Commit 89bbb329 authored by Kevin Modzelewski's avatar Kevin Modzelewski

Import some CPython header files, and start modifying for Pyston

parent 258c3deb
......@@ -17,29 +17,43 @@
#include <assert.h>
#include <errno.h>
#include <stdbool.h>
#include <stdint.h>
#include <stdio.h>
#include <stdlib.h>
#include <stdint.h>
#include <stdbool.h>
#include <string.h>
#include <limits.h>
#include "pyport.h"
// These include orders come from CPython:
#include "pymem.h"
#include "object.h"
#include "objimpl.h"
#include "intobject.h"
#include "boolobject.h"
#include "longobject.h"
#include "floatobject.h"
#include "stringobject.h"
#include "tupleobject.h"
#include "methodobject.h"
#include "descrobject.h"
#include "pyerrors.h"
#include "modsupport.h"
#include "abstract.h"
#ifdef __cplusplus
extern "C" {
#endif
bool PyArg_ParseTuple(PyObject*, const char*, ...);
PyObject* Py_BuildValue(const char*, ...);
typedef PyObject *(*PyCFunction)(PyObject *, PyObject *);
struct PyMethodDef {
const char *ml_name; /* The name of the built-in function/method */
PyCFunction ml_meth; /* The C function that implements it */
int ml_flags; /* Combination of METH_xxx flags, which mostly
describe the args expected by the C func */
const char *ml_doc; /* The __doc__ attribute, or NULL */
};
typedef struct PyMethodDef PyMethodDef;
PyObject* PyString_FromString(const char*);
PyObject* PyInt_FromLong(long);
......@@ -57,8 +71,6 @@ PyObject* PyDict_New(void);
#define PyDoc_STRVAR(name, str) PyDoc_VAR(name) = PyDoc_STR(str)
#define PyDoc_STR(str) str
#define METH_VARARGS 0x0001
#ifdef __cplusplus
#define PyMODINIT_FUNC extern "C" void
#else
......
This diff is collapsed.
// This file is originally from CPython 2.7, with modifications for Pyston
/* Boolean object interface */
#ifndef Py_BOOLOBJECT_H
#define Py_BOOLOBJECT_H
#ifdef __cplusplus
extern "C" {
#endif
typedef PyIntObject PyBoolObject;
PyAPI_DATA(PyTypeObject) PyBool_Type;
#define PyBool_Check(x) (Py_TYPE(x) == &PyBool_Type)
/* Py_False and Py_True are the only two bools in existence.
Don't forget to apply Py_INCREF() when returning either!!! */
// Pyston change: these are currently stored as pointers, not as static globals
/* Don't use these directly */
//PyAPI_DATA(PyIntObject) _Py_ZeroStruct, _Py_TrueStruct;
PyAPI_DATA(PyObject) *True, *False;
/* Use these macros */
#define Py_False ((PyObject *) True)
#define Py_True ((PyObject *) False)
/* Macros for returning Py_True or Py_False, respectively */
#define Py_RETURN_TRUE return Py_INCREF(Py_True), Py_True
#define Py_RETURN_FALSE return Py_INCREF(Py_False), Py_False
/* Function to return a bool from a C long */
PyAPI_FUNC(PyObject *) PyBool_FromLong(long);
#ifdef __cplusplus
}
#endif
#endif /* !Py_BOOLOBJECT_H */
// This file is originally from CPython 2.7, with modifications for Pyston
/* Descriptors */
#ifndef Py_DESCROBJECT_H
#define Py_DESCROBJECT_H
#ifdef __cplusplus
extern "C" {
#endif
typedef PyObject *(*getter)(PyObject *, void *);
typedef int (*setter)(PyObject *, PyObject *, void *);
typedef struct PyGetSetDef {
char *name;
getter get;
setter set;
char *doc;
void *closure;
} PyGetSetDef;
typedef PyObject *(*wrapperfunc)(PyObject *self, PyObject *args,
void *wrapped);
typedef PyObject *(*wrapperfunc_kwds)(PyObject *self, PyObject *args,
void *wrapped, PyObject *kwds);
struct wrapperbase {
char *name;
int offset;
void *function;
wrapperfunc wrapper;
char *doc;
int flags;
PyObject *name_strobj;
};
/* Flags for above struct */
#define PyWrapperFlag_KEYWORDS 1 /* wrapper function takes keyword args */
/* Various kinds of descriptor objects */
#define PyDescr_COMMON \
PyObject_HEAD \
PyTypeObject *d_type; \
PyObject *d_name
typedef struct {
PyDescr_COMMON;
} PyDescrObject;
typedef struct {
PyDescr_COMMON;
PyMethodDef *d_method;
} PyMethodDescrObject;
typedef struct {
PyDescr_COMMON;
struct PyMemberDef *d_member;
} PyMemberDescrObject;
typedef struct {
PyDescr_COMMON;
PyGetSetDef *d_getset;
} PyGetSetDescrObject;
typedef struct {
PyDescr_COMMON;
struct wrapperbase *d_base;
void *d_wrapped; /* This can be any function pointer */
} PyWrapperDescrObject;
PyAPI_DATA(PyTypeObject) PyWrapperDescr_Type;
PyAPI_DATA(PyTypeObject) PyDictProxy_Type;
PyAPI_DATA(PyTypeObject) PyGetSetDescr_Type;
PyAPI_DATA(PyTypeObject) PyMemberDescr_Type;
PyAPI_FUNC(PyObject *) PyDescr_NewMethod(PyTypeObject *, PyMethodDef *);
PyAPI_FUNC(PyObject *) PyDescr_NewClassMethod(PyTypeObject *, PyMethodDef *);
PyAPI_FUNC(PyObject *) PyDescr_NewMember(PyTypeObject *,
struct PyMemberDef *);
PyAPI_FUNC(PyObject *) PyDescr_NewGetSet(PyTypeObject *,
struct PyGetSetDef *);
PyAPI_FUNC(PyObject *) PyDescr_NewWrapper(PyTypeObject *,
struct wrapperbase *, void *);
#define PyDescr_IsData(d) (Py_TYPE(d)->tp_descr_set != NULL)
PyAPI_FUNC(PyObject *) PyDictProxy_New(PyObject *);
PyAPI_FUNC(PyObject *) PyWrapper_New(PyObject *, PyObject *);
PyAPI_DATA(PyTypeObject) PyProperty_Type;
#ifdef __cplusplus
}
#endif
#endif /* !Py_DESCROBJECT_H */
// This file is originally from CPython 2.7, with modifications for Pyston
/* Float object interface */
/*
PyFloatObject represents a (double precision) floating point number.
*/
#ifndef Py_FLOATOBJECT_H
#define Py_FLOATOBJECT_H
#ifdef __cplusplus
extern "C" {
#endif
// Pyston change: this is not the format we're using
// - actually I think it is but there's no reason to have multiple definitions.
#if 0
typedef struct {
PyObject_HEAD
double ob_fval;
} PyFloatObject;
#endif
typedef void PyFloatObject;
PyAPI_DATA(PyTypeObject) PyFloat_Type;
#define PyFloat_Check(op) PyObject_TypeCheck(op, &PyFloat_Type)
#define PyFloat_CheckExact(op) (Py_TYPE(op) == &PyFloat_Type)
/* The str() precision PyFloat_STR_PRECISION is chosen so that in most cases,
the rounding noise created by various operations is suppressed, while
giving plenty of precision for practical use. */
#define PyFloat_STR_PRECISION 12
#ifdef Py_NAN
#define Py_RETURN_NAN return PyFloat_FromDouble(Py_NAN)
#endif
#define Py_RETURN_INF(sign) do \
if (copysign(1., sign) == 1.) { \
return PyFloat_FromDouble(Py_HUGE_VAL); \
} else { \
return PyFloat_FromDouble(-Py_HUGE_VAL); \
} while(0)
PyAPI_FUNC(double) PyFloat_GetMax(void);
PyAPI_FUNC(double) PyFloat_GetMin(void);
PyAPI_FUNC(PyObject *) PyFloat_GetInfo(void);
/* Return Python float from string PyObject. Second argument ignored on
input, and, if non-NULL, NULL is stored into *junk (this tried to serve a
purpose once but can't be made to work as intended). */
PyAPI_FUNC(PyObject *) PyFloat_FromString(PyObject*, char** junk);
/* Return Python float from C double. */
PyAPI_FUNC(PyObject *) PyFloat_FromDouble(double);
/* Extract C double from Python float. The macro version trades safety for
speed. */
PyAPI_FUNC(double) PyFloat_AsDouble(PyObject *);
#define PyFloat_AS_DOUBLE(op) (((PyFloatObject *)(op))->ob_fval)
/* Write repr(v) into the char buffer argument, followed by null byte. The
buffer must be "big enough"; >= 100 is very safe.
PyFloat_AsReprString(buf, x) strives to print enough digits so that
PyFloat_FromString(buf) then reproduces x exactly. */
PyAPI_FUNC(void) PyFloat_AsReprString(char*, PyFloatObject *v);
/* Write str(v) into the char buffer argument, followed by null byte. The
buffer must be "big enough"; >= 100 is very safe. Note that it's
unusual to be able to get back the float you started with from
PyFloat_AsString's result -- use PyFloat_AsReprString() if you want to
preserve precision across conversions. */
PyAPI_FUNC(void) PyFloat_AsString(char*, PyFloatObject *v);
/* _PyFloat_{Pack,Unpack}{4,8}
*
* The struct and pickle (at least) modules need an efficient platform-
* independent way to store floating-point values as byte strings.
* The Pack routines produce a string from a C double, and the Unpack
* routines produce a C double from such a string. The suffix (4 or 8)
* specifies the number of bytes in the string.
*
* On platforms that appear to use (see _PyFloat_Init()) IEEE-754 formats
* these functions work by copying bits. On other platforms, the formats the
* 4- byte format is identical to the IEEE-754 single precision format, and
* the 8-byte format to the IEEE-754 double precision format, although the
* packing of INFs and NaNs (if such things exist on the platform) isn't
* handled correctly, and attempting to unpack a string containing an IEEE
* INF or NaN will raise an exception.
*
* On non-IEEE platforms with more precision, or larger dynamic range, than
* 754 supports, not all values can be packed; on non-IEEE platforms with less
* precision, or smaller dynamic range, not all values can be unpacked. What
* happens in such cases is partly accidental (alas).
*/
/* The pack routines write 4 or 8 bytes, starting at p. le is a bool
* argument, true if you want the string in little-endian format (exponent
* last, at p+3 or p+7), false if you want big-endian format (exponent
* first, at p).
* Return value: 0 if all is OK, -1 if error (and an exception is
* set, most likely OverflowError).
* There are two problems on non-IEEE platforms:
* 1): What this does is undefined if x is a NaN or infinity.
* 2): -0.0 and +0.0 produce the same string.
*/
PyAPI_FUNC(int) _PyFloat_Pack4(double x, unsigned char *p, int le);
PyAPI_FUNC(int) _PyFloat_Pack8(double x, unsigned char *p, int le);
/* Used to get the important decimal digits of a double */
PyAPI_FUNC(int) _PyFloat_Digits(char *buf, double v, int *signum);
PyAPI_FUNC(void) _PyFloat_DigitsInit(void);
/* The unpack routines read 4 or 8 bytes, starting at p. le is a bool
* argument, true if the string is in little-endian format (exponent
* last, at p+3 or p+7), false if big-endian (exponent first, at p).
* Return value: The unpacked double. On error, this is -1.0 and
* PyErr_Occurred() is true (and an exception is set, most likely
* OverflowError). Note that on a non-IEEE platform this will refuse
* to unpack a string that represents a NaN or infinity.
*/
PyAPI_FUNC(double) _PyFloat_Unpack4(const unsigned char *p, int le);
PyAPI_FUNC(double) _PyFloat_Unpack8(const unsigned char *p, int le);
/* free list api */
PyAPI_FUNC(int) PyFloat_ClearFreeList(void);
/* Format the object based on the format_spec, as defined in PEP 3101
(Advanced String Formatting). */
PyAPI_FUNC(PyObject *) _PyFloat_FormatAdvanced(PyObject *obj,
char *format_spec,
Py_ssize_t format_spec_len);
/* Round a C double x to the closest multiple of 10**-ndigits. Returns a
Python float on success, or NULL (with an appropriate exception set) on
failure. Used in builtin_round in bltinmodule.c. */
PyAPI_FUNC(PyObject *) _Py_double_round(double x, int ndigits);
#ifdef __cplusplus
}
#endif
#endif /* !Py_FLOATOBJECT_H */
// This file is originally from CPython 2.7, with modifications for Pyston
/* Integer object interface */
/*
PyIntObject represents a (long) integer. This is an immutable object;
an integer cannot change its value after creation.
There are functions to create new integer objects, to test an object
for integer-ness, and to get the integer value. The latter functions
returns -1 and sets errno to EBADF if the object is not an PyIntObject.
None of the functions should be applied to nil objects.
The type PyIntObject is (unfortunately) exposed here so we can declare
_Py_TrueStruct and _Py_ZeroStruct in boolobject.h; don't use this.
*/
#ifndef Py_INTOBJECT_H
#define Py_INTOBJECT_H
#ifdef __cplusplus
extern "C" {
#endif
// Pyston change: this is not the format we're using
// - actually I think it is but there's no reason to have multiple definitions.
#if 0
typedef struct {
PyObject_HEAD
long ob_ival;
} PyIntObject;
#endif
typedef void PyIntObject;
PyAPI_DATA(PyTypeObject) PyInt_Type;
#define PyInt_Check(op) \
PyType_FastSubclass((op)->ob_type, Py_TPFLAGS_INT_SUBCLASS)
#define PyInt_CheckExact(op) ((op)->ob_type == &PyInt_Type)
PyAPI_FUNC(PyObject *) PyInt_FromString(char*, char**, int);
#ifdef Py_USING_UNICODE
PyAPI_FUNC(PyObject *) PyInt_FromUnicode(Py_UNICODE*, Py_ssize_t, int);
#endif
PyAPI_FUNC(PyObject *) PyInt_FromLong(long);
PyAPI_FUNC(PyObject *) PyInt_FromSize_t(size_t);
PyAPI_FUNC(PyObject *) PyInt_FromSsize_t(Py_ssize_t);
PyAPI_FUNC(long) PyInt_AsLong(PyObject *);
PyAPI_FUNC(Py_ssize_t) PyInt_AsSsize_t(PyObject *);
PyAPI_FUNC(int) _PyInt_AsInt(PyObject *);
PyAPI_FUNC(unsigned long) PyInt_AsUnsignedLongMask(PyObject *);
#ifdef HAVE_LONG_LONG
PyAPI_FUNC(unsigned PY_LONG_LONG) PyInt_AsUnsignedLongLongMask(PyObject *);
#endif
PyAPI_FUNC(long) PyInt_GetMax(void);
/* Macro, trading safety for speed */
#define PyInt_AS_LONG(op) (((PyIntObject *)(op))->ob_ival)
/* These aren't really part of the Int object, but they're handy; the protos
* are necessary for systems that need the magic of PyAPI_FUNC and that want
* to have stropmodule as a dynamically loaded module instead of building it
* into the main Python shared library/DLL. Guido thinks I'm weird for
* building it this way. :-) [cjh]
*/
PyAPI_FUNC(unsigned long) PyOS_strtoul(char *, char **, int);
PyAPI_FUNC(long) PyOS_strtol(char *, char **, int);
/* free list api */
PyAPI_FUNC(int) PyInt_ClearFreeList(void);
/* Convert an integer to the given base. Returns a string.
If base is 2, 8 or 16, add the proper prefix '0b', '0o' or '0x'.
If newstyle is zero, then use the pre-2.6 behavior of octal having
a leading "0" */
PyAPI_FUNC(PyObject*) _PyInt_Format(PyIntObject* v, int base, int newstyle);
/* Format the object based on the format_spec, as defined in PEP 3101
(Advanced String Formatting). */
PyAPI_FUNC(PyObject *) _PyInt_FormatAdvanced(PyObject *obj,
char *format_spec,
Py_ssize_t format_spec_len);
#ifdef __cplusplus
}
#endif
#endif /* !Py_INTOBJECT_H */
// This file is originally from CPython 2.7, with modifications for Pyston
#ifndef Py_LONGOBJECT_H
#define Py_LONGOBJECT_H
#ifdef __cplusplus
extern "C" {
#endif
/* Long (arbitrary precision) integer object interface */
// Pyston change: this is not the format we're using
#if 0
typedef struct _longobject PyLongObject; /* Revealed in longintrepr.h */
#endif
typedef void PyLongObject;
PyAPI_DATA(PyTypeObject) PyLong_Type;
#define PyLong_Check(op) \
PyType_FastSubclass(Py_TYPE(op), Py_TPFLAGS_LONG_SUBCLASS)
#define PyLong_CheckExact(op) (Py_TYPE(op) == &PyLong_Type)
PyAPI_FUNC(PyObject *) PyLong_FromLong(long);
PyAPI_FUNC(PyObject *) PyLong_FromUnsignedLong(unsigned long);
PyAPI_FUNC(PyObject *) PyLong_FromDouble(double);
PyAPI_FUNC(PyObject *) PyLong_FromSize_t(size_t);
PyAPI_FUNC(PyObject *) PyLong_FromSsize_t(Py_ssize_t);
PyAPI_FUNC(long) PyLong_AsLong(PyObject *);
PyAPI_FUNC(long) PyLong_AsLongAndOverflow(PyObject *, int *);
PyAPI_FUNC(unsigned long) PyLong_AsUnsignedLong(PyObject *);
PyAPI_FUNC(unsigned long) PyLong_AsUnsignedLongMask(PyObject *);
PyAPI_FUNC(Py_ssize_t) PyLong_AsSsize_t(PyObject *);
PyAPI_FUNC(int) _PyLong_AsInt(PyObject *);
PyAPI_FUNC(PyObject *) PyLong_GetInfo(void);
/* For use by intobject.c only */
#define _PyLong_AsSsize_t PyLong_AsSsize_t
#define _PyLong_FromSize_t PyLong_FromSize_t
#define _PyLong_FromSsize_t PyLong_FromSsize_t
PyAPI_DATA(int) _PyLong_DigitValue[256];
/* _PyLong_Frexp returns a double x and an exponent e such that the
true value is approximately equal to x * 2**e. e is >= 0. x is
0.0 if and only if the input is 0 (in which case, e and x are both
zeroes); otherwise, 0.5 <= abs(x) < 1.0. On overflow, which is
possible if the number of bits doesn't fit into a Py_ssize_t, sets
OverflowError and returns -1.0 for x, 0 for e. */
PyAPI_FUNC(double) _PyLong_Frexp(PyLongObject *a, Py_ssize_t *e);
PyAPI_FUNC(double) PyLong_AsDouble(PyObject *);
PyAPI_FUNC(PyObject *) PyLong_FromVoidPtr(void *);
PyAPI_FUNC(void *) PyLong_AsVoidPtr(PyObject *);
#ifdef HAVE_LONG_LONG
PyAPI_FUNC(PyObject *) PyLong_FromLongLong(PY_LONG_LONG);
PyAPI_FUNC(PyObject *) PyLong_FromUnsignedLongLong(unsigned PY_LONG_LONG);
PyAPI_FUNC(PY_LONG_LONG) PyLong_AsLongLong(PyObject *);
PyAPI_FUNC(unsigned PY_LONG_LONG) PyLong_AsUnsignedLongLong(PyObject *);
PyAPI_FUNC(unsigned PY_LONG_LONG) PyLong_AsUnsignedLongLongMask(PyObject *);
PyAPI_FUNC(PY_LONG_LONG) PyLong_AsLongLongAndOverflow(PyObject *, int *);
#endif /* HAVE_LONG_LONG */
PyAPI_FUNC(PyObject *) PyLong_FromString(char *, char **, int);
#ifdef Py_USING_UNICODE
PyAPI_FUNC(PyObject *) PyLong_FromUnicode(Py_UNICODE*, Py_ssize_t, int);
#endif
/* _PyLong_Sign. Return 0 if v is 0, -1 if v < 0, +1 if v > 0.
v must not be NULL, and must be a normalized long.
There are no error cases.
*/
PyAPI_FUNC(int) _PyLong_Sign(PyObject *v);
/* _PyLong_NumBits. Return the number of bits needed to represent the
absolute value of a long. For example, this returns 1 for 1 and -1, 2
for 2 and -2, and 2 for 3 and -3. It returns 0 for 0.
v must not be NULL, and must be a normalized long.
(size_t)-1 is returned and OverflowError set if the true result doesn't
fit in a size_t.
*/
PyAPI_FUNC(size_t) _PyLong_NumBits(PyObject *v);
/* _PyLong_FromByteArray: View the n unsigned bytes as a binary integer in
base 256, and return a Python long with the same numeric value.
If n is 0, the integer is 0. Else:
If little_endian is 1/true, bytes[n-1] is the MSB and bytes[0] the LSB;
else (little_endian is 0/false) bytes[0] is the MSB and bytes[n-1] the
LSB.
If is_signed is 0/false, view the bytes as a non-negative integer.
If is_signed is 1/true, view the bytes as a 2's-complement integer,
non-negative if bit 0x80 of the MSB is clear, negative if set.
Error returns:
+ Return NULL with the appropriate exception set if there's not
enough memory to create the Python long.
*/
PyAPI_FUNC(PyObject *) _PyLong_FromByteArray(
const unsigned char* bytes, size_t n,
int little_endian, int is_signed);
/* _PyLong_AsByteArray: Convert the least-significant 8*n bits of long
v to a base-256 integer, stored in array bytes. Normally return 0,
return -1 on error.
If little_endian is 1/true, store the MSB at bytes[n-1] and the LSB at
bytes[0]; else (little_endian is 0/false) store the MSB at bytes[0] and
the LSB at bytes[n-1].
If is_signed is 0/false, it's an error if v < 0; else (v >= 0) n bytes
are filled and there's nothing special about bit 0x80 of the MSB.
If is_signed is 1/true, bytes is filled with the 2's-complement
representation of v's value. Bit 0x80 of the MSB is the sign bit.
Error returns (-1):
+ is_signed is 0 and v < 0. TypeError is set in this case, and bytes
isn't altered.
+ n isn't big enough to hold the full mathematical value of v. For
example, if is_signed is 0 and there are more digits in the v than
fit in n; or if is_signed is 1, v < 0, and n is just 1 bit shy of
being large enough to hold a sign bit. OverflowError is set in this
case, but bytes holds the least-signficant n bytes of the true value.
*/
PyAPI_FUNC(int) _PyLong_AsByteArray(PyLongObject* v,
unsigned char* bytes, size_t n,
int little_endian, int is_signed);
/* _PyLong_Format: Convert the long to a string object with given base,
appending a base prefix of 0[box] if base is 2, 8 or 16.
Add a trailing "L" if addL is non-zero.
If newstyle is zero, then use the pre-2.6 behavior of octal having
a leading "0", instead of the prefix "0o" */
PyAPI_FUNC(PyObject *) _PyLong_Format(PyObject *aa, int base, int addL, int newstyle);
/* Format the object based on the format_spec, as defined in PEP 3101
(Advanced String Formatting). */
PyAPI_FUNC(PyObject *) _PyLong_FormatAdvanced(PyObject *obj,
char *format_spec,
Py_ssize_t format_spec_len);
#ifdef __cplusplus
}
#endif
#endif /* !Py_LONGOBJECT_H */
// This file is originally from CPython 2.7, with modifications for Pyston
/* Method object interface */
#ifndef Py_METHODOBJECT_H
#define Py_METHODOBJECT_H
#ifdef __cplusplus
extern "C" {
#endif
/* This is about the type 'builtin_function_or_method',
not Python methods in user-defined classes. See classobject.h
for the latter. */
PyAPI_DATA(PyTypeObject) PyCFunction_Type;
#define PyCFunction_Check(op) (Py_TYPE(op) == &PyCFunction_Type)
typedef PyObject *(*PyCFunction)(PyObject *, PyObject *);
typedef PyObject *(*PyCFunctionWithKeywords)(PyObject *, PyObject *,
PyObject *);
typedef PyObject *(*PyNoArgsFunction)(PyObject *);
PyAPI_FUNC(PyCFunction) PyCFunction_GetFunction(PyObject *);
PyAPI_FUNC(PyObject *) PyCFunction_GetSelf(PyObject *);
PyAPI_FUNC(int) PyCFunction_GetFlags(PyObject *);
/* Macros for direct access to these values. Type checks are *not*
done, so use with care. */
#define PyCFunction_GET_FUNCTION(func) \
(((PyCFunctionObject *)func) -> m_ml -> ml_meth)
#define PyCFunction_GET_SELF(func) \
(((PyCFunctionObject *)func) -> m_self)
#define PyCFunction_GET_FLAGS(func) \
(((PyCFunctionObject *)func) -> m_ml -> ml_flags)
PyAPI_FUNC(PyObject *) PyCFunction_Call(PyObject *, PyObject *, PyObject *);
struct PyMethodDef {
const char *ml_name; /* The name of the built-in function/method */
PyCFunction ml_meth; /* The C function that implements it */
int ml_flags; /* Combination of METH_xxx flags, which mostly
describe the args expected by the C func */
const char *ml_doc; /* The __doc__ attribute, or NULL */
};
typedef struct PyMethodDef PyMethodDef;
PyAPI_FUNC(PyObject *) Py_FindMethod(PyMethodDef[], PyObject *, const char *);
#define PyCFunction_New(ML, SELF) PyCFunction_NewEx((ML), (SELF), NULL)
PyAPI_FUNC(PyObject *) PyCFunction_NewEx(PyMethodDef *, PyObject *,
PyObject *);
/* Flag passed to newmethodobject */
#define METH_OLDARGS 0x0000
#define METH_VARARGS 0x0001
#define METH_KEYWORDS 0x0002
/* METH_NOARGS and METH_O must not be combined with the flags above. */
#define METH_NOARGS 0x0004
#define METH_O 0x0008
/* METH_CLASS and METH_STATIC are a little different; these control
the construction of methods for a class. These cannot be used for
functions in modules. */
#define METH_CLASS 0x0010
#define METH_STATIC 0x0020
/* METH_COEXIST allows a method to be entered eventhough a slot has
already filled the entry. When defined, the flag allows a separate
method, "__contains__" for example, to coexist with a defined
slot like sq_contains. */
#define METH_COEXIST 0x0040
typedef struct PyMethodChain {
PyMethodDef *methods; /* Methods of this type */
struct PyMethodChain *link; /* NULL or base type */
} PyMethodChain;
PyAPI_FUNC(PyObject *) Py_FindMethodInChain(PyMethodChain *, PyObject *,
const char *);
typedef struct {
PyObject_HEAD
PyMethodDef *m_ml; /* Description of the C function to call */
PyObject *m_self; /* Passed as 'self' arg to the C func, can be NULL */
PyObject *m_module; /* The __module__ attribute, can be anything */
} PyCFunctionObject;
PyAPI_FUNC(int) PyCFunction_ClearFreeList(void);
#ifdef __cplusplus
}
#endif
#endif /* !Py_METHODOBJECT_H */
// This file is originally from CPython 2.7, with modifications for Pyston
#ifndef Py_MODSUPPORT_H
#define Py_MODSUPPORT_H
#ifdef __cplusplus
extern "C" {
#endif
/* Module support interface */
#include <stdarg.h>
/* If PY_SSIZE_T_CLEAN is defined, each functions treats #-specifier
to mean Py_ssize_t */
#ifdef PY_SSIZE_T_CLEAN
#define PyArg_Parse _PyArg_Parse_SizeT
#define PyArg_ParseTuple _PyArg_ParseTuple_SizeT
#define PyArg_ParseTupleAndKeywords _PyArg_ParseTupleAndKeywords_SizeT
#define PyArg_VaParse _PyArg_VaParse_SizeT
#define PyArg_VaParseTupleAndKeywords _PyArg_VaParseTupleAndKeywords_SizeT
#define Py_BuildValue _Py_BuildValue_SizeT
#define Py_VaBuildValue _Py_VaBuildValue_SizeT
#else
PyAPI_FUNC(PyObject *) _Py_VaBuildValue_SizeT(const char *, va_list);
#endif
PyAPI_FUNC(int) PyArg_Parse(PyObject *, const char *, ...);
PyAPI_FUNC(int) PyArg_ParseTuple(PyObject *, const char *, ...) Py_FORMAT_PARSETUPLE(PyArg_ParseTuple, 2, 3);
PyAPI_FUNC(int) PyArg_ParseTupleAndKeywords(PyObject *, PyObject *,
const char *, char **, ...);
PyAPI_FUNC(int) PyArg_UnpackTuple(PyObject *, const char *, Py_ssize_t, Py_ssize_t, ...);
PyAPI_FUNC(PyObject *) Py_BuildValue(const char *, ...);
PyAPI_FUNC(PyObject *) _Py_BuildValue_SizeT(const char *, ...);
PyAPI_FUNC(int) _PyArg_NoKeywords(const char *funcname, PyObject *kw);
PyAPI_FUNC(int) PyArg_VaParse(PyObject *, const char *, va_list);
PyAPI_FUNC(int) PyArg_VaParseTupleAndKeywords(PyObject *, PyObject *,
const char *, char **, va_list);
PyAPI_FUNC(PyObject *) Py_VaBuildValue(const char *, va_list);
PyAPI_FUNC(int) PyModule_AddObject(PyObject *, const char *, PyObject *);
PyAPI_FUNC(int) PyModule_AddIntConstant(PyObject *, const char *, long);
PyAPI_FUNC(int) PyModule_AddStringConstant(PyObject *, const char *, const char *);
#define PyModule_AddIntMacro(m, c) PyModule_AddIntConstant(m, #c, c)
#define PyModule_AddStringMacro(m, c) PyModule_AddStringConstant(m, #c, c)
#define PYTHON_API_VERSION 1013
#define PYTHON_API_STRING "1013"
/* The API version is maintained (independently from the Python version)
so we can detect mismatches between the interpreter and dynamically
loaded modules. These are diagnosed by an error message but
the module is still loaded (because the mismatch can only be tested
after loading the module). The error message is intended to
explain the core dump a few seconds later.
The symbol PYTHON_API_STRING defines the same value as a string
literal. *** PLEASE MAKE SURE THE DEFINITIONS MATCH. ***
Please add a line or two to the top of this log for each API
version change:
22-Feb-2006 MvL 1013 PEP 353 - long indices for sequence lengths
19-Aug-2002 GvR 1012 Changes to string object struct for
interning changes, saving 3 bytes.
17-Jul-2001 GvR 1011 Descr-branch, just to be on the safe side
25-Jan-2001 FLD 1010 Parameters added to PyCode_New() and
PyFrame_New(); Python 2.1a2
14-Mar-2000 GvR 1009 Unicode API added
3-Jan-1999 GvR 1007 Decided to change back! (Don't reuse 1008!)
3-Dec-1998 GvR 1008 Python 1.5.2b1
18-Jan-1997 GvR 1007 string interning and other speedups
11-Oct-1996 GvR renamed Py_Ellipses to Py_Ellipsis :-(
30-Jul-1996 GvR Slice and ellipses syntax added
23-Jul-1996 GvR For 1.4 -- better safe than sorry this time :-)
7-Nov-1995 GvR Keyword arguments (should've been done at 1.3 :-( )
10-Jan-1995 GvR Renamed globals to new naming scheme
9-Jan-1995 GvR Initial version (incompatible with older API)
*/
#ifdef MS_WINDOWS
/* Special defines for Windows versions used to live here. Things
have changed, and the "Version" is now in a global string variable.
Reason for this is that this for easier branding of a "custom DLL"
without actually needing a recompile. */
#endif /* MS_WINDOWS */
#if SIZEOF_SIZE_T != SIZEOF_INT
/* On a 64-bit system, rename the Py_InitModule4 so that 2.4
modules cannot get loaded into a 2.5 interpreter */
#define Py_InitModule4 Py_InitModule4_64
#endif
#ifdef Py_TRACE_REFS
/* When we are tracing reference counts, rename Py_InitModule4 so
modules compiled with incompatible settings will generate a
link-time error. */
#if SIZEOF_SIZE_T != SIZEOF_INT
#undef Py_InitModule4
#define Py_InitModule4 Py_InitModule4TraceRefs_64
#else
#define Py_InitModule4 Py_InitModule4TraceRefs
#endif
#endif
PyAPI_FUNC(PyObject *) Py_InitModule4(const char *name, PyMethodDef *methods,
const char *doc, PyObject *self,
int apiver);
#define Py_InitModule(name, methods) \
Py_InitModule4(name, methods, (char *)NULL, (PyObject *)NULL, \
PYTHON_API_VERSION)
#define Py_InitModule3(name, methods, doc) \
Py_InitModule4(name, methods, doc, (PyObject *)NULL, \
PYTHON_API_VERSION)
PyAPI_DATA(char *) _Py_PackageContext;
#ifdef __cplusplus
}
#endif
#endif /* !Py_MODSUPPORT_H */
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
// This file is originally from CPython 2.7, with modifications for Pyston
/* The PyMem_ family: low-level memory allocation interfaces.
See objimpl.h for the PyObject_ memory family.
*/
#ifndef Py_PYMEM_H
#define Py_PYMEM_H
#include "pyport.h"
#ifdef __cplusplus
extern "C" {
#endif
/* BEWARE:
Each interface exports both functions and macros. Extension modules should
use the functions, to ensure binary compatibility across Python versions.
Because the Python implementation is free to change internal details, and
the macros may (or may not) expose details for speed, if you do use the
macros you must recompile your extensions with each Python release.
Never mix calls to PyMem_ with calls to the platform malloc/realloc/
calloc/free. For example, on Windows different DLLs may end up using
different heaps, and if you use PyMem_Malloc you'll get the memory from the
heap used by the Python DLL; it could be a disaster if you free()'ed that
directly in your own extension. Using PyMem_Free instead ensures Python
can return the memory to the proper heap. As another example, in
PYMALLOC_DEBUG mode, Python wraps all calls to all PyMem_ and PyObject_
memory functions in special debugging wrappers that add additional
debugging info to dynamic memory blocks. The system routines have no idea
what to do with that stuff, and the Python wrappers have no idea what to do
with raw blocks obtained directly by the system routines then.
The GIL must be held when using these APIs.
*/
/*
* Raw memory interface
* ====================
*/
/* Functions
Functions supplying platform-independent semantics for malloc/realloc/
free. These functions make sure that allocating 0 bytes returns a distinct
non-NULL pointer (whenever possible -- if we're flat out of memory, NULL
may be returned), even if the platform malloc and realloc don't.
Returned pointers must be checked for NULL explicitly. No action is
performed on failure (no exception is set, no warning is printed, etc).
*/
PyAPI_FUNC(void *) PyMem_Malloc(size_t);
PyAPI_FUNC(void *) PyMem_Realloc(void *, size_t);
PyAPI_FUNC(void) PyMem_Free(void *);
/* Starting from Python 1.6, the wrappers Py_{Malloc,Realloc,Free} are
no longer supported. They used to call PyErr_NoMemory() on failure. */
/* Macros. */
#ifdef PYMALLOC_DEBUG
/* Redirect all memory operations to Python's debugging allocator. */
#define PyMem_MALLOC _PyMem_DebugMalloc
#define PyMem_REALLOC _PyMem_DebugRealloc
#define PyMem_FREE _PyMem_DebugFree
#else /* ! PYMALLOC_DEBUG */
/* PyMem_MALLOC(0) means malloc(1). Some systems would return NULL
for malloc(0), which would be treated as an error. Some platforms
would return a pointer with no memory behind it, which would break
pymalloc. To solve these problems, allocate an extra byte. */
/* Returns NULL to indicate error if a negative size or size larger than
Py_ssize_t can represent is supplied. Helps prevents security holes. */
#define PyMem_MALLOC(n) ((size_t)(n) > (size_t)PY_SSIZE_T_MAX ? NULL \
: malloc((n) ? (n) : 1))
#define PyMem_REALLOC(p, n) ((size_t)(n) > (size_t)PY_SSIZE_T_MAX ? NULL \
: realloc((p), (n) ? (n) : 1))
#define PyMem_FREE free
#endif /* PYMALLOC_DEBUG */
/*
* Type-oriented memory interface
* ==============================
*
* Allocate memory for n objects of the given type. Returns a new pointer
* or NULL if the request was too large or memory allocation failed. Use
* these macros rather than doing the multiplication yourself so that proper
* overflow checking is always done.
*/
#define PyMem_New(type, n) \
( ((size_t)(n) > PY_SSIZE_T_MAX / sizeof(type)) ? NULL : \
( (type *) PyMem_Malloc((n) * sizeof(type)) ) )
#define PyMem_NEW(type, n) \
( ((size_t)(n) > PY_SSIZE_T_MAX / sizeof(type)) ? NULL : \
( (type *) PyMem_MALLOC((n) * sizeof(type)) ) )
/*
* The value of (p) is always clobbered by this macro regardless of success.
* The caller MUST check if (p) is NULL afterwards and deal with the memory
* error if so. This means the original value of (p) MUST be saved for the
* caller's memory error handler to not lose track of it.
*/
#define PyMem_Resize(p, type, n) \
( (p) = ((size_t)(n) > PY_SSIZE_T_MAX / sizeof(type)) ? NULL : \
(type *) PyMem_Realloc((p), (n) * sizeof(type)) )
#define PyMem_RESIZE(p, type, n) \
( (p) = ((size_t)(n) > PY_SSIZE_T_MAX / sizeof(type)) ? NULL : \
(type *) PyMem_REALLOC((p), (n) * sizeof(type)) )
/* PyMem{Del,DEL} are left over from ancient days, and shouldn't be used
* anymore. They're just confusing aliases for PyMem_{Free,FREE} now.
*/
#define PyMem_Del PyMem_Free
#define PyMem_DEL PyMem_FREE
#ifdef __cplusplus
}
#endif
#endif /* !Py_PYMEM_H */
// This file is based off of CPython's pyport.h, though it has been heavily modified/cut down,
// largely due to the lack of a way to generate pyconfig.h at the moment.
#ifndef Py_PYPORT_H
#define Py_PYPORT_H
#include <stdint.h>
// Pyston change: these are just hard-coded for now:
#define SIZEOF_VOID_P 8
#define SIZEOF_SIZE_T 8
#define SIZEOF_INT 4
typedef ssize_t Py_ssize_t;
#define Py_FORMAT_PARSETUPLE(func,p1,p2)
#define Py_GCC_ATTRIBUTE(x) __attribute__(x)
// Pyston change: the rest of these have just been copied from CPython's pyport.h, in an arbitrary order:
/* Py_DEPRECATED(version)
* Declare a variable, type, or function deprecated.
* Usage:
* extern int old_var Py_DEPRECATED(2.3);
* typedef int T1 Py_DEPRECATED(2.4);
* extern int x() Py_DEPRECATED(2.5);
*/
#if defined(__GNUC__) && ((__GNUC__ >= 4) || \
(__GNUC__ == 3) && (__GNUC_MINOR__ >= 1))
#define Py_DEPRECATED(VERSION_UNUSED) __attribute__((__deprecated__))
#else
#define Py_DEPRECATED(VERSION_UNUSED)
#endif
/* Declarations for symbol visibility.
PyAPI_FUNC(type): Declares a public Python API function and return type
PyAPI_DATA(type): Declares public Python data and its type
PyMODINIT_FUNC: A Python module init function. If these functions are
inside the Python core, they are private to the core.
If in an extension module, it may be declared with
external linkage depending on the platform.
As a number of platforms support/require "__declspec(dllimport/dllexport)",
we support a HAVE_DECLSPEC_DLL macro to save duplication.
*/
/*
All windows ports, except cygwin, are handled in PC/pyconfig.h.
BeOS and cygwin are the only other autoconf platform requiring special
linkage handling and both of these use __declspec().
*/
#if defined(__CYGWIN__) || defined(__BEOS__)
# define HAVE_DECLSPEC_DLL
#endif
/* only get special linkage if built as shared or platform is Cygwin */
#if defined(Py_ENABLE_SHARED) || defined(__CYGWIN__)
# if defined(HAVE_DECLSPEC_DLL)
# ifdef Py_BUILD_CORE
# define PyAPI_FUNC(RTYPE) __declspec(dllexport) RTYPE
# define PyAPI_DATA(RTYPE) extern __declspec(dllexport) RTYPE
/* module init functions inside the core need no external linkage */
/* except for Cygwin to handle embedding (FIXME: BeOS too?) */
# if defined(__CYGWIN__)
# define PyMODINIT_FUNC __declspec(dllexport) void
# else /* __CYGWIN__ */
# define PyMODINIT_FUNC void
# endif /* __CYGWIN__ */
# else /* Py_BUILD_CORE */
/* Building an extension module, or an embedded situation */
/* public Python functions and data are imported */
/* Under Cygwin, auto-import functions to prevent compilation */
/* failures similar to those described at the bottom of 4.1: */
/* http://docs.python.org/extending/windows.html#a-cookbook-approach */
# if !defined(__CYGWIN__)
# define PyAPI_FUNC(RTYPE) __declspec(dllimport) RTYPE
# endif /* !__CYGWIN__ */
# define PyAPI_DATA(RTYPE) extern __declspec(dllimport) RTYPE
/* module init functions outside the core must be exported */
# if defined(__cplusplus)
# define PyMODINIT_FUNC extern "C" __declspec(dllexport) void
# else /* __cplusplus */
# define PyMODINIT_FUNC __declspec(dllexport) void
# endif /* __cplusplus */
# endif /* Py_BUILD_CORE */
# endif /* HAVE_DECLSPEC */
#endif /* Py_ENABLE_SHARED */
/* If no external linkage macros defined by now, create defaults */
#ifndef PyAPI_FUNC
# define PyAPI_FUNC(RTYPE) RTYPE
#endif
#ifndef PyAPI_DATA
# define PyAPI_DATA(RTYPE) extern RTYPE
#endif
#ifndef PyMODINIT_FUNC
# if defined(__cplusplus)
# define PyMODINIT_FUNC extern "C" void
# else /* __cplusplus */
# define PyMODINIT_FUNC void
# endif /* __cplusplus */
#endif
/* Deprecated DL_IMPORT and DL_EXPORT macros */
#if defined(Py_ENABLE_SHARED) && defined (HAVE_DECLSPEC_DLL)
# if defined(Py_BUILD_CORE)
# define DL_IMPORT(RTYPE) __declspec(dllexport) RTYPE
# define DL_EXPORT(RTYPE) __declspec(dllexport) RTYPE
# else
# define DL_IMPORT(RTYPE) __declspec(dllimport) RTYPE
# define DL_EXPORT(RTYPE) __declspec(dllexport) RTYPE
# endif
#endif
#ifndef DL_EXPORT
# define DL_EXPORT(RTYPE) RTYPE
#endif
#ifndef DL_IMPORT
# define DL_IMPORT(RTYPE) RTYPE
#endif
#ifdef Py_DEBUG
#define Py_SAFE_DOWNCAST(VALUE, WIDE, NARROW) \
(assert((WIDE)(NARROW)(VALUE) == (VALUE)), (NARROW)(VALUE))
#else
#define Py_SAFE_DOWNCAST(VALUE, WIDE, NARROW) (NARROW)(VALUE)
#endif
#endif /* Py_PYPORT_H */
// This file is originally from CPython 2.7, with modifications for Pyston
/* String (str/bytes) object interface */
#ifndef Py_STRINGOBJECT_H
#define Py_STRINGOBJECT_H
#ifdef __cplusplus
extern "C" {
#endif
#include <stdarg.h>
/*
Type PyStringObject represents a character string. An extra zero byte is
reserved at the end to ensure it is zero-terminated, but a size is
present so strings with null bytes in them can be represented. This
is an immutable object type.
There are functions to create new string objects, to test
an object for string-ness, and to get the
string value. The latter function returns a null pointer
if the object is not of the proper type.
There is a variant that takes an explicit size as well as a
variant that assumes a zero-terminated string. Note that none of the
functions should be applied to nil objects.
*/
/* Caching the hash (ob_shash) saves recalculation of a string's hash value.
Interning strings (ob_sstate) tries to ensure that only one string
object with a given value exists, so equality tests can be one pointer
comparison. This is generally restricted to strings that "look like"
Python identifiers, although the intern() builtin can be used to force
interning of any string.
Together, these sped the interpreter by up to 20%. */
// Pyston change: comment this out since this is not the format we're using
#if 0
typedef struct {
PyObject_VAR_HEAD
long ob_shash;
int ob_sstate;
char ob_sval[1];
/* Invariants:
* ob_sval contains space for 'ob_size+1' elements.
* ob_sval[ob_size] == 0.
* ob_shash is the hash of the string or -1 if not computed yet.
* ob_sstate != 0 iff the string object is in stringobject.c's
* 'interned' dictionary; in this case the two references
* from 'interned' to this object are *not counted* in ob_refcnt.
*/
} PyStringObject;
#endif
#define SSTATE_NOT_INTERNED 0
#define SSTATE_INTERNED_MORTAL 1
#define SSTATE_INTERNED_IMMORTAL 2
PyAPI_DATA(PyTypeObject) PyBaseString_Type;
PyAPI_DATA(PyTypeObject) PyString_Type;
#define PyString_Check(op) \
PyType_FastSubclass(Py_TYPE(op), Py_TPFLAGS_STRING_SUBCLASS)
#define PyString_CheckExact(op) (Py_TYPE(op) == &PyString_Type)
PyAPI_FUNC(PyObject *) PyString_FromStringAndSize(const char *, Py_ssize_t);
PyAPI_FUNC(PyObject *) PyString_FromString(const char *);
PyAPI_FUNC(PyObject *) PyString_FromFormatV(const char*, va_list)
Py_GCC_ATTRIBUTE((format(printf, 1, 0)));
PyAPI_FUNC(PyObject *) PyString_FromFormat(const char*, ...)
Py_GCC_ATTRIBUTE((format(printf, 1, 2)));
PyAPI_FUNC(Py_ssize_t) PyString_Size(PyObject *);
PyAPI_FUNC(char *) PyString_AsString(PyObject *);
PyAPI_FUNC(PyObject *) PyString_Repr(PyObject *, int);
PyAPI_FUNC(void) PyString_Concat(PyObject **, PyObject *);
PyAPI_FUNC(void) PyString_ConcatAndDel(PyObject **, PyObject *);
PyAPI_FUNC(int) _PyString_Resize(PyObject **, Py_ssize_t);
PyAPI_FUNC(int) _PyString_Eq(PyObject *, PyObject*);
PyAPI_FUNC(PyObject *) PyString_Format(PyObject *, PyObject *);
PyAPI_FUNC(PyObject *) _PyString_FormatLong(PyObject*, int, int,
int, char**, int*);
PyAPI_FUNC(PyObject *) PyString_DecodeEscape(const char *, Py_ssize_t,
const char *, Py_ssize_t,
const char *);
PyAPI_FUNC(void) PyString_InternInPlace(PyObject **);
PyAPI_FUNC(void) PyString_InternImmortal(PyObject **);
PyAPI_FUNC(PyObject *) PyString_InternFromString(const char *);
PyAPI_FUNC(void) _Py_ReleaseInternedStrings(void);
/* Use only if you know it's a string */
#define PyString_CHECK_INTERNED(op) (((PyStringObject *)(op))->ob_sstate)
/* Macro, trading safety for speed */
// Pyston changes: these aren't direct macros any more [they potentially could be though]
#define PyString_AS_STRING(op) PyString_AsString(op)
#define PyString_GET_SIZE(op) PyString_Size(op)
//#define PyString_AS_STRING(op) (((PyStringObject *)(op))->ob_sval)
//#define PyString_GET_SIZE(op) Py_SIZE(op)
/* _PyString_Join(sep, x) is like sep.join(x). sep must be PyStringObject*,
x must be an iterable object. */
PyAPI_FUNC(PyObject *) _PyString_Join(PyObject *sep, PyObject *x);
/* --- Generic Codecs ----------------------------------------------------- */
/* Create an object by decoding the encoded string s of the
given size. */
PyAPI_FUNC(PyObject*) PyString_Decode(
const char *s, /* encoded string */
Py_ssize_t size, /* size of buffer */
const char *encoding, /* encoding */
const char *errors /* error handling */
);
/* Encodes a char buffer of the given size and returns a
Python object. */
PyAPI_FUNC(PyObject*) PyString_Encode(
const char *s, /* string char buffer */
Py_ssize_t size, /* number of chars to encode */
const char *encoding, /* encoding */
const char *errors /* error handling */
);
/* Encodes a string object and returns the result as Python
object. */
PyAPI_FUNC(PyObject*) PyString_AsEncodedObject(
PyObject *str, /* string object */
const char *encoding, /* encoding */
const char *errors /* error handling */
);
/* Encodes a string object and returns the result as Python string
object.
If the codec returns an Unicode object, the object is converted
back to a string using the default encoding.
DEPRECATED - use PyString_AsEncodedObject() instead. */
PyAPI_FUNC(PyObject*) PyString_AsEncodedString(
PyObject *str, /* string object */
const char *encoding, /* encoding */
const char *errors /* error handling */
);
/* Decodes a string object and returns the result as Python
object. */
PyAPI_FUNC(PyObject*) PyString_AsDecodedObject(
PyObject *str, /* string object */
const char *encoding, /* encoding */
const char *errors /* error handling */
);
/* Decodes a string object and returns the result as Python string
object.
If the codec returns an Unicode object, the object is converted
back to a string using the default encoding.
DEPRECATED - use PyString_AsDecodedObject() instead. */
PyAPI_FUNC(PyObject*) PyString_AsDecodedString(
PyObject *str, /* string object */
const char *encoding, /* encoding */
const char *errors /* error handling */
);
/* Provides access to the internal data buffer and size of a string
object or the default encoded version of an Unicode object. Passing
NULL as *len parameter will force the string buffer to be
0-terminated (passing a string with embedded NULL characters will
cause an exception). */
PyAPI_FUNC(int) PyString_AsStringAndSize(
register PyObject *obj, /* string or Unicode object */
register char **s, /* pointer to buffer variable */
register Py_ssize_t *len /* pointer to length variable or NULL
(only possible for 0-terminated
strings) */
);
/* Using the current locale, insert the thousands grouping
into the string pointed to by buffer. For the argument descriptions,
see Objects/stringlib/localeutil.h */
PyAPI_FUNC(Py_ssize_t) _PyString_InsertThousandsGroupingLocale(char *buffer,
Py_ssize_t n_buffer,
char *digits,
Py_ssize_t n_digits,
Py_ssize_t min_width);
/* Using explicit passed-in values, insert the thousands grouping
into the string pointed to by buffer. For the argument descriptions,
see Objects/stringlib/localeutil.h */
PyAPI_FUNC(Py_ssize_t) _PyString_InsertThousandsGrouping(char *buffer,
Py_ssize_t n_buffer,
char *digits,
Py_ssize_t n_digits,
Py_ssize_t min_width,
const char *grouping,
const char *thousands_sep);
/* Format the object based on the format_spec, as defined in PEP 3101
(Advanced String Formatting). */
PyAPI_FUNC(PyObject *) _PyBytes_FormatAdvanced(PyObject *obj,
char *format_spec,
Py_ssize_t format_spec_len);
#ifdef __cplusplus
}
#endif
#endif /* !Py_STRINGOBJECT_H */
// This file is originally from CPython 2.7, with modifications for Pyston
/* Tuple object interface */
#ifndef Py_TUPLEOBJECT_H
#define Py_TUPLEOBJECT_H
#ifdef __cplusplus
extern "C" {
#endif
/*
Another generally useful object type is a tuple of object pointers.
For Python, this is an immutable type. C code can change the tuple items
(but not their number), and even use tuples are general-purpose arrays of
object references, but in general only brand new tuples should be mutated,
not ones that might already have been exposed to Python code.
*** WARNING *** PyTuple_SetItem does not increment the new item's reference
count, but does decrement the reference count of the item it replaces,
if not nil. It does *decrement* the reference count if it is *not*
inserted in the tuple. Similarly, PyTuple_GetItem does not increment the
returned item's reference count.
*/
// Pyston change: this is not the format we're using (but maybe it should be)
#if 0
typedef struct {
PyObject_VAR_HEAD
PyObject *ob_item[1];
/* ob_item contains space for 'ob_size' elements.
* Items must normally not be NULL, except during construction when
* the tuple is not yet visible outside the function that builds it.
*/
} PyTupleObject;
#endif
PyAPI_DATA(PyTypeObject) PyTuple_Type;
#define PyTuple_Check(op) \
PyType_FastSubclass(Py_TYPE(op), Py_TPFLAGS_TUPLE_SUBCLASS)
#define PyTuple_CheckExact(op) (Py_TYPE(op) == &PyTuple_Type)
PyAPI_FUNC(PyObject *) PyTuple_New(Py_ssize_t size);
PyAPI_FUNC(Py_ssize_t) PyTuple_Size(PyObject *);
PyAPI_FUNC(PyObject *) PyTuple_GetItem(PyObject *, Py_ssize_t);
PyAPI_FUNC(int) PyTuple_SetItem(PyObject *, Py_ssize_t, PyObject *);
PyAPI_FUNC(PyObject *) PyTuple_GetSlice(PyObject *, Py_ssize_t, Py_ssize_t);
PyAPI_FUNC(int) _PyTuple_Resize(PyObject **, Py_ssize_t);
PyAPI_FUNC(PyObject *) PyTuple_Pack(Py_ssize_t, ...);
PyAPI_FUNC(void) _PyTuple_MaybeUntrack(PyObject *);
/* Macro, trading safety for speed */
#define PyTuple_GET_ITEM(op, i) (((PyTupleObject *)(op))->ob_item[i])
#define PyTuple_GET_SIZE(op) Py_SIZE(op)
/* Macro, *only* to be used to fill in brand new tuples */
#define PyTuple_SET_ITEM(op, i, v) (((PyTupleObject *)(op))->ob_item[i] = v)
PyAPI_FUNC(int) PyTuple_ClearFreeList(void);
#ifdef __cplusplus
}
#endif
#endif /* !Py_TUPLEOBJECT_H */
......@@ -150,9 +150,9 @@ extern "C" PyObject* Py_BuildValue(const char* arg0, ...) {
return None;
}
extern "C" bool PyArg_ParseTuple(PyObject* tuple, const char* fmt, ...) {
extern "C" int PyArg_ParseTuple(PyObject* tuple, const char* fmt, ...) {
if (strcmp("", fmt) == 0)
return true;
return 1;
assert(strcmp("O", fmt) == 0);
......@@ -167,7 +167,7 @@ extern "C" bool PyArg_ParseTuple(PyObject* tuple, const char* fmt, ...) {
va_end(ap);
return true;
return 1;
}
BoxedModule* importTestExtension() {
......
Markdown is supported
0%
or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment