Commit a1b882da authored by Brenden Blanco's avatar Brenden Blanco

Make tunnel example more user friendly

* Move files to separate directory
* Add README
* Run http server automatically from main.py
* Add setup.sh script to automate dependencies
Signed-off-by: default avatarBrenden Blanco <bblanco@plumgrid.com>
parent 144811d6
## Tunnel Monitor Example
This example shows how to use a BPF program to parse packets across an
encapsulation boundary. It uses this ability to record inner+outer ip addresses
as well as vxlan id into a hash table. The entries in that table store bytes
and packets received/transmitted. One novel part of this program is its use of
`bpf_tail_call` to parse two different IP headers (inner/outer) using the same
state machine logic.
Also part of this example is a simulation of a multi-host environment with an
overlay network (using vxlan in this case), and each host contains multiple
clients in different segments of the overlay network. The script `traffic.sh`
can be used to simulate a subset of clients on host0 talking to various other
clients+hosts at different traffic rates.
![Overlay Diagram](vxlan.jpg)
Once the simulation is running, the statistics kept by the BPF program can be
displayed to give a visual clue as to the nature of the traffic flowing over
the physical interface, post-encapsulation.
![Chord Diagram](chord.png)
To get the example running, change into the examples/tunnel_monitor directory.
If this is the first time, run `setup.sh` to pull in the UI component and
dependencies. You will need nodejs+npm installed on the system to run this, but
the setup script will only install packages in the local directory.
```
[user@localhost tunnel_monitor]$ ./setup.sh
Cloning into 'chord-transitions'...
remote: Counting objects: 294, done.
...
jquery#2.1.4 bower_components/jquery
modernizr#2.8.3 bower_components/modernizr
fastclick#1.0.6 bower_components/fastclick
[user@localhost tunnel_monitor]$
```
Then, start the simulation by running main.py:
```
[root@bcc-dev tunnel_monitor]# python main.py
Launching host 1 of 9
Launching host 2 of 9
...
Starting tunnel 8 of 9
Starting tunnel 9 of 9
HTTPServer listening on 0.0.0.0:8080
Press enter to quit:
```
The prompt will remain until you choose to exit. In the background, the script
has started a python SimpleHTTPServer on port 8080, which you may now try to
connect to from your browser. There will likely be a blank canvas until traffic
is sent through the tunnels.
To simulate traffic, use the traffic.sh script to generate a distribution of
pings between various clients and hosts. Check back on the chord diagram to
see a visualization. Try clicking on a host IP address to see a breakdown of
the inner IP addresses sent to/from that host.
As an exercise, try modifying the traffic.sh script to cause one of the clients
to send much more traffic than the others, and use the chord diagram to identify
the culprit.
...@@ -3,11 +3,14 @@ ...@@ -3,11 +3,14 @@
# Licensed under the Apache License, Version 2.0 (the "License") # Licensed under the Apache License, Version 2.0 (the "License")
from builtins import input from builtins import input
from http.server import HTTPServer, SimpleHTTPRequestHandler
from netaddr import IPNetwork from netaddr import IPNetwork
from os import chdir
from pyroute2 import IPRoute, NetNS, IPDB, NSPopen from pyroute2 import IPRoute, NetNS, IPDB, NSPopen
from random import choice, randint from random import choice, randint
from simulation import Simulation from simulation import Simulation
from socket import htons from socket import htons
from threading import Thread
import sys import sys
ipr = IPRoute() ipr = IPRoute()
...@@ -27,6 +30,7 @@ class TunnelSimulation(Simulation): ...@@ -27,6 +30,7 @@ class TunnelSimulation(Simulation):
# each entry is tuple of ns_ipdb, out_ifc, in_ifc # each entry is tuple of ns_ipdb, out_ifc, in_ifc
host_info = [] host_info = []
for i in range(0, num_hosts): for i in range(0, num_hosts):
print("Launching host %i of %i" % (i + 1, num_hosts))
ipaddr = "172.16.1.%d/24" % (100 + i) ipaddr = "172.16.1.%d/24" % (100 + i)
host_info.append(self._create_ns("host%d" % i, ipaddr=ipaddr)) host_info.append(self._create_ns("host%d" % i, ipaddr=ipaddr))
with self.ipdb.create(ifname="br100", kind="bridge") as br100: with self.ipdb.create(ifname="br100", kind="bridge") as br100:
...@@ -34,12 +38,15 @@ class TunnelSimulation(Simulation): ...@@ -34,12 +38,15 @@ class TunnelSimulation(Simulation):
br100.up() br100.up()
# create a vxlan device inside each namespace # create a vxlan device inside each namespace
for host in host_info: for host in host_info:
print("Starting tunnel %i of %i" % (len(self.processes) + 1, num_hosts))
cmd = ["netserver", "-D"] cmd = ["netserver", "-D"]
self.processes.append(NSPopen(host[0].nl.netns, cmd, stdout=null)) self.processes.append(NSPopen(host[0].nl.netns, cmd, stdout=null))
for i in range(0, num_vnis): for i in range(0, num_vnis):
with host[0].create(ifname="vxlan%d" % i, kind="vxlan", vxlan_id=10000 + i, with host[0].create(ifname="vxlan%d" % i, kind="vxlan",
vxlan_id=10000 + i,
vxlan_link=host[0].interfaces.eth0, vxlan_link=host[0].interfaces.eth0,
vxlan_port=htons(4789), vxlan_group="239.1.1.%d" % (1 + i)) as vx: vxlan_port=htons(4789),
vxlan_group="239.1.1.%d" % (1 + i)) as vx:
vx.up() vx.up()
with host[0].create(ifname="br%d" % i, kind="bridge") as br: with host[0].create(ifname="br%d" % i, kind="bridge") as br:
br.add_port(host[0].interfaces["vxlan%d" % i]) br.add_port(host[0].interfaces["vxlan%d" % i])
...@@ -54,13 +61,24 @@ class TunnelSimulation(Simulation): ...@@ -54,13 +61,24 @@ class TunnelSimulation(Simulation):
# pick one host to start the monitor in # pick one host to start the monitor in
host = host_info[0] host = host_info[0]
cmd = ["python", "tunnel_monitor.py"] cmd = ["python", "monitor.py"]
p = NSPopen(host[0].nl.netns, cmd) p = NSPopen(host[0].nl.netns, cmd)
self.processes.append(p) self.processes.append(p)
def serve_http(self):
chdir("chord-transitions")
# comment below line to see http server log messages
SimpleHTTPRequestHandler.log_message = lambda self, format, *args: None
self.srv = HTTPServer(("", 8080), SimpleHTTPRequestHandler)
self.t = Thread(target=self.srv.serve_forever)
self.t.setDaemon(True)
self.t.start()
print("HTTPServer listening on 0.0.0.0:8080")
try: try:
sim = TunnelSimulation(ipdb) sim = TunnelSimulation(ipdb)
sim.start() sim.start()
sim.serve_http()
input("Press enter to quit:") input("Press enter to quit:")
finally: finally:
if "br100" in ipdb.interfaces: ipdb.interfaces.br100.remove().commit() if "br100" in ipdb.interfaces: ipdb.interfaces.br100.remove().commit()
......
...@@ -14,19 +14,19 @@ from time import sleep ...@@ -14,19 +14,19 @@ from time import sleep
ipr = IPRoute() ipr = IPRoute()
ipdb = IPDB(nl=ipr) ipdb = IPDB(nl=ipr)
b = BPF(src_file="tunnel_monitor.c", debug=0) b = BPF(src_file="monitor.c", debug=0)
ingress_fn = b.load_func("handle_ingress", BPF.SCHED_CLS) ingress_fn = b.load_func("handle_ingress", BPF.SCHED_CLS)
egress_fn = b.load_func("handle_egress", BPF.SCHED_CLS) egress_fn = b.load_func("handle_egress", BPF.SCHED_CLS)
outer_fn = b.load_func("handle_outer", BPF.SCHED_CLS) outer_fn = b.load_func("handle_outer", BPF.SCHED_CLS)
inner_fn = b.load_func("handle_inner", BPF.SCHED_CLS) inner_fn = b.load_func("handle_inner", BPF.SCHED_CLS)
stats = b.get_table("stats") stats = b.get_table("stats")
# using jump table for inner and outer packet split
parser = b.get_table("parser") parser = b.get_table("parser")
parser[c_int(1)] = c_int(outer_fn.fd) parser[c_int(1)] = c_int(outer_fn.fd)
parser[c_int(2)] = c_int(inner_fn.fd) parser[c_int(2)] = c_int(inner_fn.fd)
ifc = ipdb.interfaces.eth0 ifc = ipdb.interfaces.eth0
# monitor one host...move this inside the netns to be more realistic
ipr.tc("add", "ingress", ifc.index, "ffff:") ipr.tc("add", "ingress", ifc.index, "ffff:")
ipr.tc("add-filter", "bpf", ifc.index, ":1", fd=ingress_fn.fd, ipr.tc("add-filter", "bpf", ifc.index, ":1", fd=ingress_fn.fd,
name=ingress_fn.name, parent="ffff:", action="ok", classid=1) name=ingress_fn.name, parent="ffff:", action="ok", classid=1)
...@@ -69,12 +69,12 @@ while True: ...@@ -69,12 +69,12 @@ while True:
prev = tmp prev = tmp
with open("/root/chord-transitions/data/tunnel.json.new", "w") as f: with open("./chord-transitions/data/tunnel.json.new", "w") as f:
json.dump(result_total, f) json.dump(result_total, f)
rename("/root/chord-transitions/data/tunnel.json.new", "/root/chord-transitions/data/tunnel.json") rename("./chord-transitions/data/tunnel.json.new", "./chord-transitions/data/tunnel.json")
with open("/root/chord-transitions/data/tunnel-delta.json.new", "w") as f: with open("./chord-transitions/data/tunnel-delta.json.new", "w") as f:
json.dump(result_delta, f) json.dump(result_delta, f)
rename("/root/chord-transitions/data/tunnel-delta.json.new", "/root/chord-transitions/data/tunnel-delta.json") rename("./chord-transitions/data/tunnel-delta.json.new", "./chord-transitions/data/tunnel-delta.json")
sleep(5) sleep(5)
ipdb.release() ipdb.release()
#!/bin/bash
# Copyright (c) PLUMgrid, Inc.
# Licensed under the Apache License, Version 2.0 (the "License")
# this script:
# 1. checks for bower to be installed
# 2. clones the chord-transitions UI from github
# 3. installs locally the packages required by the UI
function which_() { hash "$1" &>/dev/null; }
if [[ ! -d chord-transitions ]]; then
git clone https://github.com/iovisor/chord-transitions.git
fi
cd chord-transitions
export PATH=node_modules/.bin:$PATH
if ! which_ bower; then
if ! which_ npm; then
echo "Error: required binary 'npm' not found, please install nodejs"
exit 1
fi
npm install bower
fi
if [[ "$(id -u)" = "0" ]]; then
args="--allow-root"
fi
bower install $args
../simulation.py
\ No newline at end of file
#!/bin/bash #!/bin/bash
cmd="ip netns exec host0"
if [[ "$(id -u)" != "0" ]]; then
cmd="sudo $cmd"
fi
B=/usr/bin/byobu B=/usr/bin/byobu
S=tunnel1 S=tunnel1
...@@ -7,31 +12,31 @@ tmux has-session -t $S &> /dev/null ...@@ -7,31 +12,31 @@ tmux has-session -t $S &> /dev/null
if [[ $? != 0 ]]; then if [[ $? != 0 ]]; then
$B new-session -s $S -n "c1" -d $B new-session -s $S -n "c1" -d
tmux send -t $S "ip netns exec host0 ping 192.168.0.1 -s512" C-m tmux send -t $S "$cmd ping 192.168.0.1 -s512" C-m
tmux new-window -t $S -n "c2" tmux new-window -t $S -n "c2"
tmux send -t $S "ip netns exec host0 ping 192.168.0.2 -s128" C-m tmux send -t $S "$cmd ping 192.168.0.2 -s128" C-m
tmux new-window -t $S -n "c3" tmux new-window -t $S -n "c3"
tmux send -t $S "ip netns exec host0 ping 192.168.0.3 -s1024" C-m tmux send -t $S "$cmd ping 192.168.0.3 -s1024" C-m
tmux new-window -t $S -n "c3" tmux new-window -t $S -n "c3"
tmux send -t $S "ip netns exec host0 ping 192.168.0.4 -s128" C-m tmux send -t $S "$cmd ping 192.168.0.4 -s128" C-m
tmux new-window -t $S -n "c3" tmux new-window -t $S -n "c3"
tmux send -t $S "ip netns exec host0 ping 192.168.0.5 -s128" C-m tmux send -t $S "$cmd ping 192.168.0.5 -s128" C-m
tmux new-window -t $S -n "c3" tmux new-window -t $S -n "c3"
tmux send -t $S "ip netns exec host0 ping 192.168.0.6 -s128" C-m tmux send -t $S "$cmd ping 192.168.0.6 -s128" C-m
tmux new-window -t $S -n "c4" tmux new-window -t $S -n "c4"
tmux send -t $S "ip netns exec host0 ping 192.168.1.2 -s128" C-m tmux send -t $S "$cmd ping 192.168.1.2 -s128" C-m
tmux new-window -t $S -n "c5" tmux new-window -t $S -n "c5"
tmux send -t $S "ip netns exec host0 ping 192.168.1.4 -s768" C-m tmux send -t $S "$cmd ping 192.168.1.4 -s768" C-m
tmux new-window -t $S -n "c2" tmux new-window -t $S -n "c2"
tmux send -t $S "ip netns exec host0 ping 192.168.2.2 -s128" C-m tmux send -t $S "$cmd ping 192.168.2.2 -s128" C-m
tmux new-window -t $S -n "c3" tmux new-window -t $S -n "c3"
tmux send -t $S "ip netns exec host0 ping 192.168.2.7 -s1024" C-m tmux send -t $S "$cmd ping 192.168.2.7 -s1024" C-m
tmux new-window -t $S -n "c4" tmux new-window -t $S -n "c4"
tmux send -t $S "ip netns exec host0 ping 192.168.2.2 -s128" C-m tmux send -t $S "$cmd ping 192.168.2.2 -s128" C-m
tmux new-window -t $S -n "c5" tmux new-window -t $S -n "c5"
tmux send -t $S "ip netns exec host0 ping 192.168.3.8 -s768" C-m tmux send -t $S "$cmd ping 192.168.3.8 -s768" C-m
tmux new-window -t $S -n "c5" tmux new-window -t $S -n "c5"
tmux send -t $S "ip netns exec host0 ping 192.168.3.9 -s768" C-m tmux send -t $S "$cmd ping 192.168.3.9 -s768" C-m
fi fi
exec tmux attach -t $S exec tmux attach -t $S
......
Markdown is supported
0%
or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment