Commit da7699ad authored by Ivan Tyagov's avatar Ivan Tyagov

Add notebook for keep-alive network.

parent 4ca49f13
This source diff could not be displayed because it is too large. You can view the blob instead.
This source diff could not be displayed because it is too large. You can view the blob instead.
This source diff could not be displayed because it is too large. You can view the blob instead.
{
"cells": [
{
"cell_type": "markdown",
"id": "439adf9f",
"metadata": {},
"source": [
"## Measurements of keep-alive network between one master coupler and two slave couplers with cycle time of 5ms"
]
},
{
"cell_type": "code",
"execution_count": 1,
"id": "a19f317d",
"metadata": {},
"outputs": [],
"source": [
"import matplotlib.pyplot as plt\n",
"import pandas as pd"
]
},
{
"cell_type": "code",
"execution_count": 2,
"id": "b9dad676",
"metadata": {},
"outputs": [],
"source": [
"f=open(\"coupler0_duration.txt\", \"r\")\n",
"lines = f.readlines()\n",
"f.close()\n",
"lines = [float(x.replace(\"\\n\", \"\")) for x in lines[:]]"
]
},
{
"cell_type": "code",
"execution_count": 3,
"id": "d0d49bb0",
"metadata": {},
"outputs": [],
"source": [
"d = {}\n",
"i = 0\n",
"for x in lines:\n",
" d[i] = x\n",
" i += 1\n",
"s = pd.Series(d, name='duration')"
]
},
{
"cell_type": "code",
"execution_count": 4,
"id": "16a57b80",
"metadata": {},
"outputs": [
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAjIAAAGvCAYAAABB3D9ZAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAAAxW0lEQVR4nO3deVwVdd//8fdxO6DIIXFBFFHR3LXiSiXLFUWszNy1O9FSs9AWK71sU+8WypbL8iLLrm7UilxK69YUKtcW9zR3U3MrBc0SBPVgMvcf/Tw/j4ACAud86fV8POahZ+Y7M58zZ2DeZ+Y7g82yLEsAAAAGKuPpAgAAAAqLIAMAAIxFkAEAAMYiyAAAAGMRZAAAgLEIMgAAwFgEGQAAYCyCDAAAMBZBBgAAGIsgA3iBjh07qmPHjp4u46oOHjwom82m1157zdOlFJu6detq6NChrtcrV66UzWbTypUrPVbTpWbOnCmbzaaDBw96upQcTNmPUboQZFDq7d+/Xw888IDq168vHx8f+fv7q127dnrzzTd19uxZT5fnEbt27VL37t3l5+enKlWq6N5779WJEyc8XRYMsHPnTk2aNMkrgxT+nsp5ugCgOH3xxRfq16+f7Ha7hgwZoubNmysrK0vffvutnnzySe3YsUMzZszwdJkl6pdfflH79u3lcDj00ksvKSMjQ6+99pq2bdum9evXq0KFCp4u0au0b99eZ8+eZbv8Pzt37tTkyZPVsWNH1a1b123al19+6Zmi8LdGkEGpdeDAAQ0cOFChoaFavny5atas6ZoWGxurffv26YsvvvBghcUjOztbWVlZ8vHxyXX6Sy+9pMzMTG3atEl16tSRJLVu3Vpdu3bVzJkzNXLkyJIs1+uVKVMmz21ZGmRmZqpSpUpFsizCHjyBS0sotaZMmaKMjAy9//77biHmogYNGuiRRx5xvf7zzz/1/PPPKywsTHa7XXXr1tVTTz0lp9PpNp/NZtOkSZNyLO/yvhUX+zKsXr1aDzzwgAIDA+Xv768hQ4bojz/+uGr9TqdTEydOVIMGDWS32xUSEqJx48blWs/o0aP10UcfqVmzZrLb7UpKSspzuZ9++qnuuOMOV4iRpMjISF1//fWaN2/eVeu6nGVZGjlypCpUqKAFCxa4xn/44YcKDw+Xr6+vqlSpooEDB+rIkSM55l+3bp26d+8uh8OhihUrqkOHDvruu+/c2kyaNEk2m027d+9W//795e/vr8DAQD3yyCM6d+5cvup87bXXdMsttygwMFC+vr4KDw/XJ598ctX5Lu8jM3r0aPn5+enMmTM52g4aNEhBQUG6cOGCa9zSpUt12223qVKlSqpcubJuv/127dixI18179ixQ507d5avr69q166tF154QdnZ2TnaFXSfXLVqlR566CFVr15dtWvXliQdOnRIDz30kBo1aiRfX18FBgaqX79+bpeQZs6cqX79+kmSOnXqJJvN5rZtcusjc/z4cd1///2qUaOGfHx81KpVK82aNcutzaV9r2bMmOH6Gbz55pu1YcOGfG0r/H1xRgal1qJFi1S/fn3dcsst+Wo/fPhwzZo1S3379tXjjz+udevWKS4uTrt27dLChQsLXcfo0aMVEBCgSZMmac+ePZo+fboOHTrkOkDmJjs7Wz179tS3336rkSNHqkmTJtq2bZv+9a9/6aefftJnn33m1n758uWaN2+eRo8erapVq+Y45X/Rr7/+quPHj+sf//hHjmmtW7fWkiVLCvTeLly4oPvuu09z587VwoULdfvtt0uSXnzxRT377LPq37+/hg8frhMnTmjatGlq3769Nm/erICAAFfd0dHRCg8P18SJE1WmTBklJCSoc+fO+uabb9S6dWu39fXv319169ZVXFyc1q5dq7feekt//PGHZs+efdVa33zzTfXs2VP33HOPsrKyNGfOHPXr10+LFy921Z0fAwYMUHx8vOuy5UVnzpzRokWLNHToUJUtW1aS9MEHHygmJkZRUVF65ZVXdObMGU2fPl233nqrNm/enOfnJEkpKSnq1KmT/vzzT/3zn/9UpUqVNGPGDPn6+ua71rw89NBDqlatmp577jllZmZKkjZs2KDvv/9eAwcOVO3atXXw4EFNnz5dHTt21M6dO1WxYkW1b99eDz/8sN566y099dRTatKkiSS5/r3c2bNn1bFjR+3bt0+jR49WvXr1NH/+fA0dOlSnTp1y+yIhSYmJiTp9+rQeeOAB2Ww2TZkyRb1799bPP/+s8uXLX/P7RillAaVQWlqaJcm666678tV+y5YtliRr+PDhbuOfeOIJS5K1fPly1zhJ1sSJE3MsIzQ01IqJiXG9TkhIsCRZ4eHhVlZWlmv8lClTLEnW559/7hrXoUMHq0OHDq7XH3zwgVWmTBnrm2++cVvHO++8Y0myvvvuO7d6ypQpY+3YseOq73PDhg2WJGv27Nk5pj355JOWJOvcuXN5zn/gwAFLkvXqq69a58+ftwYMGGD5+vpaycnJrjYHDx60ypYta7344otu827bts0qV66ca3x2drbVsGFDKyoqysrOzna1O3PmjFWvXj2ra9eurnETJ060JFk9e/Z0W+ZDDz1kSbJ+/PHHq773M2fOuL3OysqymjdvbnXu3Nlt/OWf44oVKyxJ1ooVK1x116pVy+rTp4/bfPPmzbMkWatXr7Ysy7JOnz5tBQQEWCNGjHBrl5KSYjkcjhzjL/foo49akqx169a5xh0/ftxyOByWJOvAgQOu8QXdJ2+99Vbrzz//dGt7+faxLMtas2ZNjv1l/vz5btvjUpfvx1OnTrUkWR9++KFrXFZWlhUREWH5+flZ6enplmX9//0qMDDQ+v33311tP//8c0uStWjRohzrAi7i0hJKpfT0dElS5cqV89X+4pmIsWPHuo1//PHHJema+tKMHDnS7dvkgw8+qHLlyl3x7Mf8+fPVpEkTNW7cWL/99ptr6Ny5syRpxYoVbu07dOigpk2bXrWWi3dp2e32HNMu9gPJz51cWVlZrrMZS5YsUbdu3VzTFixYoOzsbPXv39+t9qCgIDVs2NBV+5YtW7R3714NHjxYJ0+edLXLzMxUly5dtHr16hyXUWJjY91ejxkzRpLydSbp0jMZf/zxh9LS0nTbbbfphx9+uOq8l7LZbOrXr5+WLFmijIwM1/i5c+eqVq1auvXWWyVJX331lU6dOqVBgwa5bYeyZcuqTZs2OT7Dyy1ZskRt27Z1OytVrVo13XPPPQWqNzcjRoxwnTW66NLtc/78eZ08eVINGjRQQEBAgbfRRUuWLFFQUJAGDRrkGle+fHk9/PDDysjI0KpVq9zaDxgwQNddd53r9W233SZJ+vnnnwu1fvw9cGkJpZK/v78k6fTp0/lqf+jQIZUpU0YNGjRwGx8UFKSAgAAdOnSo0LU0bNjQ7bWfn59q1qx5xdtX9+7dq127dqlatWq5Tj9+/Ljb63r16uWrlosHq8v72Uhy9TXJz6WLuLg4ZWRkaOnSpTn6ROzdu1eWZeV43xddDHV79+6VJMXExOS5nrS0NLcD2+XLDAsLU5kyZVzb8vfff1dWVpZruq+vrxwOhyRp8eLFeuGFF7Rlyxa395/X5b0rGTBggKZOnar//d//1eDBg5WRkaElS5a4Lolc+v4uhs/LXdxH83Lo0CG1adMmx/hGjRoVuN7L5ba/nD17VnFxcUpISNCvv/4qy7Jc09LS0gq1nkOHDqlhw4YqU8b9O/PFS1GX/1xd2m9Lkuuzz0+fMvx9EWRQKvn7+ys4OFjbt28v0HyFOahddGkHz2uVnZ2tFi1a6I033sh1ekhIiNvr/PabuNjp+dixYzmmHTt2TFWqVMn1bM3loqKilJSUpClTpqhjx45ud/VkZ2fLZrNp6dKlOb71S38FuYvtJOnVV1/VDTfckOt6LrbNy+WfV+/evd2+5cfExGjmzJn65ptv1LNnT7Vv315vv/22atasqfLlyyshIUGJiYlXfb+Xa9u2rerWrat58+Zp8ODBWrRokc6ePasBAwa42lx8fx988IGCgoJyLKNcueL/9ZvXPpnb/jJmzBglJCTo0UcfVUREhBwOh2w2mwYOHJhrB+PikNv+IsktVAGXI8ig1Lrjjjs0Y8YMrVmzRhEREVdsGxoaquzsbO3du9et42JqaqpOnTql0NBQ17jrrrtOp06dcps/Kysr13Ag/fXNvFOnTq7XGRkZOnbsmHr06JFnPWFhYfrxxx/VpUuXawpXl6tVq5aqVaumjRs35pi2fv36PAPF5dq2batRo0bpjjvuUL9+/bRw4ULXgTksLEyWZalevXq6/vrr81xGWFiYpL9CZ2RkZL7Wu3fvXrezCfv27VN2drar0+zrr7/u9u09ODhY0l93avn4+Cg5OdktqCUkJORrvbnp37+/3nzzTaWnp2vu3LmqW7eu2rZtm+P9Va9ePd/v71KhoaGuszqX2rNnT45xBd0nc/PJJ58oJiZGr7/+umvcuXPnciy3IPtjaGiotm7dquzsbLezMrt373ZNB64VfWRQao0bN06VKlXS8OHDlZqammP6/v379eabb0qSK1RMnTrVrc3FMyKX3tUSFham1atXu7WbMWNGnt9+Z8yYofPnz7teT58+XX/++aeio6PzrL1///769ddf9d577+WYdvbsWdedJoXRp08fLV682O1W6GXLlumnn35yuwvnaiIjIzVnzhwlJSXp3nvvdX1r7927t8qWLavJkyfn+CZtWZZOnjwpSQoPD1dYWJhee+01t74mF+X2pOH4+Hi319OmTZMk17YMDw9XZGSka7jYb6hs2bKy2Wxun9HBgwdz3P1VEAMGDJDT6dSsWbOUlJSk/v37u02PioqSv7+/XnrpJbfP/0rv71I9evTQ2rVrtX79erd5PvrooxxtC7pP5qZs2bI5Pq9p06blWMbFZ85cHnBy06NHD6WkpGju3LmucX/++aemTZsmPz8/dejQId/1AXnhjAxKrbCwMCUmJmrAgAFq0qSJ25N9v//+e9dtoJLUqlUrxcTEaMaMGTp16pQ6dOig9evXa9asWerVq5fbGZXhw4dr1KhR6tOnj7p27aoff/xRycnJqlq1aq51ZGVlqUuXLurfv7/27Nmjt99+W7feeqt69uyZZ+333nuv5s2bp1GjRmnFihVq166dLly4oN27d2vevHlKTk7O9Rbq/Hjqqac0f/58derUSY888ogyMjL06quvqkWLFho2bFiBltWrVy8lJCRoyJAh8vf317vvvquwsDC98MILmjBhgg4ePKhevXqpcuXKOnDggBYuXKiRI0fqiSeeUJkyZfSf//xH0dHRatasmYYNG6ZatWrp119/1YoVK+Tv769Fixa5re/AgQPq2bOnunfvrjVr1ujDDz/U4MGD1apVqyvWefvtt+uNN95Q9+7dNXjwYB0/flzx8fFq0KCBtm7dWuBtKEk33XSTGjRooKefflpOp9PtspL015mm6dOn695779VNN92kgQMHqlq1ajp8+LC++OILtWvXTv/+97/zXP64ceP0wQcfqHv37nrkkUdct19fPMtxqYLuk7m544479MEHH8jhcKhp06Zas2aNvv76awUGBrq1u+GGG1S2bFm98sorSktLk91uV+fOnVW9evUcyxw5cqTeffddDR06VJs2bVLdunX1ySef6LvvvtPUqVPz3RkfuCIP3jEFlIiffvrJGjFihFW3bl2rQoUKVuXKla127dpZ06ZNc7vV+Pz589bkyZOtevXqWeXLl7dCQkKsCRMm5Lgd+cKFC9b48eOtqlWrWhUrVrSioqKsffv25Xmr66pVq6yRI0da1113neXn52fdc8891smTJ92Wefltq5b1122qr7zyitWsWTPLbrdb1113nRUeHm5NnjzZSktLc7WTZMXGxhZom2zfvt3q1q2bVbFiRSsgIMC65557rJSUlKvOd+nt15d6++23LUnWE0884Rr36aefWrfeeqtVqVIlq1KlSlbjxo2t2NhYa8+ePW7zbt682erdu7cVGBho2e12KzQ01Orfv7+1bNkyV5uLt1/v3LnT6tu3r1W5cmXruuuus0aPHm2dPXs2X+/5/ffftxo2bGjZ7XarcePGVkJCgmu5l7ra7deXevrppy1JVoMGDfJc74oVK6yoqCjL4XBYPj4+VlhYmDV06FBr48aNV61569atVocOHSwfHx+rVq1a1vPPP2+9//77OW6/Lug+uWHDhhzr+uOPP6xhw4ZZVatWtfz8/KyoqChr9+7dOZZhWZb13nvvWfXr17fKli3rtm1y249TU1Ndy61QoYLVokULKyEhwa1NXvuVZeV9azlwkc2y6EUFFIeZM2dq2LBh2rBhQ6HPnuAvkyZN0uTJk3XixIkCnWUAUPrRRwYAABiLIAMAAIxFkAEAAMaijwwAADAWZ2QAAICxCDIAAMBYpf6BeNnZ2Tp69KgqV65cpI96BwAAxceyLJ0+fVrBwcE5/vDopUp9kDl69GiOP7AHAADMcOTIEdWuXTvP6aU+yFx8BPaRI0fk7+/v4WoAAEB+pKenKyQk5Kp/yqLUB5mLl5P8/f0JMgAAGOZq3ULo7AsAAIxFkAEAAMYiyAAAAGMRZAAAgLEIMgAAwFgEGQAAYCyCDAAAMBZBBgAAGIsgAwAAjEWQAQAAxiLIAAAAYxFkAACAsQgyAADAWAQZAABgLIIMAAAwFkEGAAAYiyADAACMRZABAADGIsgAAABjEWQAAICxCDIAAMBYBBkAAGAsggwAADCWR4PM9OnT1bJlS/n7+8vf318RERFaunSpa3rHjh1ls9nchlGjRnmwYgAA4E3KeXLltWvX1ssvv6yGDRvKsizNmjVLd911lzZv3qxmzZpJkkaMGKH//u//ds1TsWJFT5ULAAC8jEeDzJ133un2+sUXX9T06dO1du1aV5CpWLGigoKCPFEeAADwcl7TR+bChQuaM2eOMjMzFRER4Rr/0UcfqWrVqmrevLkmTJigM2fOXHE5TqdT6enpbgMAACidPHpGRpK2bdumiIgInTt3Tn5+flq4cKGaNm0qSRo8eLBCQ0MVHBysrVu3avz48dqzZ48WLFiQ5/Li4uI0efLkkiofAAB4kM2yLMuTBWRlZenw4cNKS0vTJ598ov/85z9atWqVK8xcavny5erSpYv27dunsLCwXJfndDrldDpdr9PT0xUSEqK0tDT5+/sX2/sAAABFJz09XQ6H46rHb48HmctFRkYqLCxM7777bo5pmZmZ8vPzU1JSkqKiovK1vPxuCAAA4D3ye/z2mj4yF2VnZ7udUbnUli1bJEk1a9YswYoAAIC38mgfmQkTJig6Olp16tTR6dOnlZiYqJUrVyo5OVn79+9XYmKievToocDAQG3dulWPPfaY2rdvr5YtW3qybAAA4CU8GmSOHz+uIUOG6NixY3I4HGrZsqWSk5PVtWtXHTlyRF9//bWmTp2qzMxMhYSEqE+fPnrmmWc8WTIAAPAiXtdHpqjRRwYAAPMY20cGAAAgvwgyAADAWAQZAABgLIIMAAAwFkEGAAAYiyADAACMRZABAADGIsgAAABjEWQAAICxCDIAAMBYBBkAAGAsggwAADAWQQYAABiLIAMAAIxFkAEAAMYiyAAAAGMRZAAAgLEIMgAAwFgEGQAAYCyCDAAAMBZBBgAAGIsgAwAAjEWQAQAAxiLIAAAAYxFkAACAsQgyAADAWAQZAABgLIIMAAAwFkEGAAAYiyADAACMRZABAADGIsgAAABjEWQAAICxCDIAAMBYBBkAAGAsggwAADAWQQYAABjLo0Fm+vTpatmypfz9/eXv76+IiAgtXbrUNf3cuXOKjY1VYGCg/Pz81KdPH6WmpnqwYgAA4E08GmRq166tl19+WZs2bdLGjRvVuXNn3XXXXdqxY4ck6bHHHtOiRYs0f/58rVq1SkePHlXv3r09WTIAAPAiNsuyLE8XcakqVaro1VdfVd++fVWtWjUlJiaqb9++kqTdu3erSZMmWrNmjdq2bZuv5aWnp8vhcCgtLU3+/v7FWToAACgi+T1+e00fmQsXLmjOnDnKzMxURESENm3apPPnzysyMtLVpnHjxqpTp47WrFmT53KcTqfS09PdBgAAUDp5PMhs27ZNfn5+stvtGjVqlBYuXKimTZsqJSVFFSpUUEBAgFv7GjVqKCUlJc/lxcXFyeFwuIaQkJBifgcAAMBTPB5kGjVqpC1btmjdunV68MEHFRMTo507dxZ6eRMmTFBaWpprOHLkSBFWCwAAvEk5TxdQoUIFNWjQQJIUHh6uDRs26M0339SAAQOUlZWlU6dOuZ2VSU1NVVBQUJ7Ls9vtstvtxV02AADwAh4/I3O57OxsOZ1OhYeHq3z58lq2bJlr2p49e3T48GFFRER4sEIAAOAtPHpGZsKECYqOjladOnV0+vRpJSYmauXKlUpOTpbD4dD999+vsWPHqkqVKvL399eYMWMUERGR7zuWAABA6ebRIHP8+HENGTJEx44dk8PhUMuWLZWcnKyuXbtKkv71r3+pTJky6tOnj5xOp6KiovT22297smQAAOBFvO45MkWN58gAAGAe454jAwAAUFAEGQAAYCyCDAAAMBZBBgAAGIsgAwAAjEWQAQAAxiLIAAAAYxFkAACAsQgyAADAWAQZAABgLIIMAAAwFkEGAAAYiyADAACMRZABAADGIsgAAABjEWQAAICxCDIAAMBYBBkAAGAsggwAADAWQQYAABiLIAMAAIxFkAEAAMYiyAAAAGMRZAAAgLEIMgAAwFgEGQAAYCyCDAAAMBZBBgAAGIsgAwAAjEWQAQAAxiLIAAAAYxFkAACAsQgyAADAWAQZAABgLIIMAAAwFkEGAAAYiyADAACMRZABAADG8miQiYuL080336zKlSurevXq6tWrl/bs2ePWpmPHjrLZbG7DqFGjPFQxAADwJh4NMqtWrVJsbKzWrl2rr776SufPn1e3bt2UmZnp1m7EiBE6duyYa5gyZYqHKgYAAN6knCdXnpSU5PZ65syZql69ujZt2qT27du7xlesWFFBQUElXR4AAPByXtVHJi0tTZJUpUoVt/EfffSRqlatqubNm2vChAk6c+ZMnstwOp1KT093GwAAQOnk0TMyl8rOztajjz6qdu3aqXnz5q7xgwcPVmhoqIKDg7V161aNHz9ee/bs0YIFC3JdTlxcnCZPnlxSZQMAAA+yWZZleboISXrwwQe1dOlSffvtt6pdu3ae7ZYvX64uXbpo3759CgsLyzHd6XTK6XS6XqenpyskJERpaWny9/cvltoBAEDRSk9Pl8PhuOrx2yvOyIwePVqLFy/W6tWrrxhiJKlNmzaSlGeQsdvtstvtxVInAADwLh4NMpZlacyYMVq4cKFWrlypevXqXXWeLVu2SJJq1qxZzNUBAABv59EgExsbq8TERH3++eeqXLmyUlJSJEkOh0O+vr7av3+/EhMT1aNHDwUGBmrr1q167LHH1L59e7Vs2dKTpQMAAC/g0T4yNpst1/EJCQkaOnSojhw5ov/6r//S9u3blZmZqZCQEN1999165pln8t3fJb/X2AAAgPcwoo/M1TJUSEiIVq1aVULVAAAA03jVc2QAAAAKgiADAACMRZABAADGIsgAAABjEWQAAICxCDIAAMBYBBkAAGAsggwAADAWQQYAABiLIAMAAIxFkAEAAMYiyAAAAGMRZAAAgLEIMgAAwFgEGQAAYCyCDAAAMBZBBgAAGIsgAwAAjEWQAQAAxiLIAAAAYxFkAACAsQgyAADAWAQZAABgLIIMAAAwFkEGAAAYiyADAACMRZABAADGIsgAAABjEWQAAICxCDIAAMBYBBkAAGAsggwAADAWQQYAABiLIAMAAIxFkAEAAMYiyAAAAGMRZAAAgLE8GmTi4uJ08803q3Llyqpevbp69eqlPXv2uLU5d+6cYmNjFRgYKD8/P/Xp00epqakeqhgAAHgTjwaZVatWKTY2VmvXrtVXX32l8+fPq1u3bsrMzHS1eeyxx7Ro0SLNnz9fq1at0tGjR9W7d28PVg0AALyFzbIsy9NFXHTixAlVr15dq1atUvv27ZWWlqZq1aopMTFRffv2lSTt3r1bTZo00Zo1a9S2bdurLjM9PV0Oh0NpaWny9/cv7rcAAACKQH6P317VRyYtLU2SVKVKFUnSpk2bdP78eUVGRrraNG7cWHXq1NGaNWtyXYbT6VR6errbAAAASievCTLZ2dl69NFH1a5dOzVv3lySlJKSogoVKiggIMCtbY0aNZSSkpLrcuLi4uRwOFxDSEhIcZcOAAA8xGuCTGxsrLZv3645c+Zc03ImTJigtLQ013DkyJEiqhAAAHibcp4uQJJGjx6txYsXa/Xq1apdu7ZrfFBQkLKysnTq1Cm3szKpqakKCgrKdVl2u112u724SwYAAF6gUGdkZs2apS+++ML1ety4cQoICNAtt9yiQ4cO5Xs5lmVp9OjRWrhwoZYvX6569eq5TQ8PD1f58uW1bNky17g9e/bo8OHDioiIKEzpAACgFClUkHnppZfk6+srSVqzZo3i4+M1ZcoUVa1aVY899li+lxMbG6sPP/xQiYmJqly5slJSUpSSkqKzZ89KkhwOh+6//36NHTtWK1as0KZNmzRs2DBFRETk644lAABQuhXq9uuKFStq9+7dqlOnjsaPH69jx45p9uzZ2rFjhzp27KgTJ07kb+U2W67jExISNHToUEl/PRDv8ccf18cffyyn06moqCi9/fbbeV5auhy3XwMAYJ78Hr8L1UfGz89PJ0+eVJ06dfTll19q7NixkiQfHx/X2ZT8yE+G8vHxUXx8vOLj4wtTKgAAKMUKFWS6du2q4cOH68Ybb9RPP/2kHj16SJJ27Nih0NDQIi0QAAAgL4XqIxMfH6+IiAidOHFCn376qQIDAyX99QC7wYMHF2mBAAAAeSn0nyg4d+6ctm7dquPHjys7O9ttWs+ePYukuKJAHxkAAMxTrH1kkpKSNGTIEJ08eTJHPxebzaYLFy4UZrEAAAAFUqhLS2PGjFG/fv109OhRZWdnuw2EGAAAUFIKFWRSU1M1duxY1ahRo6jrAQAAyLdCBZm+fftq5cqVRVwKAABAwRSqs++ZM2fUr18/VatWTS1atFD58uXdpj/88MNFVuC1orMvAADmKdbOvh9//LG+/PJL+fj4aOXKlW5P6LXZbF4VZAAAQOlVqCDz9NNPa/LkyfrnP/+pMmUKdXUKAADgmhUqhWRlZWnAgAGEGAAA4FGFSiIxMTGaO3duUdcCAABQIIW6tHThwgVNmTJFycnJatmyZY7Ovm+88UaRFAcAAHAlhQoy27Zt04033ihJ2r59u9u0Szv+AgAAFKdCBZkVK1YUdR0AAAAFRm9dAABgLIIMAAAwFkEGAAAYiyADAACMRZABAADGIsgAAABjEWQAAICxCDIAAMBYBBkAAGAsggwAADAWQQYAABiLIAMAAIxFkAEAAMYiyAAAAGMRZAAAgLEIMgAAwFgEGQAAYCyCDAAAMBZBBgAAGIsgAwAAjEWQAQAAxiLIAAAAYxFkAACAsTwaZFavXq0777xTwcHBstls+uyzz9ymDx06VDabzW3o3r27Z4oFAABex6NBJjMzU61atVJ8fHyebbp3765jx465ho8//rgEKwQAAN6snCdXHh0drejo6Cu2sdvtCgoKKqGKAACASby+j8zKlStVvXp1NWrUSA8++KBOnjx5xfZOp1Pp6eluAwAAKJ28Osh0795ds2fP1rJly/TKK69o1apVio6O1oULF/KcJy4uTg6HwzWEhISUYMUAAKAk2SzLsjxdhCTZbDYtXLhQvXr1yrPNzz//rLCwMH399dfq0qVLrm2cTqecTqfrdXp6ukJCQpSWliZ/f/+iLhsAABSD9PR0ORyOqx6/vfqMzOXq16+vqlWrat++fXm2sdvt8vf3dxsAAEDpZFSQ+eWXX3Ty5EnVrFnT06UAAAAv4NG7ljIyMtzOrhw4cEBbtmxRlSpVVKVKFU2ePFl9+vRRUFCQ9u/fr3HjxqlBgwaKioryYNUAAMBbeDTIbNy4UZ06dXK9Hjt2rCQpJiZG06dP19atWzVr1iydOnVKwcHB6tatm55//nnZ7XZPlQwAALyI13T2LS757SwEAAC8R6ns7AsAAHApggwAADAWQQYAABiLIAMAAIxFkAEAAMYiyAAAAGMRZAAAgLEIMgAAwFgEGQAAYCyCDAAAMBZBBgAAGIsgAwAAjEWQAQAAxiLIAAAAYxFkAACAsQgyAADAWAQZAABgLIIMAAAwFkEGAAAYiyADAACMRZABAADGIsgAAABjEWQAAICxCDIAAMBYBBkAAGAsggwAADAWQQYAABiLIAMAAIxFkAEAAMYiyAAAAGMRZAAAgLEIMgAAwFgEGQAAYCyCDAAAMBZBBgAAGIsgAwAAjEWQAQAAxvJokFm9erXuvPNOBQcHy2az6bPPPnObblmWnnvuOdWsWVO+vr6KjIzU3r17PVMsAADwOh4NMpmZmWrVqpXi4+NznT5lyhS99dZbeuedd7Ru3TpVqlRJUVFROnfuXAlXCgAAvFE5T648Ojpa0dHRuU6zLEtTp07VM888o7vuukuSNHv2bNWoUUOfffaZBg4cWJKlAgAAL+S1fWQOHDiglJQURUZGusY5HA61adNGa9asyXM+p9Op9PR0twEAAJROXhtkUlJSJEk1atRwG1+jRg3XtNzExcXJ4XC4hpCQkGKtEwAAeI7XBpnCmjBhgtLS0lzDkSNHPF0SAAAoJl4bZIKCgiRJqampbuNTU1Nd03Jjt9vl7+/vNgAAgNLJa4NMvXr1FBQUpGXLlrnGpaena926dYqIiPBgZQAAwFt49K6ljIwM7du3z/X6wIED2rJli6pUqaI6dero0Ucf1QsvvKCGDRuqXr16evbZZxUcHKxevXp5rmgAAOA1PBpkNm7cqE6dOrlejx07VpIUExOjmTNnaty4ccrMzNTIkSN16tQp3XrrrUpKSpKPj4+nSgYAAF7EZlmW5ekiilN6erocDofS0tLoLwMAgCHye/z22j4yAAAAV0OQAQCgGNX95xeeLqFUI8gAAABjEWQAAICxCDIAAMBYBBkAAGAsggwAADAWQQYAABiLIAMAAIxFkAEAAMYiyAAAAGMRZAAAMARPCc6JIAMAAIxFkAEASOLbPsxEkAFwzTgAAvAUggwAADAWQQYAABiLIAMAAIxFkAEAAMYiyAAAAGMRZAAAgLEIMgAAwFgEGQAAYCyCDAAAMBZBBgAAGIsgAwAAjEWQAQAAxiLIAMA1Kq4/mskf48RF7At5I8gAAABjEWRQIHwrAAB4E4IMgCsivJYefJYojQgyAADAaxQ0cBNkAACAsQgyJYxTuwAAFB2CDAAAMBZBBgCAK+BMuncjyFyCnRXehP0RAK6OIGMg0w5w3lhvbjUVZ50Xl33pOkp6u3jj53CtSuN7KmmmbcPL6y3u+j25fUz7bPKjIO+p+cTkfLXz6iAzadIk2Ww2t6Fx48ZFuo7C7ijetoNdSz0lfXAtynWU9KPhCzq+uHnDfugNNVyuMDV5ywGrIHUUV9uiWJ637BclWYe3vOdLFfZzKokve0V17PHqICNJzZo107Fjx1zDt99+6+mSXPK7g+T1DSI/H1xJftvIz/8Lsoxrrclbwpm3/HIqytBd0mek8lpHSa6zoOvy5lDvTbXV/ecXJfIz5i0/h0WlKH5Heds2Key+cK3bwuuDTLly5RQUFOQaqlatWuI1FOXBuTjbeurgVBAlcfnG08u41nXk9pma8ouuNB6QChuACvvFoCjr8Zb9piTO+ubn919JhrPCKq7fYyVx1q8o5y0Irw8ye/fuVXBwsOrXr6977rlHhw8fvmJ7p9Op9PR0tyE3xXV5w1sum5h2sCgJRXlZyJN9XfLDtH4DxRWASiJYeeO+4C11XIk3huyS4C2XMK91Pm/ZnpKXB5k2bdpo5syZSkpK0vTp03XgwAHddtttOn36dJ7zxMXFyeFwuIaQkJASrPjvw5t2YgDA35dXB5no6Gj169dPLVu2VFRUlJYsWaJTp05p3rx5ec4zYcIEpaWluYYjR46UYMUAAFPxBc1M5TxdQEEEBATo+uuv1759+/JsY7fbZbfbS7AqAADgKV59RuZyGRkZ2r9/v2rWrOnpUgAAgBfw6iDzxBNPaNWqVTp48KC+//573X333SpbtqwGDRrk6dIAAJDEJSlP8+og88svv2jQoEFq1KiR+vfvr8DAQK1du1bVqlUr9nWzYxat0vIsFwCAd/HqPjJz5szxdAko5QhIZrj8FueDL9/uwWoAeBOvPiODwinK56UAnuTJR/CjZJWWz6+wT0Uv7DrwNwsyRXGAL8mnUno7Ex5oZeJ29QYmPrSrKNfBflN43vJQ0OJericeClkSdRSVkqzrbxVk4F288YmoJa0o/q7UtS7LE48uL4r5i4O3vn9PPjK/IEyo8Vp4w5feonKlp/V6S0jLL4JMAXj7jultTP5bJYVdT2nfR4ry74ChaBXXJeXi/ByL62eoNAUOE3h6GxJkAMN4+pcGAO/zd/69QJABAADGIsgAAABjEWQAAICxCDIAAMBYBBkAAGAsggyM83funQ8AcEeQAQAAxiLIAMgVZ74AmIAgAwAwCiEblyLIAMDfDEEApQlBBgAAGIsgAwAAjEWQAQAAxiLIAAAAYxFkAACAsQgy8GrcXQEAuBKCDAAAMBZBBgAAGIsgAwAAjEWQ+Zui7wkA0/F7DBJBxhj8wAKex88h4H0IMkAx4aBXfNi2AC4iyAAAAGMRZAAAgLEIMgAAwFgEGQAAYCyCDAAAMBZBBgAAGIsgAwAAjEWQAQAAxiLIAAAAYxFkAACAsYwIMvHx8apbt658fHzUpk0brV+/3tMlAQAAL+D1QWbu3LkaO3asJk6cqB9++EGtWrVSVFSUjh8/7unSAACAh3l9kHnjjTc0YsQIDRs2TE2bNtU777yjihUr6n/+5388XRoAAPCwcp4u4EqysrK0adMmTZgwwTWuTJkyioyM1Jo1a3Kdx+l0yul0ul6npaVJktLT05XtPKP09HRJcv0/23nmitOv1Lak56O2op+P2kpfbVeaj9pKX21Xmo/azK9NkizL0hVZXuzXX3+1JFnff/+92/gnn3zSat26da7zTJw40ZLEwMDAwMDAUAqGI0eOXDErePUZmcKYMGGCxo4d63qdnZ2t33//XYGBgbLZbB6sDAAA5JdlWTp9+rSCg4Ov2M6rg0zVqlVVtmxZpaamuo1PTU1VUFBQrvPY7XbZ7Xa3cQEBAcVVIgAAKCYOh+Oqbby6s2+FChUUHh6uZcuWucZlZ2dr2bJlioiI8GBlAADAG3j1GRlJGjt2rGJiYvSPf/xDrVu31tSpU5WZmalhw4Z5ujQAAOBhXh9kBgwYoBMnTui5555TSkqKbrjhBiUlJalGjRqeLg0AAHiYzbKudl8TAJjh4MGDqlevnjZv3qwbbrjB0+UAKAFe3UcGQOmTkpKiMWPGqH79+rLb7QoJCdGdd97p1hcOAPLL6y8tASg9Dh48qHbt2ikgIECvvvqqWrRoofPnzys5OVmxsbHavXu3p0sEYBjOyAAoMQ899JBsNpvWr1+vPn366Prrr1ezZs00duxYrV27Vvfdd5/uuOMOt3nOnz+v6tWr6/3335f0152LU6ZMUYMGDWS321WnTh29+OKLea5z+/btio6Olp+fn2rUqKF7771Xv/32m2v6J598ohYtWsjX11eBgYGKjIxUZmZm8WwAAEWOIAOgRPz+++9KSkpSbGysKlWqlGN6QECAhg8frqSkJB07dsw1fvHixTpz5owGDBgg6a+HXr788st69tlntXPnTiUmJubZ+f/UqVPq3LmzbrzxRm3cuFFJSUlKTU1V//79JUnHjh3ToEGDdN9992nXrl1auXKlevfuffVHogPwGnT2BVAi1q9frzZt2mjBggW6++6782zXrFkzxcTEaNy4cZKknj17KjAwUAkJCTp9+rSqVaumf//73xo+fHiOeS/v7PvCCy/om2++UXJysqvNL7/8opCQEO3Zs0cZGRkKDw/XwYMHFRoaWvRvGkCx44wMgBKR3+9Mw4cPV0JCgqS/nuK9dOlS3XfffZKkXbt2yel0qkuXLvla1o8//qgVK1bIz8/PNTRu3FiStH//frVq1UpdunRRixYt1K9fP7333nv6448/CvHuAHgKQQZAiWjYsKFsNttVO/QOGTJEP//8s9asWaMPP/xQ9erV02233SZJ8vX1LdA6MzIydOedd2rLli1uw969e9W+fXuVLVtWX331lZYuXaqmTZtq2rRpatSokQ4cOFDo9wmgZBFkAJSIKlWqKCoqSvHx8bl2pj116pQkKTAwUL169VJCQoJmzpzp9hTvhg0bytfXN9+3at90003asWOH6tatqwYNGrgNF/vp2Gw2tWvXTpMnT9bmzZtVoUIFLVy48NrfMIASQZABUGLi4+N14cIFtW7dWp9++qn27t2rXbt26a233nL7+2nDhw/XrFmztGvXLsXExLjG+/j4aPz48Ro3bpxmz56t/fv3a+3ata47mi4XGxur33//XYMGDdKGDRu0f/9+JScna9iwYbpw4YLWrVunl156SRs3btThw4e1YMECnThxQk2aNCn2bQGgaPAcGQAlpn79+vrhhx/04osv6vHHH9exY8dUrVo1hYeHa/r06a52kZGRqlmzppo1a6bg4GC3ZTz77LMqV66cnnvuOR09elQ1a9bUqFGjcl1fcHCwvvvuO40fP17dunWT0+lUaGiounfvrjJlysjf31+rV6/W1KlTlZ6ertDQUL3++uuKjo4u1u0AoOhw1xIAr5ORkaFatWopISFBvXv39nQ5ALwYZ2QAeI3s7Gz99ttvev311xUQEKCePXt6uiQAXo4gA8BrHD58WPXq1VPt2rU1c+ZMlSvHrygAV8alJQAAYCzuWgIAAMYiyAAAAGMRZAAAgLEIMgAAwFgEGQAAYCyCDAAAMBZBBgAAGIsgAwAAjEWQAQAAxvo/xG6xljBmklkAAAAASUVORK5CYII=",
"text/plain": [
"<Figure size 640x480 with 1 Axes>"
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"s.plot.bar()\n",
"plt.title(\"Coupler 0 keep-alive duration\")\n",
"plt.xlabel('Cycles', fontsize=10)\n",
"plt.ylabel('ms', fontsize=10)\n",
"plt.xticks([])\n",
"plt.show()"
]
},
{
"cell_type": "code",
"execution_count": 5,
"id": "1b5ee5ae",
"metadata": {},
"outputs": [],
"source": [
"f=open(\"coupler1_duration.txt\", \"r\")\n",
"lines = f.readlines()\n",
"f.close()\n",
"lines = [float(x.replace(\"\\n\", \"\")) for x in lines[:]]"
]
},
{
"cell_type": "code",
"execution_count": 6,
"id": "18f16b77",
"metadata": {},
"outputs": [],
"source": [
"d = {}\n",
"i = 0\n",
"for x in lines:\n",
" d[i] = x\n",
" i += 1\n",
"s = pd.Series(d, name='duration')"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "b44f4d70",
"metadata": {},
"outputs": [],
"source": [
"s.plot.bar()\n",
"plt.title(\"Coupler 1 keep-alive duration\")\n",
"plt.xlabel('Cycles', fontsize=10)\n",
"plt.ylabel('ms', fontsize=10)\n",
"plt.xticks([])\n",
"plt.show()"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "552fc7b3",
"metadata": {},
"outputs": [],
"source": []
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3 (ipykernel)",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.10.6"
}
},
"nbformat": 4,
"nbformat_minor": 5
}
Markdown is supported
0%
or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment