go_tutorial.html 52.1 KB
Newer Older
Rob Pike's avatar
Rob Pike committed
1
<!-- A Tutorial for the Go Programming Language -->
Rob Pike's avatar
Rob Pike committed
2
<h2>Introduction</h2>
3
<p>
Rob Pike's avatar
Rob Pike committed
4
This document is a tutorial introduction to the basics of the Go programming
5
language, intended for programmers familiar with C or C++. It is not a comprehensive
Rob Pike's avatar
Rob Pike committed
6
guide to the language; at the moment the document closest to that is the
Rob Pike's avatar
Rob Pike committed
7 8 9 10
<a href='/doc/go_spec.html'>language specification</a>.
After you've read this tutorial, you might want to look at
<a href='/doc/effective_go.html'>Effective Go</a>,
which digs deeper into how the language is used.
11 12 13 14
Also, slides from a 3-day course about Go are available:
<a href='/doc/GoCourseDay1.pdf'>Day 1</a>,
<a href='/doc/GoCourseDay2.pdf'>Day 2</a>,
<a href='/doc/GoCourseDay3.pdf'>Day 3</a>.
15
<p>
Rob Pike's avatar
Rob Pike committed
16
The presentation here proceeds through a series of modest programs to illustrate
17
key features of the language.  All the programs work (at time of writing) and are
Rob Pike's avatar
Rob Pike committed
18
checked into the repository in the directory <a href='/doc/progs'><code>/doc/progs/</code></a>.
19 20 21 22 23 24 25 26
<p>
Program snippets are annotated with the line number in the original file; for
cleanliness, blank lines remain blank.
<p>
<h2>Hello, World</h2>
<p>
Let's start in the usual way:
<p>
27 28
<pre> <!-- progs/helloworld.go /package/ END -->
05    package main
29
<p>
30
07    import fmt &quot;fmt&quot;  // Package implementing formatted I/O.
31
<p>
32
09    func main() {
Rob Pike's avatar
Rob Pike committed
33
10        fmt.Printf(&quot;Hello, world; or Καλημέρα κόσμε; or こんにちは 世界\n&quot;)
34
11    }
35 36 37
</pre>
<p>
Every Go source file declares, using a <code>package</code> statement, which package it's part of.
Ian Lance Taylor's avatar
Ian Lance Taylor committed
38
It may also import other packages to use their facilities.
39
This program imports the package <code>fmt</code> to gain access to
Ian Lance Taylor's avatar
Ian Lance Taylor committed
40
our old, now capitalized and package-qualified, friend, <code>fmt.Printf</code>.
41
<p>
Ian Lance Taylor's avatar
Ian Lance Taylor committed
42 43 44
Functions are introduced with the <code>func</code> keyword.
The <code>main</code> package's <code>main</code> function is where the program starts running (after
any initialization).
45
<p>
Russ Cox's avatar
Russ Cox committed
46 47
String constants can contain Unicode characters, encoded in UTF-8.
(In fact, Go source files are defined to be encoded in UTF-8.)
48 49 50 51 52 53 54
<p>
The comment convention is the same as in C++:
<p>
<pre>
    /* ... */
    // ...
</pre>
Rob Pike's avatar
Rob Pike committed
55
<p>
56 57
Later we'll have much more to say about printing.
<p>
Rob Pike's avatar
Rob Pike committed
58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83
<h2>Semicolons</h2>
<p>
You might have noticed that our program has no semicolons.  In Go
code, the only place you typically see semicolons is separating the
clauses of <code>for</code> loops and the like; they are not necessary after
every statement.
<p>
In fact, what happens is that the formal language uses semicolons,
much as in C or Java, but they are inserted automatically
at the end of every line that looks like the end of a statement. You
don't need to type them yourself.
<p>
For details about how this is done you can see the language
specification, but in practice all you need to know is that you
never need to put a semicolon at the end of a line.  (You can put
them in if you want to write multiple statements per line.) As an
extra help, you can also leave out a semicolon immediately before
a closing brace.
<p>
This approach makes for clean-looking, semicolon-free code.  The
one surprise is that it's important to put the opening
brace of a construct such as an <code>if</code> statement on the same line as
the <code>if</code>; if you don't, there are situations that may not compile
or may give the wrong result.  The language forces the brace style
to some extent.
<p>
Rob Pike's avatar
Rob Pike committed
84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112
<h2>Compiling</h2>
<p>
Go is a compiled language.  At the moment there are two compilers.
<code>Gccgo</code> is a Go compiler that uses the GCC back end.  There is also a
suite of compilers with different (and odd) names for each architecture:
<code>6g</code> for the 64-bit x86, <code>8g</code> for the 32-bit x86, and more.  These
compilers run significantly faster but generate less efficient code
than <code>gccgo</code>.  At the time of writing (late 2009), they also have
a more robust run-time system although <code>gccgo</code> is catching up.
<p>
Here's how to compile and run our program.  With <code>6g</code>, say,
<p>
<pre>
    $ 6g helloworld.go  # compile; object goes into helloworld.6
    $ 6l helloworld.6   # link; output goes into 6.out
    $ 6.out
    Hello, world; or Καλημέρα κόσμε; or こんにちは 世界
    $
</pre>
<p>
With <code>gccgo</code> it looks a little more traditional.
<p>
<pre>
    $ gccgo helloworld.go
    $ a.out
    Hello, world; or Καλημέρα κόσμε; or こんにちは 世界
    $
</pre>
<p>
113 114 115 116
<h2>Echo</h2>
<p>
Next up, here's a version of the Unix utility <code>echo(1)</code>:
<p>
117 118 119 120
<pre> <!-- progs/echo.go /package/ END -->
05    package main
<p>
07    import (
Rob Pike's avatar
Rob Pike committed
121 122
08        &quot;os&quot;
09        &quot;flag&quot;  // command line option parser
123 124
10    )
<p>
Russ Cox's avatar
Russ Cox committed
125
12    var omitNewline = flag.Bool(&quot;n&quot;, false, &quot;don't print final newline&quot;)
126 127
<p>
14    const (
Rob Pike's avatar
Rob Pike committed
128 129
15        Space = &quot; &quot;
16        Newline = &quot;\n&quot;
130 131 132
17    )
<p>
19    func main() {
Rob Pike's avatar
Rob Pike committed
133 134
20        flag.Parse()   // Scans the arg list and sets up flags
21        var s string = &quot;&quot;
135 136
22        for i := 0; i &lt; flag.NArg(); i++ {
23            if i &gt; 0 {
Rob Pike's avatar
Rob Pike committed
137
24                s += Space
138
25            }
Rob Pike's avatar
Rob Pike committed
139
26            s += flag.Arg(i)
140
27        }
Russ Cox's avatar
Russ Cox committed
141
28        if !*omitNewline {
Rob Pike's avatar
Rob Pike committed
142
29            s += Newline
143
30        }
Rob Pike's avatar
Rob Pike committed
144
31        os.Stdout.WriteString(s)
145
32    }
146 147 148
</pre>
<p>
This program is small but it's doing a number of new things.  In the last example,
Rob Pike's avatar
Rob Pike committed
149
we saw <code>func</code> introduce a function.  The keywords <code>var</code>, <code>const</code>, and <code>type</code>
150 151
(not used yet) also introduce declarations, as does <code>import</code>.
Notice that we can group declarations of the same sort into
Rob Pike's avatar
Rob Pike committed
152
parenthesized lists, one item per line, as on lines 7-10 and 14-17.
153 154 155 156 157 158
But it's not necessary to do so; we could have said
<p>
<pre>
    const Space = " "
    const Newline = "\n"
</pre>
Rob Pike's avatar
Rob Pike committed
159
<p>
160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176
This program imports the <code>&quot;os&quot;</code> package to access its <code>Stdout</code> variable, of type
<code>*os.File</code>.  The <code>import</code> statement is actually a declaration: in its general form,
as used in our ``hello world'' program,
it names the identifier (<code>fmt</code>)
that will be used to access members of the package imported from the file (<code>&quot;fmt&quot;</code>),
found in the current directory or in a standard location.
In this program, though, we've dropped the explicit name from the imports; by default,
packages are imported using the name defined by the imported package,
which by convention is of course the file name itself.  Our ``hello world'' program
could have said just <code>import &quot;fmt&quot;</code>.
<p>
You can specify your
own import names if you want but it's only necessary if you need to resolve
a naming conflict.
<p>
Given <code>os.Stdout</code> we can use its <code>WriteString</code> method to print the string.
<p>
177
Having imported the <code>flag</code> package, line 12 creates a global variable to hold
Russ Cox's avatar
Russ Cox committed
178
the value of echo's <code>-n</code> flag. The variable <code>omitNewline</code> has type <code>*bool</code>, pointer
179 180
to <code>bool</code>.
<p>
181
In <code>main.main</code>, we parse the arguments (line 20) and then create a local
182 183 184 185 186
string variable we will use to build the output.
<p>
The declaration statement has the form
<p>
<pre>
187
    var s string = ""
188
</pre>
Rob Pike's avatar
Rob Pike committed
189
<p>
190 191 192 193 194 195 196 197
This is the <code>var</code> keyword, followed by the name of the variable, followed by
its type, followed by an equals sign and an initial value for the variable.
<p>
Go tries to be terse, and this declaration could be shortened.  Since the
string constant is of type string, we don't have to tell the compiler that.
We could write
<p>
<pre>
198
    var s = ""
199
</pre>
Rob Pike's avatar
Rob Pike committed
200
<p>
201 202 203
or we could go even shorter and write the idiom
<p>
<pre>
204
    s := ""
205
</pre>
Rob Pike's avatar
Rob Pike committed
206
<p>
207 208 209 210
The <code>:=</code> operator is used a lot in Go to represent an initializing declaration.
There's one in the <code>for</code> clause on the next line:
<p>
<pre> <!-- progs/echo.go /for/ -->
211
22        for i := 0; i &lt; flag.NArg(); i++ {
212 213 214 215 216 217 218 219 220 221 222 223
</pre>
<p>
The <code>flag</code> package has parsed the arguments and left the non-flag arguments
in a list that can be iterated over in the obvious way.
<p>
The Go <code>for</code> statement differs from that of C in a number of ways.  First,
it's the only looping construct; there is no <code>while</code> or <code>do</code>.  Second,
there are no parentheses on the clause, but the braces on the body
are mandatory.  The same applies to the <code>if</code> and <code>switch</code> statements.
Later examples will show some other ways <code>for</code> can be written.
<p>
The body of the loop builds up the string <code>s</code> by appending (using <code>+=</code>)
224
the arguments and separating spaces. After the loop, if the <code>-n</code> flag is not
Rob Pike's avatar
Rob Pike committed
225
set, the program appends a newline. Finally, it writes the result.
226 227 228 229 230 231 232 233
<p>
Notice that <code>main.main</code> is a niladic function with no return type.
It's defined that way.  Falling off the end of <code>main.main</code> means
''success''; if you want to signal an erroneous return, call
<p>
<pre>
    os.Exit(1)
</pre>
Rob Pike's avatar
Rob Pike committed
234
<p>
235
The <code>os</code> package contains other essentials for getting
Russ Cox's avatar
Russ Cox committed
236
started; for instance, <code>os.Args</code> is a slice used by the
237 238 239 240 241 242
<code>flag</code> package to access the command-line arguments.
<p>
<h2>An Interlude about Types</h2>
<p>
Go has some familiar types such as <code>int</code> and <code>float</code>, which represent
values of the ''appropriate'' size for the machine. It also defines
Ian Lance Taylor's avatar
Ian Lance Taylor committed
243
explicitly-sized types such as <code>int8</code>, <code>float64</code>, and so on, plus
244 245 246 247 248 249
unsigned integer types such as <code>uint</code>, <code>uint32</code>, etc.  These are
distinct types; even if <code>int</code> and <code>int32</code> are both 32 bits in size,
they are not the same type.  There is also a <code>byte</code> synonym for
<code>uint8</code>, which is the element type for strings.
<p>
Speaking of <code>string</code>, that's a built-in type as well.  Strings are
Ian Lance Taylor's avatar
Ian Lance Taylor committed
250
<i>immutable values</i>&mdash;they are not just arrays of <code>byte</code> values.
251 252 253 254 255
Once you've built a string <i>value</i>, you can't change it, although
of course you can change a string <i>variable</i> simply by
reassigning it.  This snippet from <code>strings.go</code> is legal code:
<p>
<pre> <!-- progs/strings.go /hello/ /ciao/ -->
Rob Pike's avatar
Rob Pike committed
256
11        s := &quot;hello&quot;
257
12        if s[1] != 'e' { os.Exit(1) }
Rob Pike's avatar
Rob Pike committed
258 259 260
13        s = &quot;good bye&quot;
14        var p *string = &amp;s
15        *p = &quot;ciao&quot;
261 262 263 264 265 266
</pre>
<p>
However the following statements are illegal because they would modify
a <code>string</code> value:
<p>
<pre>
267 268
    s[0] = 'x'
    (*p)[1] = 'y'
269
</pre>
Rob Pike's avatar
Rob Pike committed
270
<p>
271 272 273 274 275 276 277 278 279
In C++ terms, Go strings are a bit like <code>const strings</code>, while pointers
to strings are analogous to <code>const string</code> references.
<p>
Yes, there are pointers.  However, Go simplifies their use a little;
read on.
<p>
Arrays are declared like this:
<p>
<pre>
280
    var arrayOfInt [10]int
281
</pre>
Rob Pike's avatar
Rob Pike committed
282
<p>
283
Arrays, like strings, are values, but they are mutable. This differs
Russ Cox's avatar
Russ Cox committed
284
from C, in which <code>arrayOfInt</code> would be usable as a pointer to <code>int</code>.
285 286 287 288
In Go, since arrays are values, it's meaningful (and useful) to talk
about pointers to arrays.
<p>
The size of the array is part of its type; however, one can declare
289 290 291 292 293 294 295
a <i>slice</i> variable to hold a reference to any array, of any size,
with the same element type.
A <i>slice
expression</i> has the form <code>a[low : high]</code>, representing
the internal array indexed from <code>low</code> through <code>high-1</code>; the resulting
slice is indexed from <code>0</code> through <code>high-low-1</code>.
In short, slices look a lot like arrays but with
296
no explicit size (<code>[]</code> vs. <code>[10]</code>) and they reference a segment of
297
an underlying, usually anonymous, regular array.  Multiple slices
298 299 300
can share data if they represent pieces of the same array;
multiple arrays can never share data.
<p>
Russ Cox's avatar
Russ Cox committed
301
Slices are much more common in Go programs than
302 303 304 305
regular arrays; they're more flexible, have reference semantics,
and are efficient.  What they lack is the precise control of storage
layout of a regular array; if you want to have a hundred elements
of an array stored within your structure, you should use a regular
306 307 308 309 310 311 312 313 314
array. To create one, use a compound value <i>constructor</i>&mdash;an
expression formed
from a type followed by a brace-bounded expression like this:
<p>
<pre>
    [3]int{1,2,3}
</pre>
<p>
In this case the constructor builds an array of 3 <code>ints</code>.
315 316 317
<p>
When passing an array to a function, you almost always want
to declare the formal parameter to be a slice.  When you call
318 319 320 321 322
the function, slice the array to create
(efficiently) a slice reference and pass that.
By default, the lower and upper bounds of a slice match the
ends of the existing object, so the concise notation <code>[:]</code>
will slice the whole array.
323 324 325 326
<p>
Using slices one can write this function (from <code>sum.go</code>):
<p>
<pre> <!-- progs/sum.go /sum/ /^}/ -->
327
09    func sum(a []int) int { // returns an int
Rob Pike's avatar
Rob Pike committed
328
10        s := 0
329 330 331 332 333
11        for i := 0; i &lt; len(a); i++ {
12            s += a[i]
13        }
14        return s
15    }
334 335 336 337
</pre>
<p>
Note how the return type (<code>int</code>) is defined for <code>sum()</code> by stating it
after the parameter list.
338 339 340 341 342 343 344 345
<p>
To call the function, we slice the array.  This intricate call (we'll show
a simpler way in a moment) constructs
an array and slices it:
<p>
<pre>
    s := sum([3]int{1,2,3}[:])
</pre>
346 347 348 349 350
<p>
If you are creating a regular array but want the compiler to count the
elements for you, use <code>...</code> as the array size:
<p>
<pre>
351
    s := sum([...]int{1,2,3}[:])
352
</pre>
Rob Pike's avatar
Rob Pike committed
353
<p>
354 355 356
That's fussier than necessary, though.
In practice, unless you're meticulous about storage layout within a
data structure, a slice itself&mdash;using empty brackets with no size&mdash;is all you need:
357 358
<p>
<pre>
359
    s := sum([]int{1,2,3})
360
</pre>
Rob Pike's avatar
Rob Pike committed
361
<p>
362 363 364
There are also maps, which you can initialize like this:
<p>
<pre>
Rob Pike's avatar
Rob Pike committed
365
    m := map[string]int{"one":1 , "two":2}
366
</pre>
Rob Pike's avatar
Rob Pike committed
367
<p>
368 369
The built-in function <code>len()</code>, which returns number of elements,
makes its first appearance in <code>sum</code>.  It works on strings, arrays,
Russ Cox's avatar
Russ Cox committed
370
slices, maps, and channels.
371
<p>
Rob Pike's avatar
Rob Pike committed
372 373 374 375
By the way, another thing that works on strings, arrays, slices, maps
and channels is the <code>range</code> clause on <code>for</code> loops.  Instead of writing
<p>
<pre>
376
    for i := 0; i &lt; len(a); i++ { ... }
Rob Pike's avatar
Rob Pike committed
377 378 379 380 381 382 383 384 385 386 387 388 389
</pre>
<p>
to loop over the elements of a slice (or map or ...) , we could write
<p>
<pre>
    for i, v := range a { ... }
</pre>
<p>
This assigns <code>i</code> to the index and <code>v</code> to the value of the successive
elements of the target of the range.   See
<a href='/doc/effective_go.html'>Effective Go</a>
for more examples of its use.
<p>
390 391 392 393 394
<p>
<h2>An Interlude about Allocation</h2>
<p>
Most types in Go are values. If you have an <code>int</code> or a <code>struct</code>
or an array, assignment
Russ Cox's avatar
Russ Cox committed
395 396
copies the contents of the object.
To allocate a new variable, use <code>new()</code>, which
397 398 399 400
returns a pointer to the allocated storage.
<p>
<pre>
    type T struct { a, b int }
401
    var t *T = new(T)
402
</pre>
Rob Pike's avatar
Rob Pike committed
403
<p>
404 405 406
or the more idiomatic
<p>
<pre>
407
    t := new(T)
408
</pre>
Rob Pike's avatar
Rob Pike committed
409
<p>
Ian Lance Taylor's avatar
Ian Lance Taylor committed
410
Some types&mdash;maps, slices, and channels (see below)&mdash;have reference semantics.
411 412 413 414 415
If you're holding a slice or a map and you modify its contents, other variables
referencing the same underlying data will see the modification.  For these three
types you want to use the built-in function <code>make()</code>:
<p>
<pre>
416
    m := make(map[string]int)
417
</pre>
Rob Pike's avatar
Rob Pike committed
418
<p>
419 420 421 422
This statement initializes a new map ready to store entries.
If you just declare the map, as in
<p>
<pre>
423
    var m map[string]int
424
</pre>
Rob Pike's avatar
Rob Pike committed
425
<p>
426
it creates a <code>nil</code> reference that cannot hold anything. To use the map,
Ian Lance Taylor's avatar
Ian Lance Taylor committed
427
you must first initialize the reference using <code>make()</code> or by assignment from an
428 429 430 431
existing map.
<p>
Note that <code>new(T)</code> returns type <code>*T</code> while <code>make(T)</code> returns type
<code>T</code>.  If you (mistakenly) allocate a reference object with <code>new()</code>,
Ian Lance Taylor's avatar
Ian Lance Taylor committed
432
you receive a pointer to a nil reference, equivalent to
433 434 435 436 437
declaring an uninitialized variable and taking its address.
<p>
<h2>An Interlude about Constants</h2>
<p>
Although integers come in lots of sizes in Go, integer constants do not.
Rob Pike's avatar
Rob Pike committed
438
There are no constants like <code>0LL</code> or <code>0x0UL</code>.   Instead, integer
439
constants are evaluated as large-precision values that
440 441 442 443
can overflow only when they are assigned to an integer variable with
too little precision to represent the value.
<p>
<pre>
Russ Cox's avatar
Russ Cox committed
444
    const hardEight = (1 &lt;&lt; 100) &gt;&gt; 97  // legal
445
</pre>
Rob Pike's avatar
Rob Pike committed
446
<p>
447 448 449 450 451
There are nuances that deserve redirection to the legalese of the
language specification but here are some illustrative examples:
<p>
<pre>
    var a uint64 = 0  // a has type uint64, value 0
Ian Lance Taylor's avatar
Ian Lance Taylor committed
452
    a := uint64(0)    // equivalent; uses a "conversion"
453 454 455 456 457 458
    i := 0x1234       // i gets default type: int
    var j int = 1e6   // legal - 1000000 is representable in an int
    x := 1.5          // a float
    i3div2 := 3/2     // integer division - result is 1
    f3div2 := 3./2.   // floating point division - result is 1.5
</pre>
Rob Pike's avatar
Rob Pike committed
459
<p>
460 461 462 463 464 465 466 467 468 469 470 471
Conversions only work for simple cases such as converting <code>ints</code> of one
sign or size to another, and between <code>ints</code> and <code>floats</code>, plus a few other
simple cases.  There are no automatic numeric conversions of any kind in Go,
other than that of making constants have concrete size and type when
assigned to a variable.
<p>
<h2>An I/O Package</h2>
<p>
Next we'll look at a simple package for doing file I/O with the usual
sort of open/close/read/write interface.  Here's the start of <code>file.go</code>:
<p>
<pre> <!-- progs/file.go /package/ /^}/ -->
472
05    package file
473
<p>
474
07    import (
Rob Pike's avatar
Rob Pike committed
475 476
08        &quot;os&quot;
09        &quot;syscall&quot;
477
10    )
478
<p>
479
12    type File struct {
480 481
13        fd   int    // file descriptor number
14        name string // file name at Open time
482
15    }
483 484
</pre>
<p>
Ian Lance Taylor's avatar
Ian Lance Taylor committed
485 486 487
The first few lines declare the name of the
package&mdash;<code>file</code>&mdash;and then import two packages.  The <code>os</code>
package hides the differences
488
between various operating systems to give a consistent view of files and
Russ Cox's avatar
Russ Cox committed
489
so on; here we're going to use its error handling utilities
490 491 492 493 494 495 496 497 498 499 500 501
and reproduce the rudiments of its file I/O.
<p>
The other item is the low-level, external <code>syscall</code> package, which provides
a primitive interface to the underlying operating system's calls.
<p>
Next is a type definition: the <code>type</code> keyword introduces a type declaration,
in this case a data structure called <code>File</code>.
To make things a little more interesting, our <code>File</code> includes the name of the file
that the file descriptor refers to.
<p>
Because <code>File</code> starts with a capital letter, the type is available outside the package,
that is, by users of the package.   In Go the rule about visibility of information is
Rob Pike's avatar
Rob Pike committed
502 503
simple: if a name (of a top-level type, function, method, constant or variable, or of
a structure field or method) is capitalized, users of the package may see it. Otherwise, the
504 505 506 507 508 509 510
name and hence the thing being named is visible only inside the package in which
it is declared.  This is more than a convention; the rule is enforced by the compiler.
In Go, the term for publicly visible names is ''exported''.
<p>
In the case of <code>File</code>, all its fields are lower case and so invisible to users, but we
will soon give it some exported, upper-case methods.
<p>
Russ Cox's avatar
Russ Cox committed
511
First, though, here is a factory to create a <code>File</code>:
512 513
<p>
<pre> <!-- progs/file.go /newFile/ /^}/ -->
514 515 516 517 518 519
17    func newFile(fd int, name string) *File {
18        if fd &lt; 0 {
19            return nil
20        }
21        return &amp;File{fd, name}
22    }
520 521 522 523 524 525 526 527
</pre>
<p>
This returns a pointer to a new <code>File</code> structure with the file descriptor and name
filled in.  This code uses Go's notion of a ''composite literal'', analogous to
the ones used to build maps and arrays, to construct a new heap-allocated
object.  We could write
<p>
<pre>
528 529 530
    n := new(File)
    n.fd = fd
    n.name = name
531 532
    return n
</pre>
Rob Pike's avatar
Rob Pike committed
533
<p>
534
but for simple structures like <code>File</code> it's easier to return the address of a nonce
535
composite literal, as is done here on line 21.
536 537 538 539
<p>
We can use the factory to construct some familiar, exported variables of type <code>*File</code>:
<p>
<pre> <!-- progs/file.go /var/ /^.$/ -->
540
24    var (
Rob Pike's avatar
Rob Pike committed
541 542 543
25        Stdin  = newFile(0, &quot;/dev/stdin&quot;)
26        Stdout = newFile(1, &quot;/dev/stdout&quot;)
27        Stderr = newFile(2, &quot;/dev/stderr&quot;)
544
28    )
545 546 547 548 549 550
</pre>
<p>
The <code>newFile</code> function was not exported because it's internal. The proper,
exported factory to use is <code>Open</code>:
<p>
<pre> <!-- progs/file.go /func.Open/ /^}/ -->
551
30    func Open(name string, mode int, perm uint32) (file *File, err os.Error) {
Rob Pike's avatar
Rob Pike committed
552
31        r, e := syscall.Open(name, mode, perm)
553
32        if e != 0 {
Rob Pike's avatar
Rob Pike committed
554
33            err = os.Errno(e)
555 556 557
34        }
35        return newFile(r, name), err
36    }
558 559 560
</pre>
<p>
There are a number of new things in these few lines.  First, <code>Open</code> returns
Rob Pike's avatar
Rob Pike committed
561
multiple values, a <code>File</code> and an error (more about errors in a moment).
562 563 564 565 566
We declare the
multi-value return as a parenthesized list of declarations; syntactically
they look just like a second parameter list.  The function
<code>syscall.Open</code>
also has a multi-value return, which we can grab with the multi-variable
567
declaration on line 31; it declares <code>r</code> and <code>e</code> to hold the two values,
Russ Cox's avatar
Russ Cox committed
568
both of type <code>int</code> (although you'd have to look at the <code>syscall</code> package
569
to see that).  Finally, line 35 returns two values: a pointer to the new <code>File</code>
570
and the error.  If <code>syscall.Open</code> fails, the file descriptor <code>r</code> will
Rob Pike's avatar
Rob Pike committed
571
be negative and <code>newFile</code> will return <code>nil</code>.
572
<p>
Russ Cox's avatar
Russ Cox committed
573 574
About those errors:  The <code>os</code> library includes a general notion of an error.
It's a good idea to use its facility in your own interfaces, as we do here, for
575
consistent error handling throughout Go code.   In <code>Open</code> we use a
Russ Cox's avatar
Russ Cox committed
576 577
conversion to translate Unix's integer <code>errno</code> value into the integer type
<code>os.Errno</code>, which implements <code>os.Error</code>.
578 579 580 581 582 583 584 585
<p>
Now that we can build <code>Files</code>, we can write methods for them. To declare
a method of a type, we define a function to have an explicit receiver
of that type, placed
in parentheses before the function name. Here are some methods for <code>*File</code>,
each of which declares a receiver variable <code>file</code>.
<p>
<pre> <!-- progs/file.go /Close/ END -->
586 587 588 589
38    func (file *File) Close() os.Error {
39        if file == nil {
40            return os.EINVAL
41        }
Rob Pike's avatar
Rob Pike committed
590
42        e := syscall.Close(file.fd)
591
43        file.fd = -1 // so it can't be closed again
592
44        if e != 0 {
Rob Pike's avatar
Rob Pike committed
593
45            return os.Errno(e)
594 595 596
46        }
47        return nil
48    }
597
<p>
598 599 600
50    func (file *File) Read(b []byte) (ret int, err os.Error) {
51        if file == nil {
52            return -1, os.EINVAL
601
53        }
Rob Pike's avatar
Rob Pike committed
602
54        r, e := syscall.Read(file.fd, b)
603
55        if e != 0 {
Rob Pike's avatar
Rob Pike committed
604
56            err = os.Errno(e)
605 606 607 608 609 610 611
57        }
58        return int(r), err
59    }
<p>
61    func (file *File) Write(b []byte) (ret int, err os.Error) {
62        if file == nil {
63            return -1, os.EINVAL
612
64        }
Rob Pike's avatar
Rob Pike committed
613
65        r, e := syscall.Write(file.fd, b)
614
66        if e != 0 {
Rob Pike's avatar
Rob Pike committed
615
67            err = os.Errno(e)
616 617
68        }
69        return int(r), err
618
70    }
619 620 621 622
<p>
72    func (file *File) String() string {
73        return file.name
74    }
623 624 625 626 627
</pre>
<p>
There is no implicit <code>this</code> and the receiver variable must be used to access
members of the structure.  Methods are not declared within
the <code>struct</code> declaration itself.  The <code>struct</code> declaration defines only data members.
Russ Cox's avatar
Russ Cox committed
628
In fact, methods can be created for almost any type you name, such as an integer or
629 630
array, not just for <code>structs</code>.   We'll see an example with arrays later.
<p>
Rob Pike's avatar
Rob Pike committed
631
The <code>String</code> method is so called because of a printing convention we'll
632 633 634 635 636 637 638 639
describe later.
<p>
The methods use the public variable <code>os.EINVAL</code> to return the (<code>os.Error</code>
version of the) Unix error code <code>EINVAL</code>.  The <code>os</code> library defines a standard
set of such error values.
<p>
We can now use our new package:
<p>
640 641 642 643
<pre> <!-- progs/helloworld3.go /package/ END -->
05    package main
<p>
07    import (
Rob Pike's avatar
Rob Pike committed
644 645 646
08        &quot;./file&quot;
09        &quot;fmt&quot;
10        &quot;os&quot;
647 648 649
11    )
<p>
13    func main() {
650
14        hello := []byte(&quot;hello, world\n&quot;)
Rob Pike's avatar
Rob Pike committed
651 652
15        file.Stdout.Write(hello)
16        file, err := file.Open(&quot;/does/not/exist&quot;,  0,  0)
653
17        if file == nil {
Rob Pike's avatar
Rob Pike committed
654 655
18            fmt.Printf(&quot;can't open file; err=%s\n&quot;,  err.String())
19            os.Exit(1)
656 657
20        }
21    }
658 659
</pre>
<p>
660 661 662 663 664
The ''<code>./</code>'' in the import of ''<code>./file</code>'' tells the compiler
to use our own package rather than
something from the directory of installed packages.
(Also, ''<code>file.go</code>'' must be compiled before we can import the
package.)
665
<p>
666
Now we can compile and run the program:
667 668
<p>
<pre>
669 670 671 672
    $ 6g file.go                       # compile file package
    $ 6g helloworld3.go                # compile main package
    $ 6l -o helloworld3 helloworld3.6  # link - no need to mention "file"
    $ helloworld3
673 674
    hello, world
    can't open file; err=No such file or directory
675
    $
676
</pre>
Rob Pike's avatar
Rob Pike committed
677
<p>
678 679 680 681 682
<h2>Rotting cats</h2>
<p>
Building on the <code>file</code> package, here's a simple version of the Unix utility <code>cat(1)</code>,
<code>progs/cat.go</code>:
<p>
683 684 685 686
<pre> <!-- progs/cat.go /package/ END -->
05    package main
<p>
07    import (
Rob Pike's avatar
Rob Pike committed
687 688 689 690
08        &quot;./file&quot;
09        &quot;flag&quot;
10        &quot;fmt&quot;
11        &quot;os&quot;
691 692 693
12    )
<p>
14    func cat(f *file.File) {
Rob Pike's avatar
Rob Pike committed
694 695
15        const NBUF = 512
16        var buf [NBUF]byte
696
17        for {
697
18            switch nr, er := f.Read(buf[:]); true {
698
19            case nr &lt; 0:
Rob Pike's avatar
Rob Pike committed
699 700
20                fmt.Fprintf(os.Stderr, &quot;cat: error reading from %s: %s\n&quot;, f.String(), er.String())
21                os.Exit(1)
701
22            case nr == 0:  // EOF
Rob Pike's avatar
Rob Pike committed
702
23                return
703 704
24            case nr &gt; 0:
25                if nw, ew := file.Stdout.Write(buf[0:nr]); nw != nr {
Rob Pike's avatar
Rob Pike committed
705
26                    fmt.Fprintf(os.Stderr, &quot;cat: error writing from %s: %s\n&quot;, f.String(), ew.String())
706 707 708 709
27                }
28            }
29        }
30    }
710
<p>
711
32    func main() {
Rob Pike's avatar
Rob Pike committed
712
33        flag.Parse()   // Scans the arg list and sets up flags
713
34        if flag.NArg() == 0 {
Rob Pike's avatar
Rob Pike committed
714
35            cat(file.Stdin)
715 716
36        }
37        for i := 0; i &lt; flag.NArg(); i++ {
Rob Pike's avatar
Rob Pike committed
717
38            f, err := file.Open(flag.Arg(i), 0, 0)
718
39            if f == nil {
Rob Pike's avatar
Rob Pike committed
719 720
40                fmt.Fprintf(os.Stderr, &quot;cat: can't open %s: error %s\n&quot;, flag.Arg(i), err)
41                os.Exit(1)
721
42            }
Rob Pike's avatar
Rob Pike committed
722 723
43            cat(f)
44            f.Close()
724 725
45        }
46    }
726 727 728 729
</pre>
<p>
By now this should be easy to follow, but the <code>switch</code> statement introduces some
new features.  Like a <code>for</code> loop, an <code>if</code> or <code>switch</code> can include an
730 731
initialization statement.  The <code>switch</code> on line 18 uses one to create variables
<code>nr</code> and <code>er</code> to hold the return values from <code>f.Read()</code>.  (The <code>if</code> on line 25
732 733 734 735 736
has the same idea.)  The <code>switch</code> statement is general: it evaluates the cases
from  top to bottom looking for the first case that matches the value; the
case expressions don't need to be constants or even integers, as long as
they all have the same type.
<p>
Ian Lance Taylor's avatar
Ian Lance Taylor committed
737
Since the <code>switch</code> value is just <code>true</code>, we could leave it off&mdash;as is also
738 739 740 741 742
the situation
in a <code>for</code> statement, a missing value means <code>true</code>.  In fact, such a <code>switch</code>
is a form of <code>if-else</code> chain. While we're here, it should be mentioned that in
<code>switch</code> statements each <code>case</code> has an implicit <code>break</code>.
<p>
743
Line 25 calls <code>Write()</code> by slicing the incoming buffer, which is itself a slice.
744 745 746 747 748 749 750 751 752 753 754
Slices provide the standard Go way to handle I/O buffers.
<p>
Now let's make a variant of <code>cat</code> that optionally does <code>rot13</code> on its input.
It's easy to do by just processing the bytes, but instead we will exploit
Go's notion of an <i>interface</i>.
<p>
The <code>cat()</code> subroutine uses only two methods of <code>f</code>: <code>Read()</code> and <code>String()</code>,
so let's start by defining an interface that has exactly those two methods.
Here is code from <code>progs/cat_rot13.go</code>:
<p>
<pre> <!-- progs/cat_rot13.go /type.reader/ /^}/ -->
755
26    type reader interface {
Rob Pike's avatar
Rob Pike committed
756 757
27        Read(b []byte) (ret int, err os.Error)
28        String() string
758
29    }
759 760
</pre>
<p>
Ian Lance Taylor's avatar
Ian Lance Taylor committed
761 762
Any type that has the two methods of <code>reader</code>&mdash;regardless of whatever
other methods the type may also have&mdash;is said to <i>implement</i> the
763 764 765 766 767 768 769 770 771
interface.  Since <code>file.File</code> implements these methods, it implements the
<code>reader</code> interface.  We could tweak the <code>cat</code> subroutine to accept a <code>reader</code>
instead of a <code>*file.File</code> and it would work just fine, but let's embellish a little
first by writing a second type that implements <code>reader</code>, one that wraps an
existing <code>reader</code> and does <code>rot13</code> on the data. To do this, we just define
the type and implement the methods and with no other bookkeeping,
we have a second implementation of the <code>reader</code> interface.
<p>
<pre> <!-- progs/cat_rot13.go /type.rotate13/ /end.of.rotate13/ -->
772
31    type rotate13 struct {
Rob Pike's avatar
Rob Pike committed
773
32        source    reader
774 775
33    }
<p>
776 777 778
35    func newRotate13(source reader) *rotate13 {
36        return &amp;rotate13{source}
37    }
779
<p>
780
39    func (r13 *rotate13) Read(b []byte) (ret int, err os.Error) {
Rob Pike's avatar
Rob Pike committed
781
40        r, e := r13.source.Read(b)
782 783 784 785
41        for i := 0; i &lt; r; i++ {
42            b[i] = rot13(b[i])
43        }
44        return r, e
786
45    }
787 788 789 790 791
<p>
47    func (r13 *rotate13) String() string {
48        return r13.source.String()
49    }
50    // end of rotate13 implementation
792 793
</pre>
<p>
Rob Pike's avatar
Rob Pike committed
794
(The <code>rot13</code> function called on line 42 is trivial and not worth reproducing here.)
795 796 797
<p>
To use the new feature, we define a flag:
<p>
Russ Cox's avatar
Russ Cox committed
798 799
<pre> <!-- progs/cat_rot13.go /rot13Flag/ -->
14    var rot13Flag = flag.Bool(&quot;rot13&quot;, false, &quot;rot13 the input&quot;)
800 801 802 803 804
</pre>
<p>
and use it from within a mostly unchanged <code>cat()</code> function:
<p>
<pre> <!-- progs/cat_rot13.go /func.cat/ /^}/ -->
805
52    func cat(r reader) {
Rob Pike's avatar
Rob Pike committed
806 807
53        const NBUF = 512
54        var buf [NBUF]byte
808
<p>
Russ Cox's avatar
Russ Cox committed
809
56        if *rot13Flag {
810 811 812
57            r = newRotate13(r)
58        }
59        for {
813
60            switch nr, er := r.Read(buf[:]); {
814
61            case nr &lt; 0:
Rob Pike's avatar
Rob Pike committed
815 816
62                fmt.Fprintf(os.Stderr, &quot;cat: error reading from %s: %s\n&quot;, r.String(), er.String())
63                os.Exit(1)
817
64            case nr == 0:  // EOF
Rob Pike's avatar
Rob Pike committed
818
65                return
819
66            case nr &gt; 0:
Rob Pike's avatar
Rob Pike committed
820
67                nw, ew := file.Stdout.Write(buf[0:nr])
821
68                if nw != nr {
Rob Pike's avatar
Rob Pike committed
822
69                    fmt.Fprintf(os.Stderr, &quot;cat: error writing from %s: %s\n&quot;, r.String(), ew.String())
823 824 825 826
70                }
71            }
72        }
73    }
827 828 829 830
</pre>
<p>
(We could also do the wrapping in <code>main</code> and leave <code>cat()</code> mostly alone, except
for changing the type of the argument; consider that an exercise.)
Rob Pike's avatar
Rob Pike committed
831
Lines 56 through 58 set it all up: If the <code>rot13</code> flag is true, wrap the <code>reader</code>
832 833 834 835 836 837 838
we received into a <code>rotate13</code> and proceed.  Note that the interface variables
are values, not pointers: the argument is of type <code>reader</code>, not <code>*reader</code>,
even though under the covers it holds a pointer to a <code>struct</code>.
<p>
Here it is in action:
<p>
<pre>
839
    $ echo abcdefghijklmnopqrstuvwxyz | ./cat
840
    abcdefghijklmnopqrstuvwxyz
841
    $ echo abcdefghijklmnopqrstuvwxyz | ./cat --rot13
842
    nopqrstuvwxyzabcdefghijklm
843
    $
844 845 846 847 848
</pre>
<p>
Fans of dependency injection may take cheer from how easily interfaces
allow us to substitute the implementation of a file descriptor.
<p>
Russ Cox's avatar
Russ Cox committed
849
Interfaces are a distinctive feature of Go.  An interface is implemented by a
850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866
type if the type implements all the methods declared in the interface.
This means
that a type may implement an arbitrary number of different interfaces.
There is no type hierarchy; things can be much more <i>ad hoc</i>,
as we saw with <code>rot13</code>.  The type <code>file.File</code> implements <code>reader</code>; it could also
implement a <code>writer</code>, or any other interface built from its methods that
fits the current situation. Consider the <i>empty interface</i>
<p>
<pre>
    type Empty interface {}
</pre>
<p>
<i>Every</i> type implements the empty interface, which makes it
useful for things like containers.
<p>
<h2>Sorting</h2>
<p>
Russ Cox's avatar
Russ Cox committed
867
Interfaces provide a simple form of polymorphism.  They completely
868 869 870 871 872 873 874
separate the definition of what an object does from how it does it, allowing
distinct implementations to be represented at different times by the
same interface variable.
<p>
As an example, consider this simple sort algorithm taken from <code>progs/sort.go</code>:
<p>
<pre> <!-- progs/sort.go /func.Sort/ /^}/ -->
875 876 877
13    func Sort(data Interface) {
14        for i := 1; i &lt; data.Len(); i++ {
15            for j := i; j &gt; 0 &amp;&amp; data.Less(j, j-1); j-- {
Rob Pike's avatar
Rob Pike committed
878
16                data.Swap(j, j-1)
879 880 881
17            }
18        }
19    }
882 883
</pre>
<p>
884
The code needs only three methods, which we wrap into sort's <code>Interface</code>:
885 886
<p>
<pre> <!-- progs/sort.go /interface/ /^}/ -->
887
07    type Interface interface {
Rob Pike's avatar
Rob Pike committed
888 889 890
08        Len() int
09        Less(i, j int) bool
10        Swap(i, j int)
891
11    }
892 893 894 895 896 897
</pre>
<p>
We can apply <code>Sort</code> to any type that implements <code>Len</code>, <code>Less</code>, and <code>Swap</code>.
The <code>sort</code> package includes the necessary methods to allow sorting of
arrays of integers, strings, etc.; here's the code for arrays of <code>int</code>
<p>
898 899
<pre> <!-- progs/sort.go /type.*IntArray/ /Swap/ -->
33    type IntArray []int
900
<p>
Rob Pike's avatar
Rob Pike committed
901 902 903
35    func (p IntArray) Len() int            { return len(p) }
36    func (p IntArray) Less(i, j int) bool  { return p[i] &lt; p[j] }
37    func (p IntArray) Swap(i, j int)       { p[i], p[j] = p[j], p[i] }
904 905 906 907 908 909 910 911 912 913
</pre>
<p>
Here we see methods defined for non-<code>struct</code> types.  You can define methods
for any type you define and name in your package.
<p>
And now a routine to test it out, from <code>progs/sortmain.go</code>.  This
uses a function in the <code>sort</code> package, omitted here for brevity,
to test that the result is sorted.
<p>
<pre> <!-- progs/sortmain.go /func.ints/ /^}/ -->
914
12    func ints() {
Rob Pike's avatar
Rob Pike committed
915 916 917
13        data := []int{74, 59, 238, -784, 9845, 959, 905, 0, 0, 42, 7586, -5467984, 7586}
14        a := sort.IntArray(data)
15        sort.Sort(a)
918
16        if !sort.IsSorted(a) {
919
17            panic(&quot;fail&quot;)
920 921
18        }
19    }
922 923 924 925 926 927
</pre>
<p>
If we have a new type we want to be able to sort, all we need to do is
to implement the three methods for that type, like this:
<p>
<pre> <!-- progs/sortmain.go /type.day/ /Swap/ -->
928
30    type day struct {
Rob Pike's avatar
Rob Pike committed
929 930 931
31        num        int
32        shortName  string
33        longName   string
932 933
34    }
<p>
934
36    type dayArray struct {
Rob Pike's avatar
Rob Pike committed
935
37        data []*day
936 937
38    }
<p>
Rob Pike's avatar
Rob Pike committed
938 939 940
40    func (p *dayArray) Len() int            { return len(p.data) }
41    func (p *dayArray) Less(i, j int) bool  { return p.data[i].num &lt; p.data[j].num }
42    func (p *dayArray) Swap(i, j int)       { p.data[i], p.data[j] = p.data[j], p.data[i] }
941 942 943 944 945 946 947 948 949 950 951 952 953
</pre>
<p>
<p>
<h2>Printing</h2>
<p>
The examples of formatted printing so far have been modest.  In this section
we'll talk about how formatted I/O can be done well in Go.
<p>
We've seen simple uses of the package <code>fmt</code>, which
implements <code>Printf</code>, <code>Fprintf</code>, and so on.
Within the <code>fmt</code> package, <code>Printf</code> is declared with this signature:
<p>
<pre>
954 955 956 957 958 959 960 961 962 963 964 965 966
    Printf(format string, v ...interface{}) (n int, errno os.Error)
</pre>
<p>
The token <code>...</code> introduces a variable-length argument list that in C would
be handled using the <code>stdarg.h</code> macros.
In Go, variadic functions are passed a slice of the arguments of the
specified type.  In <code>Printf</code>'s case, the declaration says <code>...interface{}</code>
so the actual type is a slice of empty interface values, <code>[]interface{}</code>.
<code>Printf</code> can examine the arguments by iterating over the slice
and, for each element, using a type switch or the reflection library
to interpret the value.
It's off topic here but such run-time type analysis
helps explain some of the nice properties of Go's <code>Printf</code>,
967 968 969 970 971 972 973 974
due to the ability of <code>Printf</code> to discover the type of its arguments
dynamically.
<p>
For example, in C each format must correspond to the type of its
argument.  It's easier in many cases in Go.  Instead of <code>%llud</code> you
can just say <code>%d</code>; <code>Printf</code> knows the size and signedness of the
integer and can do the right thing for you.  The snippet
<p>
975
<pre> <!-- progs/print.go NR==10 NR==11 -->
Rob Pike's avatar
Rob Pike committed
976 977
10        var u64 uint64 = 1&lt;&lt;64-1
11        fmt.Printf(&quot;%d %d\n&quot;, u64, int64(u64))
978 979 980 981 982 983 984
</pre>
<p>
prints
<p>
<pre>
    18446744073709551615 -1
</pre>
Rob Pike's avatar
Rob Pike committed
985
<p>
986 987 988
In fact, if you're lazy the format <code>%v</code> will print, in a simple
appropriate style, any value, even an array or structure.  The output of
<p>
Rob Pike's avatar
Rob Pike committed
989 990 991 992 993 994 995 996
<pre> <!-- progs/print.go NR==14 NR==20 -->
14        type T struct {
15            a int
16            b string
17        }
18        t := T{77, &quot;Sunset Strip&quot;}
19        a := []int{1, 2, 3, 4}
20        fmt.Printf(&quot;%v %v %v\n&quot;, u64, t, a)
997 998 999 1000 1001 1002 1003
</pre>
<p>
is
<p>
<pre>
    18446744073709551615 {77 Sunset Strip} [1 2 3 4]
</pre>
Rob Pike's avatar
Rob Pike committed
1004
<p>
1005 1006 1007
You can drop the formatting altogether if you use <code>Print</code> or <code>Println</code>
instead of <code>Printf</code>.  Those routines do fully automatic formatting.
The <code>Print</code> function just prints its elements out using the equivalent
Russ Cox's avatar
Russ Cox committed
1008
of <code>%v</code> while <code>Println</code> inserts spaces between arguments
1009 1010 1011
and adds a newline.  The output of each of these two lines is identical
to that of the <code>Printf</code> call above.
<p>
Rob Pike's avatar
Rob Pike committed
1012 1013 1014
<pre> <!-- progs/print.go NR==21 NR==22 -->
21        fmt.Print(u64, &quot; &quot;, t, &quot; &quot;, a, &quot;\n&quot;)
22        fmt.Println(u64, t, a)
1015 1016 1017 1018 1019 1020 1021 1022
</pre>
<p>
If you have your own type you'd like <code>Printf</code> or <code>Print</code> to format,
just give it a <code>String()</code> method that returns a string.  The print
routines will examine the value to inquire whether it implements
the method and if so, use it rather than some other formatting.
Here's a simple example.
<p>
1023
<pre> <!-- progs/print_string.go NR==9 END -->
Rob Pike's avatar
Rob Pike committed
1024 1025 1026 1027
09    type testType struct {
10        a int
11        b string
12    }
1028
<p>
Rob Pike's avatar
Rob Pike committed
1029 1030 1031
14    func (t *testType) String() string {
15        return fmt.Sprint(t.a) + &quot; &quot; + t.b
16    }
1032
<p>
Rob Pike's avatar
Rob Pike committed
1033 1034 1035 1036
18    func main() {
19        t := &amp;testType{77, &quot;Sunset Strip&quot;}
20        fmt.Println(t)
21    }
1037 1038
</pre>
<p>
Russ Cox's avatar
Russ Cox committed
1039
Since <code>*testType</code> has a <code>String()</code> method, the
1040 1041 1042 1043 1044
default formatter for that type will use it and produce the output
<p>
<pre>
    77 Sunset Strip
</pre>
Rob Pike's avatar
Rob Pike committed
1045
<p>
1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067
Observe that the <code>String()</code> method calls <code>Sprint</code> (the obvious Go
variant that returns a string) to do its formatting; special formatters
can use the <code>fmt</code> library recursively.
<p>
Another feature of <code>Printf</code> is that the format <code>%T</code> will print a string
representation of the type of a value, which can be handy when debugging
polymorphic code.
<p>
It's possible to write full custom print formats with flags and precisions
and such, but that's getting a little off the main thread so we'll leave it
as an exploration exercise.
<p>
You might ask, though, how <code>Printf</code> can tell whether a type implements
the <code>String()</code> method.  Actually what it does is ask if the value can
be converted to an interface variable that implements the method.
Schematically, given a value <code>v</code>, it does this:
<p>
<p>
<pre>
    type Stringer interface {
        String() string
    }
Rob Pike's avatar
Rob Pike committed
1068 1069 1070
</pre>
<p>
<pre>
1071
    s, ok := v.(Stringer)  // Test whether v implements "String()"
1072 1073 1074
    if ok {
        result = s.String()
    } else {
Rob Pike's avatar
Rob Pike committed
1075
        result = defaultOutput(v)
1076 1077
    }
</pre>
Rob Pike's avatar
Rob Pike committed
1078
<p>
1079 1080 1081 1082 1083 1084 1085 1086 1087
The code uses a ``type assertion'' (<code>v.(Stringer)</code>) to test if the value stored in
<code>v</code> satisfies the <code>Stringer</code> interface; if it does, <code>s</code>
will become an interface variable implementing the method and <code>ok</code> will
be <code>true</code>.  We then use the interface variable to call the method.
(The ''comma, ok'' pattern is a Go idiom used to test the success of
operations such as type conversion, map update, communications, and so on,
although this is the only appearance in this tutorial.)
If the value does not satisfy the interface, <code>ok</code> will be false.
<p>
Ian Lance Taylor's avatar
Ian Lance Taylor committed
1088
In this snippet the name <code>Stringer</code> follows the convention that we add ''[e]r''
1089 1090 1091 1092 1093 1094 1095 1096 1097
to interfaces describing simple method sets like this.
<p>
One last wrinkle.  To complete the suite, besides <code>Printf</code> etc. and <code>Sprintf</code>
etc., there are also <code>Fprintf</code> etc.  Unlike in C, <code>Fprintf</code>'s first argument is
not a file.  Instead, it is a variable of type <code>io.Writer</code>, which is an
interface type defined in the <code>io</code> library:
<p>
<pre>
    type Writer interface {
1098
        Write(p []byte) (n int, err os.Error)
1099 1100
    }
</pre>
Rob Pike's avatar
Rob Pike committed
1101
<p>
1102 1103 1104
(This interface is another conventional name, this time for <code>Write</code>; there are also
<code>io.Reader</code>, <code>io.ReadWriter</code>, and so on.)
Thus you can call <code>Fprintf</code> on any type that implements a standard <code>Write()</code>
Rob Pike's avatar
Rob Pike committed
1105
method, not just files but also network channels, buffers, whatever
1106 1107 1108 1109
you want.
<p>
<h2>Prime numbers</h2>
<p>
Ian Lance Taylor's avatar
Ian Lance Taylor committed
1110
Now we come to processes and communication&mdash;concurrent programming.
1111 1112
It's a big subject so to be brief we assume some familiarity with the topic.
<p>
Rob Pike's avatar
Rob Pike committed
1113
A classic program in the style is a prime sieve.
Ian Lance Taylor's avatar
Ian Lance Taylor committed
1114
(The sieve of Eratosthenes is computationally more efficient than
Rob Pike's avatar
Rob Pike committed
1115 1116
the algorithm presented here, but we are more interested in concurrency than
algorithmics at the moment.)
1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142
It works by taking a stream of all the natural numbers and introducing
a sequence of filters, one for each prime, to winnow the multiples of
that prime.  At each step we have a sequence of filters of the primes
so far, and the next number to pop out is the next prime, which triggers
the creation of the next filter in the chain.
<p>
Here's a flow diagram; each box represents a filter element whose
creation is triggered by the first number that flowed from the
elements before it.
<p>
<br>
<p>
&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;<img src='sieve.gif'>
<p>
<br>
<p>
To create a stream of integers, we use a Go <i>channel</i>, which,
borrowing from CSP's descendants, represents a communications
channel that can connect two concurrent computations.
In Go, channel variables are references to a run-time object that
coordinates the communication; as with maps and slices, use
<code>make</code> to create a new channel.
<p>
Here is the first function in <code>progs/sieve.go</code>:
<p>
<pre> <!-- progs/sieve.go /Send/ /^}/ -->
1143 1144 1145 1146 1147 1148
09    // Send the sequence 2, 3, 4, ... to channel 'ch'.
10    func generate(ch chan int) {
11        for i := 2; ; i++ {
12            ch &lt;- i  // Send 'i' to channel 'ch'.
13        }
14    }
1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160
</pre>
<p>
The <code>generate</code> function sends the sequence 2, 3, 4, 5, ... to its
argument channel, <code>ch</code>, using the binary communications operator <code>&lt;-</code>.
Channel operations block, so if there's no recipient for the value on <code>ch</code>,
the send operation will wait until one becomes available.
<p>
The <code>filter</code> function has three arguments: an input channel, an output
channel, and a prime number.  It copies values from the input to the
output, discarding anything divisible by the prime.  The unary communications
operator <code>&lt;-</code> (receive) retrieves the next value on the channel.
<p>
1161 1162 1163 1164 1165
<pre> <!-- progs/sieve.go /Copy.the/ /^}/ -->
16    // Copy the values from channel 'in' to channel 'out',
17    // removing those divisible by 'prime'.
18    func filter(in, out chan int, prime int) {
19        for {
Rob Pike's avatar
Rob Pike committed
1166
20            i := &lt;-in  // Receive value of new variable 'i' from 'in'.
1167 1168 1169 1170 1171
21            if i % prime != 0 {
22                out &lt;- i  // Send 'i' to channel 'out'.
23            }
24        }
25    }
1172 1173 1174 1175
</pre>
<p>
The generator and filters execute concurrently.  Go has
its own model of process/threads/light-weight processes/coroutines,
Ian Lance Taylor's avatar
Ian Lance Taylor committed
1176
so to avoid notational confusion we call concurrently executing
1177 1178 1179 1180 1181 1182
computations in Go <i>goroutines</i>.  To start a goroutine,
invoke the function, prefixing the call with the keyword <code>go</code>;
this starts the function running in parallel with the current
computation but in the same address space:
<p>
<pre>
1183
    go sum(hugeArray) // calculate sum in the background
1184
</pre>
Rob Pike's avatar
Rob Pike committed
1185
<p>
1186 1187 1188 1189
If you want to know when the calculation is done, pass a channel
on which it can report back:
<p>
<pre>
1190 1191
    ch := make(chan int)
    go sum(hugeArray, ch)
1192
    // ... do something else for a while
1193
    result := &lt;-ch  // wait for, and retrieve, result
1194
</pre>
Rob Pike's avatar
Rob Pike committed
1195
<p>
1196 1197 1198 1199
Back to our prime sieve.  Here's how the sieve pipeline is stitched
together:
<p>
<pre> <!-- progs/sieve.go /func.main/ /^}/ -->
1200
28    func main() {
Rob Pike's avatar
Rob Pike committed
1201 1202
29        ch := make(chan int)  // Create a new channel.
30        go generate(ch)  // Start generate() as a goroutine.
1203
31        for {
Rob Pike's avatar
Rob Pike committed
1204 1205 1206 1207
32            prime := &lt;-ch
33            fmt.Println(prime)
34            ch1 := make(chan int)
35            go filter(ch, ch1, prime)
1208 1209 1210
36            ch = ch1
37        }
38    }
1211 1212
</pre>
<p>
1213
Line 29 creates the initial channel to pass to <code>generate</code>, which it
1214 1215 1216 1217 1218 1219 1220 1221 1222
then starts up.  As each prime pops out of the channel, a new <code>filter</code>
is added to the pipeline and <i>its</i> output becomes the new value
of <code>ch</code>.
<p>
The sieve program can be tweaked to use a pattern common
in this style of programming.  Here is a variant version
of <code>generate</code>, from <code>progs/sieve1.go</code>:
<p>
<pre> <!-- progs/sieve1.go /func.generate/ /^}/ -->
1223
10    func generate() chan int {
Rob Pike's avatar
Rob Pike committed
1224
11        ch := make(chan int)
1225 1226 1227 1228
12        go func(){
13            for i := 2; ; i++ {
14                ch &lt;- i
15            }
Rob Pike's avatar
Rob Pike committed
1229 1230
16        }()
17        return ch
1231
18    }
1232 1233 1234
</pre>
<p>
This version does all the setup internally. It creates the output
Russ Cox's avatar
Russ Cox committed
1235
channel, launches a goroutine running a function literal, and
1236 1237 1238
returns the channel to the caller.  It is a factory for concurrent
execution, starting the goroutine and returning its connection.
<p>
1239
The function literal notation (lines 12-16) allows us to construct an
1240 1241 1242 1243 1244 1245 1246
anonymous function and invoke it on the spot. Notice that the local
variable <code>ch</code> is available to the function literal and lives on even
after <code>generate</code> returns.
<p>
The same change can be made to <code>filter</code>:
<p>
<pre> <!-- progs/sieve1.go /func.filter/ /^}/ -->
1247
21    func filter(in chan int, prime int) chan int {
Rob Pike's avatar
Rob Pike committed
1248
22        out := make(chan int)
1249 1250 1251 1252 1253 1254
23        go func() {
24            for {
25                if i := &lt;-in; i % prime != 0 {
26                    out &lt;- i
27                }
28            }
Rob Pike's avatar
Rob Pike committed
1255 1256
29        }()
30        return out
1257
31    }
1258 1259 1260 1261 1262 1263
</pre>
<p>
The <code>sieve</code> function's main loop becomes simpler and clearer as a
result, and while we're at it let's turn it into a factory too:
<p>
<pre> <!-- progs/sieve1.go /func.sieve/ /^}/ -->
1264
33    func sieve() chan int {
Rob Pike's avatar
Rob Pike committed
1265
34        out := make(chan int)
1266
35        go func() {
Rob Pike's avatar
Rob Pike committed
1267
36            ch := generate()
1268
37            for {
Rob Pike's avatar
Rob Pike committed
1269 1270 1271
38                prime := &lt;-ch
39                out &lt;- prime
40                ch = filter(ch, prime)
1272
41            }
Rob Pike's avatar
Rob Pike committed
1273 1274
42        }()
43        return out
1275
44    }
1276 1277 1278 1279 1280
</pre>
<p>
Now <code>main</code>'s interface to the prime sieve is a channel of primes:
<p>
<pre> <!-- progs/sieve1.go /func.main/ /^}/ -->
1281
46    func main() {
Rob Pike's avatar
Rob Pike committed
1282
47        primes := sieve()
1283
48        for {
Rob Pike's avatar
Rob Pike committed
1284
49            fmt.Println(&lt;-primes)
1285 1286
50        }
51    }
1287 1288 1289 1290 1291
</pre>
<p>
<h2>Multiplexing</h2>
<p>
With channels, it's possible to serve multiple independent client goroutines without
Russ Cox's avatar
Russ Cox committed
1292
writing an explicit multiplexer.  The trick is to send the server a channel in the message,
1293 1294 1295 1296 1297 1298
which it will then use to reply to the original sender.
A realistic client-server program is a lot of code, so here is a very simple substitute
to illustrate the idea.  It starts by defining a <code>request</code> type, which embeds a channel
that will be used for the reply.
<p>
<pre> <!-- progs/server.go /type.request/ /^}/ -->
1299
09    type request struct {
Rob Pike's avatar
Rob Pike committed
1300 1301
10        a, b    int
11        replyc  chan int
1302
12    }
1303 1304 1305 1306 1307 1308
</pre>
<p>
The server will be trivial: it will do simple binary operations on integers.  Here's the
code that invokes the operation and responds to the request:
<p>
<pre> <!-- progs/server.go /type.binOp/ /^}/ -->
1309
14    type binOp func(a, b int) int
1310
<p>
1311
16    func run(op binOp, req *request) {
Rob Pike's avatar
Rob Pike committed
1312 1313
17        reply := op(req.a, req.b)
18        req.replyc &lt;- reply
1314
19    }
1315 1316
</pre>
<p>
Rob Pike's avatar
Rob Pike committed
1317
Line 14 defines the name <code>binOp</code> to be a function taking two integers and
1318 1319 1320 1321 1322 1323
returning a third.
<p>
The <code>server</code> routine loops forever, receiving requests and, to avoid blocking due to
a long-running operation, starting a goroutine to do the actual work.
<p>
<pre> <!-- progs/server.go /func.server/ /^}/ -->
1324 1325
21    func server(op binOp, service chan *request) {
22        for {
Rob Pike's avatar
Rob Pike committed
1326 1327
23            req := &lt;-service
24            go run(op, req)  // don't wait for it
1328 1329
25        }
26    }
1330 1331
</pre>
<p>
Russ Cox's avatar
Russ Cox committed
1332 1333
We construct a server in a familiar way, starting it and returning a channel
connected to it:
1334 1335
<p>
<pre> <!-- progs/server.go /func.startServer/ /^}/ -->
1336
28    func startServer(op binOp) chan *request {
Rob Pike's avatar
Rob Pike committed
1337 1338 1339
29        req := make(chan *request)
30        go server(op, req)
31        return req
1340
32    }
1341 1342
</pre>
<p>
Russ Cox's avatar
Russ Cox committed
1343 1344
Here's a simple test.  It starts a server with an addition operator and sends out
<code>N</code> requests without waiting for the replies.  Only after all the requests are sent
1345 1346 1347
does it check the results.
<p>
<pre> <!-- progs/server.go /func.main/ /^}/ -->
1348
34    func main() {
Rob Pike's avatar
Rob Pike committed
1349 1350 1351
35        adder := startServer(func(a, b int) int { return a + b })
36        const N = 100
37        var reqs [N]request
1352
38        for i := 0; i &lt; N; i++ {
Rob Pike's avatar
Rob Pike committed
1353 1354 1355 1356 1357
39            req := &amp;reqs[i]
40            req.a = i
41            req.b = i + N
42            req.replyc = make(chan int)
43            adder &lt;- req
1358 1359 1360
44        }
45        for i := N-1; i &gt;= 0; i-- {   // doesn't matter what order
46            if &lt;-reqs[i].replyc != N + 2*i {
Rob Pike's avatar
Rob Pike committed
1361
47                fmt.Println(&quot;fail at&quot;, i)
1362 1363
48            }
49        }
Rob Pike's avatar
Rob Pike committed
1364
50        fmt.Println(&quot;done&quot;)
1365
51    }
1366 1367
</pre>
<p>
Russ Cox's avatar
Russ Cox committed
1368
One annoyance with this program is that it doesn't shut down the server cleanly; when <code>main</code> returns
1369 1370 1371 1372
there are a number of lingering goroutines blocked on communication.  To solve this,
we can provide a second, <code>quit</code> channel to the server:
<p>
<pre> <!-- progs/server1.go /func.startServer/ /^}/ -->
1373
32    func startServer(op binOp) (service chan *request, quit chan bool) {
Rob Pike's avatar
Rob Pike committed
1374 1375 1376 1377
33        service = make(chan *request)
34        quit = make(chan bool)
35        go server(op, service, quit)
36        return service, quit
1378
37    }
1379 1380 1381 1382 1383
</pre>
<p>
It passes the quit channel to the <code>server</code> function, which uses it like this:
<p>
<pre> <!-- progs/server1.go /func.server/ /^}/ -->
1384 1385 1386 1387
21    func server(op binOp, service chan *request, quit chan bool) {
22        for {
23            select {
24            case req := &lt;-service:
Rob Pike's avatar
Rob Pike committed
1388
25                go run(op, req)  // don't wait for it
1389
26            case &lt;-quit:
Rob Pike's avatar
Rob Pike committed
1390
27                return
1391 1392 1393
28            }
29        }
30    }
1394 1395
</pre>
<p>
Russ Cox's avatar
Russ Cox committed
1396
Inside <code>server</code>, the <code>select</code> statement chooses which of the multiple communications
1397 1398 1399 1400 1401 1402 1403 1404 1405 1406
listed by its cases can proceed.  If all are blocked, it waits until one can proceed; if
multiple can proceed, it chooses one at random.  In this instance, the <code>select</code> allows
the server to honor requests until it receives a quit message, at which point it
returns, terminating its execution.
<p>
<p>
All that's left is to strobe the <code>quit</code> channel
at the end of main:
<p>
<pre> <!-- progs/server1.go /adder,.quit/ -->
Rob Pike's avatar
Rob Pike committed
1407
40        adder, quit := startServer(func(a, b int) int { return a + b })
1408 1409 1410
</pre>
...
<pre> <!-- progs/server1.go /quit....true/ -->
Rob Pike's avatar
Rob Pike committed
1411
55        quit &lt;- true
1412 1413 1414 1415
</pre>
<p>
There's a lot more to Go programming and concurrent programming in general but this
quick tour should give you some of the basics.