join_tab+i; update_depend_map(join); DBUG_RETURN(0); } static bool create_ref_for_key(JOIN *join, JOIN_TAB *j, KEYUSE *org_keyuse, table_map used_tables) { KEYUSE *keyuse=org_keyuse; bool ftkey=(keyuse->keypart == FT_KEYPART); THD *thd= join->thd; uint keyparts,length,key; TABLE *table; KEY *keyinfo; DBUG_ENTER("create_ref_for_key"); /* Use best key from find_best */ table=j->table; key=keyuse->key; keyinfo=table->key_info+key; if (ftkey) { Item_func_match *ifm=(Item_func_match *)keyuse->val; length=0; keyparts=1; ifm->join_key=1; } else { keyparts=length=0; uint found_part_ref_or_null= 0; /* Calculate length for the used key Stop if there is a missing key part or when we find second key_part with KEY_OPTIMIZE_REF_OR_NULL */ do { if (!(~used_tables & keyuse->used_tables)) { if (keyparts == keyuse->keypart && !(found_part_ref_or_null & keyuse->optimize)) { keyparts++; length+= keyinfo->key_part[keyuse->keypart].store_length; found_part_ref_or_null|= keyuse->optimize; } } keyuse++; } while (keyuse->table == table && keyuse->key == key); } /* not ftkey */ /* set up fieldref */ keyinfo=table->key_info+key; j->ref.key_parts=keyparts; j->ref.key_length=length; j->ref.key=(int) key; if (!(j->ref.key_buff= (byte*) thd->calloc(ALIGN_SIZE(length)*2)) || !(j->ref.key_copy= (store_key**) thd->alloc((sizeof(store_key*) * (keyparts+1)))) || !(j->ref.items= (Item**) thd->alloc(sizeof(Item*)*keyparts))) { DBUG_RETURN(TRUE); } j->ref.key_buff2=j->ref.key_buff+ALIGN_SIZE(length); j->ref.key_err=1; j->ref.null_rejecting= 0; keyuse=org_keyuse; store_key **ref_key= j->ref.key_copy; byte *key_buff=j->ref.key_buff, *null_ref_key= 0; bool keyuse_uses_no_tables= TRUE; if (ftkey) { j->ref.items[0]=((Item_func*)(keyuse->val))->key_item(); if (keyuse->used_tables) DBUG_RETURN(TRUE); // not supported yet. SerG j->type=JT_FT; } else { uint i; for (i=0 ; i < keyparts ; keyuse++,i++) { while (keyuse->keypart != i || ((~used_tables) & keyuse->used_tables)) keyuse++; /* Skip other parts */ uint maybe_null= test(keyinfo->key_part[i].null_bit); j->ref.items[i]=keyuse->val; // Save for cond removal if (keyuse->null_rejecting) j->ref.null_rejecting |= 1 << i; keyuse_uses_no_tables= keyuse_uses_no_tables && !keyuse->used_tables; if (!keyuse->used_tables && !(join->select_options & SELECT_DESCRIBE)) { // Compare against constant store_key_item tmp(thd, keyinfo->key_part[i].field, (char*)key_buff + maybe_null, maybe_null ? (char*) key_buff : 0, keyinfo->key_part[i].length, keyuse->val); if (thd->is_fatal_error) DBUG_RETURN(TRUE); tmp.copy(); } else *ref_key++= get_store_key(thd, keyuse,join->const_table_map, &keyinfo->key_part[i], (char*) key_buff,maybe_null); /* Remember if we are going to use REF_OR_NULL But only if field _really_ can be null i.e. we force JT_REF instead of JT_REF_OR_NULL in case if field can't be null */ if ((keyuse->optimize & KEY_OPTIMIZE_REF_OR_NULL) && maybe_null) null_ref_key= key_buff; key_buff+=keyinfo->key_part[i].store_length; } } /* not ftkey */ *ref_key=0; // end_marker if (j->type == JT_FT) DBUG_RETURN(0); if (j->type == JT_CONST) j->table->const_table= 1; else if (((keyinfo->flags & (HA_NOSAME | HA_NULL_PART_KEY | HA_END_SPACE_KEY)) != HA_NOSAME) || keyparts != keyinfo->key_parts || null_ref_key) { /* Must read with repeat */ j->type= null_ref_key ? JT_REF_OR_NULL : JT_REF; j->ref.null_ref_key= null_ref_key; } else if (keyuse_uses_no_tables) { /* This happen if we are using a constant expression in the ON part of an LEFT JOIN. SELECT * FROM a LEFT JOIN b ON b.key=30 Here we should not mark the table as a 'const' as a field may have a 'normal' value or a NULL value. */ j->type=JT_CONST; } else j->type=JT_EQ_REF; DBUG_RETURN(0); } static store_key * get_store_key(THD *thd, KEYUSE *keyuse, table_map used_tables, KEY_PART_INFO *key_part, char *key_buff, uint maybe_null) { if (!((~used_tables) & keyuse->used_tables)) // if const item { return new store_key_const_item(thd, key_part->field, key_buff + maybe_null, maybe_null ? key_buff : 0, key_part->length, keyuse->val); } else if (keyuse->val->type() == Item::FIELD_ITEM) return new store_key_field(thd, key_part->field, key_buff + maybe_null, maybe_null ? key_buff : 0, key_part->length, ((Item_field*) keyuse->val)->field, keyuse->val->full_name()); return new store_key_item(thd, key_part->field, key_buff + maybe_null, maybe_null ? key_buff : 0, key_part->length, keyuse->val); } /* This function is only called for const items on fields which are keys returns 1 if there was some conversion made when the field was stored. */ bool store_val_in_field(Field *field, Item *item, enum_check_fields check_flag) { bool error; THD *thd= field->table->in_use; ha_rows cuted_fields=thd->cuted_fields; /* we should restore old value of count_cuted_fields because store_val_in_field can be called from mysql_insert with select_insert, which make count_cuted_fields= 1 */ enum_check_fields old_count_cuted_fields= thd->count_cuted_fields; thd->count_cuted_fields= check_flag; error= item->save_in_field(field, 1); thd->count_cuted_fields= old_count_cuted_fields; return error || cuted_fields != thd->cuted_fields; } static bool make_simple_join(JOIN *join,TABLE *tmp_table) { TABLE **tableptr; JOIN_TAB *join_tab; DBUG_ENTER("make_simple_join"); /* Reuse TABLE * and JOIN_TAB if already allocated by a previous call to this function through JOIN::exec (may happen for sub-queries). */ if (!join->table_reexec) { if (!(join->table_reexec= (TABLE**) join->thd->alloc(sizeof(TABLE*)))) DBUG_RETURN(TRUE); /* purecov: inspected */ if (join->tmp_join) join->tmp_join->table_reexec= join->table_reexec; } if (!join->join_tab_reexec) { if (!(join->join_tab_reexec= (JOIN_TAB*) join->thd->alloc(sizeof(JOIN_TAB)))) DBUG_RETURN(TRUE); /* purecov: inspected */ if (join->tmp_join) join->tmp_join->join_tab_reexec= join->join_tab_reexec; } tableptr= join->table_reexec; join_tab= join->join_tab_reexec; join->join_tab=join_tab; join->table=tableptr; tableptr[0]=tmp_table; join->tables=1; join->const_tables=0; join->const_table_map=0; join->tmp_table_param.field_count= join->tmp_table_param.sum_func_count= join->tmp_table_param.func_count=0; join->tmp_table_param.copy_field=join->tmp_table_param.copy_field_end=0; join->first_record=join->sort_and_group=0; join->send_records=(ha_rows) 0; join->group=0; join->row_limit=join->unit->select_limit_cnt; join->do_send_rows = (join->row_limit) ? 1 : 0; join_tab->cache.buff=0; /* No caching */ join_tab->table=tmp_table; join_tab->select=0; join_tab->select_cond=0; join_tab->quick=0; join_tab->type= JT_ALL; /* Map through all records */ join_tab->keys.init(); join_tab->keys.set_all(); /* test everything in quick */ join_tab->info=0; join_tab->on_expr_ref=0; join_tab->last_inner= 0; join_tab->first_unmatched= 0; join_tab->ref.key = -1; join_tab->not_used_in_distinct=0; join_tab->read_first_record= join_init_read_record; join_tab->join=join; join_tab->ref.key_parts= 0; bzero((char*) &join_tab->read_record,sizeof(join_tab->read_record)); tmp_table->status=0; tmp_table->null_row=0; DBUG_RETURN(FALSE); } inline void add_cond_and_fix(Item **e1, Item *e2) { if (*e1) { Item *res; if ((res= new Item_cond_and(*e1, e2))) { *e1= res; res->quick_fix_field(); } } else *e1= e2; } /* Add to join_tab->select_cond[i] "table.field IS NOT NULL" conditions we've inferred from ref/eq_ref access performed. SYNOPSIS add_not_null_conds() join Join to process NOTES This function is a part of "Early NULL-values filtering for ref access" optimization. Example of this optimization: For query SELECT * FROM t1,t2 WHERE t2.key=t1.field and plan " any-access(t1), ref(t2.key=t1.field) " add "t1.field IS NOT NULL" to t1's table condition. Description of the optimization: We look through equalities choosen to perform ref/eq_ref access, pick equalities that have form "tbl.part_of_key = othertbl.field" (where othertbl is a non-const table and othertbl.field may be NULL) and add them to conditions on correspoding tables (othertbl in this example). Exception from that is the case when referred_tab->join != join. I.e. don't add NOT NULL constraints from any embedded subquery. Consider this query: SELECT A.f2 FROM t1 LEFT JOIN t2 A ON A.f2 = f1 WHERE A.f3=(SELECT MIN(f3) FROM t2 C WHERE A.f4 = C.f4) OR A.f3 IS NULL; Here condition A.f3 IS NOT NULL is going to be added to the WHERE condition of the embedding query. Another example: SELECT * FROM t10, t11 WHERE (t10.a < 10 OR t10.a IS NULL) AND t11.b <=> t10.b AND (t11.a = (SELECT MAX(a) FROM t12 WHERE t12.b = t10.a )); Here condition t10.a IS NOT NULL is going to be added. In both cases addition of NOT NULL condition will erroneously reject some rows of the result set. referred_tab->join != join constraint would disallow such additions. This optimization doesn't affect the choices that ref, range, or join optimizer make. This was intentional because this was added after 4.1 was GA. Implementation overview 1. update_ref_and_keys() accumulates info about null-rejecting predicates in in KEY_FIELD::null_rejecting 1.1 add_key_part saves these to KEYUSE. 2. create_ref_for_key copies them to TABLE_REF. 3. add_not_null_conds adds "x IS NOT NULL" to join_tab->select_cond of appropiate JOIN_TAB members. */ static void add_not_null_conds(JOIN *join) { DBUG_ENTER("add_not_null_conds"); for (uint i=join->const_tables ; i < join->tables ; i++) { JOIN_TAB *tab=join->join_tab+i; if ((tab->type == JT_REF || tab->type == JT_REF_OR_NULL) && !tab->table->maybe_null) { for (uint keypart= 0; keypart < tab->ref.key_parts; keypart++) { if (tab->ref.null_rejecting & (1 << keypart)) { Item *item= tab->ref.items[keypart]; Item *notnull; DBUG_ASSERT(item->type() == Item::FIELD_ITEM); Item_field *not_null_item= (Item_field*)item; JOIN_TAB *referred_tab= not_null_item->field->table->reginfo.join_tab; /* For UPDATE queries such as: UPDATE t1 SET t1.f2=(SELECT MAX(t2.f4) FROM t2 WHERE t2.f3=t1.f1); not_null_item is the t1.f1, but it's referred_tab is 0. */ if (!referred_tab || referred_tab->join != join) continue; if (!(notnull= new Item_func_isnotnull(not_null_item))) DBUG_VOID_RETURN; /* We need to do full fix_fields() call here in order to have correct notnull->const_item(). This is needed e.g. by test_quick_select when it is called from make_join_select after this function is called. */ if (notnull->fix_fields(join->thd, ¬null)) DBUG_VOID_RETURN; DBUG_EXECUTE("where",print_where(notnull, referred_tab->table->alias);); add_cond_and_fix(&referred_tab->select_cond, notnull); } } } } DBUG_VOID_RETURN; } /* Build a predicate guarded by match variables for embedding outer joins SYNOPSIS add_found_match_trig_cond() tab the first inner table for most nested outer join cond the predicate to be guarded root_tab the first inner table to stop DESCRIPTION The function recursively adds guards for predicate cond assending from tab to the first inner table next embedding nested outer join and so on until it reaches root_tab (root_tab can be 0). RETURN VALUE pointer to the guarded predicate, if success 0, otherwise */ static COND* add_found_match_trig_cond(JOIN_TAB *tab, COND *cond, JOIN_TAB *root_tab) { COND *tmp; if (tab == root_tab || !cond) return cond; if ((tmp= add_found_match_trig_cond(tab->first_upper, cond, root_tab))) { tmp= new Item_func_trig_cond(tmp, &tab->found); } if (tmp) { tmp->quick_fix_field(); tmp->update_used_tables(); } return tmp; } /* Fill in outer join related info for the execution plan structure SYNOPSIS make_outerjoin_info() join - reference to the info fully describing the query DESCRIPTION For each outer join operation left after simplification of the original query the function set up the following pointers in the linear structure join->join_tab representing the selected execution plan. The first inner table t0 for the operation is set to refer to the last inner table tk through the field t0->last_inner. Any inner table ti for the operation are set to refer to the first inner table ti->first_inner. The first inner table t0 for the operation is set to refer to the first inner table of the embedding outer join operation, if there is any, through the field t0->first_upper. The on expression for the outer join operation is attached to the corresponding first inner table through the field t0->on_expr_ref. Here ti are structures of the JOIN_TAB type. EXAMPLE For the query: SELECT * FROM t1 LEFT JOIN (t2, t3 LEFT JOIN t4 ON t3.a=t4.a) ON (t1.a=t2.a AND t1.b=t3.b) WHERE t1.c > 5, given the execution plan with the table order t1,t2,t3,t4 is selected, the following references will be set; t4->last_inner=[t4], t4->first_inner=[t4], t4->first_upper=[t2] t2->last_inner=[t4], t2->first_inner=t3->first_inner=[t2], on expression (t1.a=t2.a AND t1.b=t3.b) will be attached to *t2->on_expr_ref, while t3.a=t4.a will be attached to *t4->on_expr_ref. NOTES The function assumes that the simplification procedure has been already applied to the join query (see simplify_joins). This function can be called only after the execution plan has been chosen. */ static void make_outerjoin_info(JOIN *join) { DBUG_ENTER("make_outerjoin_info"); for (uint i=join->const_tables ; i < join->tables ; i++) { JOIN_TAB *tab=join->join_tab+i; TABLE *table=tab->table; TABLE_LIST *tbl= table->pos_in_table_list; TABLE_LIST *embedding= tbl->embedding; if (tbl->outer_join) { /* Table tab is the only one inner table for outer join. (Like table t4 for the table reference t3 LEFT JOIN t4 ON t3.a=t4.a is in the query above.) */ tab->last_inner= tab->first_inner= tab; tab->on_expr_ref= &tbl->on_expr; tab->cond_equal= tbl->cond_equal; if (embedding) tab->first_upper= embedding->nested_join->first_nested; } for ( ; embedding ; embedding= embedding->embedding) { NESTED_JOIN *nested_join= embedding->nested_join; if (!nested_join->counter) { /* Table tab is the first inner table for nested_join. Save reference to it in the nested join structure. */ nested_join->first_nested= tab; tab->on_expr_ref= &embedding->on_expr; tab->cond_equal= tbl->cond_equal; if (embedding->embedding) tab->first_upper= embedding->embedding->nested_join->first_nested; } if (!tab->first_inner) tab->first_inner= nested_join->first_nested; if (++nested_join->counter < nested_join->join_list.elements) break; /* Table tab is the last inner table for nested join. */ nested_join->first_nested->last_inner= tab; } } DBUG_VOID_RETURN; } static bool make_join_select(JOIN *join,SQL_SELECT *select,COND *cond) { THD *thd= join->thd; DBUG_ENTER("make_join_select"); if (select) { add_not_null_conds(join); table_map used_tables; if (cond) /* Because of QUICK_GROUP_MIN_MAX_SELECT */ { /* there may be a select without a cond. */ if (join->tables > 1) cond->update_used_tables(); // Tablenr may have changed if (join->const_tables == join->tables && thd->lex->current_select->master_unit() == &thd->lex->unit) // not upper level SELECT join->const_table_map|=RAND_TABLE_BIT; { // Check const tables COND *const_cond= make_cond_for_table(cond, join->const_table_map, (table_map) 0); DBUG_EXECUTE("where",print_where(const_cond,"constants");); for (JOIN_TAB *tab= join->join_tab+join->const_tables; tab < join->join_tab+join->tables ; tab++) { if (*tab->on_expr_ref) { JOIN_TAB *cond_tab= tab->first_inner; COND *tmp= make_cond_for_table(*tab->on_expr_ref, join->const_table_map, ( table_map) 0); if (!tmp) continue; tmp= new Item_func_trig_cond(tmp, &cond_tab->not_null_compl); if (!tmp) DBUG_RETURN(1); tmp->quick_fix_field(); cond_tab->select_cond= !cond_tab->select_cond ? tmp : new Item_cond_and(cond_tab->select_cond,tmp); if (!cond_tab->select_cond) DBUG_RETURN(1); cond_tab->select_cond->quick_fix_field(); } } if (const_cond && !const_cond->val_int()) { DBUG_PRINT("info",("Found impossible WHERE condition")); DBUG_RETURN(1); // Impossible const condition } } } used_tables=((select->const_tables=join->const_table_map) | OUTER_REF_TABLE_BIT | RAND_TABLE_BIT); for (uint i=join->const_tables ; i < join->tables ; i++) { JOIN_TAB *tab=join->join_tab+i; JOIN_TAB *first_inner_tab= tab->first_inner; table_map current_map= tab->table->map; bool use_quick_range=0; COND *tmp; /* Following force including random expression in last table condition. It solve problem with select like SELECT * FROM t1 WHERE rand() > 0.5 */ if (i == join->tables-1) current_map|= OUTER_REF_TABLE_BIT | RAND_TABLE_BIT; used_tables|=current_map; if (tab->type == JT_REF && tab->quick && (uint) tab->ref.key == tab->quick->index && tab->ref.key_length < tab->quick->max_used_key_length) { /* Range uses longer key; Use this instead of ref on key */ tab->type=JT_ALL; use_quick_range=1; tab->use_quick=1; tab->ref.key= -1; tab->ref.key_parts=0; // Don't use ref key. join->best_positions[i].records_read= rows2double(tab->quick->records); } tmp= NULL; if (cond) tmp= make_cond_for_table(cond,used_tables,current_map); if (cond && !tmp && tab->quick) { // Outer join if (tab->type != JT_ALL) { /* Don't use the quick method We come here in the case where we have 'key=constant' and the test is removed by make_cond_for_table() */ delete tab->quick; tab->quick= 0; } else { /* Hack to handle the case where we only refer to a table in the ON part of an OUTER JOIN. In this case we want the code below to check if we should use 'quick' instead. */ DBUG_PRINT("info", ("Item_int")); tmp= new Item_int((longlong) 1,1); // Always true DBUG_PRINT("info", ("Item_int 0x%lx", (ulong)tmp)); } } if (tmp || !cond) { DBUG_EXECUTE("where",print_where(tmp,tab->table->alias);); SQL_SELECT *sel=tab->select=(SQL_SELECT*) thd->memdup((gptr) select, sizeof(SQL_SELECT)); if (!sel) DBUG_RETURN(1); // End of memory /* If tab is an inner table of an outer join operation, add a match guard to the pushed down predicate. The guard will turn the predicate on only after the first match for outer tables is encountered. */ if (cond) { /* Because of QUICK_GROUP_MIN_MAX_SELECT there may be a select without a cond, so neutralize the hack above. */ if (!(tmp= add_found_match_trig_cond(first_inner_tab, tmp, 0))) DBUG_RETURN(1); tab->select_cond=sel->cond=tmp; /* Push condition to storage engine if this is enabled and the condition is not guarded */ tab->table->file->pushed_cond= NULL; if (thd->variables.engine_condition_pushdown) { COND *push_cond= make_cond_for_table(tmp, current_map, current_map); if (push_cond) { /* Push condition to handler */ if (!tab->table->file->cond_push(push_cond)) tab->table->file->pushed_cond= push_cond; } } } else tab->select_cond= sel->cond= NULL; sel->head=tab->table; DBUG_EXECUTE("where",print_where(tmp,tab->table->alias);); if (tab->quick) { /* Use quick key read if it's a constant and it's not used with key reading */ if (tab->needed_reg.is_clear_all() && tab->type != JT_EQ_REF && tab->type != JT_FT && (tab->type != JT_REF || (uint) tab->ref.key == tab->quick->index)) { sel->quick=tab->quick; // Use value from get_quick_... sel->quick_keys.clear_all(); sel->needed_reg.clear_all(); } else { delete tab->quick; } tab->quick=0; } uint ref_key=(uint) sel->head->reginfo.join_tab->ref.key+1; if (i == join->const_tables && ref_key) { if (!tab->const_keys.is_clear_all() && tab->table->reginfo.impossible_range) DBUG_RETURN(1); } else if (tab->type == JT_ALL && ! use_quick_range) { if (!tab->const_keys.is_clear_all() && tab->table->reginfo.impossible_range) DBUG_RETURN(1); // Impossible range /* We plan to scan all rows. Check again if we should use an index. We could have used an column from a previous table in the index if we are using limit and this is the first table */ if (cond && (!tab->keys.is_subset(tab->const_keys) && i > 0) || (!tab->const_keys.is_clear_all() && i == join->const_tables && join->unit->select_limit_cnt < join->best_positions[i].records_read && !(join->select_options & OPTION_FOUND_ROWS))) { /* Join with outer join condition */ COND *orig_cond=sel->cond; sel->cond= and_conds(sel->cond, *tab->on_expr_ref); /* We can't call sel->cond->fix_fields, as it will break tab->on_expr if it's AND condition (fix_fields currently removes extra AND/OR levels). Yet attributes of the just built condition are not needed. Thus we call sel->cond->quick_fix_field for safety. */ if (sel->cond && !sel->cond->fixed) sel->cond->quick_fix_field(); if (sel->test_quick_select(thd, tab->keys, used_tables & ~ current_map, (join->select_options & OPTION_FOUND_ROWS ? HA_POS_ERROR : join->unit->select_limit_cnt), 0) < 0) { /* Before reporting "Impossible WHERE" for the whole query we have to check isn't it only "impossible ON" instead */ sel->cond=orig_cond; if (!*tab->on_expr_ref || sel->test_quick_select(thd, tab->keys, used_tables & ~ current_map, (join->select_options & OPTION_FOUND_ROWS ? HA_POS_ERROR : join->unit->select_limit_cnt),0) < 0) DBUG_RETURN(1); // Impossible WHERE } else sel->cond=orig_cond; /* Fix for EXPLAIN */ if (sel->quick) join->best_positions[i].records_read= sel->quick->records; } else { sel->needed_reg=tab->needed_reg; sel->quick_keys.clear_all(); } if (!sel->quick_keys.is_subset(tab->checked_keys) || !sel->needed_reg.is_subset(tab->checked_keys)) { tab->keys=sel->quick_keys; tab->keys.merge(sel->needed_reg); tab->use_quick= (!sel->needed_reg.is_clear_all() && (select->quick_keys.is_clear_all() || (select->quick && (select->quick->records >= 100L)))) ? 2 : 1; sel->read_tables= used_tables & ~current_map; } if (i != join->const_tables && tab->use_quick != 2) { /* Read with cache */ if (cond && (tmp=make_cond_for_table(cond, join->const_table_map | current_map, current_map))) { DBUG_EXECUTE("where",print_where(tmp,"cache");); tab->cache.select=(SQL_SELECT*) thd->memdup((gptr) sel, sizeof(SQL_SELECT)); tab->cache.select->cond=tmp; tab->cache.select->read_tables=join->const_table_map; } } } } /* Push down all predicates from on expressions. Each of these predicated are guarded by a variable that turns if off just before null complemented row for outer joins is formed. Thus, the predicates from an 'on expression' are guaranteed not to be checked for the null complemented row. */ JOIN_TAB *last_tab= tab; while (first_inner_tab && first_inner_tab->last_inner == last_tab) { /* Table tab is the last inner table of an outer join. An on expression is always attached to it. */ COND *on_expr= *first_inner_tab->on_expr_ref; table_map used_tables= join->const_table_map | OUTER_REF_TABLE_BIT | RAND_TABLE_BIT; for (tab= join->join_tab+join->const_tables; tab <= last_tab ; tab++) { current_map= tab->table->map; used_tables|= current_map; COND *tmp= make_cond_for_table(on_expr, used_tables, current_map); if (tmp) { JOIN_TAB *cond_tab= tab < first_inner_tab ? first_inner_tab : tab; /* First add the guards for match variables of all embedding outer join operations. */ if (!(tmp= add_found_match_trig_cond(cond_tab->first_inner, tmp, first_inner_tab))) DBUG_RETURN(1); /* Now add the guard turning the predicate off for the null complemented row. */ DBUG_PRINT("info", ("Item_func_trig_cond")); tmp= new Item_func_trig_cond(tmp, &first_inner_tab->not_null_compl); DBUG_PRINT("info", ("Item_func_trig_cond 0x%lx", (ulong) tmp)); if (tmp) tmp->quick_fix_field(); /* Add the predicate to other pushed down predicates */ DBUG_PRINT("info", ("Item_cond_and")); cond_tab->select_cond= !cond_tab->select_cond ? tmp : new Item_cond_and(cond_tab->select_cond,tmp); DBUG_PRINT("info", ("Item_cond_and 0x%lx", (ulong)cond_tab->select_cond)); if (!cond_tab->select_cond) DBUG_RETURN(1); cond_tab->select_cond->quick_fix_field(); } } first_inner_tab= first_inner_tab->first_upper; } } } DBUG_RETURN(0); } static void make_join_readinfo(JOIN *join, uint options) { uint i; bool statistics= test(!(join->select_options & SELECT_DESCRIBE)); bool ordered_set= 0; DBUG_ENTER("make_join_readinfo"); for (i=join->const_tables ; i < join->tables ; i++) { JOIN_TAB *tab=join->join_tab+i; TABLE *table=tab->table; tab->read_record.table= table; tab->read_record.file=table->file; tab->next_select=sub_select; /* normal select */ /* Determine if the set is already ordered for ORDER BY, so it can disable join cache because it will change the ordering of the results. Code handles sort table that is at any location (not only first after the const tables) despite the fact that it's currently prohibited. */ if (!ordered_set && (table == join->sort_by_table && (!join->order || join->skip_sort_order || test_if_skip_sort_order(tab, join->order, join->select_limit, 1)) ) || (join->sort_by_table == (TABLE *) 1 && i != join->const_tables)) ordered_set= 1; switch (tab->type) { case JT_SYSTEM: // Only happens with left join table->status=STATUS_NO_RECORD; tab->read_first_record= join_read_system; tab->read_record.read_record= join_no_more_records; break; case JT_CONST: // Only happens with left join table->status=STATUS_NO_RECORD; tab->read_first_record= join_read_const; tab->read_record.read_record= join_no_more_records; if (table->used_keys.is_set(tab->ref.key) && !table->no_keyread) { table->key_read=1; table->file->extra(HA_EXTRA_KEYREAD); } break; case JT_EQ_REF: table->status=STATUS_NO_RECORD; if (tab->select) { delete tab->select->quick; tab->select->quick=0; } delete tab->quick; tab->quick=0; tab->read_first_record= join_read_key; tab->read_record.read_record= join_no_more_records; if (table->used_keys.is_set(tab->ref.key) && !table->no_keyread) { table->key_read=1; table->file->extra(HA_EXTRA_KEYREAD); } break; case JT_REF_OR_NULL: case JT_REF: table->status=STATUS_NO_RECORD; if (tab->select) { delete tab->select->quick; tab->select->quick=0; } delete tab->quick; tab->quick=0; if (table->used_keys.is_set(tab->ref.key) && !table->no_keyread) { table->key_read=1; table->file->extra(HA_EXTRA_KEYREAD); } if (tab->type == JT_REF) { tab->read_first_record= join_read_always_key; tab->read_record.read_record= join_read_next_same; } else { tab->read_first_record= join_read_always_key_or_null; tab->read_record.read_record= join_read_next_same_or_null; } break; case JT_FT: table->status=STATUS_NO_RECORD; tab->read_first_record= join_ft_read_first; tab->read_record.read_record= join_ft_read_next; break; case JT_ALL: /* If previous table use cache If the incoming data set is already sorted don't use cache. */ table->status=STATUS_NO_RECORD; if (i != join->const_tables && !(options & SELECT_NO_JOIN_CACHE) && tab->use_quick != 2 && !tab->first_inner && !ordered_set) { if ((options & SELECT_DESCRIBE) || !join_init_cache(join->thd,join->join_tab+join->const_tables, i-join->const_tables)) { tab[-1].next_select=sub_select_cache; /* Patch previous */ } } /* These init changes read_record */ if (tab->use_quick == 2) { join->thd->server_status|=SERVER_QUERY_NO_GOOD_INDEX_USED; tab->read_first_record= join_init_quick_read_record; if (statistics) statistic_increment(join->thd->status_var.select_range_check_count, &LOCK_status); } else { tab->read_first_record= join_init_read_record; if (i == join->const_tables) { if (tab->select && tab->select->quick) { if (statistics) statistic_increment(join->thd->status_var.select_range_count, &LOCK_status); } else { join->thd->server_status|=SERVER_QUERY_NO_INDEX_USED; if (statistics) statistic_increment(join->thd->status_var.select_scan_count, &LOCK_status); } } else { if (tab->select && tab->select->quick) { if (statistics) statistic_increment(join->thd->status_var.select_full_range_join_count, &LOCK_status); } else { join->thd->server_status|=SERVER_QUERY_NO_INDEX_USED; if (statistics) statistic_increment(join->thd->status_var.select_full_join_count, &LOCK_status); } } if (!table->no_keyread) { if (tab->select && tab->select->quick && tab->select->quick->index != MAX_KEY && //not index_merge table->used_keys.is_set(tab->select->quick->index)) { table->key_read=1; table->file->extra(HA_EXTRA_KEYREAD); } else if (!table->used_keys.is_clear_all() && !(tab->select && tab->select->quick)) { // Only read index tree tab->index=find_shortest_key(table, & table->used_keys); tab->read_first_record= join_read_first; tab->type=JT_NEXT; // Read with index_first / index_next } } } break; default: DBUG_PRINT("error",("Table type %d found",tab->type)); /* purecov: deadcode */ break; /* purecov: deadcode */ case JT_UNKNOWN: case JT_MAYBE_REF: abort(); /* purecov: deadcode */ } } join->join_tab[join->tables-1].next_select=0; /* Set by do_select */ DBUG_VOID_RETURN; } /* Give error if we some tables are done with a full join SYNOPSIS error_if_full_join() join Join condition USAGE This is used by multi_table_update and multi_table_delete when running in safe mode RETURN VALUES 0 ok 1 Error (full join used) */ bool error_if_full_join(JOIN *join) { for (JOIN_TAB *tab=join->join_tab, *end=join->join_tab+join->tables; tab < end; tab++) { if (tab->type == JT_ALL && (!tab->select || !tab->select->quick)) { my_message(ER_UPDATE_WITHOUT_KEY_IN_SAFE_MODE, ER(ER_UPDATE_WITHOUT_KEY_IN_SAFE_MODE), MYF(0)); return(1); } } return(0); } /* cleanup JOIN_TAB SYNOPSIS JOIN_TAB::cleanup() */ void JOIN_TAB::cleanup() { delete select; select= 0; delete quick; quick= 0; x_free(cache.buff); cache.buff= 0; if (table) { if (table->key_read) { table->key_read= 0; table->file->extra(HA_EXTRA_NO_KEYREAD); } table->file->ha_index_or_rnd_end(); /* We need to reset this for next select (Tested in part_of_refkey) */ table->reginfo.join_tab= 0; } end_read_record(&read_record); } /* Partially cleanup JOIN after it has executed: close index or rnd read (table cursors), free quick selects. DESCRIPTION This function is called in the end of execution of a JOIN, before the used tables are unlocked and closed. For a join that is resolved using a temporary table, the first sweep is performed against actual tables and an intermediate result is inserted into the temprorary table. The last sweep is performed against the temporary table. Therefore, the base tables and associated buffers used to fill the temporary table are no longer needed, and this function is called to free them. For a join that is performed without a temporary table, this function is called after all rows are sent, but before EOF packet is sent. For a simple SELECT with no subqueries this function performs a full cleanup of the JOIN and calls mysql_unlock_read_tables to free used base tables. If a JOIN is executed for a subquery or if it has a subquery, we can't do the full cleanup and need to do a partial cleanup only. o If a JOIN is not the top level join, we must not unlock the tables because the outer select may not have been evaluated yet, and we can't unlock only selected tables of a query. o Additionally, if this JOIN corresponds to a correlated subquery, we should not free quick selects and join buffers because they will be needed for the next execution of the correlated subquery. o However, if this is a JOIN for a [sub]select, which is not a correlated subquery itself, but has subqueries, we can free it fully and also free JOINs of all its subqueries. The exception is a subquery in SELECT list, e.g: SELECT a, (select max(b) from t1) group by c This subquery will not be evaluated at first sweep and its value will not be inserted into the temporary table. Instead, it's evaluated when selecting from the temporary table. Therefore, it can't be freed here even though it's not correlated. */ void JOIN::join_free() { SELECT_LEX_UNIT *unit; SELECT_LEX *sl; /* Optimization: if not EXPLAIN and we are done with the JOIN, free all tables. */ bool full= (!select_lex->uncacheable && !thd->lex->describe); bool can_unlock= full; DBUG_ENTER("JOIN::join_free"); cleanup(full); for (unit= select_lex->first_inner_unit(); unit; unit= unit->next_unit()) for (sl= unit->first_select(); sl; sl= sl->next_select()) { Item_subselect *subselect= sl->master_unit()->item; bool full_local= full && (!subselect || subselect->is_evaluated()); /* If this join is evaluated, we can fully clean it up and clean up all its underlying joins even if they are correlated -- they will not be used any more anyway. If this join is not yet evaluated, we still must clean it up to close its table cursors -- it may never get evaluated, as in case of ... HAVING FALSE OR a IN (SELECT ...)) but all table cursors must be closed before the unlock. */ sl->cleanup_all_joins(full_local); /* Can't unlock if at least one JOIN is still needed */ can_unlock= can_unlock && full_local; } /* We are not using tables anymore Unlock all tables. We may be in an INSERT .... SELECT statement. */ if (can_unlock && lock && thd->lock && !(select_options & SELECT_NO_UNLOCK) && !select_lex->subquery_in_having && (select_lex == (thd->lex->unit.fake_select_lex ? thd->lex->unit.fake_select_lex : &thd->lex->select_lex))) { /* TODO: unlock tables even if the join isn't top level select in the tree. */ mysql_unlock_read_tables(thd, lock); // Don't free join->lock lock= 0; } DBUG_VOID_RETURN; } /* Free resources of given join SYNOPSIS JOIN::cleanup() fill - true if we should free all resources, call with full==1 should be last, before it this function can be called with full==0 NOTE: with subquery this function definitely will be called several times, but even for simple query it can be called several times. */ void JOIN::cleanup(bool full) { DBUG_ENTER("JOIN::cleanup"); if (table) { JOIN_TAB *tab,*end; /* Only a sorted table may be cached. This sorted table is always the first non const table in join->table */ if (tables > const_tables) // Test for not-const tables { free_io_cache(table[const_tables]); filesort_free_buffers(table[const_tables]); } if (full) { for (tab= join_tab, end= tab+tables; tab != end; tab++) tab->cleanup(); table= 0; tables= 0; } else { for (tab= join_tab, end= tab+tables; tab != end; tab++) { if (tab->table) tab->table->file->ha_index_or_rnd_end(); } } } /* We are not using tables anymore Unlock all tables. We may be in an INSERT .... SELECT statement. */ if (full) { if (tmp_join) tmp_table_param.copy_field= 0; group_fields.delete_elements(); /* We can't call delete_elements() on copy_funcs as this will cause problems in free_elements() as some of the elements are then deleted. */ tmp_table_param.copy_funcs.empty(); /* If we have tmp_join and 'this' JOIN is not tmp_join and tmp_table_param.copy_field's of them are equal then we have to remove pointer to tmp_table_param.copy_field from tmp_join, because it qill be removed in tmp_table_param.cleanup(). */ if (tmp_join && tmp_join != this && tmp_join->tmp_table_param.copy_field == tmp_table_param.copy_field) { tmp_join->tmp_table_param.copy_field= tmp_join->tmp_table_param.save_copy_field= 0; } tmp_table_param.cleanup(); } DBUG_VOID_RETURN; } /***************************************************************************** Remove the following expressions from ORDER BY and GROUP BY: Constant expressions Expression that only uses tables that are of type EQ_REF and the reference is in the ORDER list or if all refereed tables are of the above type. In the following, the X field can be removed: SELECT * FROM t1,t2 WHERE t1.a=t2.a ORDER BY t1.a,t2.X SELECT * FROM t1,t2,t3 WHERE t1.a=t2.a AND t2.b=t3.b ORDER BY t1.a,t3.X These can't be optimized: SELECT * FROM t1,t2 WHERE t1.a=t2.a ORDER BY t2.X,t1.a SELECT * FROM t1,t2 WHERE t1.a=t2.a AND t1.b=t2.b ORDER BY t1.a,t2.c SELECT * FROM t1,t2 WHERE t1.a=t2.a ORDER BY t2.b,t1.a *****************************************************************************/ static bool eq_ref_table(JOIN *join, ORDER *start_order, JOIN_TAB *tab) { if (tab->cached_eq_ref_table) // If cached return tab->eq_ref_table; tab->cached_eq_ref_table=1; /* We can skip const tables only if not an outer table */ if (tab->type == JT_CONST && !tab->first_inner) return (tab->eq_ref_table=1); /* purecov: inspected */ if (tab->type != JT_EQ_REF || tab->table->maybe_null) return (tab->eq_ref_table=0); // We must use this Item **ref_item=tab->ref.items; Item **end=ref_item+tab->ref.key_parts; uint found=0; table_map map=tab->table->map; for (; ref_item != end ; ref_item++) { if (! (*ref_item)->const_item()) { // Not a const ref ORDER *order; for (order=start_order ; order ; order=order->next) { if ((*ref_item)->eq(order->item[0],0)) break; } if (order) { found++; DBUG_ASSERT(!(order->used & map)); order->used|=map; continue; // Used in ORDER BY } if (!only_eq_ref_tables(join,start_order, (*ref_item)->used_tables())) return (tab->eq_ref_table=0); } } /* Check that there was no reference to table before sort order */ for (; found && start_order ; start_order=start_order->next) { if (start_order->used & map) { found--; continue; } if (start_order->depend_map & map) return (tab->eq_ref_table=0); } return tab->eq_ref_table=1; } static bool only_eq_ref_tables(JOIN *join,ORDER *order,table_map tables) { if (specialflag & SPECIAL_SAFE_MODE) return 0; // skip this optimize /* purecov: inspected */ for (JOIN_TAB **tab=join->map2table ; tables ; tab++, tables>>=1) { if (tables & 1 && !eq_ref_table(join, order, *tab)) return 0; } return 1; } /* Update the dependency map for the tables */ static void update_depend_map(JOIN *join) { JOIN_TAB *join_tab=join->join_tab, *end=join_tab+join->tables; for (; join_tab != end ; join_tab++) { TABLE_REF *ref= &join_tab->ref; table_map depend_map=0; Item **item=ref->items; uint i; for (i=0 ; i < ref->key_parts ; i++,item++) depend_map|=(*item)->used_tables(); ref->depend_map=depend_map & ~OUTER_REF_TABLE_BIT; depend_map&= ~OUTER_REF_TABLE_BIT; for (JOIN_TAB **tab=join->map2table; depend_map ; tab++,depend_map>>=1 ) { if (depend_map & 1) ref->depend_map|=(*tab)->ref.depend_map; } } } /* Update the dependency map for the sort order */ static void update_depend_map(JOIN *join, ORDER *order) { for (; order ; order=order->next) { table_map depend_map; order->item[0]->update_used_tables(); order->depend_map=depend_map=order->item[0]->used_tables(); // Not item_sum(), RAND() and no reference to table outside of sub select if (!(order->depend_map & (OUTER_REF_TABLE_BIT | RAND_TABLE_BIT))) { for (JOIN_TAB **tab=join->map2table; depend_map ; tab++, depend_map>>=1) { if (depend_map & 1) order->depend_map|=(*tab)->ref.depend_map; } } } } /* Remove all constants and check if ORDER only contains simple expressions SYNOPSIS remove_const() join Join handler first_order List of SORT or GROUP order cond WHERE statement change_list Set to 1 if we should remove things from list If this is not set, then only simple_order is calculated simple_order Set to 1 if we are only using simple expressions RETURN Returns new sort order simple_order is set to 1 if sort_order only uses fields from head table and the head table is not a LEFT JOIN table */ static ORDER * remove_const(JOIN *join,ORDER *first_order, COND *cond, bool change_list, bool *simple_order) { if (join->tables == join->const_tables) return change_list ? 0 : first_order; // No need to sort ORDER *order,**prev_ptr; table_map first_table= join->join_tab[join->const_tables].table->map; table_map not_const_tables= ~join->const_table_map; table_map ref; DBUG_ENTER("remove_const"); prev_ptr= &first_order; *simple_order= *join->join_tab[join->const_tables].on_expr_ref ? 0 : 1; /* NOTE: A variable of not_const_tables ^ first_table; breaks gcc 2.7 */ update_depend_map(join, first_order); for (order=first_order; order ; order=order->next) { table_map order_tables=order->item[0]->used_tables(); if (order->item[0]->with_sum_func) *simple_order=0; // Must do a temp table to sort else if (!(order_tables & not_const_tables)) { DBUG_PRINT("info",("removing: %s", order->item[0]->full_name())); continue; // skip const item } else { if (order_tables & (RAND_TABLE_BIT | OUTER_REF_TABLE_BIT)) *simple_order=0; else { Item *comp_item=0; if (cond && const_expression_in_where(cond,order->item[0], &comp_item)) { DBUG_PRINT("info",("removing: %s", order->item[0]->full_name())); continue; } if ((ref=order_tables & (not_const_tables ^ first_table))) { if (!(order_tables & first_table) && only_eq_ref_tables(join,first_order, ref)) { DBUG_PRINT("info",("removing: %s", order->item[0]->full_name())); continue; } *simple_order=0; // Must do a temp table to sort } } } if (change_list) *prev_ptr= order; // use this entry prev_ptr= &order->next; } if (change_list) *prev_ptr=0; if (prev_ptr == &first_order) // Nothing to sort/group *simple_order=1; DBUG_PRINT("exit",("simple_order: %d",(int) *simple_order)); DBUG_RETURN(first_order); } static int return_zero_rows(JOIN *join, select_result *result,TABLE_LIST *tables, List<Item> &fields, bool send_row, uint select_options, const char *info, Item *having) { DBUG_ENTER("return_zero_rows"); if (select_options & SELECT_DESCRIBE) { select_describe(join, FALSE, FALSE, FALSE, info); DBUG_RETURN(0); } join->join_free(); if (send_row) { for (TABLE_LIST *table= tables; table; table= table->next_leaf) mark_as_null_row(table->table); // All fields are NULL if (having && having->val_int() == 0) send_row=0; } if (!(result->send_fields(fields, Protocol::SEND_NUM_ROWS | Protocol::SEND_EOF))) { if (send_row) { List_iterator_fast<Item> it(fields); Item *item; while ((item= it++)) item->no_rows_in_result(); result->send_data(fields); } result->send_eof(); // Should be safe } /* Update results for FOUND_ROWS */ join->thd->limit_found_rows= join->thd->examined_row_count= 0; DBUG_RETURN(0); } /* used only in JOIN::clear */ static void clear_tables(JOIN *join) { /* must clear only the non-const tables, as const tables are not re-calculated. */ for (uint i=join->const_tables ; i < join->tables ; i++) mark_as_null_row(join->table[i]); // All fields are NULL } /***************************************************************************** Make som simple condition optimization: If there is a test 'field = const' change all refs to 'field' to 'const' Remove all dummy tests 'item = item', 'const op const'. Remove all 'item is NULL', when item can never be null! item->marker should be 0 for all items on entry Return in cond_value FALSE if condition is impossible (1 = 2) *****************************************************************************/ class COND_CMP :public ilink { public: static void *operator new(size_t size) { return (void*) sql_alloc((uint) size); } static void operator delete(void *ptr __attribute__((unused)), size_t size __attribute__((unused))) { TRASH(ptr, size); } Item *and_level; Item_func *cmp_func; COND_CMP(Item *a,Item_func *b) :and_level(a),cmp_func(b) {} }; #ifdef HAVE_EXPLICIT_TEMPLATE_INSTANTIATION template class I_List<COND_CMP>; template class I_List_iterator<COND_CMP>; template class List<Item_func_match>; template class List_iterator<Item_func_match>; #endif /* Find the multiple equality predicate containing a field SYNOPSIS find_item_equal() cond_equal multiple equalities to search in field field to look for inherited_fl :out set up to TRUE if multiple equality is found on upper levels (not on current level of cond_equal) DESCRIPTION The function retrieves the multiple equalities accessed through the con_equal structure from current level and up looking for an equality containing field. It stops retrieval as soon as the equality is found and set up inherited_fl to TRUE if it's found on upper levels. RETURN Item_equal for the found multiple equality predicate if a success; NULL - otherwise. */ Item_equal *find_item_equal(COND_EQUAL *cond_equal, Field *field, bool *inherited_fl) { Item_equal *item= 0; bool in_upper_level= FALSE; while (cond_equal) { List_iterator_fast<Item_equal> li(cond_equal->current_level); while ((item= li++)) { if (item->contains(field)) goto finish; } in_upper_level= TRUE; cond_equal= cond_equal->upper_levels; } in_upper_level= FALSE; finish: *inherited_fl= in_upper_level; return item; } /* Check whether an equality can be used to build multiple equalities SYNOPSIS check_simple_equality() left_item left term of the quality to be checked right_item right term of the equality to be checked item equality item if the equality originates from a condition predicate, 0 if the equality is the result of row elimination cond_equal multiple equalities that must hold together with the equality DESCRIPTION This function first checks whether the equality (left_item=right_item) is a simple equality i.e. the one that equates a field with another field or a constant (field=field_item or field=const_item). If this is the case the function looks for a multiple equality in the lists referenced directly or indirectly by cond_equal inferring the given simple equality. If it doesn't find any, it builds a multiple equality that covers the predicate, i.e. the predicate can be inferred from this multiple equality. The built multiple equality could be obtained in such a way: create a binary multiple equality equivalent to the predicate, then merge it, if possible, with one of old multiple equalities. This guarantees that the set of multiple equalities covering equality predicates will be minimal. EXAMPLE For the where condition WHERE a=b AND b=c AND (b=2 OR f=e) the check_equality will be called for the following equality predicates a=b, b=c, b=2 and f=e. For a=b it will be called with *cond_equal=(0,[]) and will transform *cond_equal into (0,[Item_equal(a,b)]). For b=c it will be called with *cond_equal=(0,[Item_equal(a,b)]) and will transform *cond_equal into CE=(0,[Item_equal(a,b,c)]). For b=2 it will be called with *cond_equal=(ptr(CE),[]) and will transform *cond_equal into (ptr(CE),[Item_equal(2,a,b,c)]). For f=e it will be called with *cond_equal=(ptr(CE), []) and will transform *cond_equal into (ptr(CE),[Item_equal(f,e)]). NOTES Now only fields that have the same type definitions (verified by the Field::eq_def method) are placed to the same multiple equalities. Because of this some equality predicates are not eliminated and can be used in the constant propagation procedure. We could weeken the equlity test as soon as at least one of the equal fields is to be equal to a constant. It would require a more complicated implementation: we would have to store, in general case, its own constant for each fields from the multiple equality. But at the same time it would allow us to get rid of constant propagation completely: it would be done by the call to build_equal_items_for_cond. IMPLEMENTATION The implementation does not follow exactly the above rules to build a new multiple equality for the equality predicate. If it processes the equality of the form field1=field2, it looks for multiple equalities me1 containig field1 and me2 containing field2. If only one of them is found the fuction expands it with the lacking field. If multiple equalities for both fields are found they are merged. If both searches fail a new multiple equality containing just field1 and field2 is added to the existing multiple equalities. If the function processes the predicate of the form field1=const, it looks for a multiple equality containing field1. If found, the function checks the constant of the multiple equality. If the value is unknown, it is setup to const. Otherwise the value is compared with const and the evaluation of the equality predicate is performed. When expanding/merging equality predicates from the upper levels the function first copies them for the current level. It looks acceptable, as this happens rarely. The implementation without copying would be much more complicated. RETURN TRUE if the predicate is a simple equality predicate to be used for building multiple equalities FALSE otherwise */ static bool check_simple_equality(Item *left_item, Item *right_item, Item *item, COND_EQUAL *cond_equal) { if (left_item->type() == Item::REF_ITEM && ((Item_ref*)left_item)->ref_type() == Item_ref::VIEW_REF) { if (((Item_ref*)left_item)->depended_from) return FALSE; left_item= left_item->real_item(); } if (right_item->type() == Item::REF_ITEM && ((Item_ref*)right_item)->ref_type() == Item_ref::VIEW_REF) { if (((Item_ref*)right_item)->depended_from) return FALSE; right_item= right_item->real_item(); } if (left_item->type() == Item::FIELD_ITEM && right_item->type() == Item::FIELD_ITEM && !((Item_field*)left_item)->depended_from && !((Item_field*)right_item)->depended_from) { /* The predicate the form field1=field2 is processed */ Field *left_field= ((Item_field*) left_item)->field; Field *right_field= ((Item_field*) right_item)->field; if (!left_field->eq_def(right_field)) return FALSE; /* Search for multiple equalities containing field1 and/or field2 */ bool left_copyfl, right_copyfl; Item_equal *left_item_equal= find_item_equal(cond_equal, left_field, &left_copyfl); Item_equal *right_item_equal= find_item_equal(cond_equal, right_field, &right_copyfl); /* As (NULL=NULL) != TRUE we can't just remove the predicate f=f */ if (left_field->eq(right_field)) /* f = f */ return (!(left_field->maybe_null() && !left_item_equal)); if (left_item_equal && left_item_equal == right_item_equal) { /* The equality predicate is inference of one of the existing multiple equalities, i.e the condition is already covered by upper level equalities */ return TRUE; } /* Copy the found multiple equalities at the current level if needed */ if (left_copyfl) { /* left_item_equal of an upper level contains left_item */ left_item_equal= new Item_equal(left_item_equal); cond_equal->current_level.push_back(left_item_equal); } if (right_copyfl) { /* right_item_equal of an upper level contains right_item */ right_item_equal= new Item_equal(right_item_equal); cond_equal->current_level.push_back(right_item_equal); } if (left_item_equal) { /* left item was found in the current or one of the upper levels */ if (! right_item_equal) left_item_equal->add((Item_field *) right_item); else { /* Merge two multiple equalities forming a new one */ left_item_equal->merge(right_item_equal); /* Remove the merged multiple equality from the list */ List_iterator<Item_equal> li(cond_equal->current_level); while ((li++) != right_item_equal); li.remove(); } } else { /* left item was not found neither the current nor in upper levels */ if (right_item_equal) right_item_equal->add((Item_field *) left_item); else { /* None of the fields was found in multiple equalities */ Item_equal *item= new Item_equal((Item_field *) left_item, (Item_field *) right_item); cond_equal->current_level.push_back(item); } } return TRUE; } { /* The predicate of the form field=const/const=field is processed */ Item *const_item= 0; Item_field *field_item= 0; if (left_item->type() == Item::FIELD_ITEM && !((Item_field*)left_item)->depended_from && right_item->const_item()) { field_item= (Item_field*) left_item; const_item= right_item; } else if (right_item->type() == Item::FIELD_ITEM && !((Item_field*)right_item)->depended_from && left_item->const_item()) { field_item= (Item_field*) right_item; const_item= left_item; } if (const_item && field_item->result_type() == const_item->result_type()) { bool copyfl; if (field_item->result_type() == STRING_RESULT) { CHARSET_INFO *cs= ((Field_str*) field_item->field)->charset(); if (!item) { Item_func_eq *eq_item; if ((eq_item= new Item_func_eq(left_item, right_item))) return FALSE; eq_item->set_cmp_func(); eq_item->quick_fix_field(); item= eq_item; } if ((cs != ((Item_func *) item)->compare_collation()) || !cs->coll->propagate(cs, 0, 0)) return FALSE; } Item_equal *item_equal = find_item_equal(cond_equal, field_item->field, ©fl); if (copyfl) { item_equal= new Item_equal(item_equal); cond_equal->current_level.push_back(item_equal); } if (item_equal) { /* The flag cond_false will be set to 1 after this, if item_equal already contains a constant and its value is not equal to the value of const_item. */ item_equal->add(const_item); } else { item_equal= new Item_equal(const_item, field_item); cond_equal->current_level.push_back(item_equal); } return TRUE; } } return FALSE; } /* Convert row equalities into a conjunction of regular equalities SYNOPSIS check_row_equality() left_row left term of the row equality to be processed right_row right term of the row equality to be processed cond_equal multiple equalities that must hold together with the predicate eq_list results of conversions of row equalities that are not simple enough to form multiple equalities DESCRIPTION The function converts a row equality of the form (E1,...,En)=(E'1,...,E'n) into a list of equalities E1=E'1,...,En=E'n. For each of these equalities Ei=E'i the function checks whether it is a simple equality or a row equality. If it is a simple equality it is used to expand multiple equalities of cond_equal. If it is a row equality it converted to a sequence of equalities between row elements. If Ei=E'i is neither a simple equality nor a row equality the item for this predicate is added to eq_list. RETURN TRUE if conversion has succeeded (no fatal error) FALSE otherwise */ static bool check_row_equality(Item *left_row, Item_row *right_row, COND_EQUAL *cond_equal, List<Item>* eq_list) { uint n= left_row->cols(); for (uint i= 0 ; i < n; i++) { bool is_converted; Item *left_item= left_row->el(i); Item *right_item= right_row->el(i); if (left_item->type() == Item::ROW_ITEM && right_item->type() == Item::ROW_ITEM) is_converted= check_row_equality((Item_row *) left_item, (Item_row *) right_item, cond_equal, eq_list); else is_converted= check_simple_equality(left_item, right_item, 0, cond_equal); if (!is_converted) { Item_func_eq *eq_item; if (!(eq_item= new Item_func_eq(left_item, right_item))) return FALSE; eq_item->set_cmp_func(); eq_item->quick_fix_field(); eq_list->push_back(eq_item); } } return TRUE; } /* Eliminate row equalities and form multiple equalities predicates SYNOPSIS check_equality() item predicate to process cond_equal multiple equalities that must hold together with the predicate eq_list results of conversions of row equalities that are not simple enough to form multiple equalities DESCRIPTION This function checks whether the item is a simple equality i.e. the one that equates a field with another field or a constant (field=field_item or field=constant_item), or, a row equality. For a simple equality the function looks for a multiple equality in the lists referenced directly or indirectly by cond_equal inferring the given simple equality. If it doesn't find any, it builds/expands multiple equality that covers the predicate. Row equalities are eliminated substituted for conjunctive regular equalities which are treated in the same way as original equality predicates. RETURN TRUE if re-writing rules have been applied FALSE otherwise, i.e. if the predicate is not an equality, or, if the equality is neither a simple one nor a row equality, or, if the procedure fails by a fatal error. */ static bool check_equality(Item *item, COND_EQUAL *cond_equal, List<Item> *eq_list) { if (item->type() == Item::FUNC_ITEM && ((Item_func*) item)->functype() == Item_func::EQ_FUNC) { Item *left_item= ((Item_func*) item)->arguments()[0]; Item *right_item= ((Item_func*) item)->arguments()[1]; if (left_item->type() == Item::ROW_ITEM && right_item->type() == Item::ROW_ITEM) return check_row_equality((Item_row *) left_item, (Item_row *) right_item, cond_equal, eq_list); else return check_simple_equality(left_item, right_item, item, cond_equal); } return FALSE; } /* Replace all equality predicates in a condition by multiple equality items SYNOPSIS build_equal_items_for_cond() cond condition(expression) where to make replacement inherited path to all inherited multiple equality items DESCRIPTION At each 'and' level the function detects items for equality predicates and replaced them by a set of multiple equality items of class Item_equal, taking into account inherited equalities from upper levels. If an equality predicate is used not in a conjunction it's just replaced by a multiple equality predicate. For each 'and' level the function set a pointer to the inherited multiple equalities in the cond_equal field of the associated object of the type Item_cond_and. The function also traverses the cond tree and and for each field reference sets a pointer to the multiple equality item containing the field, if there is any. If this multiple equality equates fields to a constant the function replaces the field reference by the constant in the cases when the field is not of a string type or when the field reference is just an argument of a comparison predicate. The function also determines the maximum number of members in equality lists of each Item_cond_and object assigning it to cond_equal->max_members of this object and updating accordingly the upper levels COND_EQUAL structures. NOTES Multiple equality predicate =(f1,..fn) is equivalent to the conjuction of f1=f2, .., fn-1=fn. It substitutes any inference from these equality predicates that is equivalent to the conjunction. Thus, =(a1,a2,a3) can substitute for ((a1=a3) AND (a2=a3) AND (a2=a1)) as it is equivalent to ((a1=a2) AND (a2=a3)). The function always makes a substitution of all equality predicates occured in a conjuction for a minimal set of multiple equality predicates. This set can be considered as a canonical representation of the sub-conjunction of the equality predicates. E.g. (t1.a=t2.b AND t2.b>5 AND t1.a=t3.c) is replaced by (=(t1.a,t2.b,t3.c) AND t2.b>5), not by (=(t1.a,t2.b) AND =(t1.a,t3.c) AND t2.b>5); while (t1.a=t2.b AND t2.b>5 AND t3.c=t4.d) is replaced by (=(t1.a,t2.b) AND =(t3.c=t4.d) AND t2.b>5), but if additionally =(t4.d,t2.b) is inherited, it will be replaced by (=(t1.a,t2.b,t3.c,t4.d) AND t2.b>5) IMPLEMENTATION The function performs the substitution in a recursive descent by the condtion tree, passing to the next AND level a chain of multiple equality predicates which have been built at the upper levels. The Item_equal items built at the level are attached to other non-equality conjucts as a sublist. The pointer to the inherited multiple equalities is saved in the and condition object (Item_cond_and). This chain allows us for any field reference occurence easyly to find a multiple equality that must be held for this occurence. For each AND level we do the following: - scan it for all equality predicate (=) items - join them into disjoint Item_equal() groups - process the included OR conditions recursively to do the same for lower AND levels. We need to do things in this order as lower AND levels need to know about all possible Item_equal objects in upper levels. RETURN pointer to the transformed condition */ static COND *build_equal_items_for_cond(COND *cond, COND_EQUAL *inherited) { Item_equal *item_equal; uint members; COND_EQUAL cond_equal; COND *new_cond; cond_equal.upper_levels= inherited; if (cond->type() == Item::COND_ITEM) { List<Item> eq_list; bool and_level= ((Item_cond*) cond)->functype() == Item_func::COND_AND_FUNC; List<Item> *args= ((Item_cond*) cond)->argument_list(); List_iterator<Item> li(*args); Item *item; if (and_level) { /* Retrieve all conjucts of this level detecting the equality that are subject to substitution by multiple equality items and removing each such predicate from the conjunction after having found/created a multiple equality whose inference the predicate is. */ while ((item= li++)) { /* PS/SP note: we can safely remove a node from AND-OR structure here because it's restored before each re-execution of any prepared statement/stored procedure. */ if (check_equality(item, &cond_equal, &eq_list)) li.remove(); } List_iterator_fast<Item_equal> it(cond_equal.current_level); while ((item_equal= it++)) { item_equal->fix_length_and_dec(); item_equal->update_used_tables(); members= item_equal->members(); if (cond_equal.max_members < members) cond_equal.max_members= members; } members= cond_equal.max_members; if (inherited && inherited->max_members < members) { do { inherited->max_members= members; inherited= inherited->upper_levels; } while (inherited); } ((Item_cond_and*)cond)->cond_equal= cond_equal; inherited= &(((Item_cond_and*)cond)->cond_equal); } /* Make replacement of equality predicates for lower levels of the condition expression. */ li.rewind(); while ((item= li++)) { Item *new_item; if ((new_item = build_equal_items_for_cond(item, inherited))!= item) { /* This replacement happens only for standalone equalities */ /* This is ok with PS/SP as the replacement is done for arguments of an AND/OR item, which are restored for each execution of PS/SP. */ li.replace(new_item); } } if (and_level) { args->concat(&eq_list); args->concat((List<Item> *)&cond_equal.current_level); } } else if (cond->type() == Item::FUNC_ITEM) { List<Item> eq_list; /* If an equality predicate forms the whole and level, we call it standalone equality and it's processed here. E.g. in the following where condition WHERE a=5 AND (b=5 or a=c) (b=5) and (a=c) are standalone equalities. In general we can't leave alone standalone eqalities: for WHERE a=b AND c=d AND (b=c OR d=5) b=c is replaced by =(a,b,c,d). */ if (check_equality(cond, &cond_equal, &eq_list)) { int n= cond_equal.current_level.elements + eq_list.elements; if (n == 0) return new Item_int((longlong) 1,1); else if (n == 1) { if ((item_equal= cond_equal.current_level.pop())) { item_equal->fix_length_and_dec(); item_equal->update_used_tables(); return item_equal; } else return eq_list.pop(); } else { /* Here a new AND level must be created. It can happen only when a row equality is processed as a standalone predicate. */ Item_cond_and *and_cond= new Item_cond_and(eq_list); and_cond->quick_fix_field(); List<Item> *args= and_cond->argument_list(); List_iterator_fast<Item_equal> it(cond_equal.current_level); while ((item_equal= it++)) { item_equal->fix_length_and_dec(); item_equal->update_used_tables(); members= item_equal->members(); if (cond_equal.max_members < members) cond_equal.max_members= members; } and_cond->cond_equal= cond_equal; args->concat((List<Item> *)&cond_equal.current_level); return and_cond; } } /* For each field reference in cond, not from equal item predicates, set a pointer to the multiple equality it belongs to (if there is any) as soon the field is not of a string type or the field reference is an argument of a comparison predicate. */ byte *is_subst_valid= (byte *) 1; cond= cond->compile(&Item::subst_argument_checker, &is_subst_valid, &Item::equal_fields_propagator, (byte *) inherited); cond->update_used_tables(); } return cond; } /* Build multiple equalities for a condition and all on expressions that inherit these multiple equalities SYNOPSIS build_equal_items() thd Thread handler cond condition to build the multiple equalities for inherited path to all inherited multiple equality items join_list list of join tables to which the condition refers to cond_equal_ref :out pointer to the structure to place built equalities in DESCRIPTION The function first applies the build_equal_items_for_cond function to build all multiple equalities for condition cond utilizing equalities referred through the parameter inherited. The extended set of equalities is returned in the structure referred by the cond_equal_ref parameter. After this the function calls itself recursively for all on expressions whose direct references can be found in join_list and who inherit directly the multiple equalities just having built. NOTES The on expression used in an outer join operation inherits all equalities from the on expression of the embedding join, if there is any, or otherwise - from the where condition. This fact is not obvious, but presumably can be proved. Consider the following query: SELECT * FROM (t1,t2) LEFT JOIN (t3,t4) ON t1.a=t3.a AND t2.a=t4.a WHERE t1.a=t2.a; If the on expression in the query inherits =(t1.a,t2.a), then we can build the multiple equality =(t1.a,t2.a,t3.a,t4.a) that infers the equality t3.a=t4.a. Although the on expression t1.a=t3.a AND t2.a=t4.a AND t3.a=t4.a is not equivalent to the one in the query the latter can be replaced by the former: the new query will return the same result set as the original one. Interesting that multiple equality =(t1.a,t2.a,t3.a,t4.a) allows us to use t1.a=t3.a AND t3.a=t4.a under the on condition: SELECT * FROM (t1,t2) LEFT JOIN (t3,t4) ON t1.a=t3.a AND t3.a=t4.a WHERE t1.a=t2.a This query equivalent to: SELECT * FROM (t1 LEFT JOIN (t3,t4) ON t1.a=t3.a AND t3.a=t4.a),t2 WHERE t1.a=t2.a Similarly the original query can be rewritten to the query: SELECT * FROM (t1,t2) LEFT JOIN (t3,t4) ON t2.a=t4.a AND t3.a=t4.a WHERE t1.a=t2.a that is equivalent to: SELECT * FROM (t2 LEFT JOIN (t3,t4)ON t2.a=t4.a AND t3.a=t4.a), t1 WHERE t1.a=t2.a Thus, applying equalities from the where condition we basically can get more freedom in performing join operations. Althogh we don't use this property now, it probably makes sense to use it in the future. RETURN pointer to the transformed condition containing multiple equalities */ static COND *build_equal_items(THD *thd, COND *cond, COND_EQUAL *inherited, List<TABLE_LIST> *join_list, COND_EQUAL **cond_equal_ref) { COND_EQUAL *cond_equal= 0; if (cond) { cond= build_equal_items_for_cond(cond, inherited); cond->update_used_tables(); if (cond->type() == Item::COND_ITEM && ((Item_cond*) cond)->functype() == Item_func::COND_AND_FUNC) cond_equal= &((Item_cond_and*) cond)->cond_equal; else if (cond->type() == Item::FUNC_ITEM && ((Item_cond*) cond)->functype() == Item_func::MULT_EQUAL_FUNC) { cond_equal= new COND_EQUAL; cond_equal->current_level.push_back((Item_equal *) cond); } } if (cond_equal) { cond_equal->upper_levels= inherited; inherited= cond_equal; } *cond_equal_ref= cond_equal; if (join_list) { TABLE_LIST *table; List_iterator<TABLE_LIST> li(*join_list); while ((table= li++)) { if (table->on_expr) { List<TABLE_LIST> *join_list= table->nested_join ? &table->nested_join->join_list : NULL; /* We can modify table->on_expr because its old value will be restored before re-execution of PS/SP. */ table->on_expr= build_equal_items(thd, table->on_expr, inherited, join_list, &table->cond_equal); } } } return cond; } /* Compare field items by table order in the execution plan SYNOPSIS compare_fields_by_table_order() field1 first field item to compare field2 second field item to compare table_join_idx index to tables determining table order DESCRIPTION field1 considered as better than field2 if the table containing field1 is accessed earlier than the table containing field2. The function finds out what of two fields is better according this criteria. RETURN 1, if field1 is better than field2 -1, if field2 is better than field1 0, otherwise */ static int compare_fields_by_table_order(Item_field *field1, Item_field *field2, void *table_join_idx) { int cmp= 0; bool outer_ref= 0; if (field2->used_tables() & OUTER_REF_TABLE_BIT) { outer_ref= 1; cmp= -1; } if (field2->used_tables() & OUTER_REF_TABLE_BIT) { outer_ref= 1; cmp++; } if (outer_ref) return cmp; JOIN_TAB **idx= (JOIN_TAB **) table_join_idx; cmp= idx[field2->field->table->tablenr]-idx[field1->field->table->tablenr]; return cmp < 0 ? -1 : (cmp ? 1 : 0); } /* Generate minimal set of simple equalities equivalent to a multiple equality SYNOPSIS eliminate_item_equal() cond condition to add the generated equality to upper_levels structure to access multiple equality of upper levels item_equal multiple equality to generate simple equality from DESCRIPTION The function retrieves the fields of the multiple equality item item_equal and for each field f: - if item_equal contains const it generates the equality f=const_item; - otherwise, if f is not the first field, generates the equality f=item_equal->get_first(). All generated equality are added to the cond conjunction. NOTES Before generating an equality function checks that it has not been generated for multiple equalities of the upper levels. E.g. for the following where condition WHERE a=5 AND ((a=b AND b=c) OR c>4) the upper level AND condition will contain =(5,a), while the lower level AND condition will contain =(5,a,b,c). When splitting =(5,a,b,c) into a separate equality predicates we should omit 5=a, as we have it already in the upper level. The following where condition gives us a more complicated case: WHERE t1.a=t2.b AND t3.c=t4.d AND (t2.b=t3.c OR t4.e>5 ...) AND ... Given the tables are accessed in the order t1->t2->t3->t4 for the selected query execution plan the lower level multiple equality =(t1.a,t2.b,t3.c,t4.d) formally should be converted to t1.a=t2.b AND t1.a=t3.c AND t1.a=t4.d. But t1.a=t2.a will be generated for the upper level. Also t3.c=t4.d will be generated there. So only t1.a=t3.c should be left in the lower level. If cond is equal to 0, then not more then one equality is generated and a pointer to it is returned as the result of the function. RETURN The condition with generated simple equalities or a pointer to the simple generated equality, if success. 0, otherwise. */ static Item *eliminate_item_equal(COND *cond, COND_EQUAL *upper_levels, Item_equal *item_equal) { List<Item> eq_list; Item_func_eq *eq_item= 0; if (((Item *) item_equal)->const_item() && !item_equal->val_int()) return new Item_int((longlong) 0,1); Item *item_const= item_equal->get_const(); Item_equal_iterator it(*item_equal); Item *head; if (item_const) head= item_const; else { head= item_equal->get_first(); it++; } Item_field *item_field; while ((item_field= it++)) { Item_equal *upper= item_field->find_item_equal(upper_levels); Item_field *item= item_field; if (upper) { if (item_const && upper->get_const()) item= 0; else { Item_equal_iterator li(*item_equal); while ((item= li++) != item_field) { if (item->find_item_equal(upper_levels) == upper) break; } } } if (item == item_field) { if (eq_item) eq_list.push_back(eq_item); eq_item= new Item_func_eq(item_field, head); if (!eq_item) return 0; eq_item->set_cmp_func(); eq_item->quick_fix_field(); } } if (!cond && !eq_list.head()) { if (!eq_item) return new Item_int((longlong) 1,1); return eq_item; } if (eq_item) eq_list.push_back(eq_item); if (!cond) cond= new Item_cond_and(eq_list); else { DBUG_ASSERT(cond->type() == Item::COND_ITEM); ((Item_cond *) cond)->add_at_head(&eq_list); } cond->quick_fix_field(); cond->update_used_tables(); return cond; } /* Substitute every field reference in a condition by the best equal field and eliminate all multiple equality predicates SYNOPSIS substitute_for_best_equal_field() cond condition to process cond_equal multiple equalities to take into consideration table_join_idx index to tables determining field preference DESCRIPTION The function retrieves the cond condition and for each encountered multiple equality predicate it sorts the field references in it according to the order of tables specified by the table_join_idx parameter. Then it eliminates the multiple equality predicate it replacing it by the conjunction of simple equality predicates equating every field from the multiple equality to the first field in it, or to the constant, if there is any. After this the function retrieves all other conjuncted predicates substitute every field reference by the field reference to the first equal field or equal constant if there are any. NOTES At the first glance full sort of fields in multiple equality seems to be an overkill. Yet it's not the case due to possible new fields in multiple equality item of lower levels. We want the order in them to comply with the order of upper levels. RETURN The transformed condition */ static COND* substitute_for_best_equal_field(COND *cond, COND_EQUAL *cond_equal, void *table_join_idx) { Item_equal *item_equal; if (cond->type() == Item::COND_ITEM) { List<Item> *cond_list= ((Item_cond*) cond)->argument_list(); bool and_level= ((Item_cond*) cond)->functype() == Item_func::COND_AND_FUNC; if (and_level) { cond_equal= &((Item_cond_and *) cond)->cond_equal; cond_list->disjoin((List<Item> *) &cond_equal->current_level); List_iterator_fast<Item_equal> it(cond_equal->current_level); while ((item_equal= it++)) { item_equal->sort(&compare_fields_by_table_order, table_join_idx); } } List_iterator<Item> li(*cond_list); Item *item; while ((item= li++)) { Item *new_item =substitute_for_best_equal_field(item, cond_equal, table_join_idx); /* This works OK with PS/SP re-execution as changes are made to the arguments of AND/OR items only */ if (new_item != item) li.replace(new_item); } if (and_level) { List_iterator_fast<Item_equal> it(cond_equal->current_level); while ((item_equal= it++)) { cond= eliminate_item_equal(cond, cond_equal->upper_levels, item_equal); // This occurs when eliminate_item_equal() founds that cond is // always false and substitutes it with Item_int 0. // Due to this, value of item_equal will be 0, so just return it. if (cond->type() != Item::COND_ITEM) break; } } } else if (cond->type() == Item::FUNC_ITEM && ((Item_cond*) cond)->functype() == Item_func::MULT_EQUAL_FUNC) { item_equal= (Item_equal *) cond; item_equal->sort(&compare_fields_by_table_order, table_join_idx); if (cond_equal && cond_equal->current_level.head() == item_equal) cond_equal= 0; return eliminate_item_equal(0, cond_equal, item_equal); } else cond->transform(&Item::replace_equal_field, 0); return cond; } /* Check appearance of new constant items in multiple equalities of a condition after reading a constant table SYNOPSIS update_const_equal_items() cond condition whose multiple equalities are to be checked table constant table that has been read DESCRIPTION The function retrieves the cond condition and for each encountered multiple equality checks whether new constants have appeared after reading the constant (single row) table tab. If so it adjusts the multiple equality appropriately. */ static void update_const_equal_items(COND *cond, JOIN_TAB *tab) { if (!(cond->used_tables() & tab->table->map)) return; if (cond->type() == Item::COND_ITEM) { List<Item> *cond_list= ((Item_cond*) cond)->argument_list(); List_iterator_fast<Item> li(*cond_list); Item *item; while ((item= li++)) update_const_equal_items(item, tab); } else if (cond->type() == Item::FUNC_ITEM && ((Item_cond*) cond)->functype() == Item_func::MULT_EQUAL_FUNC) { Item_equal *item_equal= (Item_equal *) cond; bool contained_const= item_equal->get_const() != NULL; item_equal->update_const(); if (!contained_const && item_equal->get_const()) { /* Update keys for range analysis */ Item_equal_iterator it(*item_equal); Item_field *item_field; while ((item_field= it++)) { Field *field= item_field->field; JOIN_TAB *stat= field->table->reginfo.join_tab; key_map possible_keys= field->key_start; possible_keys.intersect(field->table->keys_in_use_for_query); stat[0].const_keys.merge(possible_keys); } } } } /* change field = field to field = const for each found field = const in the and_level */ static void change_cond_ref_to_const(THD *thd, I_List<COND_CMP> *save_list, Item *and_father, Item *cond, Item *field, Item *value) { if (cond->type() == Item::COND_ITEM) { bool and_level= ((Item_cond*) cond)->functype() == Item_func::COND_AND_FUNC; List_iterator<Item> li(*((Item_cond*) cond)->argument_list()); Item *item; while ((item=li++)) change_cond_ref_to_const(thd, save_list,and_level ? cond : item, item, field, value); return; } if (cond->eq_cmp_result() == Item::COND_OK) return; // Not a boolean function Item_bool_func2 *func= (Item_bool_func2*) cond; Item **args= func->arguments(); Item *left_item= args[0]; Item *right_item= args[1]; Item_func::Functype functype= func->functype(); if (right_item->eq(field,0) && left_item != value && right_item->cmp_context == field->cmp_context && (left_item->result_type() != STRING_RESULT || value->result_type() != STRING_RESULT || left_item->collation.collation == value->collation.collation)) { Item *tmp=value->new_item(); tmp->collation.set(right_item->collation); if (tmp) { thd->change_item_tree(args + 1, tmp); func->update_used_tables(); if ((functype == Item_func::EQ_FUNC || functype == Item_func::EQUAL_FUNC) && and_father != cond && !left_item->const_item()) { cond->marker=1; COND_CMP *tmp2; if ((tmp2=new COND_CMP(and_father,func))) save_list->push_back(tmp2); } func->set_cmp_func(); } } else if (left_item->eq(field,0) && right_item != value && left_item->cmp_context == field->cmp_context && (right_item->result_type() != STRING_RESULT || value->result_type() != STRING_RESULT || right_item->collation.collation == value->collation.collation)) { Item *tmp=value->new_item(); tmp->collation.set(left_item->collation); if (tmp) { thd->change_item_tree(args, tmp); value= tmp; func->update_used_tables(); if ((functype == Item_func::EQ_FUNC || functype == Item_func::EQUAL_FUNC) && and_father != cond && !right_item->const_item()) { args[0]= args[1]; // For easy check thd->change_item_tree(args + 1, value); cond->marker=1; COND_CMP *tmp2; if ((tmp2=new COND_CMP(and_father,func))) save_list->push_back(tmp2); } func->set_cmp_func(); } } } /* Remove additional condition inserted by IN/ALL/ANY transformation SYNOPSIS remove_additional_cond() conds - condition for processing RETURN VALUES new conditions */ static Item *remove_additional_cond(Item* conds) { if (conds->name == in_additional_cond) return 0; if (conds->type() == Item::COND_ITEM) { Item_cond *cnd= (Item_cond*) conds; List_iterator<Item> li(*(cnd->argument_list())); Item *item; while ((item= li++)) { if (item->name == in_additional_cond) { li.remove(); if (cnd->argument_list()->elements == 1) return cnd->argument_list()->head(); return conds; } } } return conds; } static void propagate_cond_constants(THD *thd, I_List<COND_CMP> *save_list, COND *and_father, COND *cond) { if (cond->type() == Item::COND_ITEM) { bool and_level= ((Item_cond*) cond)->functype() == Item_func::COND_AND_FUNC; List_iterator_fast<Item> li(*((Item_cond*) cond)->argument_list()); Item *item; I_List<COND_CMP> save; while ((item=li++)) { propagate_cond_constants(thd, &save,and_level ? cond : item, item); } if (and_level) { // Handle other found items I_List_iterator<COND_CMP> cond_itr(save); COND_CMP *cond_cmp; while ((cond_cmp=cond_itr++)) { Item **args= cond_cmp->cmp_func->arguments(); if (!args[0]->const_item()) change_cond_ref_to_const(thd, &save,cond_cmp->and_level, cond_cmp->and_level, args[0], args[1]); } } } else if (and_father != cond && !cond->marker) // In a AND group { if (cond->type() == Item::FUNC_ITEM && (((Item_func*) cond)->functype() == Item_func::EQ_FUNC || ((Item_func*) cond)->functype() == Item_func::EQUAL_FUNC)) { Item_func_eq *func=(Item_func_eq*) cond; Item **args= func->arguments(); bool left_const= args[0]->const_item(); bool right_const= args[1]->const_item(); if (!(left_const && right_const) && args[0]->result_type() == args[1]->result_type()) { if (right_const) { resolve_const_item(thd, &args[1], args[0]); func->update_used_tables(); change_cond_ref_to_const(thd, save_list, and_father, and_father, args[0], args[1]); } else if (left_const) { resolve_const_item(thd, &args[0], args[1]); func->update_used_tables(); change_cond_ref_to_const(thd, save_list, and_father, and_father, args[1], args[0]); } } } } } /* Simplify joins replacing outer joins by inner joins whenever it's possible SYNOPSIS simplify_joins() join reference to the query info join_list list representation of the join to be converted conds conditions to add on expressions for converted joins top true <=> conds is the where condition DESCRIPTION The function, during a retrieval of join_list, eliminates those outer joins that can be converted into inner join, possibly nested. It also moves the on expressions for the converted outer joins and from inner joins to conds. The function also calculates some attributes for nested joins: - used_tables - not_null_tables - dep_tables. - on_expr_dep_tables The first two attributes are used to test whether an outer join can be substituted for an inner join. The third attribute represents the relation 'to be dependent on' for tables. If table t2 is dependent on table t1, then in any evaluated execution plan table access to table t2 must precede access to table t2. This relation is used also to check whether the query contains invalid cross-references. The forth attribute is an auxiliary one and is used to calculate dep_tables. As the attribute dep_tables qualifies possibles orders of tables in the execution plan, the dependencies required by the straight join modifiers are reflected in this attribute as well. The function also removes all braces that can be removed from the join expression without changing its meaning. NOTES An outer join can be replaced by an inner join if the where condition or the on expression for an embedding nested join contains a conjunctive predicate rejecting null values for some attribute of the inner tables. E.g. in the query: SELECT * FROM t1 LEFT JOIN t2 ON t2.a=t1.a WHERE t2.b < 5 the predicate t2.b < 5 rejects nulls. The query is converted first to: SELECT * FROM t1 INNER JOIN t2 ON t2.a=t1.a WHERE t2.b < 5 then to the equivalent form: SELECT * FROM t1, t2 ON t2.a=t1.a WHERE t2.b < 5 AND t2.a=t1.a. Similarly the following query: SELECT * from t1 LEFT JOIN (t2, t3) ON t2.a=t1.a t3.b=t1.b WHERE t2.c < 5 is converted to: SELECT * FROM t1, (t2, t3) WHERE t2.c < 5 AND t2.a=t1.a t3.b=t1.b One conversion might trigger another: SELECT * FROM t1 LEFT JOIN t2 ON t2.a=t1.a LEFT JOIN t3 ON t3.b=t2.b WHERE t3 IS NOT NULL => SELECT * FROM t1 LEFT JOIN t2 ON t2.a=t1.a, t3 WHERE t3 IS NOT NULL AND t3.b=t2.b => SELECT * FROM t1, t2, t3 WHERE t3 IS NOT NULL AND t3.b=t2.b AND t2.a=t1.a The function removes all unnecessary braces from the expression produced by the conversions. E.g. SELECT * FROM t1, (t2, t3) WHERE t2.c < 5 AND t2.a=t1.a AND t3.b=t1.b finally is converted to: SELECT * FROM t1, t2, t3 WHERE t2.c < 5 AND t2.a=t1.a AND t3.b=t1.b It also will remove braces from the following queries: SELECT * from (t1 LEFT JOIN t2 ON t2.a=t1.a) LEFT JOIN t3 ON t3.b=t2.b SELECT * from (t1, (t2,t3)) WHERE t1.a=t2.a AND t2.b=t3.b. The benefit of this simplification procedure is that it might return a query for which the optimizer can evaluate execution plan with more join orders. With a left join operation the optimizer does not consider any plan where one of the inner tables is before some of outer tables. IMPLEMENTATION. The function is implemented by a recursive procedure. On the recursive ascent all attributes are calculated, all outer joins that can be converted are replaced and then all unnecessary braces are removed. As join list contains join tables in the reverse order sequential elimination of outer joins does not require extra recursive calls. EXAMPLES Here is an example of a join query with invalid cross references: SELECT * FROM t1 LEFT JOIN t2 ON t2.a=t3.a LEFT JOIN t3 ON t3.b=t1.b RETURN VALUE The new condition, if success 0, otherwise */ static COND * simplify_joins(JOIN *join, List<TABLE_LIST> *join_list, COND *conds, bool top) { TABLE_LIST *table; NESTED_JOIN *nested_join; TABLE_LIST *prev_table= 0; List_iterator<TABLE_LIST> li(*join_list); DBUG_ENTER("simplify_joins"); /* Try to simplify join operations from join_list. The most outer join operation is checked for conversion first. */ while ((table= li++)) { table_map used_tables; table_map not_null_tables= (table_map) 0; if ((nested_join= table->nested_join)) { /* If the element of join_list is a nested join apply the procedure to its nested join list first. */ if (table->on_expr) { Item *expr= table->on_expr; /* If an on expression E is attached to the table, check all null rejected predicates in this expression. If such a predicate over an attribute belonging to an inner table of an embedded outer join is found, the outer join is converted to an inner join and the corresponding on expression is added to E. */ expr= simplify_joins(join, &nested_join->join_list, expr, FALSE); table->on_expr= expr; if (!table->prep_on_expr) table->prep_on_expr= expr->copy_andor_structure(join->thd); } nested_join->used_tables= (table_map) 0; nested_join->not_null_tables=(table_map) 0; conds= simplify_joins(join, &nested_join->join_list, conds, top); used_tables= nested_join->used_tables; not_null_tables= nested_join->not_null_tables; } else { if (!(table->prep_on_expr)) table->prep_on_expr= table->on_expr; used_tables= table->table->map; if (conds) not_null_tables= conds->not_null_tables(); } if (table->embedding) { table->embedding->nested_join->used_tables|= used_tables; table->embedding->nested_join->not_null_tables|= not_null_tables; } if (!table->outer_join || (used_tables & not_null_tables)) { /* For some of the inner tables there are conjunctive predicates that reject nulls => the outer join can be replaced by an inner join. */ table->outer_join= 0; if (table->on_expr) { /* Add on expression to the where condition. */ if (conds) { conds= and_conds(conds, table->on_expr); conds->top_level_item(); /* conds is always a new item as both cond and on_expr existed */ DBUG_ASSERT(!conds->fixed); conds->fix_fields(join->thd, &conds); } else conds= table->on_expr; table->prep_on_expr= table->on_expr= 0; } } if (!top) continue; /* Only inner tables of non-convertible outer joins remain with on_expr. */ if (table->on_expr) { table->dep_tables|= table->on_expr->used_tables(); if (table->embedding) { table->dep_tables&= ~table->embedding->nested_join->used_tables; /* Embedding table depends on tables used in embedded on expressions. */ table->embedding->on_expr_dep_tables|= table->on_expr->used_tables(); } else table->dep_tables&= ~table->table->map; } if (prev_table) { /* The order of tables is reverse: prev_table follows table */ if (prev_table->straight) prev_table->dep_tables|= used_tables; if (prev_table->on_expr) { prev_table->dep_tables|= table->on_expr_dep_tables; table_map prev_used_tables= prev_table->nested_join ? prev_table->nested_join->used_tables : prev_table->table->map; /* If on expression contains only references to inner tables we still make the inner tables dependent on the outer tables. It would be enough to set dependency only on one outer table for them. Yet this is really a rare case. */ if (!(prev_table->on_expr->used_tables() & ~prev_used_tables)) prev_table->dep_tables|= used_tables; } } prev_table= table; } /* Flatten nested joins that can be flattened. */ li.rewind(); while ((table= li++)) { nested_join= table->nested_join; if (nested_join && !table->on_expr) { TABLE_LIST *tbl; List_iterator<TABLE_LIST> it(nested_join->join_list); while ((tbl= it++)) { tbl->embedding= table->embedding; tbl->join_list= table->join_list; } li.replace(nested_join->join_list); } } DBUG_RETURN(conds); } /* Assign each nested join structure a bit in nested_join_map SYNOPSIS build_bitmap_for_nested_joins() join Join being processed join_list List of tables first_unused Number of first unused bit in nested_join_map before the call DESCRIPTION Assign each nested join structure (except "confluent" ones - those that embed only one element) a bit in nested_join_map. NOTE This function is called after simplify_joins(), when there are no redundant nested joins, #non_confluent_nested_joins <= #tables_in_join so we will not run out of bits in nested_join_map. RETURN First unused bit in nested_join_map after the call. */ static uint build_bitmap_for_nested_joins(List<TABLE_LIST> *join_list, uint first_unused) { List_iterator<TABLE_LIST> li(*join_list); TABLE_LIST *table; DBUG_ENTER("build_bitmap_for_nested_joins"); while ((table= li++)) { NESTED_JOIN *nested_join; if ((nested_join= table->nested_join)) { /* It is guaranteed by simplify_joins() function that a nested join that has only one child represents a single table VIEW (and the child is an underlying table). We don't assign bits to such nested join structures because 1. it is redundant (a "sequence" of one table cannot be interleaved with anything) 2. we could run out bits in nested_join_map otherwise. */ if (nested_join->join_list.elements != 1) { nested_join->nj_map= 1 << first_unused++; first_unused= build_bitmap_for_nested_joins(&nested_join->join_list, first_unused); } } } DBUG_RETURN(first_unused); } /* Set NESTED_JOIN::counter=0 in all nested joins in passed list SYNOPSIS reset_nj_counters() join_list List of nested joins to process. It may also contain base tables which will be ignored. DESCRIPTION Recursively set NESTED_JOIN::counter=0 for all nested joins contained in the passed join_list. */ static void reset_nj_counters(List<TABLE_LIST> *join_list) { List_iterator<TABLE_LIST> li(*join_list); TABLE_LIST *table; DBUG_ENTER("reset_nj_counters"); while ((table= li++)) { NESTED_JOIN *nested_join; if ((nested_join= table->nested_join)) { nested_join->counter= 0; reset_nj_counters(&nested_join->join_list); } } DBUG_VOID_RETURN; } /* Check interleaving with an inner tables of an outer join for extension table SYNOPSIS check_interleaving_with_nj() join Join being processed last_tab Last table in current partial join order (this function is not called for empty partial join orders) next_tab Table we're going to extend the current partial join with DESCRIPTION Check if table next_tab can be added to current partial join order, and if yes, record that it has been added. The function assumes that both current partial join order and its extension with next_tab are valid wrt table dependencies. IMPLEMENTATION LIMITATIONS ON JOIN ORDER The nested [outer] joins executioner algorithm imposes these limitations on join order: 1. "Outer tables first" - any "outer" table must be before any corresponding "inner" table. 2. "No interleaving" - tables inside a nested join must form a continuous sequence in join order (i.e. the sequence must not be interrupted by tables that are outside of this nested join). #1 is checked elsewhere, this function checks #2 provided that #1 has been already checked. WHY NEED NON-INTERLEAVING Consider an example: select * from t0 join t1 left join (t2 join t3) on cond1 The join order "t1 t2 t0 t3" is invalid: table t0 is outside of the nested join, so WHERE condition for t0 is attached directly to t0 (without triggers, and it may be used to access t0). Applying WHERE(t0) to (t2,t0,t3) record is invalid as we may miss combinations of (t1, t2, t3) that satisfy condition cond1, and produce a null-complemented (t1, t2.NULLs, t3.NULLs) row, which should not have been produced. If table t0 is not between t2 and t3, the problem doesn't exist: * If t0 is located after (t2,t3), WHERE(t0) is applied after nested join processing has finished. * If t0 is located before (t2,t3), predicates like WHERE_cond(t0, t2) are wrapped into condition triggers, which takes care of correct nested join processing. HOW IT IS IMPLEMENTED The limitations on join order can be rephrased as follows: for valid join order one must be able to: 1. write down the used tables in the join order on one line. 2. for each nested join, put one '(' and one ')' on the said line 3. write "LEFT JOIN" and "ON (...)" where appropriate 4. get a query equivalent to the query we're trying to execute. Calls to check_interleaving_with_nj() are equivalent to writing the above described line from left to right. A single check_interleaving_with_nj(A,B) call is equivalent to writing table B and appropriate brackets on condition that table A and appropriate brackets is the last what was written. Graphically the transition is as follows: +---- current position | ... last_tab ))) | ( next_tab ) )..) | ... X Y Z | +- need to move to this position. Notes about the position: The caller guarantees that there is no more then one X-bracket by checking "!(remaining_tables & s->dependent)" before calling this function. X-bracket may have a pair in Y-bracket. When "writing" we store/update this auxilary info about the current position: 1. join->cur_embedding_map - bitmap of pairs of brackets (aka nested joins) we've opened but didn't close. 2. {each NESTED_JOIN structure not simplified away}->counter - number of this nested join's children that have already been added to to the partial join order. RETURN FALSE Join order extended, nested joins info about current join order (see NOTE section) updated. TRUE Requested join order extension not allowed. */ static bool check_interleaving_with_nj(JOIN_TAB *last_tab, JOIN_TAB *next_tab) { TABLE_LIST *next_emb= next_tab->table->pos_in_table_list->embedding; JOIN *join= last_tab->join; if (join->cur_embedding_map & ~next_tab->embedding_map) { /* next_tab is outside of the "pair of brackets" we're currently in. Cannot add it. */ return TRUE; } /* Do update counters for "pairs of brackets" that we've left (marked as X,Y,Z in the above picture) */ for (;next_emb; next_emb= next_emb->embedding) { next_emb->nested_join->counter++; if (next_emb->nested_join->counter == 1) { /* next_emb is the first table inside a nested join we've "entered". In the picture above, we're looking at the 'X' bracket. Don't exit yet as X bracket might have Y pair bracket. */ join->cur_embedding_map |= next_emb->nested_join->nj_map; } if (next_emb->nested_join->join_list.elements != next_emb->nested_join->counter) break; /* We're currently at Y or Z-bracket as depicted in the above picture. Mark that we've left it and continue walking up the brackets hierarchy. */ join->cur_embedding_map &= ~next_emb->nested_join->nj_map; } return FALSE; } /* Nested joins perspective: Remove the last table from the join order SYNOPSIS restore_prev_nj_state() last join table to remove, it is assumed to be the last in current partial join order. DESCRIPTION Remove the last table from the partial join order and update the nested joins counters and join->cur_embedding_map. It is ok to call this function for the first table in join order (for which check_interleaving_with_nj has not been called) */ static void restore_prev_nj_state(JOIN_TAB *last) { TABLE_LIST *last_emb= last->table->pos_in_table_list->embedding; JOIN *join= last->join; while (last_emb && !(--last_emb->nested_join->counter)) { join->cur_embedding_map &= last_emb->nested_join->nj_map; last_emb= last_emb->embedding; } } static COND * optimize_cond(JOIN *join, COND *conds, List<TABLE_LIST> *join_list, Item::cond_result *cond_value) { THD *thd= join->thd; SELECT_LEX *select= thd->lex->current_select; DBUG_ENTER("optimize_cond"); if (!conds) *cond_value= Item::COND_TRUE; else { /* Build all multiple equality predicates and eliminate equality predicates that can be inferred from these multiple equalities. For each reference of a field included into a multiple equality that occurs in a function set a pointer to the multiple equality predicate. Substitute a constant instead of this field if the multiple equality contains a constant. */ DBUG_EXECUTE("where", print_where(conds, "original");); conds= build_equal_items(join->thd, conds, NULL, join_list, &join->cond_equal); DBUG_EXECUTE("where",print_where(conds,"after equal_items");); /* change field = field to field = const for each found field = const */ propagate_cond_constants(thd, (I_List<COND_CMP> *) 0, conds, conds); /* Remove all instances of item == item Remove all and-levels where CONST item != CONST item */ DBUG_EXECUTE("where",print_where(conds,"after const change");); conds= remove_eq_conds(thd, conds, cond_value) ; DBUG_EXECUTE("info",print_where(conds,"after remove");); } DBUG_RETURN(conds); } /* Remove const and eq items. Return new item, or NULL if no condition cond_value is set to according: COND_OK query is possible (field = constant) COND_TRUE always true ( 1 = 1 ) COND_FALSE always false ( 1 = 2 ) */ COND * remove_eq_conds(THD *thd, COND *cond, Item::cond_result *cond_value) { if (cond->type() == Item::COND_ITEM) { bool and_level= ((Item_cond*) cond)->functype() == Item_func::COND_AND_FUNC; List_iterator<Item> li(*((Item_cond*) cond)->argument_list()); Item::cond_result tmp_cond_value; bool should_fix_fields=0; *cond_value=Item::COND_UNDEF; Item *item; while ((item=li++)) { Item *new_item=remove_eq_conds(thd, item, &tmp_cond_value); if (!new_item) li.remove(); else if (item != new_item) { VOID(li.replace(new_item)); should_fix_fields=1; } if (*cond_value == Item::COND_UNDEF) *cond_value=tmp_cond_value; switch (tmp_cond_value) { case Item::COND_OK: // Not TRUE or FALSE if (and_level || *cond_value == Item::COND_FALSE) *cond_value=tmp_cond_value; break; case Item::COND_FALSE: if (and_level) { *cond_value=tmp_cond_value; return (COND*) 0; // Always false } break; case Item::COND_TRUE: if (!and_level) { *cond_value= tmp_cond_value; return (COND*) 0; // Always true } break; case Item::COND_UNDEF: // Impossible break; /* purecov: deadcode */ } } if (should_fix_fields) cond->update_used_tables(); if (!((Item_cond*) cond)->argument_list()->elements || *cond_value != Item::COND_OK) return (COND*) 0; if (((Item_cond*) cond)->argument_list()->elements == 1) { // Remove list item= ((Item_cond*) cond)->argument_list()->head(); ((Item_cond*) cond)->argument_list()->empty(); return item; } } else if (cond->type() == Item::FUNC_ITEM && ((Item_func*) cond)->functype() == Item_func::ISNULL_FUNC) { /* Handles this special case for some ODBC applications: The are requesting the row that was just updated with a auto_increment value with this construct: SELECT * from table_name where auto_increment_column IS NULL This will be changed to: SELECT * from table_name where auto_increment_column = LAST_INSERT_ID */ Item_func_isnull *func=(Item_func_isnull*) cond; Item **args= func->arguments(); if (args[0]->type() == Item::FIELD_ITEM) { Field *field=((Item_field*) args[0])->field; if (field->flags & AUTO_INCREMENT_FLAG && !field->table->maybe_null && (thd->options & OPTION_AUTO_IS_NULL) && thd->current_insert_id && thd->substitute_null_with_insert_id) { #ifdef HAVE_QUERY_CACHE query_cache_abort(&thd->net); #endif COND *new_cond; if ((new_cond= new Item_func_eq(args[0], new Item_int("last_insert_id()", thd->current_insert_id, 21)))) { /* Set THD::last_insert_id_used_bin_log manually, as this statement uses LAST_INSERT_ID() in a sense, and should issue LAST_INSERT_ID_EVENT. */ thd->last_insert_id_used_bin_log= TRUE; cond=new_cond; /* Item_func_eq can't be fixed after creation so we do not check cond->fixed, also it do not need tables so we use 0 as second argument. */ cond->fix_fields(thd, &cond); } thd->substitute_null_with_insert_id= FALSE; // Clear for next request } /* fix to replace 'NULL' dates with '0' (shreeve@uci.edu) */ else if (((field->type() == FIELD_TYPE_DATE) || (field->type() == FIELD_TYPE_DATETIME)) && (field->flags & NOT_NULL_FLAG) && !field->table->maybe_null) { COND *new_cond; if ((new_cond= new Item_func_eq(args[0],new Item_int("0", 0, 2)))) { cond=new_cond; /* Item_func_eq can't be fixed after creation so we do not check cond->fixed, also it do not need tables so we use 0 as second argument. */ cond->fix_fields(thd, &cond); } } } if (cond->const_item()) { *cond_value= eval_const_cond(cond) ? Item::COND_TRUE : Item::COND_FALSE; return (COND*) 0; } } else if (cond->const_item()) { *cond_value= eval_const_cond(cond) ? Item::COND_TRUE : Item::COND_FALSE; return (COND*) 0; } else if ((*cond_value= cond->eq_cmp_result()) != Item::COND_OK) { // boolan compare function Item *left_item= ((Item_func*) cond)->arguments()[0]; Item *right_item= ((Item_func*) cond)->arguments()[1]; if (left_item->eq(right_item,1)) { if (!left_item->maybe_null || ((Item_func*) cond)->functype() == Item_func::EQUAL_FUNC) return (COND*) 0; // Compare of identical items } } *cond_value=Item::COND_OK; return cond; // Point at next and level } /* Return 1 if the item is a const value in all the WHERE clause */ static bool const_expression_in_where(COND *cond, Item *comp_item, Item **const_item) { if (cond->type() == Item::COND_ITEM) { bool and_level= (((Item_cond*) cond)->functype() == Item_func::COND_AND_FUNC); List_iterator_fast<Item> li(*((Item_cond*) cond)->argument_list()); Item *item; while ((item=li++)) { bool res=const_expression_in_where(item, comp_item, const_item); if (res) // Is a const value { if (and_level) return 1; } else if (!and_level) return 0; } return and_level ? 0 : 1; } else if (cond->eq_cmp_result() != Item::COND_OK) { // boolan compare function Item_func* func= (Item_func*) cond; if (func->functype() != Item_func::EQUAL_FUNC && func->functype() != Item_func::EQ_FUNC) return 0; Item *left_item= ((Item_func*) cond)->arguments()[0]; Item *right_item= ((Item_func*) cond)->arguments()[1]; if (left_item->eq(comp_item,1)) { if (right_item->const_item()) { if (*const_item) return right_item->eq(*const_item, 1); *const_item=right_item; return 1; } } else if (right_item->eq(comp_item,1)) { if (left_item->const_item()) { if (*const_item) return left_item->eq(*const_item, 1); *const_item=left_item; return 1; } } } return 0; } /**************************************************************************** Create internal temporary table ****************************************************************************/ /* Create field for temporary table from given field SYNOPSIS create_tmp_field_from_field() thd Thread handler org_field field from which new field will be created name New field name table Temporary table item !=NULL if item->result_field should point to new field. This is relevant for how fill_record() is going to work: If item != NULL then fill_record() will update the record in the original table. If item == NULL then fill_record() will update the temporary table convert_blob_length If >0 create a varstring(convert_blob_length) field instead of blob. RETURN 0 on error new_created field */ Field* create_tmp_field_from_field(THD *thd, Field* org_field, const char *name, TABLE *table, Item_field *item, uint convert_blob_length) { Field *new_field; /* Make sure that the blob fits into a Field_varstring which has 2-byte lenght. */ if (convert_blob_length && convert_blob_length < UINT_MAX16 && (org_field->flags & BLOB_FLAG)) new_field= new Field_varstring(convert_blob_length, org_field->maybe_null(), org_field->field_name, table, org_field->charset()); else new_field= org_field->new_field(thd->mem_root, table, table == org_field->table); if (new_field) { if (item) item->result_field= new_field; else new_field->field_name= name; new_field->flags|= (org_field->flags & NO_DEFAULT_VALUE_FLAG); if (org_field->maybe_null() || (item && item->maybe_null)) new_field->flags&= ~NOT_NULL_FLAG; // Because of outer join if (org_field->type() == MYSQL_TYPE_VAR_STRING || org_field->type() == MYSQL_TYPE_VARCHAR) table->s->db_create_options|= HA_OPTION_PACK_RECORD; } return new_field; } /* Create field for temporary table using type of given item SYNOPSIS create_tmp_field_from_item() thd Thread handler item Item to create a field for table Temporary table copy_func If set and item is a function, store copy of item in this array modify_item 1 if item->result_field should point to new item. This is relevent for how fill_record() is going to work: If modify_item is 1 then fill_record() will update the record in the original table. If modify_item is 0 then fill_record() will update the temporary table convert_blob_length If >0 create a varstring(convert_blob_length) field instead of blob. RETURN 0 on error new_created field */ static Field *create_tmp_field_from_item(THD *thd, Item *item, TABLE *table, Item ***copy_func, bool modify_item, uint convert_blob_length) { bool maybe_null=item->maybe_null; Field *new_field; LINT_INIT(new_field); switch (item->result_type()) { case REAL_RESULT: new_field=new Field_double(item->max_length, maybe_null, item->name, table, item->decimals); break; case INT_RESULT: /* Select an integer type with the minimal fit precision */ if (item->max_length > 11) new_field=new Field_longlong(item->max_length, maybe_null, item->name, table, item->unsigned_flag); else new_field=new Field_long(item->max_length, maybe_null, item->name, table, item->unsigned_flag); break; case STRING_RESULT: DBUG_ASSERT(item->collation.collation); enum enum_field_types type; /* DATE/TIME fields have STRING_RESULT result type. To preserve type they needed to be handled separately. */ if ((type= item->field_type()) == MYSQL_TYPE_DATETIME || type == MYSQL_TYPE_TIME || type == MYSQL_TYPE_DATE) new_field= item->tmp_table_field_from_field_type(table); /* Make sure that the blob fits into a Field_varstring which has 2-byte lenght. */ else if (item->max_length/item->collation.collation->mbmaxlen > 255 && item->max_length/item->collation.collation->mbmaxlen < UINT_MAX16 && convert_blob_length) new_field= new Field_varstring(convert_blob_length, maybe_null, item->name, table, item->collation.collation); else new_field= item->make_string_field(table); break; case DECIMAL_RESULT: new_field= new Field_new_decimal(item->max_length, maybe_null, item->name, table, item->decimals, item->unsigned_flag); break; case ROW_RESULT: default: // This case should never be choosen DBUG_ASSERT(0); new_field= 0; // to satisfy compiler (uninitialized variable) break; } if (copy_func && item->is_result_field()) *((*copy_func)++) = item; // Save for copy_funcs if (modify_item) item->set_result_field(new_field); return new_field; } /* Create field for information schema table SYNOPSIS create_tmp_field_for_schema() thd Thread handler table Temporary table item Item to create a field for RETURN 0 on error new_created field */ Field *create_tmp_field_for_schema(THD *thd, Item *item, TABLE *table) { if (item->field_type() == MYSQL_TYPE_VARCHAR) { if (item->max_length > MAX_FIELD_VARCHARLENGTH / item->collation.collation->mbmaxlen) return new Field_blob(item->max_length, item->maybe_null, item->name, table, item->collation.collation); return new Field_varstring(item->max_length, item->maybe_null, item->name, table, item->collation.collation); } return item->tmp_table_field_from_field_type(table); } /* Create field for temporary table SYNOPSIS create_tmp_field() thd Thread handler table Temporary table item Item to create a field for type Type of item (normally item->type) copy_func If set and item is a function, store copy of item in this array from_field if field will be created using other field as example, pointer example field will be written here default_field If field has a default value field, store it here group 1 if we are going to do a relative group by on result modify_item 1 if item->result_field should point to new item. This is relevent for how fill_record() is going to work: If modify_item is 1 then fill_record() will update the record in the original table. If modify_item is 0 then fill_record() will update the temporary table convert_blob_length If >0 create a varstring(convert_blob_length) field instead of blob. RETURN 0 on error new_created field */ Field *create_tmp_field(THD *thd, TABLE *table,Item *item, Item::Type type, Item ***copy_func, Field **from_field, Field **default_field, bool group, bool modify_item, bool table_cant_handle_bit_fields, bool make_copy_field, uint convert_blob_length) { Field *result; Item::Type orig_type= type; Item *orig_item= 0; if (type != Item::FIELD_ITEM && item->real_item()->type() == Item::FIELD_ITEM && (item->type() != Item::REF_ITEM || !((Item_ref *) item)->depended_from)) { orig_item= item; item= item->real_item(); type= Item::FIELD_ITEM; } switch (type) { case Item::SUM_FUNC_ITEM: { Item_sum *item_sum=(Item_sum*) item; result= item_sum->create_tmp_field(group, table, convert_blob_length); if (!result) thd->fatal_error(); return result; } case Item::FIELD_ITEM: case Item::DEFAULT_VALUE_ITEM: { Item_field *field= (Item_field*) item; bool orig_modify= modify_item; if (orig_type == Item::REF_ITEM) modify_item= 0; /* If item have to be able to store NULLs but underlaid field can't do it, create_tmp_field_from_field() can't be used for tmp field creation. */ if (field->maybe_null && !field->field->maybe_null()) { result= create_tmp_field_from_item(thd, item, table, NULL, modify_item, convert_blob_length); *from_field= field->field; if (result && modify_item) field->result_field= result; } else if (table_cant_handle_bit_fields && field->field->type() == FIELD_TYPE_BIT) { *from_field= field->field; result= create_tmp_field_from_item(thd, item, table, copy_func, modify_item, convert_blob_length); if (result && modify_item) field->result_field= result; } else result= create_tmp_field_from_field(thd, (*from_field= field->field), orig_item ? orig_item->name : item->name, table, modify_item ? field : NULL, convert_blob_length); if (orig_type == Item::REF_ITEM && orig_modify) ((Item_ref*)orig_item)->set_result_field(result); if (field->field->eq_def(result)) *default_field= field->field; return result; } /* Fall through */ case Item::FUNC_ITEM: case Item::COND_ITEM: case Item::FIELD_AVG_ITEM: case Item::FIELD_STD_ITEM: case Item::SUBSELECT_ITEM: /* The following can only happen with 'CREATE TABLE ... SELECT' */ case Item::PROC_ITEM: case Item::INT_ITEM: case Item::REAL_ITEM: case Item::DECIMAL_ITEM: case Item::STRING_ITEM: case Item::REF_ITEM: case Item::NULL_ITEM: case Item::VARBIN_ITEM: if (make_copy_field) { DBUG_ASSERT(((Item_result_field*)item)->result_field); *from_field= ((Item_result_field*)item)->result_field; } return create_tmp_field_from_item(thd, item, table, (make_copy_field ? 0 : copy_func), modify_item, convert_blob_length); case Item::TYPE_HOLDER: return ((Item_type_holder *)item)->make_field_by_type(table); default: // Dosen't have to be stored return 0; } } /* Create a temp table according to a field list. SYNOPSIS create_tmp_table() thd thread handle param a description used as input to create the table fields list of items that will be used to define column types of the table (also see NOTES) group TODO document distinct should table rows be distinct save_sum_fields see NOTES select_options rows_limit table_alias possible name of the temporary table that can be used for name resolving; can be "". DESCRIPTION Given field pointers are changed to point at tmp_table for send_fields. The table object is self contained: it's allocated in its own memory root, as well as Field objects created for table columns. This function will replace Item_sum items in 'fields' list with corresponding Item_field items, pointing at the fields in the temporary table, unless this was prohibited by TRUE value of argument save_sum_fields. The Item_field objects are created in THD memory root. */ #define STRING_TOTAL_LENGTH_TO_PACK_ROWS 128 #define AVG_STRING_LENGTH_TO_PACK_ROWS 64 #define RATIO_TO_PACK_ROWS 2 #define MIN_STRING_LENGTH_TO_PACK_ROWS 10 TABLE * create_tmp_table(THD *thd,TMP_TABLE_PARAM *param,List<Item> &fields, ORDER *group, bool distinct, bool save_sum_fields, ulonglong select_options, ha_rows rows_limit, char *table_alias) { MEM_ROOT *mem_root_save, own_root; TABLE *table; uint i,field_count,null_count,null_pack_length; uint copy_func_count= param->func_count; uint hidden_null_count, hidden_null_pack_length, hidden_field_count; uint blob_count,group_null_items, string_count; uint temp_pool_slot=MY_BIT_NONE; ulong reclength, string_total_length; bool using_unique_constraint= 0; bool use_packed_rows= 0; bool not_all_columns= !(select_options & TMP_TABLE_ALL_COLUMNS); char *tmpname,path[FN_REFLEN]; byte *pos,*group_buff; uchar *null_flags; Field **reg_field, **from_field, **default_field; uint *blob_field; Copy_field *copy=0; KEY *keyinfo; KEY_PART_INFO *key_part_info; Item **copy_func; MI_COLUMNDEF *recinfo; uint total_uneven_bit_length= 0; bool force_copy_fields= param->force_copy_fields; DBUG_ENTER("create_tmp_table"); DBUG_PRINT("enter",("distinct: %d save_sum_fields: %d rows_limit: %lu group: %d", (int) distinct, (int) save_sum_fields, (ulong) rows_limit,test(group))); statistic_increment(thd->status_var.created_tmp_tables, &LOCK_status); if (use_temp_pool && !(test_flags & TEST_KEEP_TMP_TABLES)) temp_pool_slot = bitmap_set_next(&temp_pool); if (temp_pool_slot != MY_BIT_NONE) // we got a slot sprintf(path, "%s_%lx_%i", tmp_file_prefix, current_pid, temp_pool_slot); else { /* if we run out of slots or we are not using tempool */ sprintf(path,"%s%lx_%lx_%x", tmp_file_prefix,current_pid, thd->thread_id, thd->tmp_table++); } /* No need to change table name to lower case as we are only creating MyISAM or HEAP tables here */ fn_format(path, path, mysql_tmpdir, "", MY_REPLACE_EXT|MY_UNPACK_FILENAME); if (group) { if (!param->quick_group) group=0; // Can't use group key else for (ORDER *tmp=group ; tmp ; tmp=tmp->next) { (*tmp->item)->marker=4; // Store null in key if ((*tmp->item)->max_length >= CONVERT_IF_BIGGER_TO_BLOB) using_unique_constraint=1; } if (param->group_length >= MAX_BLOB_WIDTH) using_unique_constraint=1; if (group) distinct=0; // Can't use distinct } field_count=param->field_count+param->func_count+param->sum_func_count; hidden_field_count=param->hidden_field_count; /* When loose index scan is employed as access method, it already computes all groups and the result of all aggregate functions. We make space for the items of the aggregate function in the list of functions TMP_TABLE_PARAM::items_to_copy, so that the values of these items are stored in the temporary table. */ if (param->precomputed_group_by) copy_func_count+= param->sum_func_count; init_sql_alloc(&own_root, TABLE_ALLOC_BLOCK_SIZE, 0); if (!multi_alloc_root(&own_root, &table, sizeof(*table), ®_field, sizeof(Field*) * (field_count+1), &default_field, sizeof(Field*) * (field_count), &blob_field, sizeof(uint)*(field_count+1), &from_field, sizeof(Field*)*field_count, ©_func, sizeof(*copy_func)*(copy_func_count+1), ¶m->keyinfo, sizeof(*param->keyinfo), &key_part_info, sizeof(*key_part_info)*(param->group_parts+1), ¶m->start_recinfo, sizeof(*param->recinfo)*(field_count*2+4), &tmpname, (uint) strlen(path)+1, &group_buff, group && ! using_unique_constraint ? param->group_length : 0, NullS)) { if (temp_pool_slot != MY_BIT_NONE) bitmap_clear_bit(&temp_pool, temp_pool_slot); DBUG_RETURN(NULL); /* purecov: inspected */ } /* Copy_field belongs to TMP_TABLE_PARAM, allocate it in THD mem_root */ if (!(param->copy_field= copy= new (thd->mem_root) Copy_field[field_count])) { if (temp_pool_slot != MY_BIT_NONE) bitmap_clear_bit(&temp_pool, temp_pool_slot); free_root(&own_root, MYF(0)); /* purecov: inspected */ DBUG_RETURN(NULL); /* purecov: inspected */ } param->items_to_copy= copy_func; strmov(tmpname,path); /* make table according to fields */ bzero((char*) table,sizeof(*table)); bzero((char*) reg_field,sizeof(Field*)*(field_count+1)); bzero((char*) default_field, sizeof(Field*) * (field_count)); bzero((char*) from_field,sizeof(Field*)*field_count); table->mem_root= own_root; mem_root_save= thd->mem_root; thd->mem_root= &table->mem_root; table->field=reg_field; table->alias= table_alias; table->reginfo.lock_type=TL_WRITE; /* Will be updated */ table->db_stat=HA_OPEN_KEYFILE+HA_OPEN_RNDFILE; table->map=1; table->temp_pool_slot = temp_pool_slot; table->copy_blobs= 1; table->in_use= thd; table->quick_keys.init(); table->used_keys.init(); table->keys_in_use_for_query.init(); table->s= &table->share_not_to_be_used; table->s->blob_field= blob_field; table->s->table_name= table->s->path= tmpname; table->s->db= ""; table->s->blob_ptr_size= mi_portable_sizeof_char_ptr; table->s->tmp_table= TMP_TABLE; table->s->db_low_byte_first=1; // True for HEAP and MyISAM table->s->table_charset= param->table_charset; table->s->keys_for_keyread.init(); table->s->keys_in_use.init(); /* For easier error reporting */ table->s->table_cache_key= (char*) (table->s->db= ""); /* Calculate which type of fields we will store in the temporary table */ reclength= string_total_length= 0; blob_count= string_count= null_count= hidden_null_count= group_null_items= 0; param->using_indirect_summary_function=0; List_iterator_fast<Item> li(fields); Item *item; Field **tmp_from_field=from_field; while ((item=li++)) { Item::Type type=item->type(); if (not_all_columns) { if (item->with_sum_func && type != Item::SUM_FUNC_ITEM) { /* Mark that the we have ignored an item that refers to a summary function. We need to know this if someone is going to use DISTINCT on the result. */ param->using_indirect_summary_function=1; continue; } if (item->const_item() && (int) hidden_field_count <= 0) continue; // We don't have to store this } if (type == Item::SUM_FUNC_ITEM && !group && !save_sum_fields) { /* Can't calc group yet */ ((Item_sum*) item)->result_field=0; for (i=0 ; i < ((Item_sum*) item)->arg_count ; i++) { Item **argp= ((Item_sum*) item)->args + i; Item *arg= *argp; if (!arg->const_item()) { uint field_index= (uint) (reg_field - table->field); Field *new_field= create_tmp_field(thd, table, arg, arg->type(), ©_func, tmp_from_field, &default_field[field_index], group != 0,not_all_columns, distinct, 0, param->convert_blob_length); if (!new_field) goto err; // Should be OOM tmp_from_field++; reclength+=new_field->pack_length(); if (new_field->flags & BLOB_FLAG) { *blob_field++= field_index; blob_count++; } if (new_field->type() == FIELD_TYPE_BIT) total_uneven_bit_length+= new_field->field_length & 7; new_field->field_index= field_index; *(reg_field++)= new_field; if (new_field->real_type() == MYSQL_TYPE_STRING || new_field->real_type() == MYSQL_TYPE_VARCHAR) { string_count++; string_total_length+= new_field->pack_length(); } thd->mem_root= mem_root_save; thd->change_item_tree(argp, new Item_field(new_field)); thd->mem_root= &table->mem_root; if (!(new_field->flags & NOT_NULL_FLAG)) { null_count++; /* new_field->maybe_null() is still false, it will be changed below. But we have to setup Item_field correctly */ (*argp)->maybe_null=1; } new_field->query_id= thd->query_id; } } } else { uint field_index= (uint) (reg_field - table->field); /* The last parameter to create_tmp_field() is a bit tricky: We need to set it to 0 in union, to get fill_record() to modify the temporary table. We need to set it to 1 on multi-table-update and in select to write rows to the temporary table. We here distinguish between UNION and multi-table-updates by the fact that in the later case group is set to the row pointer. The test for item->marker == 4 is ensure we don't create a group-by key over a bit field as heap tables can't handle that. */ Field *new_field= (param->schema_table) ? create_tmp_field_for_schema(thd, item, table) : create_tmp_field(thd, table, item, type, ©_func, tmp_from_field, &default_field[field_index], group != 0, !force_copy_fields && (not_all_columns || group !=0), item->marker == 4, force_copy_fields, param->convert_blob_length); if (!new_field) { if (thd->is_fatal_error) goto err; // Got OOM continue; // Some kindf of const item } if (type == Item::SUM_FUNC_ITEM) ((Item_sum *) item)->result_field= new_field; tmp_from_field++; reclength+=new_field->pack_length(); if (!(new_field->flags & NOT_NULL_FLAG)) null_count++; if (new_field->type() == FIELD_TYPE_BIT) total_uneven_bit_length+= new_field->field_length & 7; if (new_field->flags & BLOB_FLAG) { *blob_field++= field_index; blob_count++; } if (item->marker == 4 && item->maybe_null) { group_null_items++; new_field->flags|= GROUP_FLAG; } new_field->query_id= thd->query_id; new_field->field_index= field_index; *(reg_field++) =new_field; } if (!--hidden_field_count) { /* This was the last hidden field; Remember how many hidden fields could have null */ hidden_null_count=null_count; /* We need to update hidden_field_count as we may have stored group functions with constant arguments */ param->hidden_field_count= (uint) (reg_field - table->field); null_count= 0; } } DBUG_ASSERT(field_count >= (uint) (reg_field - table->field)); field_count= (uint) (reg_field - table->field); *reg_field= 0; *blob_field= 0; // End marker /* If result table is small; use a heap */ if (blob_count || using_unique_constraint || (select_options & (OPTION_BIG_TABLES | SELECT_SMALL_RESULT)) == OPTION_BIG_TABLES || (select_options & TMP_TABLE_FORCE_MYISAM)) { table->file= get_new_handler(table, &table->mem_root, table->s->db_type= DB_TYPE_MYISAM); if (group && (param->group_parts > table->file->max_key_parts() || param->group_length > table->file->max_key_length())) using_unique_constraint=1; } else { table->file= get_new_handler(table, &table->mem_root, table->s->db_type= DB_TYPE_HEAP); } if (!using_unique_constraint) reclength+= group_null_items; // null flag is stored separately table->s->blob_fields= blob_count; if (blob_count == 0) { /* We need to ensure that first byte is not 0 for the delete link */ if (param->hidden_field_count) hidden_null_count++; else null_count++; } hidden_null_pack_length=(hidden_null_count+7)/8; null_pack_length= (hidden_null_pack_length + (null_count + total_uneven_bit_length + 7) / 8); reclength+=null_pack_length; if (!reclength) reclength=1; // Dummy select /* Use packed rows if there is blobs or a lot of space to gain */ if (blob_count || string_total_length >= STRING_TOTAL_LENGTH_TO_PACK_ROWS && (reclength / string_total_length <= RATIO_TO_PACK_ROWS || string_total_length / string_count >= AVG_STRING_LENGTH_TO_PACK_ROWS)) use_packed_rows= 1; table->s->fields= field_count; table->s->reclength= reclength; { uint alloc_length=ALIGN_SIZE(reclength+MI_UNIQUE_HASH_LENGTH+1); table->s->rec_buff_length= alloc_length; if (!(table->record[0]= (byte*) alloc_root(&table->mem_root, alloc_length*3))) goto err; table->record[1]= table->record[0]+alloc_length; table->s->default_values= table->record[1]+alloc_length; } copy_func[0]=0; // End marker recinfo=param->start_recinfo; null_flags=(uchar*) table->record[0]; pos=table->record[0]+ null_pack_length; if (null_pack_length) { bzero((byte*) recinfo,sizeof(*recinfo)); recinfo->type=FIELD_NORMAL; recinfo->length=null_pack_length; recinfo++; bfill(null_flags,null_pack_length,255); // Set null fields table->null_flags= (uchar*) table->record[0]; table->s->null_fields= null_count+ hidden_null_count; table->s->null_bytes= null_pack_length; } null_count= (blob_count == 0) ? 1 : 0; hidden_field_count=param->hidden_field_count; for (i=0,reg_field=table->field; i < field_count; i++,reg_field++,recinfo++) { Field *field= *reg_field; uint length; bzero((byte*) recinfo,sizeof(*recinfo)); if (!(field->flags & NOT_NULL_FLAG)) { if (field->flags & GROUP_FLAG && !using_unique_constraint) { /* We have to reserve one byte here for NULL bits, as this is updated by 'end_update()' */ *pos++=0; // Null is stored here recinfo->length=1; recinfo->type=FIELD_NORMAL; recinfo++; bzero((byte*) recinfo,sizeof(*recinfo)); } else { recinfo->null_bit= 1 << (null_count & 7); recinfo->null_pos= null_count/8; } field->move_field((char*) pos,null_flags+null_count/8, 1 << (null_count & 7)); null_count++; } else field->move_field((char*) pos,(uchar*) 0,0); if (field->type() == FIELD_TYPE_BIT) { /* We have to reserve place for extra bits among null bits */ ((Field_bit*) field)->set_bit_ptr(null_flags + null_count / 8, null_count & 7); null_count+= (field->field_length & 7); } field->reset(); /* Test if there is a default field value. The test for ->ptr is to skip 'offset' fields generated by initalize_tables */ if (default_field[i] && default_field[i]->ptr) { /* default_field[i] is set only in the cases when 'field' can inherit the default value that is defined for the field referred by the Item_field object from which 'field' has been created. */ my_ptrdiff_t diff; Field *orig_field= default_field[i]; /* Get the value from default_values */ diff= (my_ptrdiff_t) (orig_field->table->s->default_values- orig_field->table->record[0]); orig_field->move_field(diff); // Points now at default_values if (orig_field->is_real_null()) field->set_null(); else { field->set_notnull(); memcpy(field->ptr, orig_field->ptr, field->pack_length()); } orig_field->move_field(-diff); // Back to record[0] } if (from_field[i]) { /* Not a table Item */ copy->set(field,from_field[i],save_sum_fields); copy++; } length=field->pack_length(); pos+= length; /* Make entry for create table */ recinfo->length=length; if (field->flags & BLOB_FLAG) recinfo->type= (int) FIELD_BLOB; else if (use_packed_rows && field->real_type() == MYSQL_TYPE_STRING && length >= MIN_STRING_LENGTH_TO_PACK_ROWS) recinfo->type=FIELD_SKIP_ENDSPACE; else recinfo->type=FIELD_NORMAL; if (!--hidden_field_count) null_count=(null_count+7) & ~7; // move to next byte // fix table name in field entry field->table_name= &table->alias; } param->copy_field_end=copy; param->recinfo=recinfo; store_record(table,s->default_values); // Make empty default record if (thd->variables.tmp_table_size == ~(ulong) 0) // No limit table->s->max_rows= ~(ha_rows) 0; else table->s->max_rows= (((table->s->db_type == DB_TYPE_HEAP) ? min(thd->variables.tmp_table_size, thd->variables.max_heap_table_size) : thd->variables.tmp_table_size)/ table->s->reclength); set_if_bigger(table->s->max_rows,1); // For dummy start options /* Push the LIMIT clause to the temporary table creation, so that we materialize only up to 'rows_limit' records instead of all result records. */ set_if_smaller(table->s->max_rows, rows_limit); param->end_write_records= rows_limit; keyinfo= param->keyinfo; if (group) { DBUG_PRINT("info",("Creating group key in temporary table")); table->group=group; /* Table is grouped by key */ param->group_buff=group_buff; table->s->keys=1; table->s->uniques= test(using_unique_constraint); table->key_info=keyinfo; keyinfo->key_part=key_part_info; keyinfo->flags=HA_NOSAME; keyinfo->usable_key_parts=keyinfo->key_parts= param->group_parts; keyinfo->key_length=0; keyinfo->rec_per_key=0; keyinfo->algorithm= HA_KEY_ALG_UNDEF; keyinfo->name= (char*) "group_key"; ORDER *cur_group= group; for (; cur_group ; cur_group= cur_group->next, key_part_info++) { Field *field=(*cur_group->item)->get_tmp_table_field(); bool maybe_null=(*cur_group->item)->maybe_null; key_part_info->null_bit=0; key_part_info->field= field; key_part_info->offset= field->offset(); key_part_info->length= (uint16) field->key_length(); key_part_info->type= (uint8) field->key_type(); key_part_info->key_type = ((ha_base_keytype) key_part_info->type == HA_KEYTYPE_TEXT || (ha_base_keytype) key_part_info->type == HA_KEYTYPE_VARTEXT1 || (ha_base_keytype) key_part_info->type == HA_KEYTYPE_VARTEXT2) ? 0 : FIELDFLAG_BINARY; if (!using_unique_constraint) { cur_group->buff=(char*) group_buff; if (!(cur_group->field= field->new_key_field(thd->mem_root,table, (char*) group_buff + test(maybe_null), field->null_ptr, field->null_bit))) goto err; /* purecov: inspected */ if (maybe_null) { /* To be able to group on NULL, we reserved place in group_buff for the NULL flag just before the column. (see above). The field data is after this flag. The NULL flag is updated in 'end_update()' and 'end_write()' */ keyinfo->flags|= HA_NULL_ARE_EQUAL; // def. that NULL == NULL key_part_info->null_bit=field->null_bit; key_part_info->null_offset= (uint) (field->null_ptr - (uchar*) table->record[0]); cur_group->buff++; // Pointer to field data group_buff++; // Skipp null flag } /* In GROUP BY 'a' and 'a ' are equal for VARCHAR fields */ key_part_info->key_part_flag|= HA_END_SPACE_ARE_EQUAL; group_buff+= cur_group->field->pack_length(); } keyinfo->key_length+= key_part_info->length; } } if (distinct && field_count != param->hidden_field_count) { /* Create an unique key or an unique constraint over all columns that should be in the result. In the temporary table, there are 'param->hidden_field_count' extra columns, whose null bits are stored in the first 'hidden_null_pack_length' bytes of the row. */ DBUG_PRINT("info",("hidden_field_count: %d", param->hidden_field_count)); null_pack_length-=hidden_null_pack_length; keyinfo->key_parts= ((field_count-param->hidden_field_count)+ test(null_pack_length)); table->distinct= 1; table->s->keys= 1; if (blob_count) { using_unique_constraint=1; table->s->uniques= 1; } if (!(key_part_info= (KEY_PART_INFO*) alloc_root(&table->mem_root, keyinfo->key_parts * sizeof(KEY_PART_INFO)))) goto err; bzero((void*) key_part_info, keyinfo->key_parts * sizeof(KEY_PART_INFO)); table->key_info=keyinfo; keyinfo->key_part=key_part_info; keyinfo->flags=HA_NOSAME | HA_NULL_ARE_EQUAL; keyinfo->key_length=(uint16) reclength; keyinfo->name= (char*) "distinct_key"; keyinfo->algorithm= HA_KEY_ALG_UNDEF; keyinfo->rec_per_key=0; if (null_pack_length) { key_part_info->null_bit=0; key_part_info->offset=hidden_null_pack_length; key_part_info->length=null_pack_length; key_part_info->field=new Field_string((char*) table->record[0], (uint32) key_part_info->length, (uchar*) 0, (uint) 0, Field::NONE, NullS, table, &my_charset_bin); key_part_info->key_type=FIELDFLAG_BINARY; key_part_info->type= HA_KEYTYPE_BINARY; key_part_info++; } /* Create a distinct key over the columns we are going to return */ for (i=param->hidden_field_count, reg_field=table->field + i ; i < field_count; i++, reg_field++, key_part_info++) { key_part_info->null_bit=0; key_part_info->field= *reg_field; key_part_info->offset= (*reg_field)->offset(); key_part_info->length= (uint16) (*reg_field)->pack_length(); key_part_info->type= (uint8) (*reg_field)->key_type(); key_part_info->key_type = ((ha_base_keytype) key_part_info->type == HA_KEYTYPE_TEXT || (ha_base_keytype) key_part_info->type == HA_KEYTYPE_VARTEXT1 || (ha_base_keytype) key_part_info->type == HA_KEYTYPE_VARTEXT2) ? 0 : FIELDFLAG_BINARY; } } if (thd->is_fatal_error) // If end of memory goto err; /* purecov: inspected */ table->s->db_record_offset= 1; if (table->s->db_type == DB_TYPE_MYISAM) { if (create_myisam_tmp_table(table,param,select_options)) goto err; } if (open_tmp_table(table)) goto err; thd->mem_root= mem_root_save; DBUG_RETURN(table); err: thd->mem_root= mem_root_save; free_tmp_table(thd,table); /* purecov: inspected */ if (temp_pool_slot != MY_BIT_NONE) bitmap_clear_bit(&temp_pool, temp_pool_slot); DBUG_RETURN(NULL); /* purecov: inspected */ } /****************************************************************************/ /* Create a reduced TABLE object with properly set up Field list from a list of field definitions. SYNOPSIS create_virtual_tmp_table() thd connection handle field_list list of column definitions DESCRIPTION The created table doesn't have a table handler assotiated with it, has no keys, no group/distinct, no copy_funcs array. The sole purpose of this TABLE object is to use the power of Field class to read/write data to/from table->record[0]. Then one can store the record in any container (RB tree, hash, etc). The table is created in THD mem_root, so are the table's fields. Consequently, if you don't BLOB fields, you don't need to free it. RETURN 0 if out of memory, TABLE object in case of success */ TABLE *create_virtual_tmp_table(THD *thd, List<create_field> &field_list) { uint field_count= field_list.elements; uint blob_count= 0; Field **field; create_field *cdef; /* column definition */ uint record_length= 0; uint null_count= 0; /* number of columns which may be null */ uint null_pack_length; /* NULL representation array length */ TABLE_SHARE *s; /* Create the table and list of all fields */ TABLE *table= (TABLE*) thd->calloc(sizeof(*table)); field= (Field**) thd->alloc((field_count + 1) * sizeof(Field*)); if (!table || !field) return 0; table->field= field; table->s= s= &table->share_not_to_be_used; s->fields= field_count; if (!(s->blob_field= (uint*)thd->alloc((field_list.elements + 1) * sizeof(uint)))) return 0; s->blob_ptr_size= mi_portable_sizeof_char_ptr; /* Create all fields and calculate the total length of record */ List_iterator_fast<create_field> it(field_list); while ((cdef= it++)) { *field= make_field(0, cdef->length, (uchar*) (f_maybe_null(cdef->pack_flag) ? "" : 0), f_maybe_null(cdef->pack_flag) ? 1 : 0, cdef->pack_flag, cdef->sql_type, cdef->charset, cdef->geom_type, cdef->unireg_check, cdef->interval, cdef->field_name, table); if (!*field) goto error; record_length+= (**field).pack_length(); if (! ((**field).flags & NOT_NULL_FLAG)) ++null_count; if ((*field)->flags & BLOB_FLAG) s->blob_field[blob_count++]= (uint) (field - table->field); ++field; } *field= NULL; /* mark the end of the list */ s->blob_field[blob_count]= 0; /* mark the end of the list */ s->blob_fields= blob_count; null_pack_length= (null_count + 7)/8; s->reclength= record_length + null_pack_length; s->rec_buff_length= ALIGN_SIZE(s->reclength + 1); table->record[0]= (byte*) thd->alloc(s->rec_buff_length); if (!table->record[0]) goto error; if (null_pack_length) { table->null_flags= (uchar*) table->record[0]; s->null_fields= null_count; s->null_bytes= null_pack_length; } table->in_use= thd; /* field->reset() may access table->in_use */ { /* Set up field pointers */ byte *null_pos= table->record[0]; byte *field_pos= null_pos + s->null_bytes; uint null_bit= 1; for (field= table->field; *field; ++field) { Field *cur_field= *field; if ((cur_field->flags & NOT_NULL_FLAG)) cur_field->move_field((char*) field_pos); else { cur_field->move_field((char*) field_pos, (uchar*) null_pos, null_bit); null_bit<<= 1; if (null_bit == (1 << 8)) { ++null_pos; null_bit= 1; } } cur_field->reset(); field_pos+= cur_field->pack_length(); } } return table; error: for (field= table->field; *field; ++field) delete *field; /* just invokes field destructor */ return 0; } static bool open_tmp_table(TABLE *table) { int error; if ((error=table->file->ha_open(table->s->table_name,O_RDWR, HA_OPEN_TMP_TABLE))) { table->file->print_error(error,MYF(0)); /* purecov: inspected */ table->db_stat=0; return(1); } (void) table->file->extra(HA_EXTRA_QUICK); /* Faster */ return(0); } static bool create_myisam_tmp_table(TABLE *table,TMP_TABLE_PARAM *param, ulong options) { int error; MI_KEYDEF keydef; MI_UNIQUEDEF uniquedef; KEY *keyinfo=param->keyinfo; DBUG_ENTER("create_myisam_tmp_table"); if (table->s->keys) { // Get keys for ni_create bool using_unique_constraint=0; HA_KEYSEG *seg= (HA_KEYSEG*) alloc_root(&table->mem_root, sizeof(*seg) * keyinfo->key_parts); if (!seg) goto err; bzero(seg, sizeof(*seg) * keyinfo->key_parts); if (keyinfo->key_length >= table->file->max_key_length() || keyinfo->key_parts > table->file->max_key_parts() || table->s->uniques) { /* Can't create a key; Make a unique constraint instead of a key */ table->s->keys= 0; table->s->uniques= 1; using_unique_constraint=1; bzero((char*) &uniquedef,sizeof(uniquedef)); uniquedef.keysegs=keyinfo->key_parts; uniquedef.seg=seg; uniquedef.null_are_equal=1; /* Create extra column for hash value */ bzero((byte*) param->recinfo,sizeof(*param->recinfo)); param->recinfo->type= FIELD_CHECK; param->recinfo->length=MI_UNIQUE_HASH_LENGTH; param->recinfo++; table->s->reclength+=MI_UNIQUE_HASH_LENGTH; } else { /* Create an unique key */ bzero((char*) &keydef,sizeof(keydef)); keydef.flag=HA_NOSAME | HA_BINARY_PACK_KEY | HA_PACK_KEY; keydef.keysegs= keyinfo->key_parts; keydef.seg= seg; } for (uint i=0; i < keyinfo->key_parts ; i++,seg++) { Field *field=keyinfo->key_part[i].field; seg->flag= 0; seg->language= field->charset()->number; seg->length= keyinfo->key_part[i].length; seg->start= keyinfo->key_part[i].offset; if (field->flags & BLOB_FLAG) { seg->type= ((keyinfo->key_part[i].key_type & FIELDFLAG_BINARY) ? HA_KEYTYPE_VARBINARY2 : HA_KEYTYPE_VARTEXT2); seg->bit_start= (uint8)(field->pack_length() - table->s->blob_ptr_size); seg->flag= HA_BLOB_PART; seg->length=0; // Whole blob in unique constraint } else { seg->type= keyinfo->key_part[i].type; /* Tell handler if it can do suffic space compression */ if (field->real_type() == MYSQL_TYPE_STRING && keyinfo->key_part[i].length > 4) seg->flag|= HA_SPACE_PACK; } if (!(field->flags & NOT_NULL_FLAG)) { seg->null_bit= field->null_bit; seg->null_pos= (uint) (field->null_ptr - (uchar*) table->record[0]); /* We are using a GROUP BY on something that contains NULL In this case we have to tell MyISAM that two NULL should on INSERT be regarded at the same value */ if (!using_unique_constraint) keydef.flag|= HA_NULL_ARE_EQUAL; } } } MI_CREATE_INFO create_info; bzero((char*) &create_info,sizeof(create_info)); if ((options & (OPTION_BIG_TABLES | SELECT_SMALL_RESULT)) == OPTION_BIG_TABLES) create_info.data_file_length= ~(ulonglong) 0; if ((error=mi_create(table->s->table_name,table->s->keys,&keydef, (uint) (param->recinfo-param->start_recinfo), param->start_recinfo, table->s->uniques, &uniquedef, &create_info, HA_CREATE_TMP_TABLE))) { table->file->print_error(error,MYF(0)); /* purecov: inspected */ table->db_stat=0; goto err; } statistic_increment(table->in_use->status_var.created_tmp_disk_tables, &LOCK_status); table->s->db_record_offset= 1; DBUG_RETURN(0); err: DBUG_RETURN(1); } void free_tmp_table(THD *thd, TABLE *entry) { MEM_ROOT own_root= entry->mem_root; const char *save_proc_info; DBUG_ENTER("free_tmp_table"); DBUG_PRINT("enter",("table: %s",entry->alias)); save_proc_info=thd->proc_info; thd->proc_info="removing tmp table"; if (entry->file) { if (entry->db_stat) { (void) entry->file->close(); } /* We can't call ha_delete_table here as the table may created in mixed case here and we have to ensure that delete_table gets the table name in the original case. */ if (!(test_flags & TEST_KEEP_TMP_TABLES) || entry->s->db_type == DB_TYPE_HEAP) entry->file->delete_table(entry->s->table_name); delete entry->file; } /* free blobs */ for (Field **ptr=entry->field ; *ptr ; ptr++) (*ptr)->free(); free_io_cache(entry); if (entry->temp_pool_slot != MY_BIT_NONE) bitmap_clear_bit(&temp_pool, entry->temp_pool_slot); free_root(&own_root, MYF(0)); /* the table is allocated in its own root */ thd->proc_info=save_proc_info; DBUG_VOID_RETURN; } /* * If a HEAP table gets full, create a MyISAM table and copy all rows to this */ bool create_myisam_from_heap(THD *thd, TABLE *table, TMP_TABLE_PARAM *param, int error, bool ignore_last_dupp_key_error) { TABLE new_table; const char *save_proc_info; int write_err; DBUG_ENTER("create_myisam_from_heap"); if (table->s->db_type != DB_TYPE_HEAP || error != HA_ERR_RECORD_FILE_FULL) { table->file->print_error(error,MYF(0)); DBUG_RETURN(1); } new_table= *table; new_table.s= &new_table.share_not_to_be_used; new_table.s->db_type= DB_TYPE_MYISAM; if (!(new_table.file= get_new_handler(&new_table, &new_table.mem_root, DB_TYPE_MYISAM))) DBUG_RETURN(1); // End of memory save_proc_info=thd->proc_info; thd->proc_info="converting HEAP to MyISAM"; if (create_myisam_tmp_table(&new_table,param, thd->lex->select_lex.options | thd->options)) goto err2; if (open_tmp_table(&new_table)) goto err1; if (table->file->indexes_are_disabled()) new_table.file->disable_indexes(HA_KEY_SWITCH_ALL); table->file->ha_index_or_rnd_end(); table->file->ha_rnd_init(1); if (table->no_rows) { new_table.file->extra(HA_EXTRA_NO_ROWS); new_table.no_rows=1; } #ifdef TO_BE_DONE_LATER_IN_4_1 /* To use start_bulk_insert() (which is new in 4.1) we need to find all places where a corresponding end_bulk_insert() should be put. */ table->file->info(HA_STATUS_VARIABLE); /* update table->file->records */ new_table.file->start_bulk_insert(table->file->records); #else /* HA_EXTRA_WRITE_CACHE can stay until close, no need to disable it */ new_table.file->extra(HA_EXTRA_WRITE_CACHE); #endif /* copy all old rows */ while (!table->file->rnd_next(new_table.record[1])) { if ((write_err=new_table.file->write_row(new_table.record[1]))) goto err; } /* copy row that filled HEAP table */ if ((write_err=new_table.file->write_row(table->record[0]))) { if (write_err != HA_ERR_FOUND_DUPP_KEY && write_err != HA_ERR_FOUND_DUPP_UNIQUE || !ignore_last_dupp_key_error) goto err; } /* remove heap table and change to use myisam table */ (void) table->file->ha_rnd_end(); (void) table->file->close(); (void) table->file->delete_table(table->s->table_name); delete table->file; table->file=0; *table= new_table; table->s= &table->share_not_to_be_used; table->file->change_table_ptr(table); if (save_proc_info) thd->proc_info= (!strcmp(save_proc_info,"Copying to tmp table") ? "Copying to tmp table on disk" : save_proc_info); DBUG_RETURN(0); err: DBUG_PRINT("error",("Got error: %d",write_err)); table->file->print_error(error,MYF(0)); // Give table is full error (void) table->file->ha_rnd_end(); (void) new_table.file->close(); err1: new_table.file->delete_table(new_table.s->table_name); delete new_table.file; err2: thd->proc_info=save_proc_info; DBUG_RETURN(1); } /* SYNOPSIS setup_end_select_func() join join to setup the function for. DESCRIPTION Rows produced by a join sweep may end up in a temporary table or be sent to a client. Setup the function of the nested loop join algorithm which handles final fully constructed and matched records. RETURN end_select function to use. This function can't fail. */ Next_select_func setup_end_select_func(JOIN *join) { TABLE *table= join->tmp_table; TMP_TABLE_PARAM *tmp_tbl= &join->tmp_table_param; Next_select_func end_select; /* Set up select_end */ if (table) { if (table->group && tmp_tbl->sum_func_count) { if (table->s->keys) { DBUG_PRINT("info",("Using end_update")); end_select=end_update; } else { DBUG_PRINT("info",("Using end_unique_update")); end_select=end_unique_update; } } else if (join->sort_and_group && !tmp_tbl->precomputed_group_by) { DBUG_PRINT("info",("Using end_write_group")); end_select=end_write_group; } else { DBUG_PRINT("info",("Using end_write")); end_select=end_write; if (tmp_tbl->precomputed_group_by) { /* A preceding call to create_tmp_table in the case when loose index scan is used guarantees that TMP_TABLE_PARAM::items_to_copy has enough space for the group by functions. It is OK here to use memcpy since we copy Item_sum pointers into an array of Item pointers. */ memcpy(tmp_tbl->items_to_copy + tmp_tbl->func_count, join->sum_funcs, sizeof(Item*)*tmp_tbl->sum_func_count); tmp_tbl->items_to_copy[tmp_tbl->func_count+tmp_tbl->sum_func_count]= 0; } } } else { if ((join->sort_and_group || (join->procedure && join->procedure->flags & PROC_GROUP)) && !tmp_tbl->precomputed_group_by) end_select= end_send_group; else end_select= end_send; } return end_select; } /**************************************************************************** Make a join of all tables and write it on socket or to table Return: 0 if ok 1 if error is sent -1 if error should be sent ****************************************************************************/ static int do_select(JOIN *join,List<Item> *fields,TABLE *table,Procedure *procedure) { int rc= 0; enum_nested_loop_state error= NESTED_LOOP_OK; JOIN_TAB *join_tab; DBUG_ENTER("do_select"); join->procedure=procedure; join->tmp_table= table; /* Save for easy recursion */ join->fields= fields; if (table) { VOID(table->file->extra(HA_EXTRA_WRITE_CACHE)); empty_record(table); if (table->group && join->tmp_table_param.sum_func_count && table->s->keys && !table->file->inited) table->file->ha_index_init(0); } /* Set up select_end */ Next_select_func end_select= setup_end_select_func(join); if (join->tables) { join->join_tab[join->tables-1].next_select= end_select; join_tab=join->join_tab+join->const_tables; } join->send_records=0; if (join->tables == join->const_tables) { /* HAVING will be checked after processing aggregate functions, But WHERE should checkd here (we alredy have read tables) */ if (!join->conds || join->conds->val_int()) { error= (*end_select)(join,join_tab,0); if (error == NESTED_LOOP_OK || error == NESTED_LOOP_QUERY_LIMIT) error= (*end_select)(join,join_tab,1); } else if (join->send_row_on_empty_set()) { List<Item> *columns_list= (procedure ? &join->procedure_fields_list : fields); rc= join->result->send_data(*columns_list); } } else { DBUG_ASSERT(join->tables); DBUG_ASSERT(join_tab); error= sub_select(join,join_tab,0); if (error == NESTED_LOOP_OK || error == NESTED_LOOP_NO_MORE_ROWS) error= sub_select(join,join_tab,1); if (error == NESTED_LOOP_QUERY_LIMIT) error= NESTED_LOOP_OK; /* select_limit used */ } if (error == NESTED_LOOP_NO_MORE_ROWS) error= NESTED_LOOP_OK; if (error == NESTED_LOOP_OK) { /* Sic: this branch works even if rc != 0, e.g. when send_data above returns an error. */ if (!table) // If sending data to client { /* The following will unlock all cursors if the command wasn't an update command */ join->join_free(); // Unlock all cursors if (join->result->send_eof()) rc= 1; // Don't send error } DBUG_PRINT("info",("%ld records output",join->send_records)); } else rc= -1; if (table) { int tmp, new_errno= 0; if ((tmp=table->file->extra(HA_EXTRA_NO_CACHE))) { DBUG_PRINT("error",("extra(HA_EXTRA_NO_CACHE) failed")); new_errno= tmp; } if ((tmp=table->file->ha_index_or_rnd_end())) { DBUG_PRINT("error",("ha_index_or_rnd_end() failed")); new_errno= tmp; } if (new_errno) table->file->print_error(new_errno,MYF(0)); } #ifndef DBUG_OFF if (rc) { DBUG_PRINT("error",("Error: do_select() failed")); } #endif DBUG_RETURN(join->thd->net.report_error ? -1 : rc); } enum_nested_loop_state sub_select_cache(JOIN *join,JOIN_TAB *join_tab,bool end_of_records) { enum_nested_loop_state rc; if (end_of_records) { rc= flush_cached_records(join,join_tab,FALSE); if (rc == NESTED_LOOP_OK || rc == NESTED_LOOP_NO_MORE_ROWS) rc= sub_select(join,join_tab,end_of_records); return rc; } if (join->thd->killed) // If aborted by user { join->thd->send_kill_message(); return NESTED_LOOP_KILLED; /* purecov: inspected */ } if (join_tab->use_quick != 2 || test_if_quick_select(join_tab) <= 0) { if (!store_record_in_cache(&join_tab->cache)) return NESTED_LOOP_OK; // There is more room in cache return flush_cached_records(join,join_tab,FALSE); } rc= flush_cached_records(join, join_tab, TRUE); if (rc == NESTED_LOOP_OK || rc == NESTED_LOOP_NO_MORE_ROWS) rc= sub_select(join, join_tab, end_of_records); return rc; } /* Retrieve records ends with a given beginning from the result of a join SYNPOSIS sub_select() join pointer to the structure providing all context info for the query join_tab the first next table of the execution plan to be retrieved end_records true when we need to perform final steps of retrival DESCRIPTION For a given partial join record consisting of records from the tables preceding the table join_tab in the execution plan, the function retrieves all matching full records from the result set and send them to the result set stream. NOTES The function effectively implements the final (n-k) nested loops of nested loops join algorithm, where k is the ordinal number of the join_tab table and n is the total number of tables in the join query. It performs nested loops joins with all conjunctive predicates from the where condition pushed as low to the tables as possible. E.g. for the query SELECT * FROM t1,t2,t3 WHERE t1.a=t2.a AND t2.b=t3.b AND t1.a BETWEEN 5 AND 9 the predicate (t1.a BETWEEN 5 AND 9) will be pushed to table t1, given the selected plan prescribes to nest retrievals of the joined tables in the following order: t1,t2,t3. A pushed down predicate are attached to the table which it pushed to, at the field select_cond. When executing a nested loop of level k the function runs through the rows of 'join_tab' and for each row checks the pushed condition attached to the table. If it is false the function moves to the next row of the table. If the condition is true the function recursively executes (n-k-1) remaining embedded nested loops. The situation becomes more complicated if outer joins are involved in the execution plan. In this case the pushed down predicates can be checked only at certain conditions. Suppose for the query SELECT * FROM t1 LEFT JOIN (t2,t3) ON t3.a=t1.a WHERE t1>2 AND (t2.b>5 OR t2.b IS NULL) the optimizer has chosen a plan with the table order t1,t2,t3. The predicate P1=t1>2 will be pushed down to the table t1, while the predicate P2=(t2.b>5 OR t2.b IS NULL) will be attached to the table t2. But the second predicate can not be unconditionally tested right after a row from t2 has been read. This can be done only after the first row with t3.a=t1.a has been encountered. Thus, the second predicate P2 is supplied with a guarded value that are stored in the field 'found' of the first inner table for the outer join (table t2). When the first row with t3.a=t1.a for the current row of table t1 appears, the value becomes true. For now on the predicate is evaluated immediately after the row of table t2 has been read. When the first row with t3.a=t1.a has been encountered all conditions attached to the inner tables t2,t3 must be evaluated. Only when all of them are true the row is sent to the output stream. If not, the function returns to the lowest nest level that has a false attached condition. The predicates from on expressions are also pushed down. If in the the above example the on expression were (t3.a=t1.a AND t2.a=t1.a), then t1.a=t2.a would be pushed down to table t2, and without any guard. If after the run through all rows of table t2, the first inner table for the outer join operation, it turns out that no matches are found for the current row of t1, then current row from table t1 is complemented by nulls for t2 and t3. Then the pushed down predicates are checked for the composed row almost in the same way as it had been done for the first row with a match. The only difference is the predicates from on expressions are not checked. IMPLEMENTATION The function forms output rows for a current partial join of k tables tables recursively. For each partial join record ending with a certain row from join_tab it calls sub_select that builds all possible matching tails from the result set. To be able check predicates conditionally items of the class Item_func_trig_cond are employed. An object of this class is constructed from an item of class COND and a pointer to a guarding boolean variable. When the value of the guard variable is true the value of the object is the same as the value of the predicate, otherwise it's just returns true. To carry out a return to a nested loop level of join table t the pointer to t is remembered in the field 'return_tab' of the join structure. Consider the following query: SELECT * FROM t1, LEFT JOIN (t2, t3 LEFT JOIN (t4,t5) ON t5.a=t3.a) ON t4.a=t2.a WHERE (t2.b=5 OR t2.b IS NULL) AND (t4.b=2 OR t4.b IS NULL) Suppose the chosen execution plan dictates the order t1,t2,t3,t4,t5 and suppose for a given joined rows from tables t1,t2,t3 there are no rows in the result set yet. When first row from t5 that satisfies the on condition t5.a=t3.a is found, the pushed down predicate t4.b=2 OR t4.b IS NULL becomes 'activated', as well the predicate t4.a=t2.a. But the predicate (t2.b=5 OR t2.b IS NULL) can not be checked until t4.a=t2.a becomes true. In order not to re-evaluate the predicates that were already evaluated as attached pushed down predicates, a pointer to the the first most inner unmatched table is maintained in join_tab->first_unmatched. Thus, when the first row from t5 with t5.a=t3.a is found this pointer for t5 is changed from t4 to t2. STRUCTURE NOTES join_tab->first_unmatched points always backwards to the first inner table of the embedding nested join, if any. RETURN return one of enum_nested_loop_state, except NESTED_LOOP_NO_MORE_ROWS. */ enum_nested_loop_state sub_select(JOIN *join,JOIN_TAB *join_tab,bool end_of_records) { join_tab->table->null_row=0; if (end_of_records) return (*join_tab->next_select)(join,join_tab+1,end_of_records); int error; enum_nested_loop_state rc; my_bool *report_error= &(join->thd->net.report_error); READ_RECORD *info= &join_tab->read_record; if (join->resume_nested_loop) { /* If not the last table, plunge down the nested loop */ if (join_tab < join->join_tab + join->tables - 1) rc= (*join_tab->next_select)(join, join_tab + 1, 0); else { join->resume_nested_loop= FALSE; rc= NESTED_LOOP_OK; } } else { join->return_tab= join_tab; if (join_tab->last_inner) { /* join_tab is the first inner table for an outer join operation. */ /* Set initial state of guard variables for this table.*/ join_tab->found=0; join_tab->not_null_compl= 1; /* Set first_unmatched for the last inner table of this group */ join_tab->last_inner->first_unmatched= join_tab; } join->thd->row_count= 0; error= (*join_tab->read_first_record)(join_tab); rc= evaluate_join_record(join, join_tab, error, report_error); } while (rc == NESTED_LOOP_OK) { error= info->read_record(info); rc= evaluate_join_record(join, join_tab, error, report_error); } if (rc == NESTED_LOOP_NO_MORE_ROWS && join_tab->last_inner && !join_tab->found) rc= evaluate_null_complemented_join_record(join, join_tab); if (rc == NESTED_LOOP_NO_MORE_ROWS) rc= NESTED_LOOP_OK; return rc; } /* Process one record of the nested loop join. DESCRIPTION This function will evaluate parts of WHERE/ON clauses that are applicable to the partial record on hand and in case of success submit this record to the next level of the nested loop. */ static enum_nested_loop_state evaluate_join_record(JOIN *join, JOIN_TAB *join_tab, int error, my_bool *report_error) { bool not_exists_optimize= join_tab->table->reginfo.not_exists_optimize; bool not_used_in_distinct=join_tab->not_used_in_distinct; ha_rows found_records=join->found_records; COND *select_cond= join_tab->select_cond; if (error > 0 || (*report_error)) // Fatal error return NESTED_LOOP_ERROR; if (error < 0) return NESTED_LOOP_NO_MORE_ROWS; if (join->thd->killed) // Aborted by user { join->thd->send_kill_message(); return NESTED_LOOP_KILLED; /* purecov: inspected */ } DBUG_PRINT("info", ("select cond 0x%lx", (ulong)select_cond)); if (!select_cond || select_cond->val_int()) { /* There is no select condition or the attached pushed down condition is true => a match is found. */ bool found= 1; while (join_tab->first_unmatched && found) { /* The while condition is always false if join_tab is not the last inner join table of an outer join operation. */ JOIN_TAB *first_unmatched= join_tab->first_unmatched; /* Mark that a match for current outer table is found. This activates push down conditional predicates attached to the all inner tables of the outer join. */ first_unmatched->found= 1; for (JOIN_TAB *tab= first_unmatched; tab <= join_tab; tab++) { /* Check all predicates that has just been activated. */ /* Actually all predicates non-guarded by first_unmatched->found will be re-evaluated again. It could be fixed, but, probably, it's not worth doing now. */ if (tab->select_cond && !tab->select_cond->val_int()) { /* The condition attached to table tab is false */ if (tab == join_tab) found= 0; else { /* Set a return point if rejected predicate is attached not to the last table of the current nest level. */ join->return_tab= tab; return NESTED_LOOP_OK; } } } /* Check whether join_tab is not the last inner table for another embedding outer join. */ if ((first_unmatched= first_unmatched->first_upper) && first_unmatched->last_inner != join_tab) first_unmatched= 0; join_tab->first_unmatched= first_unmatched; } /* It was not just a return to lower loop level when one of the newly activated predicates is evaluated as false (See above join->return_tab= tab). */ join->examined_rows++; join->thd->row_count++; DBUG_PRINT("counts", ("join->examined_rows++: %lu", (ulong) join->examined_rows)); if (found) { enum enum_nested_loop_state rc; if (not_exists_optimize) return NESTED_LOOP_NO_MORE_ROWS; /* A match from join_tab is found for the current partial join. */ rc= (*join_tab->next_select)(join, join_tab+1, 0); if (rc != NESTED_LOOP_OK && rc != NESTED_LOOP_NO_MORE_ROWS) return rc; if (join->return_tab < join_tab) return NESTED_LOOP_OK; /* Test if this was a SELECT DISTINCT query on a table that was not in the field list; In this case we can abort if we found a row, as no new rows can be added to the result. */ if (not_used_in_distinct && found_records != join->found_records) return NESTED_LOOP_OK; } else join_tab->read_record.file->unlock_row(); } else { /* The condition pushed down to the table join_tab rejects all rows with the beginning coinciding with the current partial join. */ join->examined_rows++; join->thd->row_count++; } return NESTED_LOOP_OK; } /* DESCRIPTION Construct a NULL complimented partial join record and feed it to the next level of the nested loop. This function is used in case we have an OUTER join and no matching record was found. */ static enum_nested_loop_state evaluate_null_complemented_join_record(JOIN *join, JOIN_TAB *join_tab) { /* The table join_tab is the first inner table of a outer join operation and no matches has been found for the current outer row. */ JOIN_TAB *last_inner_tab= join_tab->last_inner; /* Cache variables for faster loop */ COND *select_cond; for ( ; join_tab <= last_inner_tab ; join_tab++) { /* Change the the values of guard predicate variables. */ join_tab->found= 1; join_tab->not_null_compl= 0; /* The outer row is complemented by nulls for each inner tables */ restore_record(join_tab->table,s->default_values); // Make empty record mark_as_null_row(join_tab->table); // For group by without error select_cond= join_tab->select_cond; /* Check all attached conditions for inner table rows. */ if (select_cond && !select_cond->val_int()) return NESTED_LOOP_OK; } join_tab--; /* The row complemented by nulls might be the first row of embedding outer joins. If so, perform the same actions as in the code for the first regular outer join row above. */ for ( ; ; ) { JOIN_TAB *first_unmatched= join_tab->first_unmatched; if ((first_unmatched= first_unmatched->first_upper) && first_unmatched->last_inner != join_tab) first_unmatched= 0; join_tab->first_unmatched= first_unmatched; if (!first_unmatched) break; first_unmatched->found= 1; for (JOIN_TAB *tab= first_unmatched; tab <= join_tab; tab++) { if (tab->select_cond && !tab->select_cond->val_int()) { join->return_tab= tab; return NESTED_LOOP_OK; } } } /* The row complemented by nulls satisfies all conditions attached to inner tables. Send the row complemented by nulls to be joined with the remaining tables. */ return (*join_tab->next_select)(join, join_tab+1, 0); } static enum_nested_loop_state flush_cached_records(JOIN *join,JOIN_TAB *join_tab,bool skip_last) { enum_nested_loop_state rc= NESTED_LOOP_OK; int error; READ_RECORD *info; join_tab->table->null_row= 0; if (!join_tab->cache.records) return NESTED_LOOP_OK; /* Nothing to do */ if (skip_last) (void) store_record_in_cache(&join_tab->cache); // Must save this for later if (join_tab->use_quick == 2) { if (join_tab->select->quick) { /* Used quick select last. reset it */ delete join_tab->select->quick; join_tab->select->quick=0; } } /* read through all records */ if ((error=join_init_read_record(join_tab))) { reset_cache_write(&join_tab->cache); return error < 0 ? NESTED_LOOP_NO_MORE_ROWS: NESTED_LOOP_ERROR; } for (JOIN_TAB *tmp=join->join_tab; tmp != join_tab ; tmp++) { tmp->status=tmp->table->status; tmp->table->status=0; } info= &join_tab->read_record; do { if (join->thd->killed) { join->thd->send_kill_message(); return NESTED_LOOP_KILLED; // Aborted by user /* purecov: inspected */ } SQL_SELECT *select=join_tab->select; if (rc == NESTED_LOOP_OK && (!join_tab->cache.select || !join_tab->cache.select->skip_record())) { uint i; reset_cache_read(&join_tab->cache); for (i=(join_tab->cache.records- (skip_last ? 1 : 0)) ; i-- > 0 ;) { read_cached_record(join_tab); if (!select || !select->skip_record()) { rc= (join_tab->next_select)(join,join_tab+1,0); if (rc != NESTED_LOOP_OK && rc != NESTED_LOOP_NO_MORE_ROWS) { reset_cache_write(&join_tab->cache); return rc; } } } } } while (!(error=info->read_record(info))); if (skip_last) read_cached_record(join_tab); // Restore current record reset_cache_write(&join_tab->cache); if (error > 0) // Fatal error return NESTED_LOOP_ERROR; /* purecov: inspected */ for (JOIN_TAB *tmp2=join->join_tab; tmp2 != join_tab ; tmp2++) tmp2->table->status=tmp2->status; return NESTED_LOOP_OK; } /***************************************************************************** The different ways to read a record Returns -1 if row was not found, 0 if row was found and 1 on errors *****************************************************************************/ /* Help function when we get some an error from the table handler */ int report_error(TABLE *table, int error) { if (error == HA_ERR_END_OF_FILE || error == HA_ERR_KEY_NOT_FOUND) { table->status= STATUS_GARBAGE; return -1; // key not found; ok } /* Locking reads can legally return also these errors, do not print them to the .err log */ if (error != HA_ERR_LOCK_DEADLOCK && error != HA_ERR_LOCK_WAIT_TIMEOUT) sql_print_error("Got error %d when reading table '%s'", error, table->s->path); table->file->print_error(error,MYF(0)); return 1; } int safe_index_read(JOIN_TAB *tab) { int error; TABLE *table= tab->table; if ((error=table->file->index_read(table->record[0], tab->ref.key_buff, tab->ref.key_length, HA_READ_KEY_EXACT))) return report_error(table, error); return 0; } static int join_read_const_table(JOIN_TAB *tab, POSITION *pos) { int error; DBUG_ENTER("join_read_const_table"); TABLE *table=tab->table; table->const_table=1; table->null_row=0; table->status=STATUS_NO_RECORD; if (tab->type == JT_SYSTEM) { if ((error=join_read_system(tab))) { // Info for DESCRIBE tab->info="const row not found"; /* Mark for EXPLAIN that the row was not found */ pos->records_read=0.0; if (!table->maybe_null || error > 0) DBUG_RETURN(error); } } else { if (!table->key_read && table->used_keys.is_set(tab->ref.key) && !table->no_keyread && (int) table->reginfo.lock_type <= (int) TL_READ_HIGH_PRIORITY) { table->key_read=1; table->file->extra(HA_EXTRA_KEYREAD); tab->index= tab->ref.key; } error=join_read_const(tab); if (table->key_read) { table->key_read=0; table->file->extra(HA_EXTRA_NO_KEYREAD); } if (error) { tab->info="unique row not found"; /* Mark for EXPLAIN that the row was not found */ pos->records_read=0.0; if (!table->maybe_null || error > 0) DBUG_RETURN(error); } } if (*tab->on_expr_ref && !table->null_row) { if ((table->null_row= test((*tab->on_expr_ref)->val_int() == 0))) mark_as_null_row(table); } if (!table->null_row) table->maybe_null=0; /* Check appearance of new constant items in Item_equal objects */ JOIN *join= tab->join; if (join->conds) update_const_equal_items(join->conds, tab); TABLE_LIST *tbl; for (tbl= join->select_lex->leaf_tables; tbl; tbl= tbl->next_leaf) { TABLE_LIST *embedded; TABLE_LIST *embedding= tbl; do { embedded= embedding; if (embedded->on_expr) update_const_equal_items(embedded->on_expr, tab); embedding= embedded->embedding; } while (embedding && embedding->nested_join->join_list.head() == embedded); } DBUG_RETURN(0); } static int join_read_system(JOIN_TAB *tab) { TABLE *table= tab->table; int error; if (table->status & STATUS_GARBAGE) // If first read { if ((error=table->file->read_first_row(table->record[0], table->s->primary_key))) { if (error != HA_ERR_END_OF_FILE) return report_error(table, error); mark_as_null_row(tab->table); empty_record(table); // Make empty record return -1; } store_record(table,record[1]); } else if (!table->status) // Only happens with left join restore_record(table,record[1]); // restore old record table->null_row=0; return table->status ? -1 : 0; } /* Read a table when there is at most one matching row SYNOPSIS join_read_const() tab Table to read RETURN 0 Row was found -1 Row was not found 1 Got an error (other than row not found) during read */ static int join_read_const(JOIN_TAB *tab) { int error; TABLE *table= tab->table; if (table->status & STATUS_GARBAGE) // If first read { table->status= 0; if (cp_buffer_from_ref(tab->join->thd, &tab->ref)) error=HA_ERR_KEY_NOT_FOUND; else { error=table->file->index_read_idx(table->record[0],tab->ref.key, (byte*) tab->ref.key_buff, tab->ref.key_length,HA_READ_KEY_EXACT); } if (error) { table->status= STATUS_NOT_FOUND; mark_as_null_row(tab->table); empty_record(table); if (error != HA_ERR_KEY_NOT_FOUND) return report_error(table, error); return -1; } store_record(table,record[1]); } else if (!(table->status & ~STATUS_NULL_ROW)) // Only happens with left join { table->status=0; restore_record(table,record[1]); // restore old record } table->null_row=0; return table->status ? -1 : 0; } static int join_read_key(JOIN_TAB *tab) { int error; TABLE *table= tab->table; if (!table->file->inited) table->file->ha_index_init(tab->ref.key); if (cmp_buffer_with_ref(tab) || (table->status & (STATUS_GARBAGE | STATUS_NO_PARENT | STATUS_NULL_ROW))) { if (tab->ref.key_err) { table->status=STATUS_NOT_FOUND; return -1; } error=table->file->index_read(table->record[0], tab->ref.key_buff, tab->ref.key_length,HA_READ_KEY_EXACT); if (error && error != HA_ERR_KEY_NOT_FOUND) return report_error(table, error); } table->null_row=0; return table->status ? -1 : 0; } static int join_read_always_key(JOIN_TAB *tab) { int error; TABLE *table= tab->table; for (uint i= 0 ; i < tab->ref.key_parts ; i++) { if ((tab->ref.null_rejecting & 1 << i) && tab->ref.items[i]->is_null()) return -1; } if (!table->file->inited) table->file->ha_index_init(tab->ref.key); if (cp_buffer_from_ref(tab->join->thd, &tab->ref)) return -1; if ((error=table->file->index_read(table->record[0], tab->ref.key_buff, tab->ref.key_length,HA_READ_KEY_EXACT))) { if (error != HA_ERR_KEY_NOT_FOUND) return report_error(table, error); return -1; /* purecov: inspected */ } return 0; } /* This function is used when optimizing away ORDER BY in SELECT * FROM t1 WHERE a=1 ORDER BY a DESC,b DESC */ static int join_read_last_key(JOIN_TAB *tab) { int error; TABLE *table= tab->table; if (!table->file->inited) table->file->ha_index_init(tab->ref.key); if (cp_buffer_from_ref(tab->join->thd, &tab->ref)) return -1; if ((error=table->file->index_read_last(table->record[0], tab->ref.key_buff, tab->ref.key_length))) { if (error != HA_ERR_KEY_NOT_FOUND) return report_error(table, error); return -1; /* purecov: inspected */ } return 0; } /* ARGSUSED */ static int join_no_more_records(READ_RECORD *info __attribute__((unused))) { return -1; } static int join_read_next_same(READ_RECORD *info) { int error; TABLE *table= info->table; JOIN_TAB *tab=table->reginfo.join_tab; if ((error=table->file->index_next_same(table->record[0], tab->ref.key_buff, tab->ref.key_length))) { if (error != HA_ERR_END_OF_FILE) return report_error(table, error); table->status= STATUS_GARBAGE; return -1; } return 0; } static int join_read_prev_same(READ_RECORD *info) { int error; TABLE *table= info->table; JOIN_TAB *tab=table->reginfo.join_tab; if ((error=table->file->index_prev(table->record[0]))) return report_error(table, error); if (key_cmp_if_same(table, tab->ref.key_buff, tab->ref.key, tab->ref.key_length)) { table->status=STATUS_NOT_FOUND; error= -1; } return error; } static int join_init_quick_read_record(JOIN_TAB *tab) { if (test_if_quick_select(tab) == -1) return -1; /* No possible records */ return join_init_read_record(tab); } static int test_if_quick_select(JOIN_TAB *tab) { delete tab->select->quick; tab->select->quick=0; return tab->select->test_quick_select(tab->join->thd, tab->keys, (table_map) 0, HA_POS_ERROR, 0); } static int join_init_read_record(JOIN_TAB *tab) { if (tab->select && tab->select->quick && tab->select->quick->reset()) return 1; init_read_record(&tab->read_record, tab->join->thd, tab->table, tab->select,1,1); return (*tab->read_record.read_record)(&tab->read_record); } static int join_read_first(JOIN_TAB *tab) { int error; TABLE *table=tab->table; if (!table->key_read && table->used_keys.is_set(tab->index) && !table->no_keyread) { table->key_read=1; table->file->extra(HA_EXTRA_KEYREAD); } tab->table->status=0; tab->read_record.read_record=join_read_next; tab->read_record.table=table; tab->read_record.file=table->file; tab->read_record.index=tab->index; tab->read_record.record=table->record[0]; if (!table->file->inited) table->file->ha_index_init(tab->index); if ((error=tab->table->file->index_first(tab->table->record[0]))) { if (error != HA_ERR_KEY_NOT_FOUND && error != HA_ERR_END_OF_FILE) report_error(table, error); return -1; } return 0; } static int join_read_next(READ_RECORD *info) { int error; if ((error=info->file->index_next(info->record))) return report_error(info->table, error); return 0; } static int join_read_last(JOIN_TAB *tab) { TABLE *table=tab->table; int error; if (!table->key_read && table->used_keys.is_set(tab->index) && !table->no_keyread) { table->key_read=1; table->file->extra(HA_EXTRA_KEYREAD); } tab->table->status=0; tab->read_record.read_record=join_read_prev; tab->read_record.table=table; tab->read_record.file=table->file; tab->read_record.index=tab->index; tab->read_record.record=table->record[0]; if (!table->file->inited) table->file->ha_index_init(tab->index); if ((error= tab->table->file->index_last(tab->table->record[0]))) return report_error(table, error); return 0; } static int join_read_prev(READ_RECORD *info) { int error; if ((error= info->file->index_prev(info->record))) return report_error(info->table, error); return 0; } static int join_ft_read_first(JOIN_TAB *tab) { int error; TABLE *table= tab->table; if (!table->file->inited) table->file->ha_index_init(tab->ref.key); #if NOT_USED_YET if (cp_buffer_from_ref(tab->join->thd, &tab->ref)) // as ft-key doesn't use store_key's return -1; // see also FT_SELECT::init() #endif table->file->ft_init(); if ((error= table->file->ft_read(table->record[0]))) return report_error(table, error); return 0; } static int join_ft_read_next(READ_RECORD *info) { int error; if ((error= info->file->ft_read(info->table->record[0]))) return report_error(info->table, error); return 0; } /* Reading of key with key reference and one part that may be NULL */ static int join_read_always_key_or_null(JOIN_TAB *tab) { int res; /* First read according to key which is NOT NULL */ *tab->ref.null_ref_key= 0; // Clear null byte if ((res= join_read_always_key(tab)) >= 0) return res; /* Then read key with null value */ *tab->ref.null_ref_key= 1; // Set null byte return safe_index_read(tab); } static int join_read_next_same_or_null(READ_RECORD *info) { int error; if ((error= join_read_next_same(info)) >= 0) return error; JOIN_TAB *tab= info->table->reginfo.join_tab; /* Test if we have already done a read after null key */ if (*tab->ref.null_ref_key) return -1; // All keys read *tab->ref.null_ref_key= 1; // Set null byte return safe_index_read(tab); // then read null keys } /***************************************************************************** DESCRIPTION Functions that end one nested loop iteration. Different functions are used to support GROUP BY clause and to redirect records to a table (e.g. in case of SELECT into a temporary table) or to the network client. RETURN VALUES NESTED_LOOP_OK - the record has been successfully handled NESTED_LOOP_ERROR - a fatal error (like table corruption) was detected NESTED_LOOP_KILLED - thread shutdown was requested while processing the record NESTED_LOOP_QUERY_LIMIT - the record has been successfully handled; additionally, the nested loop produced the number of rows specified in the LIMIT clause for the query NESTED_LOOP_CURSOR_LIMIT - the record has been successfully handled; additionally, there is a cursor and the nested loop algorithm produced the number of rows that is specified for current cursor fetch operation. All return values except NESTED_LOOP_OK abort the nested loop. *****************************************************************************/ /* ARGSUSED */ static enum_nested_loop_state end_send(JOIN *join, JOIN_TAB *join_tab __attribute__((unused)), bool end_of_records) { DBUG_ENTER("end_send"); if (!end_of_records) { int error; if (join->having && join->having->val_int() == 0) DBUG_RETURN(NESTED_LOOP_OK); // Didn't match having error=0; if (join->procedure) error=join->procedure->send_row(join->procedure_fields_list); else if (join->do_send_rows) error=join->result->send_data(*join->fields); if (error) DBUG_RETURN(NESTED_LOOP_ERROR); /* purecov: inspected */ if (++join->send_records >= join->unit->select_limit_cnt && join->do_send_rows) { if (join->select_options & OPTION_FOUND_ROWS) { JOIN_TAB *jt=join->join_tab; if ((join->tables == 1) && !join->tmp_table && !join->sort_and_group && !join->send_group_parts && !join->having && !jt->select_cond && !(jt->select && jt->select->quick) && !(jt->table->file->table_flags() & HA_NOT_EXACT_COUNT) && (jt->ref.key < 0)) { /* Join over all rows in table; Return number of found rows */ TABLE *table=jt->table; join->select_options ^= OPTION_FOUND_ROWS; if (table->sort.record_pointers || (table->sort.io_cache && my_b_inited(table->sort.io_cache))) { /* Using filesort */ join->send_records= table->sort.found_records; } else { table->file->info(HA_STATUS_VARIABLE); join->send_records = table->file->records; } } else { join->do_send_rows= 0; if (join->unit->fake_select_lex) join->unit->fake_select_lex->select_limit= 0; DBUG_RETURN(NESTED_LOOP_OK); } } DBUG_RETURN(NESTED_LOOP_QUERY_LIMIT); // Abort nicely } else if (join->send_records >= join->fetch_limit) { /* There is a server side cursor and all rows for this fetch request are sent. */ DBUG_RETURN(NESTED_LOOP_CURSOR_LIMIT); } } else { if (join->procedure && join->procedure->end_of_records()) DBUG_RETURN(NESTED_LOOP_ERROR); } DBUG_RETURN(NESTED_LOOP_OK); } /* ARGSUSED */ static enum_nested_loop_state end_send_group(JOIN *join, JOIN_TAB *join_tab __attribute__((unused)), bool end_of_records) { int idx= -1; enum_nested_loop_state ok_code= NESTED_LOOP_OK; DBUG_ENTER("end_send_group"); if (!join->first_record || end_of_records || (idx=test_if_group_changed(join->group_fields)) >= 0) { if (join->first_record || (end_of_records && !join->group)) { if (join->procedure) join->procedure->end_group(); if (idx < (int) join->send_group_parts) { int error=0; if (join->procedure) { if (join->having && join->having->val_int() == 0) error= -1; // Didn't satisfy having else { if (join->do_send_rows) error=join->procedure->send_row(*join->fields) ? 1 : 0; join->send_records++; } if (end_of_records && join->procedure->end_of_records()) error= 1; // Fatal error } else { if (!join->first_record) { List_iterator_fast<Item> it(*join->fields); Item *item; /* No matching rows for group function */ join->clear(); while ((item= it++)) item->no_rows_in_result(); } if (join->having && join->having->val_int() == 0) error= -1; // Didn't satisfy having else { if (join->do_send_rows) error=join->result->send_data(*join->fields) ? 1 : 0; join->send_records++; } if (join->rollup.state != ROLLUP::STATE_NONE && error <= 0) { if (join->rollup_send_data((uint) (idx+1))) error= 1; } } if (error > 0) DBUG_RETURN(NESTED_LOOP_ERROR); /* purecov: inspected */ if (end_of_records) DBUG_RETURN(NESTED_LOOP_OK); if (join->send_records >= join->unit->select_limit_cnt && join->do_send_rows) { if (!(join->select_options & OPTION_FOUND_ROWS)) DBUG_RETURN(NESTED_LOOP_QUERY_LIMIT); // Abort nicely join->do_send_rows=0; join->unit->select_limit_cnt = HA_POS_ERROR; } else if (join->send_records >= join->fetch_limit) { /* There is a server side cursor and all rows for this fetch request are sent. */ /* Preventing code duplication. When finished with the group reset the group functions and copy_fields. We fall through. bug #11904 */ ok_code= NESTED_LOOP_CURSOR_LIMIT; } } } else { if (end_of_records) DBUG_RETURN(NESTED_LOOP_OK); join->first_record=1; VOID(test_if_group_changed(join->group_fields)); } if (idx < (int) join->send_group_parts) { /* This branch is executed also for cursors which have finished their fetch limit - the reason for ok_code. */ copy_fields(&join->tmp_table_param); if (init_sum_functions(join->sum_funcs, join->sum_funcs_end[idx+1])) DBUG_RETURN(NESTED_LOOP_ERROR); if (join->procedure) join->procedure->add(); DBUG_RETURN(ok_code); } } if (update_sum_func(join->sum_funcs)) DBUG_RETURN(NESTED_LOOP_ERROR); if (join->procedure) join->procedure->add(); DBUG_RETURN(NESTED_LOOP_OK); } /* ARGSUSED */ static enum_nested_loop_state end_write(JOIN *join, JOIN_TAB *join_tab __attribute__((unused)), bool end_of_records) { TABLE *table=join->tmp_table; DBUG_ENTER("end_write"); if (join->thd->killed) // Aborted by user { join->thd->send_kill_message(); DBUG_RETURN(NESTED_LOOP_KILLED); /* purecov: inspected */ } if (!end_of_records) { copy_fields(&join->tmp_table_param); copy_funcs(join->tmp_table_param.items_to_copy); #ifdef TO_BE_DELETED if (!table->uniques) // If not unique handling { /* Copy null values from group to row */ ORDER *group; for (group=table->group ; group ; group=group->next) { Item *item= *group->item; if (item->maybe_null) { Field *field=item->get_tmp_table_field(); field->ptr[-1]= (byte) (field->is_null() ? 1 : 0); } } } #endif if (!join->having || join->having->val_int()) { int error; join->found_records++; if ((error=table->file->write_row(table->record[0]))) { if (error == HA_ERR_FOUND_DUPP_KEY || error == HA_ERR_FOUND_DUPP_UNIQUE) goto end; if (create_myisam_from_heap(join->thd, table, &join->tmp_table_param, error,1)) DBUG_RETURN(NESTED_LOOP_ERROR); // Not a table_is_full error table->s->uniques=0; // To ensure rows are the same } if (++join->send_records >= join->tmp_table_param.end_write_records && join->do_send_rows) { if (!(join->select_options & OPTION_FOUND_ROWS)) DBUG_RETURN(NESTED_LOOP_QUERY_LIMIT); join->do_send_rows=0; join->unit->select_limit_cnt = HA_POS_ERROR; DBUG_RETURN(NESTED_LOOP_OK); } } } end: DBUG_RETURN(NESTED_LOOP_OK); } /* Group by searching after group record and updating it if possible */ /* ARGSUSED */ static enum_nested_loop_state end_update(JOIN *join, JOIN_TAB *join_tab __attribute__((unused)), bool end_of_records) { TABLE *table=join->tmp_table; ORDER *group; int error; DBUG_ENTER("end_update"); if (end_of_records) DBUG_RETURN(NESTED_LOOP_OK); if (join->thd->killed) // Aborted by user { join->thd->send_kill_message(); DBUG_RETURN(NESTED_LOOP_KILLED); /* purecov: inspected */ } join->found_records++; copy_fields(&join->tmp_table_param); // Groups are copied twice. /* Make a key of group index */ for (group=table->group ; group ; group=group->next) { Item *item= *group->item; item->save_org_in_field(group->field); /* Store in the used key if the field was 0 */ if (item->maybe_null) group->buff[-1]= (char) group->field->is_null(); } if (!table->file->index_read(table->record[1], join->tmp_table_param.group_buff,0, HA_READ_KEY_EXACT)) { /* Update old record */ restore_record(table,record[1]); update_tmptable_sum_func(join->sum_funcs,table); if ((error=table->file->update_row(table->record[1], table->record[0]))) { table->file->print_error(error,MYF(0)); /* purecov: inspected */ DBUG_RETURN(NESTED_LOOP_ERROR); /* purecov: inspected */ } DBUG_RETURN(NESTED_LOOP_OK); } /* Copy null bits from group key to table We can't copy all data as the key may have different format as the row data (for example as with VARCHAR keys) */ KEY_PART_INFO *key_part; for (group=table->group,key_part=table->key_info[0].key_part; group ; group=group->next,key_part++) { if (key_part->null_bit) memcpy(table->record[0]+key_part->offset, group->buff, 1); } init_tmptable_sum_functions(join->sum_funcs); copy_funcs(join->tmp_table_param.items_to_copy); if ((error=table->file->write_row(table->record[0]))) { if (create_myisam_from_heap(join->thd, table, &join->tmp_table_param, error, 0)) DBUG_RETURN(NESTED_LOOP_ERROR); // Not a table_is_full error /* Change method to update rows */ table->file->ha_index_init(0); join->join_tab[join->tables-1].next_select=end_unique_update; } join->send_records++; DBUG_RETURN(NESTED_LOOP_OK); } /* Like end_update, but this is done with unique constraints instead of keys */ static enum_nested_loop_state end_unique_update(JOIN *join, JOIN_TAB *join_tab __attribute__((unused)), bool end_of_records) { TABLE *table=join->tmp_table; int error; DBUG_ENTER("end_unique_update"); if (end_of_records) DBUG_RETURN(NESTED_LOOP_OK); if (join->thd->killed) // Aborted by user { join->thd->send_kill_message(); DBUG_RETURN(NESTED_LOOP_KILLED); /* purecov: inspected */ } init_tmptable_sum_functions(join->sum_funcs); copy_fields(&join->tmp_table_param); // Groups are copied twice. copy_funcs(join->tmp_table_param.items_to_copy); if (!(error=table->file->write_row(table->record[0]))) join->send_records++; // New group else { if ((int) table->file->get_dup_key(error) < 0) { table->file->print_error(error,MYF(0)); /* purecov: inspected */ DBUG_RETURN(NESTED_LOOP_ERROR); /* purecov: inspected */ } if (table->file->rnd_pos(table->record[1],table->file->dupp_ref)) { table->file->print_error(error,MYF(0)); /* purecov: inspected */ DBUG_RETURN(NESTED_LOOP_ERROR); /* purecov: inspected */ } restore_record(table,record[1]); update_tmptable_sum_func(join->sum_funcs,table); if ((error=table->file->update_row(table->record[1], table->record[0]))) { table->file->print_error(error,MYF(0)); /* purecov: inspected */ DBUG_RETURN(NESTED_LOOP_ERROR); /* purecov: inspected */ } } DBUG_RETURN(NESTED_LOOP_OK); } /* ARGSUSED */ static enum_nested_loop_state end_write_group(JOIN *join, JOIN_TAB *join_tab __attribute__((unused)), bool end_of_records) { TABLE *table=join->tmp_table; int idx= -1; DBUG_ENTER("end_write_group"); if (join->thd->killed) { // Aborted by user join->thd->send_kill_message(); DBUG_RETURN(NESTED_LOOP_KILLED); /* purecov: inspected */ } if (!join->first_record || end_of_records || (idx=test_if_group_changed(join->group_fields)) >= 0) { if (join->first_record || (end_of_records && !join->group)) { if (join->procedure) join->procedure->end_group(); int send_group_parts= join->send_group_parts; if (idx < send_group_parts) { if (!join->first_record) { /* No matching rows for group function */ join->clear(); } copy_sum_funcs(join->sum_funcs, join->sum_funcs_end[send_group_parts]); if (!join->having || join->having->val_int()) { int error= table->file->write_row(table->record[0]); if (error && create_myisam_from_heap(join->thd, table, &join->tmp_table_param, error, 0)) DBUG_RETURN(NESTED_LOOP_ERROR); } if (join->rollup.state != ROLLUP::STATE_NONE) { if (join->rollup_write_data((uint) (idx+1), table)) DBUG_RETURN(NESTED_LOOP_ERROR); } if (end_of_records) DBUG_RETURN(NESTED_LOOP_OK); } } else { if (end_of_records) DBUG_RETURN(NESTED_LOOP_OK); join->first_record=1; VOID(test_if_group_changed(join->group_fields)); } if (idx < (int) join->send_group_parts) { copy_fields(&join->tmp_table_param); copy_funcs(join->tmp_table_param.items_to_copy); if (init_sum_functions(join->sum_funcs, join->sum_funcs_end[idx+1])) DBUG_RETURN(NESTED_LOOP_ERROR); if (join->procedure) join->procedure->add(); DBUG_RETURN(NESTED_LOOP_OK); } } if (update_sum_func(join->sum_funcs)) DBUG_RETURN(NESTED_LOOP_ERROR); if (join->procedure) join->procedure->add(); DBUG_RETURN(NESTED_LOOP_OK); } /***************************************************************************** Remove calculation with tables that aren't yet read. Remove also tests against fields that are read through key where the table is not a outer join table. We can't remove tests that are made against columns which are stored in sorted order. *****************************************************************************/ /* Return 1 if right_item is used removable reference key on left_item */ static bool test_if_ref(Item_field *left_item,Item *right_item) { Field *field=left_item->field; // No need to change const test. We also have to keep tests on LEFT JOIN if (!field->table->const_table && !field->table->maybe_null) { Item *ref_item=part_of_refkey(field->table,field); if (ref_item && ref_item->eq(right_item,1)) { if (right_item->type() == Item::FIELD_ITEM) return (field->eq_def(((Item_field *) right_item)->field)); if (right_item->const_item() && !(right_item->is_null())) { /* We can remove binary fields and numerical fields except float, as float comparison isn't 100 % secure We have to keep normal strings to be able to check for end spaces */ if (field->binary() && field->real_type() != MYSQL_TYPE_STRING && field->real_type() != MYSQL_TYPE_VARCHAR && (field->type() != FIELD_TYPE_FLOAT || field->decimals() == 0)) { return !store_val_in_field(field, right_item, CHECK_FIELD_WARN); } } } } return 0; // keep test } static COND * make_cond_for_table(COND *cond, table_map tables, table_map used_table) { if (used_table && !(cond->used_tables() & used_table)) return (COND*) 0; // Already checked if (cond->type() == Item::COND_ITEM) { if (((Item_cond*) cond)->functype() == Item_func::COND_AND_FUNC) { /* Create new top level AND item */ Item_cond_and *new_cond=new Item_cond_and; if (!new_cond) return (COND*) 0; // OOM /* purecov: inspected */ List_iterator<Item> li(*((Item_cond*) cond)->argument_list()); Item *item; while ((item=li++)) { Item *fix=make_cond_for_table(item,tables,used_table); if (fix) new_cond->argument_list()->push_back(fix); } switch (new_cond->argument_list()->elements) { case 0: return (COND*) 0; // Always true case 1: return new_cond->argument_list()->head(); default: /* Item_cond_and do not need fix_fields for execution, its parameters are fixed or do not need fix_fields, too */ new_cond->quick_fix_field(); new_cond->used_tables_cache= ((Item_cond_and*) cond)->used_tables_cache & tables; return new_cond; } } else { // Or list Item_cond_or *new_cond=new Item_cond_or; if (!new_cond) return (COND*) 0; // OOM /* purecov: inspected */ List_iterator<Item> li(*((Item_cond*) cond)->argument_list()); Item *item; while ((item=li++)) { Item *fix=make_cond_for_table(item,tables,0L); if (!fix) return (COND*) 0; // Always true new_cond->argument_list()->push_back(fix); } /* Item_cond_and do not need fix_fields for execution, its parameters are fixed or do not need fix_fields, too */ new_cond->quick_fix_field(); new_cond->used_tables_cache= ((Item_cond_or*) cond)->used_tables_cache; new_cond->top_level_item(); return new_cond; } } /* Because the following test takes a while and it can be done table_count times, we mark each item that we have examined with the result of the test */ if (cond->marker == 3 || (cond->used_tables() & ~tables)) return (COND*) 0; // Can't check this yet if (cond->marker == 2 || cond->eq_cmp_result() == Item::COND_OK) return cond; // Not boolean op if (((Item_func*) cond)->functype() == Item_func::EQ_FUNC) { Item *left_item= ((Item_func*) cond)->arguments()[0]; Item *right_item= ((Item_func*) cond)->arguments()[1]; if (left_item->type() == Item::FIELD_ITEM && test_if_ref((Item_field*) left_item,right_item)) { cond->marker=3; // Checked when read return (COND*) 0; } if (right_item->type() == Item::FIELD_ITEM && test_if_ref((Item_field*) right_item,left_item)) { cond->marker=3; // Checked when read return (COND*) 0; } } cond->marker=2; return cond; } static Item * part_of_refkey(TABLE *table,Field *field) { if (!table->reginfo.join_tab) return (Item*) 0; // field from outer non-select (UPDATE,...) uint ref_parts=table->reginfo.join_tab->ref.key_parts; if (ref_parts) { KEY_PART_INFO *key_part= table->key_info[table->reginfo.join_tab->ref.key].key_part; for (uint part=0 ; part < ref_parts ; part++,key_part++) if (field->eq(key_part->field) && !(key_part->key_part_flag & (HA_PART_KEY_SEG | HA_NULL_PART))) return table->reginfo.join_tab->ref.items[part]; } return (Item*) 0; } /***************************************************************************** Test if one can use the key to resolve ORDER BY SYNOPSIS test_if_order_by_key() order Sort order table Table to sort idx Index to check used_key_parts Return value for used key parts. NOTES used_key_parts is set to correct key parts used if return value != 0 (On other cases, used_key_part may be changed) RETURN 1 key is ok. 0 Key can't be used -1 Reverse key can be used *****************************************************************************/ static int test_if_order_by_key(ORDER *order, TABLE *table, uint idx, uint *used_key_parts) { KEY_PART_INFO *key_part,*key_part_end; key_part=table->key_info[idx].key_part; key_part_end=key_part+table->key_info[idx].key_parts; key_part_map const_key_parts=table->const_key_parts[idx]; int reverse=0; DBUG_ENTER("test_if_order_by_key"); for (; order ; order=order->next, const_key_parts>>=1) { Field *field=((Item_field*) (*order->item)->real_item())->field; int flag; /* Skip key parts that are constants in the WHERE clause. These are already skipped in the ORDER BY by const_expression_in_where() */ for (; const_key_parts & 1 ; const_key_parts>>= 1) key_part++; if (key_part == key_part_end || key_part->field != field) DBUG_RETURN(0); /* set flag to 1 if we can use read-next on key, else to -1 */ flag= ((order->asc == !(key_part->key_part_flag & HA_REVERSE_SORT)) ? 1 : -1); if (reverse && flag != reverse) DBUG_RETURN(0); reverse=flag; // Remember if reverse key_part++; } *used_key_parts= (uint) (key_part - table->key_info[idx].key_part); if (reverse == -1 && !(table->file->index_flags(idx, *used_key_parts-1, 1) & HA_READ_PREV)) reverse= 0; // Index can't be used DBUG_RETURN(reverse); } uint find_shortest_key(TABLE *table, const key_map *usable_keys) { uint min_length= (uint) ~0; uint best= MAX_KEY; if (!usable_keys->is_clear_all()) { for (uint nr=0; nr < table->s->keys ; nr++) { if (usable_keys->is_set(nr)) { if (table->key_info[nr].key_length < min_length) { min_length=table->key_info[nr].key_length; best=nr; } } } } return best; } /* Test if a second key is the subkey of the first one. SYNOPSIS is_subkey() key_part First key parts ref_key_part Second key parts ref_key_part_end Last+1 part of the second key NOTE Second key MUST be shorter than the first one. RETURN 1 is a subkey 0 no sub key */ inline bool is_subkey(KEY_PART_INFO *key_part, KEY_PART_INFO *ref_key_part, KEY_PART_INFO *ref_key_part_end) { for (; ref_key_part < ref_key_part_end; key_part++, ref_key_part++) if (!key_part->field->eq(ref_key_part->field)) return 0; return 1; } /* Test if we can use one of the 'usable_keys' instead of 'ref' key for sorting SYNOPSIS test_if_subkey() ref Number of key, used for WHERE clause usable_keys Keys for testing RETURN MAX_KEY If we can't use other key the number of found key Otherwise */ static uint test_if_subkey(ORDER *order, TABLE *table, uint ref, uint ref_key_parts, const key_map *usable_keys) { uint nr; uint min_length= (uint) ~0; uint best= MAX_KEY; uint not_used; KEY_PART_INFO *ref_key_part= table->key_info[ref].key_part; KEY_PART_INFO *ref_key_part_end= ref_key_part + ref_key_parts; for (nr= 0 ; nr < table->s->keys ; nr++) { if (usable_keys->is_set(nr) && table->key_info[nr].key_length < min_length && table->key_info[nr].key_parts >= ref_key_parts && is_subkey(table->key_info[nr].key_part, ref_key_part, ref_key_part_end) && test_if_order_by_key(order, table, nr, ¬_used)) { min_length= table->key_info[nr].key_length; best= nr; } } return best; } /* Check if GROUP BY/DISTINCT can be optimized away because the set is already known to be distinct. SYNOPSIS list_contains_unique_index () table The table to operate on. find_func function to iterate over the list and search for a field DESCRIPTION Used in removing the GROUP BY/DISTINCT of the following types of statements: SELECT [DISTINCT] <unique_key_cols>... FROM <single_table_ref> [GROUP BY <unique_key_cols>,...] If (a,b,c is distinct) then <any combination of a,b,c>,{whatever} is also distinct This function checks if all the key parts of any of the unique keys of the table are referenced by a list : either the select list through find_field_in_item_list or GROUP BY list through find_field_in_order_list. If the above holds then we can safely remove the GROUP BY/DISTINCT, as no result set can be more distinct than an unique key. RETURN VALUE 1 found 0 not found. */ static bool list_contains_unique_index(TABLE *table, bool (*find_func) (Field *, void *), void *data) { for (uint keynr= 0; keynr < table->s->keys; keynr++) { if (keynr == table->s->primary_key || (table->key_info[keynr].flags & HA_NOSAME)) { KEY *keyinfo= table->key_info + keynr; KEY_PART_INFO *key_part, *key_part_end; for (key_part=keyinfo->key_part, key_part_end=key_part+ keyinfo->key_parts; key_part < key_part_end; key_part++) { if (!find_func(key_part->field, data)) break; } if (key_part == key_part_end) return 1; } } return 0; } /* Helper function for list_contains_unique_index. Find a field reference in a list of ORDER structures. SYNOPSIS find_field_in_order_list () field The field to search for. data ORDER *.The list to search in DESCRIPTION Finds a direct reference of the Field in the list. RETURN VALUE 1 found 0 not found. */ static bool find_field_in_order_list (Field *field, void *data) { ORDER *group= (ORDER *) data; bool part_found= 0; for (ORDER *tmp_group= group; tmp_group; tmp_group=tmp_group->next) { Item *item= (*tmp_group->item)->real_item(); if (item->type() == Item::FIELD_ITEM && ((Item_field*) item)->field->eq(field)) { part_found= 1; break; } } return part_found; } /* Helper function for list_contains_unique_index. Find a field reference in a dynamic list of Items. SYNOPSIS find_field_in_item_list () field in The field to search for. data in List<Item> *.The list to search in DESCRIPTION Finds a direct reference of the Field in the list. RETURN VALUE 1 found 0 not found. */ static bool find_field_in_item_list (Field *field, void *data) { List<Item> *fields= (List<Item> *) data; bool part_found= 0; List_iterator<Item> li(*fields); Item *item; while ((item= li++)) { if (item->type() == Item::FIELD_ITEM && ((Item_field*) item)->field->eq(field)) { part_found= 1; break; } } return part_found; } /* Test if we can skip the ORDER BY by using an index. If we can use an index, the JOIN_TAB / tab->select struct is changed to use the index. Return: 0 We have to use filesort to do the sorting 1 We can use an index. */ static bool test_if_skip_sort_order(JOIN_TAB *tab,ORDER *order,ha_rows select_limit, bool no_changes) { int ref_key; uint ref_key_parts; TABLE *table=tab->table; SQL_SELECT *select=tab->select; key_map usable_keys; DBUG_ENTER("test_if_skip_sort_order"); LINT_INIT(ref_key_parts); /* Check which keys can be used to resolve ORDER BY. We must not try to use disabled keys. */ usable_keys= table->s->keys_in_use; for (ORDER *tmp_order=order; tmp_order ; tmp_order=tmp_order->next) { Item *item= (*tmp_order->item)->real_item(); if (item->type() != Item::FIELD_ITEM) { usable_keys.clear_all(); DBUG_RETURN(0); } usable_keys.intersect(((Item_field*) item)->field->part_of_sortkey); if (usable_keys.is_clear_all()) DBUG_RETURN(0); // No usable keys } ref_key= -1; /* Test if constant range in WHERE */ if (tab->ref.key >= 0 && tab->ref.key_parts) { ref_key= tab->ref.key; ref_key_parts= tab->ref.key_parts; if (tab->type == JT_REF_OR_NULL || tab->type == JT_FT) DBUG_RETURN(0); } else if (select && select->quick) // Range found by opt_range { int quick_type= select->quick->get_type(); /* assume results are not ordered when index merge is used TODO: sergeyp: Results of all index merge selects actually are ordered by clustered PK values. */ if (quick_type == QUICK_SELECT_I::QS_TYPE_INDEX_MERGE || quick_type == QUICK_SELECT_I::QS_TYPE_ROR_UNION || quick_type == QUICK_SELECT_I::QS_TYPE_ROR_INTERSECT) DBUG_RETURN(0); ref_key= select->quick->index; ref_key_parts= select->quick->used_key_parts; } if (ref_key >= 0) { /* We come here when there is a REF key. */ int order_direction; uint used_key_parts; if (!usable_keys.is_set(ref_key)) { /* We come here when ref_key is not among usable_keys */ uint new_ref_key; /* If using index only read, only consider other possible index only keys */ if (table->used_keys.is_set(ref_key)) usable_keys.intersect(table->used_keys); if ((new_ref_key= test_if_subkey(order, table, ref_key, ref_key_parts, &usable_keys)) < MAX_KEY) { /* Found key that can be used to retrieve data in sorted order */ if (tab->ref.key >= 0) { /* We'll use ref access method on key new_ref_key. In general case the index search tuple for new_ref_key will be different (e.g. when one index is defined as (part1, part2, ...) and another as (part1, part2(N), ...) and the WHERE clause contains "part1 = const1 AND part2=const2". So we build tab->ref from scratch here. */ KEYUSE *keyuse= tab->keyuse; while (keyuse->key != new_ref_key && keyuse->table == tab->table) keyuse++; if (create_ref_for_key(tab->join, tab, keyuse, tab->join->const_table_map)) DBUG_RETURN(0); } else { /* The range optimizer constructed QUICK_RANGE for ref_key, and we want to use instead new_ref_key as the index. We can't just change the index of the quick select, because this may result in an incosistent QUICK_SELECT object. Below we create a new QUICK_SELECT from scratch so that all its parameres are set correctly by the range optimizer. */ key_map new_ref_key_map; new_ref_key_map.clear_all(); // Force the creation of quick select new_ref_key_map.set_bit(new_ref_key); // only for new_ref_key. if (select->test_quick_select(tab->join->thd, new_ref_key_map, 0, (tab->join->select_options & OPTION_FOUND_ROWS) ? HA_POS_ERROR : tab->join->unit->select_limit_cnt,0) <= 0) DBUG_RETURN(0); } ref_key= new_ref_key; } } /* Check if we get the rows in requested sorted order by using the key */ if (usable_keys.is_set(ref_key) && (order_direction = test_if_order_by_key(order,table,ref_key, &used_key_parts))) { if (order_direction == -1) // If ORDER BY ... DESC { if (select && select->quick) { /* Don't reverse the sort order, if it's already done. (In some cases test_if_order_by_key() can be called multiple times */ if (!select->quick->reverse_sorted()) { int quick_type= select->quick->get_type(); if (quick_type == QUICK_SELECT_I::QS_TYPE_INDEX_MERGE || quick_type == QUICK_SELECT_I::QS_TYPE_ROR_INTERSECT || quick_type == QUICK_SELECT_I::QS_TYPE_ROR_UNION || quick_type == QUICK_SELECT_I::QS_TYPE_GROUP_MIN_MAX) DBUG_RETURN(0); // Use filesort /* ORDER BY range_key DESC */ QUICK_SELECT_DESC *tmp=new QUICK_SELECT_DESC((QUICK_RANGE_SELECT*)(select->quick), used_key_parts); if (!tmp || tmp->error) { delete tmp; DBUG_RETURN(0); // Reverse sort not supported } select->quick=tmp; } DBUG_RETURN(1); } if (tab->ref.key_parts < used_key_parts) { /* SELECT * FROM t1 WHERE a=1 ORDER BY a DESC,b DESC Use a traversal function that starts by reading the last row with key part (A) and then traverse the index backwards. */ tab->read_first_record= join_read_last_key; tab->read_record.read_record= join_read_prev_same; /* fall through */ } } else if (select && select->quick) select->quick->sorted= 1; DBUG_RETURN(1); /* No need to sort */ } } else { /* check if we can use a key to resolve the group */ /* Tables using JT_NEXT are handled here */ uint nr; key_map keys; /* If not used with LIMIT, only use keys if the whole query can be resolved with a key; This is because filesort() is usually faster than retrieving all rows through an index. */ if (select_limit >= table->file->records) { keys= *table->file->keys_to_use_for_scanning(); keys.merge(table->used_keys); /* We are adding here also the index specified in FORCE INDEX clause, if any. This is to allow users to use index in ORDER BY. */ if (table->force_index) keys.merge(table->keys_in_use_for_query); keys.intersect(usable_keys); } else keys= usable_keys; for (nr=0; nr < table->s->keys ; nr++) { uint not_used; if (keys.is_set(nr)) { int flag; if ((flag= test_if_order_by_key(order, table, nr, ¬_used))) { if (!no_changes) { tab->index=nr; tab->read_first_record= (flag > 0 ? join_read_first: join_read_last); tab->type=JT_NEXT; // Read with index_first(), index_next() if (table->used_keys.is_set(nr)) { table->key_read=1; table->file->extra(HA_EXTRA_KEYREAD); } } DBUG_RETURN(1); } } } } DBUG_RETURN(0); // Can't use index. } /* If not selecting by given key, create an index how records should be read SYNOPSIS create_sort_index() thd Thread handler tab Table to sort (in join structure) order How table should be sorted filesort_limit Max number of rows that needs to be sorted select_limit Max number of rows in final output Used to decide if we should use index or not IMPLEMENTATION - If there is an index that can be used, 'tab' is modified to use this index. - If no index, create with filesort() an index file that can be used to retrieve rows in order (should be done with 'read_record'). The sorted data is stored in tab->table and will be freed when calling free_io_cache(tab->table). RETURN VALUES 0 ok -1 Some fatal error 1 No records */ static int create_sort_index(THD *thd, JOIN *join, ORDER *order, ha_rows filesort_limit, ha_rows select_limit) { uint length; ha_rows examined_rows; TABLE *table; SQL_SELECT *select; JOIN_TAB *tab; DBUG_ENTER("create_sort_index"); if (join->tables == join->const_tables) DBUG_RETURN(0); // One row, no need to sort tab= join->join_tab + join->const_tables; table= tab->table; select= tab->select; /* When there is SQL_BIG_RESULT do not sort using index for GROUP BY, and thus force sorting on disk. */ if ((order != join->group_list || !(join->select_options & SELECT_BIG_RESULT)) && test_if_skip_sort_order(tab,order,select_limit,0)) DBUG_RETURN(0); if (!(join->sortorder= make_unireg_sortorder(order,&length,join->sortorder))) goto err; /* purecov: inspected */ table->sort.io_cache=(IO_CACHE*) my_malloc(sizeof(IO_CACHE), MYF(MY_WME | MY_ZEROFILL)); table->status=0; // May be wrong if quick_select // If table has a range, move it to select if (select && !select->quick && tab->ref.key >= 0) { if (tab->quick) { select->quick=tab->quick; tab->quick=0; /* We can only use 'Only index' if quick key is same as ref_key and in index_merge 'Only index' cannot be used */ if (table->key_read && ((uint) tab->ref.key != select->quick->index)) { table->key_read=0; table->file->extra(HA_EXTRA_NO_KEYREAD); } } else { /* We have a ref on a const; Change this to a range that filesort can use. For impossible ranges (like when doing a lookup on NULL on a NOT NULL field, quick will contain an empty record set. */ if (!(select->quick= (tab->type == JT_FT ? new FT_SELECT(thd, table, tab->ref.key) : get_quick_select_for_ref(thd, table, &tab->ref, tab->found_records)))) goto err; } } /* Fill schema tables with data before filesort if it's necessary */ if ((join->select_lex->options & OPTION_SCHEMA_TABLE) && get_schema_tables_result(join)) goto err; if (table->s->tmp_table) table->file->info(HA_STATUS_VARIABLE); // Get record count table->sort.found_records=filesort(thd, table,join->sortorder, length, select, filesort_limit, &examined_rows); tab->records= table->sort.found_records; // For SQL_CALC_ROWS if (select) { select->cleanup(); // filesort did select tab->select= 0; } tab->select_cond=0; tab->last_inner= 0; tab->first_unmatched= 0; tab->type=JT_ALL; // Read with normal read_record tab->read_first_record= join_init_read_record; tab->join->examined_rows+=examined_rows; if (table->key_read) // Restore if we used indexes { table->key_read=0; table->file->extra(HA_EXTRA_NO_KEYREAD); } DBUG_RETURN(table->sort.found_records == HA_POS_ERROR); err: DBUG_RETURN(-1); } /* Add the HAVING criteria to table->select */ #ifdef NOT_YET static bool fix_having(JOIN *join, Item **having) { (*having)->update_used_tables(); // Some tables may have been const JOIN_TAB *table=&join->join_tab[join->const_tables]; table_map used_tables= join->const_table_map | table->table->map; DBUG_EXECUTE("where",print_where(*having,"having");); Item* sort_table_cond=make_cond_for_table(*having,used_tables,used_tables); if (sort_table_cond) { if (!table->select) if (!(table->select=new SQL_SELECT)) return 1; if (!table->select->cond) table->select->cond=sort_table_cond; else // This should never happen if (!(table->select->cond= new Item_cond_and(table->select->cond, sort_table_cond)) || table->select->cond->fix_fields(join->thd, &table->select->cond)) return 1; table->select_cond=table->select->cond; table->select_cond->top_level_item(); DBUG_EXECUTE("where",print_where(table->select_cond, "select and having");); *having=make_cond_for_table(*having,~ (table_map) 0,~used_tables); DBUG_EXECUTE("where",print_where(*having,"having after make_cond");); } return 0; } #endif /***************************************************************************** Remove duplicates from tmp table This should be recoded to add a unique index to the table and remove duplicates Table is a locked single thread table fields is the number of fields to check (from the end) *****************************************************************************/ static bool compare_record(TABLE *table, Field **ptr) { for (; *ptr ; ptr++) { if ((*ptr)->cmp_offset(table->s->rec_buff_length)) return 1; } return 0; } static bool copy_blobs(Field **ptr) { for (; *ptr ; ptr++) { if ((*ptr)->flags & BLOB_FLAG) if (((Field_blob *) (*ptr))->copy()) return 1; // Error } return 0; } static void free_blobs(Field **ptr) { for (; *ptr ; ptr++) { if ((*ptr)->flags & BLOB_FLAG) ((Field_blob *) (*ptr))->free(); } } static int remove_duplicates(JOIN *join, TABLE *entry,List<Item> &fields, Item *having) { int error; ulong reclength,offset; uint field_count; THD *thd= join->thd; DBUG_ENTER("remove_duplicates"); entry->reginfo.lock_type=TL_WRITE; /* Calculate how many saved fields there is in list */ field_count=0; List_iterator<Item> it(fields); Item *item; while ((item=it++)) { if (item->get_tmp_table_field() && ! item->const_item()) field_count++; } if (!field_count && !(join->select_options & OPTION_FOUND_ROWS)) { // only const items with no OPTION_FOUND_ROWS join->unit->select_limit_cnt= 1; // Only send first row DBUG_RETURN(0); } Field **first_field=entry->field+entry->s->fields - field_count; offset= field_count ? entry->field[entry->s->fields - field_count]->offset() : 0; reclength=entry->s->reclength-offset; free_io_cache(entry); // Safety entry->file->info(HA_STATUS_VARIABLE); if (entry->s->db_type == DB_TYPE_HEAP || (!entry->s->blob_fields && ((ALIGN_SIZE(reclength) + HASH_OVERHEAD) * entry->file->records < thd->variables.sortbuff_size))) error=remove_dup_with_hash_index(join->thd, entry, field_count, first_field, reclength, having); else error=remove_dup_with_compare(join->thd, entry, first_field, offset, having); free_blobs(first_field); DBUG_RETURN(error); } static int remove_dup_with_compare(THD *thd, TABLE *table, Field **first_field, ulong offset, Item *having) { handler *file=table->file; char *org_record,*new_record; byte *record; int error; ulong reclength= table->s->reclength-offset; DBUG_ENTER("remove_dup_with_compare"); org_record=(char*) (record=table->record[0])+offset; new_record=(char*) table->record[1]+offset; file->ha_rnd_init(1); error=file->rnd_next(record); for (;;) { if (thd->killed) { thd->send_kill_message(); error=0; goto err; } if (error) { if (error == HA_ERR_RECORD_DELETED) continue; if (error == HA_ERR_END_OF_FILE) break; goto err; } if (having && !having->val_int()) { if ((error=file->delete_row(record))) goto err; error=file->rnd_next(record); continue; } if (copy_blobs(first_field)) { my_message(ER_OUTOFMEMORY, ER(ER_OUTOFMEMORY), MYF(0)); error=0; goto err; } memcpy(new_record,org_record,reclength); /* Read through rest of file and mark duplicated rows deleted */ bool found=0; for (;;) { if ((error=file->rnd_next(record))) { if (error == HA_ERR_RECORD_DELETED) continue; if (error == HA_ERR_END_OF_FILE) break; goto err; } if (compare_record(table, first_field) == 0) { if ((error=file->delete_row(record))) goto err; } else if (!found) { found=1; file->position(record); // Remember position } } if (!found) break; // End of file /* Restart search on next row */ error=file->restart_rnd_next(record,file->ref); } file->extra(HA_EXTRA_NO_CACHE); DBUG_RETURN(0); err: file->extra(HA_EXTRA_NO_CACHE); if (error) file->print_error(error,MYF(0)); DBUG_RETURN(1); } /* Generate a hash index for each row to quickly find duplicate rows Note that this will not work on tables with blobs! */ static int remove_dup_with_hash_index(THD *thd, TABLE *table, uint field_count, Field **first_field, ulong key_length, Item *having) { byte *key_buffer, *key_pos, *record=table->record[0]; int error; handler *file= table->file; ulong extra_length= ALIGN_SIZE(key_length)-key_length; uint *field_lengths,*field_length; HASH hash; DBUG_ENTER("remove_dup_with_hash_index"); if (!my_multi_malloc(MYF(MY_WME), &key_buffer, (uint) ((key_length + extra_length) * (long) file->records), &field_lengths, (uint) (field_count*sizeof(*field_lengths)), NullS)) DBUG_RETURN(1); { Field **ptr; ulong total_length= 0; for (ptr= first_field, field_length=field_lengths ; *ptr ; ptr++) { uint length= (*ptr)->sort_length(); (*field_length++)= length; total_length+= length; } DBUG_PRINT("info",("field_count: %u key_length: %lu total_length: %lu", field_count, key_length, total_length)); DBUG_ASSERT(total_length <= key_length); key_length= total_length; extra_length= ALIGN_SIZE(key_length)-key_length; } if (hash_init(&hash, &my_charset_bin, (uint) file->records, 0, key_length, (hash_get_key) 0, 0, 0)) { my_free((char*) key_buffer,MYF(0)); DBUG_RETURN(1); } file->ha_rnd_init(1); key_pos=key_buffer; for (;;) { byte *org_key_pos; if (thd->killed) { thd->send_kill_message(); error=0; goto err; } if ((error=file->rnd_next(record))) { if (error == HA_ERR_RECORD_DELETED) continue; if (error == HA_ERR_END_OF_FILE) break; goto err; } if (having && !having->val_int()) { if ((error=file->delete_row(record))) goto err; continue; } /* copy fields to key buffer */ org_key_pos= key_pos; field_length=field_lengths; for (Field **ptr= first_field ; *ptr ; ptr++) { (*ptr)->sort_string((char*) key_pos,*field_length); key_pos+= *field_length++; } /* Check if it exists before */ if (hash_search(&hash, org_key_pos, key_length)) { /* Duplicated found ; Remove the row */ if ((error=file->delete_row(record))) goto err; } else (void) my_hash_insert(&hash, org_key_pos); key_pos+=extra_length; } my_free((char*) key_buffer,MYF(0)); hash_free(&hash); file->extra(HA_EXTRA_NO_CACHE); (void) file->ha_rnd_end(); DBUG_RETURN(0); err: my_free((char*) key_buffer,MYF(0)); hash_free(&hash); file->extra(HA_EXTRA_NO_CACHE); (void) file->ha_rnd_end(); if (error) file->print_error(error,MYF(0)); DBUG_RETURN(1); } SORT_FIELD *make_unireg_sortorder(ORDER *order, uint *length, SORT_FIELD *sortorder) { uint count; SORT_FIELD *sort,*pos; DBUG_ENTER("make_unireg_sortorder"); count=0; for (ORDER *tmp = order; tmp; tmp=tmp->next) count++; if (!sortorder) sortorder= (SORT_FIELD*) sql_alloc(sizeof(SORT_FIELD)*(count+1)); pos=sort=sortorder; if (!pos) return 0; for (;order;order=order->next,pos++) { pos->field=0; pos->item=0; if (order->item[0]->type() == Item::FIELD_ITEM) pos->field= ((Item_field*) (*order->item))->field; else if (order->item[0]->type() == Item::SUM_FUNC_ITEM && !order->item[0]->const_item()) pos->field= ((Item_sum*) order->item[0])->get_tmp_table_field(); else if (order->item[0]->type() == Item::COPY_STR_ITEM) { // Blob patch pos->item= ((Item_copy_string*) (*order->item))->item; } else pos->item= *order->item; pos->reverse=! order->asc; } *length=count; DBUG_RETURN(sort); } /***************************************************************************** Fill join cache with packed records Records are stored in tab->cache.buffer and last record in last record is stored with pointers to blobs to support very big records ******************************************************************************/ static int join_init_cache(THD *thd,JOIN_TAB *tables,uint table_count) { reg1 uint i; uint length,blobs,size; CACHE_FIELD *copy,**blob_ptr; JOIN_CACHE *cache; JOIN_TAB *join_tab; DBUG_ENTER("join_init_cache"); cache= &tables[table_count].cache; cache->fields=blobs=0; join_tab=tables; for (i=0 ; i < table_count ; i++,join_tab++) { if (!join_tab->used_fieldlength) /* Not calced yet */ calc_used_field_length(thd, join_tab); cache->fields+=join_tab->used_fields; blobs+=join_tab->used_blobs; } if (!(cache->field=(CACHE_FIELD*) sql_alloc(sizeof(CACHE_FIELD)*(cache->fields+table_count*2)+(blobs+1)* sizeof(CACHE_FIELD*)))) { my_free((gptr) cache->buff,MYF(0)); /* purecov: inspected */ cache->buff=0; /* purecov: inspected */ DBUG_RETURN(1); /* purecov: inspected */ } copy=cache->field; blob_ptr=cache->blob_ptr=(CACHE_FIELD**) (cache->field+cache->fields+table_count*2); length=0; for (i=0 ; i < table_count ; i++) { uint null_fields=0,used_fields; Field **f_ptr,*field; for (f_ptr=tables[i].table->field,used_fields=tables[i].used_fields ; used_fields ; f_ptr++) { field= *f_ptr; if (field->query_id == thd->query_id) { used_fields--; length+=field->fill_cache_field(copy); if (copy->blob_field) (*blob_ptr++)=copy; if (field->maybe_null()) null_fields++; copy++; } } /* Copy null bits from table */ if (null_fields && tables[i].table->s->null_fields) { /* must copy null bits */ copy->str=(char*) tables[i].table->null_flags; copy->length= tables[i].table->s->null_bytes; copy->strip=0; copy->blob_field=0; length+=copy->length; copy++; cache->fields++; } /* If outer join table, copy null_row flag */ if (tables[i].table->maybe_null) { copy->str= (char*) &tables[i].table->null_row; copy->length=sizeof(tables[i].table->null_row); copy->strip=0; copy->blob_field=0; length+=copy->length; copy++; cache->fields++; } } cache->length=length+blobs*sizeof(char*); cache->blobs=blobs; *blob_ptr=0; /* End sequentel */ size=max(thd->variables.join_buff_size, cache->length); if (!(cache->buff=(uchar*) my_malloc(size,MYF(0)))) DBUG_RETURN(1); /* Don't use cache */ /* purecov: inspected */ cache->end=cache->buff+size; reset_cache_write(cache); DBUG_RETURN(0); } static ulong used_blob_length(CACHE_FIELD **ptr) { uint length,blob_length; for (length=0 ; *ptr ; ptr++) { (*ptr)->blob_length=blob_length=(*ptr)->blob_field->get_length(); length+=blob_length; (*ptr)->blob_field->get_ptr(&(*ptr)->str); } return length; } static bool store_record_in_cache(JOIN_CACHE *cache) { uint length; uchar *pos; CACHE_FIELD *copy,*end_field; bool last_record; pos=cache->pos; end_field=cache->field+cache->fields; length=cache->length; if (cache->blobs) length+=used_blob_length(cache->blob_ptr); if ((last_record=(length+cache->length > (uint) (cache->end - pos)))) cache->ptr_record=cache->records; /* There is room in cache. Put record there */ cache->records++; for (copy=cache->field ; copy < end_field; copy++) { if (copy->blob_field) { if (last_record) { copy->blob_field->get_image((char*) pos,copy->length+sizeof(char*), copy->blob_field->charset()); pos+=copy->length+sizeof(char*); } else { copy->blob_field->get_image((char*) pos,copy->length, // blob length copy->blob_field->charset()); memcpy(pos+copy->length,copy->str,copy->blob_length); // Blob data pos+=copy->length+copy->blob_length; } } else { if (copy->strip) { char *str,*end; for (str=copy->str,end= str+copy->length; end > str && end[-1] == ' ' ; end--) ; length=(uint) (end-str); memcpy(pos+2, str, length); int2store(pos, length); pos+= length+2; } else { memcpy(pos,copy->str,copy->length); pos+=copy->length; } } } cache->pos=pos; return last_record || (uint) (cache->end -pos) < cache->length; } static void reset_cache_read(JOIN_CACHE *cache) { cache->record_nr=0; cache->pos=cache->buff; } static void reset_cache_write(JOIN_CACHE *cache) { reset_cache_read(cache); cache->records= 0; cache->ptr_record= (uint) ~0; } static void read_cached_record(JOIN_TAB *tab) { uchar *pos; uint length; bool last_record; CACHE_FIELD *copy,*end_field; last_record=tab->cache.record_nr++ == tab->cache.ptr_record; pos=tab->cache.pos; for (copy=tab->cache.field,end_field=copy+tab->cache.fields ; copy < end_field; copy++) { if (copy->blob_field) { if (last_record) { copy->blob_field->set_image((char*) pos,copy->length+sizeof(char*), copy->blob_field->charset()); pos+=copy->length+sizeof(char*); } else { copy->blob_field->set_ptr((char*) pos,(char*) pos+copy->length); pos+=copy->length+copy->blob_field->get_length(); } } else { if (copy->strip) { length= uint2korr(pos); memcpy(copy->str, pos+2, length); memset(copy->str+length, ' ', copy->length-length); pos+= 2 + length; } else { memcpy(copy->str,pos,copy->length); pos+=copy->length; } } } tab->cache.pos=pos; return; } static bool cmp_buffer_with_ref(JOIN_TAB *tab) { bool diff; if (!(diff=tab->ref.key_err)) { memcpy(tab->ref.key_buff2, tab->ref.key_buff, tab->ref.key_length); } if ((tab->ref.key_err= cp_buffer_from_ref(tab->join->thd, &tab->ref)) || diff) return 1; return memcmp(tab->ref.key_buff2, tab->ref.key_buff, tab->ref.key_length) != 0; } bool cp_buffer_from_ref(THD *thd, TABLE_REF *ref) { enum enum_check_fields save_count_cuted_fields= thd->count_cuted_fields; thd->count_cuted_fields= CHECK_FIELD_IGNORE; for (store_key **copy=ref->key_copy ; *copy ; copy++) { if ((*copy)->copy() & 1) { thd->count_cuted_fields= save_count_cuted_fields; return 1; // Something went wrong } } thd->count_cuted_fields= save_count_cuted_fields; return 0; } /***************************************************************************** Group and order functions *****************************************************************************/ /* Resolve an ORDER BY or GROUP BY column reference. SYNOPSIS find_order_in_list() thd [in] Pointer to current thread structure ref_pointer_array [in/out] All select, group and order by fields tables [in] List of tables to search in (usually FROM clause) order [in] Column reference to be resolved fields [in] List of fields to search in (usually SELECT list) all_fields [in/out] All select, group and order by fields is_group_field [in] True if order is a GROUP field, false if ORDER by field DESCRIPTION Given a column reference (represented by 'order') from a GROUP BY or ORDER BY clause, find the actual column it represents. If the column being resolved is from the GROUP BY clause, the procedure searches the SELECT list 'fields' and the columns in the FROM list 'tables'. If 'order' is from the ORDER BY clause, only the SELECT list is being searched. If 'order' is resolved to an Item, then order->item is set to the found Item. If there is no item for the found column (that is, it was resolved into a table field), order->item is 'fixed' and is added to all_fields and ref_pointer_array. RETURN FALSE if OK TRUE if error occurred ref_pointer_array and all_fields are updated */ static bool find_order_in_list(THD *thd, Item **ref_pointer_array, TABLE_LIST *tables, ORDER *order, List<Item> &fields, List<Item> &all_fields, bool is_group_field) { Item *order_item= *order->item; /* The item from the GROUP/ORDER caluse. */ Item::Type order_item_type; Item **select_item; /* The corresponding item from the SELECT clause. */ Field *from_field; /* The corresponding field from the FROM clause. */ uint counter; bool unaliased; /* Local SP variables may be int but are expressions, not positions. (And they can't be used before fix_fields is called for them). */ if (order_item->type() == Item::INT_ITEM && order_item->basic_const_item()) { /* Order by position */ uint count= (uint) order_item->val_int(); if (!count || count > fields.elements) { my_error(ER_BAD_FIELD_ERROR, MYF(0), order_item->full_name(), thd->where); return TRUE; } order->item= ref_pointer_array + count - 1; order->in_field_list= 1; order->counter= count; order->counter_used= 1; return FALSE; } /* Lookup the current GROUP/ORDER field in the SELECT clause. */ select_item= find_item_in_list(order_item, fields, &counter, REPORT_EXCEPT_NOT_FOUND, &unaliased); if (!select_item) return TRUE; /* The item is not unique, or some other error occured. */ /* Check whether the resolved field is not ambiguos. */ if (select_item != not_found_item) { Item *view_ref= NULL; /* If we have found field not by its alias in select list but by its original field name, we should additionaly check if we have conflict for this name (in case if we would perform lookup in all tables). */ if (unaliased && !order_item->fixed && order_item->fix_fields(thd, order->item)) return TRUE; /* Lookup the current GROUP field in the FROM clause. */ order_item_type= order_item->type(); from_field= (Field*) not_found_field; if (is_group_field && order_item_type == Item::FIELD_ITEM || order_item_type == Item::REF_ITEM) { from_field= find_field_in_tables(thd, (Item_ident*) order_item, tables, NULL, &view_ref, IGNORE_ERRORS, TRUE, FALSE); if (!from_field) from_field= (Field*) not_found_field; } if (from_field == not_found_field || (from_field != view_ref_found ? /* it is field of base table => check that fields are same */ ((*select_item)->type() == Item::FIELD_ITEM && ((Item_field*) (*select_item))->field->eq(from_field)) : /* in is field of view table => check that references on translation table are same */ ((*select_item)->type() == Item::REF_ITEM && view_ref->type() == Item::REF_ITEM && ((Item_ref *) (*select_item))->ref == ((Item_ref *) view_ref)->ref))) { /* If there is no such field in the FROM clause, or it is the same field as the one found in the SELECT clause, then use the Item created for the SELECT field. As a result if there was a derived field that 'shadowed' a table field with the same name, the table field will be chosen over the derived field. */ order->item= ref_pointer_array + counter; order->in_field_list=1; return FALSE; } else { /* There is a field with the same name in the FROM clause. This is the field that will be chosen. In this case we issue a warning so the user knows that the field from the FROM clause overshadows the column reference from the SELECT list. */ push_warning_printf(thd, MYSQL_ERROR::WARN_LEVEL_WARN, ER_NON_UNIQ_ERROR, ER(ER_NON_UNIQ_ERROR), ((Item_ident*) order_item)->field_name, current_thd->where); } } order->in_field_list=0; /* The call to order_item->fix_fields() means that here we resolve 'order_item' to a column from a table in the list 'tables', or to a column in some outer query. Exactly because of the second case we come to this point even if (select_item == not_found_item), inspite of that fix_fields() calls find_item_in_list() one more time. We check order_item->fixed because Item_func_group_concat can put arguments for which fix_fields already was called. */ thd->lex->current_select->is_item_list_lookup= 1; if (!order_item->fixed && (order_item->fix_fields(thd, order->item) || (order_item= *order->item)->check_cols(1) || thd->is_fatal_error)) { thd->lex->current_select->is_item_list_lookup= 0; return TRUE; /* Wrong field. */ } thd->lex->current_select->is_item_list_lookup= 0; uint el= all_fields.elements; all_fields.push_front(order_item); /* Add new field to field list. */ ref_pointer_array[el]= order_item; order->item= ref_pointer_array + el; return FALSE; } /* Change order to point at item in select list. If item isn't a number and doesn't exits in the select list, add it the the field list. */ int setup_order(THD *thd, Item **ref_pointer_array, TABLE_LIST *tables, List<Item> &fields, List<Item> &all_fields, ORDER *order) { thd->where="order clause"; for (; order; order=order->next) { if (find_order_in_list(thd, ref_pointer_array, tables, order, fields, all_fields, FALSE)) return 1; } return 0; } /* Intitialize the GROUP BY list. SYNOPSIS setup_group() thd Thread handler ref_pointer_array We store references to all fields that was not in 'fields' here. fields All fields in the select part. Any item in 'order' that is part of these list is replaced by a pointer to this fields. all_fields Total list of all unique fields used by the select. All items in 'order' that was not part of fields will be added first to this list. order The fields we should do GROUP BY on. hidden_group_fields Pointer to flag that is set to 1 if we added any fields to all_fields. RETURN 0 ok 1 error (probably out of memory) */ int setup_group(THD *thd, Item **ref_pointer_array, TABLE_LIST *tables, List<Item> &fields, List<Item> &all_fields, ORDER *order, bool *hidden_group_fields) { *hidden_group_fields=0; if (!order) return 0; /* Everything is ok */ if (thd->variables.sql_mode & MODE_ONLY_FULL_GROUP_BY) { Item *item; List_iterator<Item> li(fields); while ((item=li++)) item->marker=0; /* Marker that field is not used */ } uint org_fields=all_fields.elements; thd->where="group statement"; for (; order; order=order->next) { if (find_order_in_list(thd, ref_pointer_array, tables, order, fields, all_fields, TRUE)) return 1; (*order->item)->marker=1; /* Mark found */ if ((*order->item)->with_sum_func) { my_error(ER_WRONG_GROUP_FIELD, MYF(0), (*order->item)->full_name()); return 1; } } if (thd->variables.sql_mode & MODE_ONLY_FULL_GROUP_BY) { /* Don't allow one to use fields that is not used in GROUP BY */ Item *item; List_iterator<Item> li(fields); while ((item=li++)) { if (item->type() != Item::SUM_FUNC_ITEM && !item->marker && !item->const_item()) { /* TODO: change ER_WRONG_FIELD_WITH_GROUP to more detailed ER_NON_GROUPING_FIELD_USED */ my_error(ER_WRONG_FIELD_WITH_GROUP, MYF(0), item->full_name()); return 1; } } } if (org_fields != all_fields.elements) *hidden_group_fields=1; // group fields is not used return 0; } /* Add fields with aren't used at start of field list. Return FALSE if ok */ static bool setup_new_fields(THD *thd, List<Item> &fields, List<Item> &all_fields, ORDER *new_field) { Item **item; DBUG_ENTER("setup_new_fields"); thd->set_query_id=1; // Not really needed, but... uint counter; bool not_used; for (; new_field ; new_field= new_field->next) { if ((item= find_item_in_list(*new_field->item, fields, &counter, IGNORE_ERRORS, ¬_used))) new_field->item=item; /* Change to shared Item */ else { thd->where="procedure list"; if ((*new_field->item)->fix_fields(thd, new_field->item)) DBUG_RETURN(1); /* purecov: inspected */ all_fields.push_front(*new_field->item); new_field->item=all_fields.head_ref(); } } DBUG_RETURN(0); } /* Create a group by that consist of all non const fields. Try to use the fields in the order given by 'order' to allow one to optimize away 'order by'. */ static ORDER * create_distinct_group(THD *thd, Item **ref_pointer_array, ORDER *order_list, List<Item> &fields, bool *all_order_by_fields_used) { List_iterator<Item> li(fields); Item *item; ORDER *order,*group,**prev; *all_order_by_fields_used= 1; while ((item=li++)) item->marker=0; /* Marker that field is not used */ prev= &group; group=0; for (order=order_list ; order; order=order->next) { if (order->in_field_list) { ORDER *ord=(ORDER*) thd->memdup((char*) order,sizeof(ORDER)); if (!ord) return 0; *prev=ord; prev= &ord->next; (*ord->item)->marker=1; } else *all_order_by_fields_used= 0; } li.rewind(); while ((item=li++)) { if (!item->const_item() && !item->with_sum_func && !item->marker) { /* Don't put duplicate columns from the SELECT list into the GROUP BY list. */ ORDER *ord_iter; for (ord_iter= group; ord_iter; ord_iter= ord_iter->next) if ((*ord_iter->item)->eq(item, 1)) break; if (ord_iter) continue; ORDER *ord=(ORDER*) thd->calloc(sizeof(ORDER)); if (!ord) return 0; /* We have here only field_list (not all_field_list), so we can use simple indexing of ref_pointer_array (order in the array and in the list are same) */ ord->item= ref_pointer_array; ord->asc=1; *prev=ord; prev= &ord->next; } ref_pointer_array++; } *prev=0; return group; } /***************************************************************************** Update join with count of the different type of fields *****************************************************************************/ void count_field_types(TMP_TABLE_PARAM *param, List<Item> &fields, bool reset_with_sum_func) { List_iterator<Item> li(fields); Item *field; param->field_count=param->sum_func_count=param->func_count= param->hidden_field_count=0; param->quick_group=1; while ((field=li++)) { Item::Type type=field->real_item()->type(); if (type == Item::FIELD_ITEM) param->field_count++; else if (type == Item::SUM_FUNC_ITEM) { if (! field->const_item()) { Item_sum *sum_item=(Item_sum*) field->real_item(); if (!sum_item->quick_group) param->quick_group=0; // UDF SUM function param->sum_func_count++; for (uint i=0 ; i < sum_item->arg_count ; i++) { if (sum_item->args[0]->real_item()->type() == Item::FIELD_ITEM) param->field_count++; else param->func_count++; } } } else { param->func_count++; if (reset_with_sum_func) field->with_sum_func=0; } } } /* Return 1 if second is a subpart of first argument If first parts has different direction, change it to second part (group is sorted like order) */ static bool test_if_subpart(ORDER *a,ORDER *b) { for (; a && b; a=a->next,b=b->next) { if ((*a->item)->eq(*b->item,1)) a->asc=b->asc; else return 0; } return test(!b); } /* Return table number if there is only one table in sort order and group and order is compatible else return 0; */ static TABLE * get_sort_by_table(ORDER *a,ORDER *b,TABLE_LIST *tables) { table_map map= (table_map) 0; DBUG_ENTER("get_sort_by_table"); if (!a) a=b; // Only one need to be given else if (!b) b=a; for (; a && b; a=a->next,b=b->next) { if (!(*a->item)->eq(*b->item,1)) DBUG_RETURN(0); map|=a->item[0]->used_tables(); } if (!map || (map & (RAND_TABLE_BIT | OUTER_REF_TABLE_BIT))) DBUG_RETURN(0); for (; !(map & tables->table->map); tables= tables->next_leaf); if (map != tables->table->map) DBUG_RETURN(0); // More than one table DBUG_PRINT("exit",("sort by table: %d",tables->table->tablenr)); DBUG_RETURN(tables->table); } /* calc how big buffer we need for comparing group entries */ static void calc_group_buffer(JOIN *join,ORDER *group) { uint key_length=0, parts=0, null_parts=0; if (group) join->group= 1; for (; group ; group=group->next) { Item *group_item= *group->item; Field *field= group_item->get_tmp_table_field(); if (field) { enum_field_types type; if ((type= field->type()) == FIELD_TYPE_BLOB) key_length+=MAX_BLOB_WIDTH; // Can't be used as a key else if (type == MYSQL_TYPE_VARCHAR || type == MYSQL_TYPE_VAR_STRING) key_length+= field->field_length + HA_KEY_BLOB_LENGTH; else if (type == FIELD_TYPE_BIT) { /* Bit is usually stored as a longlong key for group fields */ key_length+= 8; // Big enough } else key_length+= field->pack_length(); } else { switch (group_item->result_type()) { case REAL_RESULT: key_length+= sizeof(double); break; case INT_RESULT: key_length+= sizeof(longlong); break; case DECIMAL_RESULT: key_length+= my_decimal_get_binary_size(group_item->max_length - (group_item->decimals ? 1 : 0), group_item->decimals); break; case STRING_RESULT: /* Group strings are taken as varstrings and require an length field. A field is not yet created by create_tmp_field() and the sizes should match up. */ key_length+= group_item->max_length + HA_KEY_BLOB_LENGTH; break; default: /* This case should never be choosen */ DBUG_ASSERT(0); join->thd->fatal_error(); } } parts++; if (group_item->maybe_null) null_parts++; } join->tmp_table_param.group_length=key_length+null_parts; join->tmp_table_param.group_parts=parts; join->tmp_table_param.group_null_parts=null_parts; } /* allocate group fields or take prepared (cached) SYNOPSIS make_group_fields() main_join - join of current select curr_join - current join (join of current select or temporary copy of it) RETURN 0 - ok 1 - failed */ static bool make_group_fields(JOIN *main_join, JOIN *curr_join) { if (main_join->group_fields_cache.elements) { curr_join->group_fields= main_join->group_fields_cache; curr_join->sort_and_group= 1; } else { if (alloc_group_fields(curr_join, curr_join->group_list)) return (1); main_join->group_fields_cache= curr_join->group_fields; } return (0); } /* Get a list of buffers for saveing last group Groups are saved in reverse order for easyer check loop */ static bool alloc_group_fields(JOIN *join,ORDER *group) { if (group) { for (; group ; group=group->next) { Cached_item *tmp=new_Cached_item(join->thd, *group->item); if (!tmp || join->group_fields.push_front(tmp)) return TRUE; } } join->sort_and_group=1; /* Mark for do_select */ return FALSE; } static int test_if_group_changed(List<Cached_item> &list) { DBUG_ENTER("test_if_group_changed"); List_iterator<Cached_item> li(list); int idx= -1,i; Cached_item *buff; for (i=(int) list.elements-1 ; (buff=li++) ; i--) { if (buff->cmp()) idx=i; } DBUG_PRINT("info", ("idx: %d", idx)); DBUG_RETURN(idx); } /* Setup copy_fields to save fields at start of new group setup_copy_fields() thd - THD pointer param - temporary table parameters ref_pointer_array - array of pointers to top elements of filed list res_selected_fields - new list of items of select item list res_all_fields - new list of all items elements - number of elements in select item list all_fields - all fields list DESCRIPTION Setup copy_fields to save fields at start of new group Only FIELD_ITEM:s and FUNC_ITEM:s needs to be saved between groups. Change old item_field to use a new field with points at saved fieldvalue This function is only called before use of send_fields RETURN 0 - ok !=0 - error */ bool setup_copy_fields(THD *thd, TMP_TABLE_PARAM *param, Item **ref_pointer_array, List<Item> &res_selected_fields, List<Item> &res_all_fields, uint elements, List<Item> &all_fields) { Item *pos; List_iterator_fast<Item> li(all_fields); Copy_field *copy= NULL; res_selected_fields.empty(); res_all_fields.empty(); List_iterator_fast<Item> itr(res_all_fields); List<Item> extra_funcs; uint i, border= all_fields.elements - elements; DBUG_ENTER("setup_copy_fields"); if (param->field_count && !(copy=param->copy_field= new Copy_field[param->field_count])) goto err2; param->copy_funcs.empty(); for (i= 0; (pos= li++); i++) { Field *field; char *tmp; Item *real_pos= pos->real_item(); if (real_pos->type() == Item::FIELD_ITEM) { Item_field *item; pos= real_pos; if (!(item= new Item_field(thd, ((Item_field*) pos)))) goto err; pos= item; if (item->field->flags & BLOB_FLAG) { if (!(pos= new Item_copy_string(pos))) goto err; /* Item_copy_string::copy for function can call Item_copy_string::val_int for blob via Item_ref. But if Item_copy_string::copy for blob isn't called before, it's value will be wrong so let's insert Item_copy_string for blobs in the beginning of copy_funcs (to see full test case look at having.test, BUG #4358) */ if (param->copy_funcs.push_front(pos)) goto err; } else { /* set up save buffer and change result_field to point at saved value */ field= item->field; item->result_field=field->new_field(thd->mem_root,field->table, 1); /* We need to allocate one extra byte for null handling and another extra byte to not get warnings from purify in Field_string::val_int */ tmp= (char*) sql_alloc(field->pack_length()+2); if (!tmp) goto err; if (copy) { copy->set(tmp, item->result_field); item->result_field->move_field(copy->to_ptr,copy->to_null_ptr,1); #ifdef HAVE_purify copy->to_ptr[copy->from_length]= 0; #endif copy++; } } } else if ((real_pos->type() == Item::FUNC_ITEM || real_pos->type() == Item::SUBSELECT_ITEM || real_pos->type() == Item::CACHE_ITEM || real_pos->type() == Item::COND_ITEM) && !real_pos->with_sum_func) { // Save for send fields pos= real_pos; /* TODO: In most cases this result will be sent to the user. This should be changed to use copy_int or copy_real depending on how the value is to be used: In some cases this may be an argument in a group function, like: IF(ISNULL(col),0,COUNT(*)) */ if (!(pos=new Item_copy_string(pos))) goto err; if (i < border) // HAVING, ORDER and GROUP BY { if (extra_funcs.push_back(pos)) goto err; } else if (param->copy_funcs.push_back(pos)) goto err; } res_all_fields.push_back(pos); ref_pointer_array[((i < border)? all_fields.elements-i-1 : i-border)]= pos; } param->copy_field_end= copy; for (i= 0; i < border; i++) itr++; itr.sublist(res_selected_fields, elements); /* Put elements from HAVING, ORDER BY and GROUP BY last to ensure that any reference used in these will resolve to a item that is already calculated */ param->copy_funcs.concat(&extra_funcs); DBUG_RETURN(0); err: if (copy) delete [] param->copy_field; // This is never 0 param->copy_field=0; err2: DBUG_RETURN(TRUE); } /* Make a copy of all simple SELECT'ed items This is done at the start of a new group so that we can retrieve these later when the group changes. */ void copy_fields(TMP_TABLE_PARAM *param) { Copy_field *ptr=param->copy_field; Copy_field *end=param->copy_field_end; for (; ptr != end; ptr++) (*ptr->do_copy)(ptr); List_iterator_fast<Item> it(param->copy_funcs); Item_copy_string *item; while ((item = (Item_copy_string*) it++)) item->copy(); } /* Make an array of pointers to sum_functions to speed up sum_func calculation SYNOPSIS alloc_func_list() RETURN 0 ok 1 Error */ bool JOIN::alloc_func_list() { uint func_count, group_parts; DBUG_ENTER("alloc_func_list"); func_count= tmp_table_param.sum_func_count; /* If we are using rollup, we need a copy of the summary functions for each level */ if (rollup.state != ROLLUP::STATE_NONE) func_count*= (send_group_parts+1); group_parts= send_group_parts; /* If distinct, reserve memory for possible disctinct->group_by optimization */ if (select_distinct) { group_parts+= fields_list.elements; /* If the ORDER clause is specified then it's possible that it also will be optimized, so reserve space for it too */ if (order) { ORDER *ord; for (ord= order; ord; ord= ord->next) group_parts++; } } /* This must use calloc() as rollup_make_fields depends on this */ sum_funcs= (Item_sum**) thd->calloc(sizeof(Item_sum**) * (func_count+1) + sizeof(Item_sum***) * (group_parts+1)); sum_funcs_end= (Item_sum***) (sum_funcs+func_count+1); DBUG_RETURN(sum_funcs == 0); } /* Initialize 'sum_funcs' array with all Item_sum objects SYNOPSIS make_sum_func_list() field_list All items send_fields Items in select list before_group_by Set to 1 if this is called before GROUP BY handling recompute Set to TRUE if sum_funcs must be recomputed RETURN 0 ok 1 error */ bool JOIN::make_sum_func_list(List<Item> &field_list, List<Item> &send_fields, bool before_group_by, bool recompute) { List_iterator_fast<Item> it(field_list); Item_sum **func; Item *item; DBUG_ENTER("make_sum_func_list"); if (*sum_funcs && !recompute) DBUG_RETURN(FALSE); /* We have already initialized sum_funcs. */ func= sum_funcs; while ((item=it++)) { if (item->type() == Item::SUM_FUNC_ITEM && !item->const_item()) *func++= (Item_sum*) item; } if (before_group_by && rollup.state == ROLLUP::STATE_INITED) { rollup.state= ROLLUP::STATE_READY; if (rollup_make_fields(field_list, send_fields, &func)) DBUG_RETURN(TRUE); // Should never happen } else if (rollup.state == ROLLUP::STATE_NONE) { for (uint i=0 ; i <= send_group_parts ;i++) sum_funcs_end[i]= func; } else if (rollup.state == ROLLUP::STATE_READY) DBUG_RETURN(FALSE); // Don't put end marker *func=0; // End marker DBUG_RETURN(FALSE); } /* Change all funcs and sum_funcs to fields in tmp table, and create new list of all items. change_to_use_tmp_fields() thd - THD pointer ref_pointer_array - array of pointers to top elements of filed list res_selected_fields - new list of items of select item list res_all_fields - new list of all items elements - number of elements in select item list all_fields - all fields list RETURN 0 - ok !=0 - error */ static bool change_to_use_tmp_fields(THD *thd, Item **ref_pointer_array, List<Item> &res_selected_fields, List<Item> &res_all_fields, uint elements, List<Item> &all_fields) { List_iterator_fast<Item> it(all_fields); Item *item_field,*item; DBUG_ENTER("change_to_use_tmp_fields"); res_selected_fields.empty(); res_all_fields.empty(); uint i, border= all_fields.elements - elements; for (i= 0; (item= it++); i++) { Field *field; if ((item->with_sum_func && item->type() != Item::SUM_FUNC_ITEM) || (item->type() == Item::FUNC_ITEM && ((Item_func*)item)->functype() == Item_func::SUSERVAR_FUNC)) item_field= item; else { if (item->type() == Item::FIELD_ITEM) { item_field= item->get_tmp_table_item(thd); } else if ((field= item->get_tmp_table_field())) { if (item->type() == Item::SUM_FUNC_ITEM && field->table->group) item_field= ((Item_sum*) item)->result_item(field); else item_field= (Item*) new Item_field(field); if (!item_field) DBUG_RETURN(TRUE); // Fatal error item_field->name= item->name; #ifndef DBUG_OFF if (_db_on_ && !item_field->name) { char buff[256]; String str(buff,sizeof(buff),&my_charset_bin); str.length(0); item->print(&str); item_field->name= sql_strmake(str.ptr(),str.length()); } #endif } else item_field= item; } res_all_fields.push_back(item_field); ref_pointer_array[((i < border)? all_fields.elements-i-1 : i-border)]= item_field; } List_iterator_fast<Item> itr(res_all_fields); for (i= 0; i < border; i++) itr++; itr.sublist(res_selected_fields, elements); DBUG_RETURN(FALSE); } /* Change all sum_func refs to fields to point at fields in tmp table Change all funcs to be fields in tmp table change_refs_to_tmp_fields() thd - THD pointer ref_pointer_array - array of pointers to top elements of filed list res_selected_fields - new list of items of select item list res_all_fields - new list of all items elements - number of elements in select item list all_fields - all fields list RETURN 0 ok 1 error */ static bool change_refs_to_tmp_fields(THD *thd, Item **ref_pointer_array, List<Item> &res_selected_fields, List<Item> &res_all_fields, uint elements, List<Item> &all_fields) { List_iterator_fast<Item> it(all_fields); Item *item, *new_item; res_selected_fields.empty(); res_all_fields.empty(); uint i, border= all_fields.elements - elements; for (i= 0; (item= it++); i++) { res_all_fields.push_back(new_item= item->get_tmp_table_item(thd)); ref_pointer_array[((i < border)? all_fields.elements-i-1 : i-border)]= new_item; } List_iterator_fast<Item> itr(res_all_fields); for (i= 0; i < border; i++) itr++; itr.sublist(res_selected_fields, elements); return thd->is_fatal_error; } /****************************************************************************** Code for calculating functions ******************************************************************************/ /* Call ::setup for all sum functions SYNOPSIS setup_sum_funcs() thd thread handler func_ptr sum function list RETURN FALSE ok TRUE error */ static bool setup_sum_funcs(THD *thd, Item_sum **func_ptr) { Item_sum *func; DBUG_ENTER("setup_sum_funcs"); while ((func= *(func_ptr++))) { if (func->setup(thd)) DBUG_RETURN(TRUE); } DBUG_RETURN(FALSE); } static void init_tmptable_sum_functions(Item_sum **func_ptr) { Item_sum *func; while ((func= *(func_ptr++))) func->reset_field(); } /* Update record 0 in tmp_table from record 1 */ static void update_tmptable_sum_func(Item_sum **func_ptr, TABLE *tmp_table __attribute__((unused))) { Item_sum *func; while ((func= *(func_ptr++))) func->update_field(); } /* Copy result of sum functions to record in tmp_table */ static void copy_sum_funcs(Item_sum **func_ptr, Item_sum **end_ptr) { for (; func_ptr != end_ptr ; func_ptr++) (void) (*func_ptr)->save_in_result_field(1); return; } static bool init_sum_functions(Item_sum **func_ptr, Item_sum **end_ptr) { for (; func_ptr != end_ptr ;func_ptr++) { if ((*func_ptr)->reset()) return 1; } /* If rollup, calculate the upper sum levels */ for ( ; *func_ptr ; func_ptr++) { if ((*func_ptr)->add()) return 1; } return 0; } static bool update_sum_func(Item_sum **func_ptr) { Item_sum *func; for (; (func= (Item_sum*) *func_ptr) ; func_ptr++) if (func->add()) return 1; return 0; } /* Copy result of functions to record in tmp_table */ void copy_funcs(Item **func_ptr) { Item *func; for (; (func = *func_ptr) ; func_ptr++) func->save_in_result_field(1); } /* Create a condition for a const reference and add this to the currenct select for the table */ static bool add_ref_to_table_cond(THD *thd, JOIN_TAB *join_tab) { DBUG_ENTER("add_ref_to_table_cond"); if (!join_tab->ref.key_parts) DBUG_RETURN(FALSE); Item_cond_and *cond=new Item_cond_and(); TABLE *table=join_tab->table; int error; if (!cond) DBUG_RETURN(TRUE); for (uint i=0 ; i < join_tab->ref.key_parts ; i++) { Field *field=table->field[table->key_info[join_tab->ref.key].key_part[i]. fieldnr-1]; Item *value=join_tab->ref.items[i]; cond->add(new Item_func_equal(new Item_field(field), value)); } if (thd->is_fatal_error) DBUG_RETURN(TRUE); if (!cond->fixed) cond->fix_fields(thd, (Item**)&cond); if (join_tab->select) { error=(int) cond->add(join_tab->select->cond); join_tab->select_cond=join_tab->select->cond=cond; } else if ((join_tab->select= make_select(join_tab->table, 0, 0, cond, 0, &error))) join_tab->select_cond=cond; DBUG_RETURN(error ? TRUE : FALSE); } /* Free joins of subselect of this select. free_underlaid_joins() thd - THD pointer select - pointer to st_select_lex which subselects joins we will free */ void free_underlaid_joins(THD *thd, SELECT_LEX *select) { for (SELECT_LEX_UNIT *unit= select->first_inner_unit(); unit; unit= unit->next_unit()) unit->cleanup(); } /**************************************************************************** ROLLUP handling ****************************************************************************/ /* Replace occurences of group by fields in an expression by ref items SYNOPSIS change_group_ref() thd reference to the context expr expression to make replacement group_list list of references to group by items changed out: returns 1 if item contains a replaced field item DESCRIPTION The function replaces occurrences of group by fields in expr by ref objects for these fields unless they are under aggregate functions. The function also corrects value of the the maybe_null attribute for the items of all subexpressions containing group by fields. IMPLEMENTATION The function recursively traverses the tree of the expr expression, looks for occurrences of the group by fields that are not under aggregate functions and replaces them for the corresponding ref items. NOTES This substitution is needed GROUP BY queries with ROLLUP if SELECT list contains expressions over group by attributes. TODO: Some functions are not null-preserving. For those functions updating of the maybe_null attribute is an overkill. EXAMPLES SELECT a+1 FROM t1 GROUP BY a WITH ROLLUP SELECT SUM(a)+a FROM t1 GROUP BY a WITH ROLLUP RETURN 0 if ok 1 on error */ static bool change_group_ref(THD *thd, Item_func *expr, ORDER *group_list, bool *changed) { if (expr->arg_count) { Name_resolution_context *context= &thd->lex->current_select->context; Item **arg,**arg_end; bool arg_changed= FALSE; for (arg= expr->arguments(), arg_end= expr->arguments()+expr->arg_count; arg != arg_end; arg++) { Item *item= *arg; if (item->type() == Item::FIELD_ITEM || item->type() == Item::REF_ITEM) { ORDER *group_tmp; for (group_tmp= group_list; group_tmp; group_tmp= group_tmp->next) { if (item->eq(*group_tmp->item,0)) { Item *new_item; if (!(new_item= new Item_ref(context, group_tmp->item, 0, item->name))) return 1; // fatal_error is set thd->change_item_tree(arg, new_item); arg_changed= TRUE; } } } else if (item->type() == Item::FUNC_ITEM) { if (change_group_ref(thd, (Item_func *) item, group_list, &arg_changed)) return 1; } } if (arg_changed) { expr->maybe_null= 1; *changed= TRUE; } } return 0; } /* Allocate memory needed for other rollup functions */ bool JOIN::rollup_init() { uint i,j; Item **ref_array; tmp_table_param.quick_group= 0; // Can't create groups in tmp table rollup.state= ROLLUP::STATE_INITED; /* Create pointers to the different sum function groups These are updated by rollup_make_fields() */ tmp_table_param.group_parts= send_group_parts; if (!(rollup.null_items= (Item_null_result**) thd->alloc((sizeof(Item*) + sizeof(Item**) + sizeof(List<Item>) + ref_pointer_array_size) * send_group_parts ))) return 1; rollup.fields= (List<Item>*) (rollup.null_items + send_group_parts); rollup.ref_pointer_arrays= (Item***) (rollup.fields + send_group_parts); ref_array= (Item**) (rollup.ref_pointer_arrays+send_group_parts); /* Prepare space for field list for the different levels These will be filled up in rollup_make_fields() */ for (i= 0 ; i < send_group_parts ; i++) { rollup.null_items[i]= new (thd->mem_root) Item_null_result(); List<Item> *rollup_fields= &rollup.fields[i]; rollup_fields->empty(); rollup.ref_pointer_arrays[i]= ref_array; ref_array+= all_fields.elements; } for (i= 0 ; i < send_group_parts; i++) { for (j=0 ; j < fields_list.elements ; j++) rollup.fields[i].push_back(rollup.null_items[i]); } List_iterator_fast<Item> it(all_fields); Item *item; while ((item= it++)) { ORDER *group_tmp; bool found_in_group= 0; for (group_tmp= group_list; group_tmp; group_tmp= group_tmp->next) { if (*group_tmp->item == item) { item->maybe_null= 1; found_in_group= 1; } } if (item->type() == Item::FUNC_ITEM && !found_in_group) { bool changed= FALSE; if (change_group_ref(thd, (Item_func *) item, group_list, &changed)) return 1; /* We have to prevent creation of a field in a temporary table for an expression that contains GROUP BY attributes. Marking the expression item as 'with_sum_func' will ensure this. */ if (changed) item->with_sum_func= 1; } } return 0; } /* Fill up rollup structures with pointers to fields to use SYNOPSIS rollup_make_fields() fields_arg List of all fields (hidden and real ones) sel_fields Pointer to selected fields func Store here a pointer to all fields IMPLEMENTATION: Creates copies of item_sum items for each sum level RETURN 0 if ok In this case func is pointing to next not used element. 1 on error */ bool JOIN::rollup_make_fields(List<Item> &fields_arg, List<Item> &sel_fields, Item_sum ***func) { List_iterator_fast<Item> it(fields_arg); Item *first_field= sel_fields.head(); uint level; /* Create field lists for the different levels The idea here is to have a separate field list for each rollup level to avoid all runtime checks of which columns should be NULL. The list is stored in reverse order to get sum function in such an order in func that it makes it easy to reset them with init_sum_functions() Assuming: SELECT a, b, c SUM(b) FROM t1 GROUP BY a,b WITH ROLLUP rollup.fields[0] will contain list where a,b,c is NULL rollup.fields[1] will contain list where b,c is NULL ... rollup.ref_pointer_array[#] points to fields for rollup.fields[#] ... sum_funcs_end[0] points to all sum functions sum_funcs_end[1] points to all sum functions, except grand totals ... */ for (level=0 ; level < send_group_parts ; level++) { uint i; uint pos= send_group_parts - level -1; bool real_fields= 0; Item *item; List_iterator<Item> new_it(rollup.fields[pos]); Item **ref_array_start= rollup.ref_pointer_arrays[pos]; ORDER *start_group; /* Point to first hidden field */ Item **ref_array= ref_array_start + fields_arg.elements-1; /* Remember where the sum functions ends for the previous level */ sum_funcs_end[pos+1]= *func; /* Find the start of the group for this level */ for (i= 0, start_group= group_list ; i++ < pos ; start_group= start_group->next) ; it.rewind(); while ((item= it++)) { if (item == first_field) { real_fields= 1; // End of hidden fields ref_array= ref_array_start; } if (item->type() == Item::SUM_FUNC_ITEM && !item->const_item()) { /* This is a top level summary function that must be replaced with a sum function that is reset for this level. NOTE: This code creates an object which is not that nice in a sub select. Fortunately it's not common to have rollup in sub selects. */ item= item->copy_or_same(thd); ((Item_sum*) item)->make_unique(); *(*func)= (Item_sum*) item; (*func)++; } else { /* Check if this is something that is part of this group by */ ORDER *group_tmp; for (group_tmp= start_group, i= pos ; group_tmp ; group_tmp= group_tmp->next, i++) { if (*group_tmp->item == item) { /* This is an element that is used by the GROUP BY and should be set to NULL in this level */ Item_null_result *null_item= new (thd->mem_root) Item_null_result(); if (!null_item) return 1; item->maybe_null= 1; // Value will be null sometimes null_item->result_field= item->get_tmp_table_field(); item= null_item; break; } } } *ref_array= item; if (real_fields) { (void) new_it++; // Point to next item new_it.replace(item); // Replace previous ref_array++; } else ref_array--; } } sum_funcs_end[0]= *func; // Point to last function return 0; } /* Send all rollup levels higher than the current one to the client SYNOPSIS: rollup_send_data() idx Level we are on: 0 = Total sum level 1 = First group changed (a) 2 = Second group changed (a,b) SAMPLE SELECT a, b, c SUM(b) FROM t1 GROUP BY a,b WITH ROLLUP RETURN 0 ok 1 If send_data_failed() */ int JOIN::rollup_send_data(uint idx) { uint i; for (i= send_group_parts ; i-- > idx ; ) { /* Get reference pointers to sum functions in place */ memcpy((char*) ref_pointer_array, (char*) rollup.ref_pointer_arrays[i], ref_pointer_array_size); if ((!having || having->val_int())) { if (send_records < unit->select_limit_cnt && do_send_rows && result->send_data(rollup.fields[i])) return 1; send_records++; } } /* Restore ref_pointer_array */ set_items_ref_array(current_ref_pointer_array); return 0; } /* Write all rollup levels higher than the current one to a temp table SYNOPSIS: rollup_write_data() idx Level we are on: 0 = Total sum level 1 = First group changed (a) 2 = Second group changed (a,b) table reference to temp table SAMPLE SELECT a, b, SUM(c) FROM t1 GROUP BY a,b WITH ROLLUP RETURN 0 ok 1 if write_data_failed() */ int JOIN::rollup_write_data(uint idx, TABLE *table) { uint i; for (i= send_group_parts ; i-- > idx ; ) { /* Get reference pointers to sum functions in place */ memcpy((char*) ref_pointer_array, (char*) rollup.ref_pointer_arrays[i], ref_pointer_array_size); if ((!having || having->val_int())) { int error; Item *item; List_iterator_fast<Item> it(rollup.fields[i]); while ((item= it++)) { if (item->type() == Item::NULL_ITEM && item->is_result_field()) item->save_in_result_field(1); } copy_sum_funcs(sum_funcs_end[i+1], sum_funcs_end[i]); if ((error= table->file->write_row(table->record[0]))) { if (create_myisam_from_heap(thd, table, &tmp_table_param, error, 0)) return 1; } } } /* Restore ref_pointer_array */ set_items_ref_array(current_ref_pointer_array); return 0; } /* clear results if there are not rows found for group (end_send_group/end_write_group) SYNOPSYS JOIN::clear() */ void JOIN::clear() { clear_tables(this); copy_fields(&tmp_table_param); if (sum_funcs) { Item_sum *func, **func_ptr= sum_funcs; while ((func= *(func_ptr++))) func->clear(); } } /**************************************************************************** EXPLAIN handling Send a description about what how the select will be done to stdout ****************************************************************************/ static void select_describe(JOIN *join, bool need_tmp_table, bool need_order, bool distinct,const char *message) { List<Item> field_list; List<Item> item_list; THD *thd=join->thd; select_result *result=join->result; Item *item_null= new Item_null(); CHARSET_INFO *cs= system_charset_info; int quick_type; DBUG_ENTER("select_describe"); DBUG_PRINT("info", ("Select 0x%lx, type %s, message %s", (ulong)join->select_lex, join->select_lex->type, message ? message : "NULL")); /* Don't log this into the slow query log */ thd->server_status&= ~(SERVER_QUERY_NO_INDEX_USED | SERVER_QUERY_NO_GOOD_INDEX_USED); join->unit->offset_limit_cnt= 0; if (message) { item_list.push_back(new Item_int((int32) join->select_lex->select_number)); item_list.push_back(new Item_string(join->select_lex->type, strlen(join->select_lex->type), cs)); for (uint i=0 ; i < 7; i++) item_list.push_back(item_null); item_list.push_back(new Item_string(message,strlen(message),cs)); if (result->send_data(item_list)) join->error= 1; } else if (join->select_lex == join->unit->fake_select_lex) { /* here we assume that the query will return at least two rows, so we show "filesort" in EXPLAIN. Of course, sometimes we'll be wrong and no filesort will be actually done, but executing all selects in the UNION to provide precise EXPLAIN information will hardly be appreciated :) */ char table_name_buffer[NAME_LEN]; item_list.empty(); /* id */ item_list.push_back(new Item_null); /* select_type */ item_list.push_back(new Item_string(join->select_lex->type, strlen(join->select_lex->type), cs)); /* table */ { SELECT_LEX *sl= join->unit->first_select(); uint len= 6, lastop= 0; memcpy(table_name_buffer, STRING_WITH_LEN("<union")); for (; sl && len + lastop + 5 < NAME_LEN; sl= sl->next_select()) { len+= lastop; lastop= my_snprintf(table_name_buffer + len, NAME_LEN - len, "%u,", sl->select_number); } if (sl || len + lastop >= NAME_LEN) { memcpy(table_name_buffer + len, STRING_WITH_LEN("...>") + 1); len+= 4; } else { len+= lastop; table_name_buffer[len - 1]= '>'; // change ',' to '>' } item_list.push_back(new Item_string(table_name_buffer, len, cs)); } /* type */ item_list.push_back(new Item_string(join_type_str[JT_ALL], strlen(join_type_str[JT_ALL]), cs)); /* possible_keys */ item_list.push_back(item_null); /* key*/ item_list.push_back(item_null); /* key_len */ item_list.push_back(item_null); /* ref */ item_list.push_back(item_null); /* rows */ item_list.push_back(item_null); /* extra */ if (join->unit->global_parameters->order_list.first) item_list.push_back(new Item_string("Using filesort", 14, cs)); else item_list.push_back(new Item_string("", 0, cs)); if (result->send_data(item_list)) join->error= 1; } else { table_map used_tables=0; for (uint i=0 ; i < join->tables ; i++) { JOIN_TAB *tab=join->join_tab+i; TABLE *table=tab->table; char buff[512]; char buff1[512], buff2[512], buff3[512]; char keylen_str_buf[64]; String extra(buff, sizeof(buff),cs); char table_name_buffer[NAME_LEN]; String tmp1(buff1,sizeof(buff1),cs); String tmp2(buff2,sizeof(buff2),cs); String tmp3(buff3,sizeof(buff3),cs); extra.length(0); tmp1.length(0); tmp2.length(0); tmp3.length(0); quick_type= -1; item_list.empty(); /* id */ item_list.push_back(new Item_uint((uint32) join->select_lex->select_number)); /* select_type */ item_list.push_back(new Item_string(join->select_lex->type, strlen(join->select_lex->type), cs)); if (tab->type == JT_ALL && tab->select && tab->select->quick) { quick_type= tab->select->quick->get_type(); if ((quick_type == QUICK_SELECT_I::QS_TYPE_INDEX_MERGE) || (quick_type == QUICK_SELECT_I::QS_TYPE_ROR_INTERSECT) || (quick_type == QUICK_SELECT_I::QS_TYPE_ROR_UNION)) tab->type = JT_INDEX_MERGE; else tab->type = JT_RANGE; } /* table */ if (table->derived_select_number) { /* Derived table name generation */ int len= my_snprintf(table_name_buffer, sizeof(table_name_buffer)-1, "<derived%u>", table->derived_select_number); item_list.push_back(new Item_string(table_name_buffer, len, cs)); } else { TABLE_LIST *tab=table->pos_in_table_list; item_list.push_back(new Item_string(tab->alias, strlen(tab->alias), cs)); } /* type */ item_list.push_back(new Item_string(join_type_str[tab->type], strlen(join_type_str[tab->type]), cs)); /* Build "possible_keys" value and add it to item_list */ if (!tab->keys.is_clear_all()) { uint j; for (j=0 ; j < table->s->keys ; j++) { if (tab->keys.is_set(j)) { if (tmp1.length()) tmp1.append(','); tmp1.append(table->key_info[j].name, strlen(table->key_info[j].name), system_charset_info); } } } if (tmp1.length()) item_list.push_back(new Item_string(tmp1.ptr(),tmp1.length(),cs)); else item_list.push_back(item_null); /* Build "key", "key_len", and "ref" values and add them to item_list */ if (tab->ref.key_parts) { KEY *key_info=table->key_info+ tab->ref.key; register uint length; item_list.push_back(new Item_string(key_info->name, strlen(key_info->name), system_charset_info)); length= longlong2str(tab->ref.key_length, keylen_str_buf, 10) - keylen_str_buf; item_list.push_back(new Item_string(keylen_str_buf, length, system_charset_info)); for (store_key **ref=tab->ref.key_copy ; *ref ; ref++) { if (tmp2.length()) tmp2.append(','); tmp2.append((*ref)->name(), strlen((*ref)->name()), system_charset_info); } item_list.push_back(new Item_string(tmp2.ptr(),tmp2.length(),cs)); } else if (tab->type == JT_NEXT) { KEY *key_info=table->key_info+ tab->index; register uint length; item_list.push_back(new Item_string(key_info->name, strlen(key_info->name),cs)); length= longlong2str(key_info->key_length, keylen_str_buf, 10) - keylen_str_buf; item_list.push_back(new Item_string(keylen_str_buf, length, system_charset_info)); item_list.push_back(item_null); } else if (tab->select && tab->select->quick) { tab->select->quick->add_keys_and_lengths(&tmp2, &tmp3); item_list.push_back(new Item_string(tmp2.ptr(),tmp2.length(),cs)); item_list.push_back(new Item_string(tmp3.ptr(),tmp3.length(),cs)); item_list.push_back(item_null); } else { item_list.push_back(item_null); item_list.push_back(item_null); item_list.push_back(item_null); } /* Add "rows" field to item_list. */ item_list.push_back(new Item_int((longlong) (ulonglong) join->best_positions[i]. records_read, 21)); /* Build "Extra" field and add it to item_list. */ my_bool key_read=table->key_read; if ((tab->type == JT_NEXT || tab->type == JT_CONST) && table->used_keys.is_set(tab->index)) key_read=1; if (quick_type == QUICK_SELECT_I::QS_TYPE_ROR_INTERSECT && !((QUICK_ROR_INTERSECT_SELECT*)tab->select->quick)->need_to_fetch_row) key_read=1; if (tab->info) item_list.push_back(new Item_string(tab->info,strlen(tab->info),cs)); else { if (quick_type == QUICK_SELECT_I::QS_TYPE_ROR_UNION || quick_type == QUICK_SELECT_I::QS_TYPE_ROR_INTERSECT || quick_type == QUICK_SELECT_I::QS_TYPE_INDEX_MERGE) { extra.append(STRING_WITH_LEN("; Using ")); tab->select->quick->add_info_string(&extra); } if (tab->select) { if (tab->use_quick == 2) { char buf[MAX_KEY/8+1]; extra.append(STRING_WITH_LEN("; Range checked for each " "record (index map: 0x")); extra.append(tab->keys.print(buf)); extra.append(')'); } else if (tab->select->cond) { const COND *pushed_cond= tab->table->file->pushed_cond; if (thd->variables.engine_condition_pushdown && pushed_cond) { extra.append(STRING_WITH_LEN("; Using where with pushed " "condition")); if (thd->lex->describe & DESCRIBE_EXTENDED) { extra.append(STRING_WITH_LEN(": ")); ((COND *)pushed_cond)->print(&extra); } } else extra.append(STRING_WITH_LEN("; Using where")); } } if (key_read) { if (quick_type == QUICK_SELECT_I::QS_TYPE_GROUP_MIN_MAX) extra.append(STRING_WITH_LEN("; Using index for group-by")); else extra.append(STRING_WITH_LEN("; Using index")); } if (table->reginfo.not_exists_optimize) extra.append(STRING_WITH_LEN("; Not exists")); if (need_tmp_table) { need_tmp_table=0; extra.append(STRING_WITH_LEN("; Using temporary")); } if (need_order) { need_order=0; extra.append(STRING_WITH_LEN("; Using filesort")); } if (distinct & test_all_bits(used_tables,thd->used_tables)) extra.append(STRING_WITH_LEN("; Distinct")); /* Skip initial "; "*/ const char *str= extra.ptr(); uint32 len= extra.length(); if (len) { str += 2; len -= 2; } item_list.push_back(new Item_string(str, len, cs)); } // For next iteration used_tables|=table->map; if (result->send_data(item_list)) join->error= 1; } } for (SELECT_LEX_UNIT *unit= join->select_lex->first_inner_unit(); unit; unit= unit->next_unit()) { if (mysql_explain_union(thd, unit, result)) DBUG_VOID_RETURN; } DBUG_VOID_RETURN; } bool mysql_explain_union(THD *thd, SELECT_LEX_UNIT *unit, select_result *result) { DBUG_ENTER("mysql_explain_union"); bool res= 0; SELECT_LEX *first= unit->first_select(); for (SELECT_LEX *sl= first; sl; sl= sl->next_select()) { // drop UNCACHEABLE_EXPLAIN, because it is for internal usage only uint8 uncacheable= (sl->uncacheable & ~UNCACHEABLE_EXPLAIN); sl->type= (((&thd->lex->select_lex)==sl)? (sl->first_inner_unit() || sl->next_select() ? "PRIMARY" : "SIMPLE"): ((sl == first)? ((sl->linkage == DERIVED_TABLE_TYPE) ? "DERIVED": ((uncacheable & UNCACHEABLE_DEPENDENT) ? "DEPENDENT SUBQUERY": (uncacheable?"UNCACHEABLE SUBQUERY": "SUBQUERY"))): ((uncacheable & UNCACHEABLE_DEPENDENT) ? "DEPENDENT UNION": uncacheable?"UNCACHEABLE UNION": "UNION"))); sl->options|= SELECT_DESCRIBE; } if (first->next_select()) { unit->fake_select_lex->select_number= UINT_MAX; // jost for initialization unit->fake_select_lex->type= "UNION RESULT"; unit->fake_select_lex->options|= SELECT_DESCRIBE; if (!(res= unit->prepare(thd, result, SELECT_NO_UNLOCK | SELECT_DESCRIBE))) res= unit->exec(); res|= unit->cleanup(); } else { thd->lex->current_select= first; unit->set_limit(unit->global_parameters); res= mysql_select(thd, &first->ref_pointer_array, (TABLE_LIST*) first->table_list.first, first->with_wild, first->item_list, first->where, first->order_list.elements + first->group_list.elements, (ORDER*) first->order_list.first, (ORDER*) first->group_list.first, first->having, (ORDER*) thd->lex->proc_list.first, first->options | thd->options | SELECT_DESCRIBE, result, unit, first); } DBUG_RETURN(res || thd->net.report_error); } /* Print joins from the FROM clause SYNOPSIS print_join() thd thread handler str string where table should be printed tables list of tables in join */ static void print_join(THD *thd, String *str, List<TABLE_LIST> *tables) { /* List is reversed => we should reverse it before using */ List_iterator_fast<TABLE_LIST> ti(*tables); TABLE_LIST **table= (TABLE_LIST **)thd->alloc(sizeof(TABLE_LIST*) * tables->elements); if (table == 0) return; // out of memory for (TABLE_LIST **t= table + (tables->elements - 1); t >= table; t--) *t= ti++; DBUG_ASSERT(tables->elements >= 1); (*table)->print(thd, str); TABLE_LIST **end= table + tables->elements; for (TABLE_LIST **tbl= table + 1; tbl < end; tbl++) { TABLE_LIST *curr= *tbl; if (curr->outer_join) { /* MySQL converts right to left joins */ str->append(STRING_WITH_LEN(" left join ")); } else if (curr->straight) str->append(STRING_WITH_LEN(" straight_join ")); else str->append(STRING_WITH_LEN(" join ")); curr->print(thd, str); if (curr->on_expr) { str->append(STRING_WITH_LEN(" on(")); curr->on_expr->print(str); str->append(')'); } } } /* Print table as it should be in join list SYNOPSIS st_table_list::print(); str string where table should bbe printed */ void st_table_list::print(THD *thd, String *str) { if (nested_join) { str->append('('); print_join(thd, str, &nested_join->join_list); str->append(')'); } else { const char *cmp_name; // Name to compare with alias if (view_name.str) { // A view if (!(belong_to_view && belong_to_view->compact_view_format)) { append_identifier(thd, str, view_db.str, view_db.length); str->append('.'); } append_identifier(thd, str, view_name.str, view_name.length); cmp_name= view_name.str; } else if (derived) { // A derived table str->append('('); derived->print(str); str->append(')'); cmp_name= ""; // Force printing of alias } else { // A normal table if (!(belong_to_view && belong_to_view->compact_view_format)) { append_identifier(thd, str, db, db_length); str->append('.'); } if (schema_table) { append_identifier(thd, str, schema_table_name, strlen(schema_table_name)); cmp_name= schema_table_name; } else { append_identifier(thd, str, table_name, table_name_length); cmp_name= table_name; } } if (my_strcasecmp(table_alias_charset, cmp_name, alias)) { str->append(' '); append_identifier(thd, str, alias, strlen(alias)); } } } void st_select_lex::print(THD *thd, String *str) { /* QQ: thd may not be set for sub queries, but this should be fixed */ if (!thd) thd= current_thd; str->append(STRING_WITH_LEN("select ")); /* First add options */ if (options & SELECT_STRAIGHT_JOIN) str->append(STRING_WITH_LEN("straight_join ")); if ((thd->lex->lock_option == TL_READ_HIGH_PRIORITY) && (this == &thd->lex->select_lex)) str->append(STRING_WITH_LEN("high_priority ")); if (options & SELECT_DISTINCT) str->append(STRING_WITH_LEN("distinct ")); if (options & SELECT_SMALL_RESULT) str->append(STRING_WITH_LEN("sql_small_result ")); if (options & SELECT_BIG_RESULT) str->append(STRING_WITH_LEN("sql_big_result ")); if (options & OPTION_BUFFER_RESULT) str->append(STRING_WITH_LEN("sql_buffer_result ")); if (options & OPTION_FOUND_ROWS) str->append(STRING_WITH_LEN("sql_calc_found_rows ")); switch (sql_cache) { case SQL_NO_CACHE: str->append(STRING_WITH_LEN("sql_no_cache ")); break; case SQL_CACHE: str->append(STRING_WITH_LEN("sql_cache ")); break; case SQL_CACHE_UNSPECIFIED: break; default: DBUG_ASSERT(0); } //Item List bool first= 1; List_iterator_fast<Item> it(item_list); Item *item; while ((item= it++)) { if (first) first= 0; else str->append(','); item->print_item_w_name(str); } /* from clause TODO: support USING/FORCE/IGNORE index */ if (table_list.elements) { str->append(STRING_WITH_LEN(" from ")); /* go through join tree */ print_join(thd, str, &top_join_list); } // Where Item *cur_where= where; if (join) cur_where= join->conds; if (cur_where) { str->append(STRING_WITH_LEN(" where ")); cur_where->print(str); } // group by & olap if (group_list.elements) { str->append(STRING_WITH_LEN(" group by ")); print_order(str, (ORDER *) group_list.first); switch (olap) { case CUBE_TYPE: str->append(STRING_WITH_LEN(" with cube")); break; case ROLLUP_TYPE: str->append(STRING_WITH_LEN(" with rollup")); break; default: ; //satisfy compiler } } // having Item *cur_having= having; if (join) cur_having= join->having; if (cur_having) { str->append(STRING_WITH_LEN(" having ")); cur_having->print(str); } if (order_list.elements) { str->append(STRING_WITH_LEN(" order by ")); print_order(str, (ORDER *) order_list.first); } // limit print_limit(thd, str); // PROCEDURE unsupported here } /* change select_result object of JOIN SYNOPSIS JOIN::change_result() res new select_result object RETURN FALSE - OK TRUE - error */ bool JOIN::change_result(select_result *res) { DBUG_ENTER("JOIN::change_result"); result= res; if (!procedure && (result->prepare(fields_list, select_lex->master_unit()) || result->prepare2())) { DBUG_RETURN(TRUE); } DBUG_RETURN(FALSE); }