Commit 1d65bbd4 authored by scoder's avatar scoder Committed by GitHub

Merge pull request #2465 from gabrieldemarmiesse/simplifying_memoryview_numpy

Changed the numpy tutorial to make is faster to understand.
parents 8cc8080b a0db0099
......@@ -28,6 +28,8 @@ Tools/*.elc
*.swp
*~
.ipynb_checkpoints
tags
TAGS
MANIFEST
......
# cython: infer_types=True
import numpy as np
cimport cython
ctypedef fused my_type:
int
double
long long
cdef my_type clip(my_type a, my_type min_value, my_type max_value):
return min(max(a, min_value), max_value)
@cython.boundscheck(False)
@cython.wraparound(False)
def compute(my_type[:, ::1] array_1, my_type[:, ::1] array_2, my_type a, my_type b, my_type c):
x_max = array_1.shape[0]
y_max = array_1.shape[1]
assert tuple(array_1.shape) == tuple(array_2.shape)
if my_type is int:
dtype = np.intc
elif my_type is double:
dtype = np.double
elif my_type is cython.longlong:
dtype = np.longlong
result = np.zeros((x_max, y_max), dtype=dtype)
cdef my_type[:, ::1] result_view = result
cdef my_type tmp
cdef Py_ssize_t x, y
for x in range(x_max):
for y in range(y_max):
tmp = clip(array_1[x, y], 2, 10)
tmp = tmp * a + array_2[x, y] * b
result_view[x, y] = tmp + c
return result
# cython: infer_types=True
import numpy as np
cimport cython
DTYPE = np.intc
cdef int clip(int a, int min_value, int max_value):
return min(max(a, min_value), max_value)
@cython.boundscheck(False)
@cython.wraparound(False)
def compute(int[:, ::1] array_1, int[:, ::1] array_2, int a, int b, int c):
x_max = array_1.shape[0]
y_max = array_1.shape[1]
assert tuple(array_1.shape) == tuple(array_2.shape)
result = np.zeros((x_max, y_max), dtype=DTYPE)
cdef int[:, ::1] result_view = result
cdef int tmp
cdef Py_ssize_t x, y
for x in range(x_max):
for y in range(y_max):
tmp = clip(array_1[x, y], 2, 10)
tmp = tmp * a + array_2[x, y] * b
result_view[x, y] = tmp + c
return result
import numpy as np
DTYPE = np.intc
cdef int clip(int a, int min_value, int max_value):
return min(max(a, min_value), max_value)
def compute(int[:, :] array_1, int[:, :] array_2, int a, int b, int c):
cdef Py_ssize_t x_max = array_1.shape[0]
cdef Py_ssize_t y_max = array_1.shape[1]
# array_1.shape is now a C array, no it's not possible
# to compare it simply by using == without a for-loop.
# To be able to compare it to array_2.shape easily,
# we convert them both to Python tuples.
assert tuple(array_1.shape) == tuple(array_2.shape)
result = np.zeros((x_max, y_max), dtype=DTYPE)
cdef int[:, :] result_view = result
cdef int tmp
cdef Py_ssize_t x, y
for x in range(x_max):
for y in range(y_max):
tmp = clip(array_1[x, y], 2, 10)
tmp = tmp * a + array_2[x, y] * b
result_view[x, y] = tmp + c
return result
# distutils: extra_compile_args=-fopenmp
# distutils: extra_link_args=-fopenmp
import numpy as np
cimport cython
from cython.parallel import prange
ctypedef fused my_type:
int
double
long long
# We declare our plain c function nogil
cdef my_type clip(my_type a, my_type min_value, my_type max_value) nogil:
return min(max(a, min_value), max_value)
@cython.boundscheck(False)
@cython.wraparound(False)
def compute(my_type[:, ::1] array_1, my_type[:, ::1] array_2, my_type a, my_type b, my_type c):
cdef Py_ssize_t x_max = array_1.shape[0]
cdef Py_ssize_t y_max = array_1.shape[1]
assert tuple(array_1.shape) == tuple(array_2.shape)
if my_type is int:
dtype = np.intc
elif my_type is double:
dtype = np.double
elif my_type is cython.longlong:
dtype = np.longlong
result = np.zeros((x_max, y_max), dtype=dtype)
cdef my_type[:, ::1] result_view = result
cdef my_type tmp
cdef Py_ssize_t x, y
# We use prange here.
for x in prange(x_max, nogil=True):
for y in range(y_max):
tmp = clip(array_1[x, y], 2, 10)
tmp = tmp * a + array_2[x, y] * b
result_view[x, y] = tmp + c
return result
import numpy as np
def clip(a, min_value, max_value):
return min(max(a, min_value), max_value)
def compute(array_1, array_2, a, b, c):
"""
This function must implement the formula
np.clip(array_1, 2, 10) * a + array_2 * b + c
array_1 and array_2 are 2D.
"""
x_max = array_1.shape[0]
y_max = array_1.shape[1]
assert array_1.shape == array_2.shape
result = np.zeros((x_max, y_max), dtype=array_1.dtype)
for x in range(x_max):
for y in range(y_max):
tmp = clip(array_1[x, y], 2, 10)
tmp = tmp * a + array_2[x, y] * b
result[x, y] = tmp + c
return result
......@@ -5,49 +5,46 @@ import numpy as np
# type info object.
DTYPE = np.intc
def naive_convolve(f, g):
if g.shape[0] % 2 != 1 or g.shape[1] % 2 != 1:
raise ValueError("Only odd dimensions on filter supported")
assert f.dtype == DTYPE and g.dtype == DTYPE
# cdef means here that this function is a plain C function (so faster).
# To get all the benefits, we type the arguments and the return value.
cdef int clip(int a, int min_value, int max_value):
return min(max(a, min_value), max_value)
def compute(array_1, array_2, int a, int b, int c):
# The "cdef" keyword is also used within functions to type variables. It
# can only be used at the top indentation level (there are non-trivial
# problems with allowing them in other places, though we'd love to see
# good and thought out proposals for it).
cdef Py_ssize_t x_max = array_1.shape[0]
cdef Py_ssize_t y_max = array_1.shape[1]
assert array_1.shape == array_2.shape
assert array_1.dtype == DTYPE
assert array_2.dtype == DTYPE
# Py_ssize_t is the proper C type for Python array indices.
cdef Py_ssize_t x, y, s, t, v, w, s_from, s_to, t_from, t_to
cdef Py_ssize_t vmax = f.shape[0]
cdef Py_ssize_t wmax = f.shape[1]
cdef Py_ssize_t smax = g.shape[0]
cdef Py_ssize_t tmax = g.shape[1]
cdef Py_ssize_t smid = smax // 2
cdef Py_ssize_t tmid = tmax // 2
cdef Py_ssize_t xmax = vmax + 2*smid
cdef Py_ssize_t ymax = wmax + 2*tmid
h = np.zeros([xmax, ymax], dtype=DTYPE)
result = np.zeros((x_max, y_max), dtype=DTYPE)
# It is very important to type ALL your variables. You do not get any
# warnings if not, only much slower code (they are implicitly typed as
# Python objects).
# For the value variable, we want to use the same data type as is
# For the "tmp" variable, we want to use the same data type as is
# stored in the array, so we use int because it correspond to np.intc.
# NB! An important side-effect of this is that if "value" overflows its
# NB! An important side-effect of this is that if "tmp" overflows its
# datatype size, it will simply wrap around like in C, rather than raise
# an error like in Python.
cdef int value
for x in range(xmax):
for y in range(ymax):
# Cython has built-in C functions for min and max.
# This makes the following lines very fast.
s_from = max(smid - x, -smid)
s_to = min((xmax - x) - smid, smid + 1)
t_from = max(tmid - y, -tmid)
t_to = min((ymax - y) - tmid, tmid + 1)
value = 0
for s in range(s_from, s_to):
for t in range(t_from, t_to):
v = x - smid + s
w = y - tmid + t
value += g[smid - s, tmid - t] * f[v, w]
h[x, y] = value
return h
\ No newline at end of file
cdef int tmp
# Py_ssize_t is the proper C type for Python array indices.
cdef Py_ssize_t x, y
for x in range(x_max):
for y in range(y_max):
tmp = clip(array_1[x, y], 2, 10)
tmp = tmp * a + array_2[x, y] * b
result[x, y] = tmp + c
return result
# cython: infer_types=True
import numpy as np
cimport cython
ctypedef fused my_type:
int
double
long
@cython.boundscheck(False)
@cython.wraparound(False)
cpdef naive_convolve(my_type [:,:] f, my_type [:,:] g):
if g.shape[0] % 2 != 1 or g.shape[1] % 2 != 1:
raise ValueError("Only odd dimensions on filter supported")
vmax = f.shape[0]
wmax = f.shape[1]
smax = g.shape[0]
tmax = g.shape[1]
smid = smax // 2
tmid = tmax // 2
xmax = vmax + 2*smid
ymax = wmax + 2*tmid
if my_type is int:
dtype = np.intc
elif my_type is double:
dtype = np.double
else:
dtype = np.long
h_np = np.zeros([xmax, ymax], dtype=dtype)
cdef my_type [:,:] h = h_np
cdef my_type value
for x in range(xmax):
for y in range(ymax):
s_from = max(smid - x, -smid)
s_to = min((xmax - x) - smid, smid + 1)
t_from = max(tmid - y, -tmid)
t_to = min((ymax - y) - tmid, tmid + 1)
value = 0
for s in range(s_from, s_to):
for t in range(t_from, t_to):
v = x - smid + s
w = y - tmid + t
value += g[smid - s, tmid - t] * f[v, w]
h[x, y] = value
return h_np
\ No newline at end of file
# cython: infer_types=True
import numpy as np
cimport cython
DTYPE = np.intc
@cython.boundscheck(False)
@cython.wraparound(False)
def naive_convolve(int [:,::1] f, int [:,::1] g):
if g.shape[0] % 2 != 1 or g.shape[1] % 2 != 1:
raise ValueError("Only odd dimensions on filter supported")
vmax = f.shape[0]
wmax = f.shape[1]
smax = g.shape[0]
tmax = g.shape[1]
smid = smax // 2
tmid = tmax // 2
xmax = vmax + 2*smid
ymax = wmax + 2*tmid
h_np = np.zeros([xmax, ymax], dtype=DTYPE)
cdef int [:,::1] h = h_np
cdef int value
for x in range(xmax):
for y in range(ymax):
s_from = max(smid - x, -smid)
s_to = min((xmax - x) - smid, smid + 1)
t_from = max(tmid - y, -tmid)
t_to = min((ymax - y) - tmid, tmid + 1)
value = 0
for s in range(s_from, s_to):
for t in range(t_from, t_to):
v = x - smid + s
w = y - tmid + t
value += g[smid - s, tmid - t] * f[v, w]
h[x, y] = value
return h_np
\ No newline at end of file
import numpy as np
DTYPE = np.intc
# It is possible to declare types in the function declaration.
def naive_convolve(int [:,:] f, int [:,:] g):
if g.shape[0] % 2 != 1 or g.shape[1] % 2 != 1:
raise ValueError("Only odd dimensions on filter supported")
# We don't need to check for the type of NumPy array here because
# a check is already performed when calling the function.
cdef Py_ssize_t x, y, s, t, v, w, s_from, s_to, t_from, t_to
cdef Py_ssize_t vmax = f.shape[0]
cdef Py_ssize_t wmax = f.shape[1]
cdef Py_ssize_t smax = g.shape[0]
cdef Py_ssize_t tmax = g.shape[1]
cdef Py_ssize_t smid = smax // 2
cdef Py_ssize_t tmid = tmax // 2
cdef Py_ssize_t xmax = vmax + 2*smid
cdef Py_ssize_t ymax = wmax + 2*tmid
h_np = np.zeros([xmax, ymax], dtype=DTYPE)
cdef int [:,:] h = h_np
cdef int value
for x in range(xmax):
for y in range(ymax):
s_from = max(smid - x, -smid)
s_to = min((xmax - x) - smid, smid + 1)
t_from = max(tmid - y, -tmid)
t_to = min((ymax - y) - tmid, tmid + 1)
value = 0
for s in range(s_from, s_to):
for t in range(t_from, t_to):
v = x - smid + s
w = y - tmid + t
value += g[smid - s, tmid - t] * f[v, w]
h[x, y] = value
return h_np
\ No newline at end of file
from __future__ import division
import numpy as np
def naive_convolve(f, g):
# f is an image and is indexed by (v, w)
# g is a filter kernel and is indexed by (s, t),
# it needs odd dimensions
# h is the output image and is indexed by (x, y),
# it is not cropped
if g.shape[0] % 2 != 1 or g.shape[1] % 2 != 1:
raise ValueError("Only odd dimensions on filter supported")
# smid and tmid are number of pixels between the center pixel
# and the edge, ie for a 5x5 filter they will be 2.
#
# The output size is calculated by adding smid, tmid to each
# side of the dimensions of the input image.
vmax = f.shape[0]
wmax = f.shape[1]
smax = g.shape[0]
tmax = g.shape[1]
smid = smax // 2
tmid = tmax // 2
xmax = vmax + 2*smid
ymax = wmax + 2*tmid
# Allocate result image.
h = np.zeros([xmax, ymax], dtype=f.dtype)
# Do convolution
for x in range(xmax):
for y in range(ymax):
# Calculate pixel value for h at (x,y). Sum one component
# for each pixel (s, t) of the filter g.
s_from = max(smid - x, -smid)
s_to = min((xmax - x) - smid, smid + 1)
t_from = max(tmid - y, -tmid)
t_to = min((ymax - y) - tmid, tmid + 1)
value = 0
for s in range(s_from, s_to):
for t in range(t_from, t_to):
v = x - smid + s
w = y - tmid + t
value += g[smid - s, tmid - t] * f[v, w]
h[x, y] = value
return h
This diff is collapsed.
This diff is collapsed.
Markdown is supported
0%
or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment