1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
// Copyright 2009 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
// TODO(rsc): The code having to do with the heap bitmap needs very serious cleanup.
// It has gotten completely out of control.
// Garbage collector (GC).
//
// The GC runs concurrently with mutator threads, is type accurate (aka precise), allows multiple
// GC thread to run in parallel. It is a concurrent mark and sweep that uses a write barrier. It is
// non-generational and non-compacting. Allocation is done using size segregated per P allocation
// areas to minimize fragmentation while eliminating locks in the common case.
//
// The algorithm decomposes into several steps.
// This is a high level description of the algorithm being used. For an overview of GC a good
// place to start is Richard Jones' gchandbook.org.
//
// The algorithm's intellectual heritage includes Dijkstra's on-the-fly algorithm, see
// Edsger W. Dijkstra, Leslie Lamport, A. J. Martin, C. S. Scholten, and E. F. M. Steffens. 1978.
// On-the-fly garbage collection: an exercise in cooperation. Commun. ACM 21, 11 (November 1978),
// 966-975.
// For journal quality proofs that these steps are complete, correct, and terminate see
// Hudson, R., and Moss, J.E.B. Copying Garbage Collection without stopping the world.
// Concurrency and Computation: Practice and Experience 15(3-5), 2003.
//
// 0. Set phase = GCscan from GCoff.
// 1. Wait for all P's to acknowledge phase change.
// At this point all goroutines have passed through a GC safepoint and
// know we are in the GCscan phase.
// 2. GC scans all goroutine stacks, mark and enqueues all encountered pointers
// (marking avoids most duplicate enqueuing but races may produce benign duplication).
// Preempted goroutines are scanned before P schedules next goroutine.
// 3. Set phase = GCmark.
// 4. Wait for all P's to acknowledge phase change.
// 5. Now write barrier marks and enqueues black, grey, or white to white pointers.
// Malloc still allocates white (non-marked) objects.
// 6. Meanwhile GC transitively walks the heap marking reachable objects.
// 7. When GC finishes marking heap, it preempts P's one-by-one and
// retakes partial wbufs (filled by write barrier or during a stack scan of the goroutine
// currently scheduled on the P).
// 8. Once the GC has exhausted all available marking work it sets phase = marktermination.
// 9. Wait for all P's to acknowledge phase change.
// 10. Malloc now allocates black objects, so number of unmarked reachable objects
// monotonically decreases.
// 11. GC preempts P's one-by-one taking partial wbufs and marks all unmarked yet
// reachable objects.
// 12. When GC completes a full cycle over P's and discovers no new grey
// objects, (which means all reachable objects are marked) set phase = GCsweep.
// 13. Wait for all P's to acknowledge phase change.
// 14. Now malloc allocates white (but sweeps spans before use).
// Write barrier becomes nop.
// 15. GC does background sweeping, see description below.
// 16. When sweeping is complete set phase to GCoff.
// 17. When sufficient allocation has taken place replay the sequence starting at 0 above,
// see discussion of GC rate below.
// Changing phases.
// Phases are changed by setting the gcphase to the next phase and possibly calling ackgcphase.
// All phase action must be benign in the presence of a change.
// Starting with GCoff
// GCoff to GCscan
// GSscan scans stacks and globals greying them and never marks an object black.
// Once all the P's are aware of the new phase they will scan gs on preemption.
// This means that the scanning of preempted gs can't start until all the Ps
// have acknowledged.
// GCscan to GCmark
// GCMark turns on the write barrier which also only greys objects. No scanning
// of objects (making them black) can happen until all the Ps have acknowledged
// the phase change.
// GCmark to GCmarktermination
// The only change here is that we start allocating black so the Ps must acknowledge
// the change before we begin the termination algorithm
// GCmarktermination to GSsweep
// Object currently on the freelist must be marked black for this to work.
// Are things on the free lists black or white? How does the sweep phase work?
// Concurrent sweep.
//
// The sweep phase proceeds concurrently with normal program execution.
// The heap is swept span-by-span both lazily (when a goroutine needs another span)
// and concurrently in a background goroutine (this helps programs that are not CPU bound).
// At the end of STW mark termination all spans are marked as "needs sweeping".
//
// The background sweeper goroutine simply sweeps spans one-by-one.
//
// To avoid requesting more OS memory while there are unswept spans, when a
// goroutine needs another span, it first attempts to reclaim that much memory
// by sweeping. When a goroutine needs to allocate a new small-object span, it
// sweeps small-object spans for the same object size until it frees at least
// one object. When a goroutine needs to allocate large-object span from heap,
// it sweeps spans until it frees at least that many pages into heap. There is
// one case where this may not suffice: if a goroutine sweeps and frees two
// nonadjacent one-page spans to the heap, it will allocate a new two-page
// span, but there can still be other one-page unswept spans which could be
// combined into a two-page span.
//
// It's critical to ensure that no operations proceed on unswept spans (that would corrupt
// mark bits in GC bitmap). During GC all mcaches are flushed into the central cache,
// so they are empty. When a goroutine grabs a new span into mcache, it sweeps it.
// When a goroutine explicitly frees an object or sets a finalizer, it ensures that
// the span is swept (either by sweeping it, or by waiting for the concurrent sweep to finish).
// The finalizer goroutine is kicked off only when all spans are swept.
// When the next GC starts, it sweeps all not-yet-swept spans (if any).
// GC rate.
// Next GC is after we've allocated an extra amount of memory proportional to
// the amount already in use. The proportion is controlled by GOGC environment variable
// (100 by default). If GOGC=100 and we're using 4M, we'll GC again when we get to 8M
// (this mark is tracked in next_gc variable). This keeps the GC cost in linear
// proportion to the allocation cost. Adjusting GOGC just changes the linear constant
// (and also the amount of extra memory used).
package runtime
import "unsafe"
const (
_DebugGC = 0
_ConcurrentSweep = true
_FinBlockSize = 4 * 1024
_RootData = 0
_RootBss = 1
_RootFinalizers = 2
_RootSpans = 3
_RootFlushCaches = 4
_RootCount = 5
)
// heapminimum is the minimum number of bytes in the heap.
// This cleans up the corner case of where we have a very small live set but a lot
// of allocations and collecting every GOGC * live set is expensive.
var heapminimum = uint64(4 << 20)
// Initialized from $GOGC. GOGC=off means no GC.
var gcpercent int32
func gcinit() {
if unsafe.Sizeof(workbuf{}) != _WorkbufSize {
throw("size of Workbuf is suboptimal")
}
work.markfor = parforalloc(_MaxGcproc)
gcpercent = readgogc()
for datap := &firstmoduledata; datap != nil; datap = datap.next {
datap.gcdatamask = unrollglobgcprog((*byte)(unsafe.Pointer(datap.gcdata)), datap.edata-datap.data)
datap.gcbssmask = unrollglobgcprog((*byte)(unsafe.Pointer(datap.gcbss)), datap.ebss-datap.bss)
}
memstats.next_gc = heapminimum
}
// gcenable is called after the bulk of the runtime initialization,
// just before we're about to start letting user code run.
// It kicks off the background sweeper goroutine and enables GC.
func gcenable() {
c := make(chan int, 1)
go bgsweep(c)
<-c
memstats.enablegc = true // now that runtime is initialized, GC is okay
}
func setGCPercent(in int32) (out int32) {
lock(&mheap_.lock)
out = gcpercent
if in < 0 {
in = -1
}
gcpercent = in
unlock(&mheap_.lock)
return out
}
// gcMarkWorkerMode represents the mode that a concurrent mark worker
// should operate in.
//
// Concurrent marking happens through four different mechanisms. One
// is mutator assists, which happen in response to allocations and are
// not scheduled. The other three are variations in the per-P mark
// workers and are distinguished by gcMarkWorkerMode.
type gcMarkWorkerMode int
const (
// gcMarkWorkerDedicatedMode indicates that the P of a mark
// worker is dedicated to running that mark worker. The mark
// worker should run without preemption until concurrent mark
// is done.
gcMarkWorkerDedicatedMode gcMarkWorkerMode = iota
// gcMarkWorkerFractionalMode indicates that a P is currently
// running the "fractional" mark worker. The fractional worker
// is necessary when GOMAXPROCS*gcGoalUtilization is not an
// integer. The fractional worker should run until it is
// preempted and will be scheduled to pick up the fractional
// part of GOMAXPROCS*gcGoalUtilization.
gcMarkWorkerFractionalMode
// gcMarkWorkerIdleMode indicates that a P is running the mark
// worker because it has nothing else to do. The idle worker
// should run until it is preempted and account its time
// against gcController.idleMarkTime.
gcMarkWorkerIdleMode
)
// gcController implements the GC pacing controller that determines
// when to trigger concurrent garbage collection and how much marking
// work to do in mutator assists and background marking.
//
// It uses a feedback control algorithm to adjust the memstats.next_gc
// trigger based on the heap growth and GC CPU utilization each cycle.
// This algorithm optimizes for heap growth to match GOGC and for CPU
// utilization between assist and background marking to be 25% of
// GOMAXPROCS. The high-level design of this algorithm is documented
// at http://golang.org/s/go15gcpacing.
var gcController = gcControllerState{
// Initial work ratio guess.
//
// TODO(austin): This is based on the work ratio of the
// compiler on ./all.bash. Run a wider variety of programs and
// see what their work ratios are.
workRatioAvg: 0.5 / float64(ptrSize),
// Initial trigger ratio guess.
triggerRatio: 7 / 8.0,
}
type gcControllerState struct {
// scanWork is the total scan work performed this cycle. This
// is updated atomically during the cycle. Updates may be
// batched arbitrarily, since the value is only read at the
// end of the cycle.
scanWork int64
// bgScanCredit is the scan work credit accumulated by the
// concurrent background scan. This credit is accumulated by
// the background scan and stolen by mutator assists. This is
// updated atomically. Updates occur in bounded batches, since
// it is both written and read throughout the cycle.
bgScanCredit int64
// assistTime is the nanoseconds spent in mutator assists
// during this cycle. This is updated atomically. Updates
// occur in bounded batches, since it is both written and read
// throughout the cycle.
assistTime int64
// dedicatedMarkTime is the nanoseconds spent in dedicated
// mark workers during this cycle. This is updated atomically
// at the end of the concurrent mark phase.
dedicatedMarkTime int64
// fractionalMarkTime is the nanoseconds spent in the
// fractional mark worker during this cycle. This is updated
// atomically throughout the cycle and will be up-to-date if
// the fractional mark worker is not currently running.
fractionalMarkTime int64
// idleMarkTime is the nanoseconds spent in idle marking
// during this cycle. This is udpated atomically throughout
// the cycle.
idleMarkTime int64
// bgMarkStartTime is the absolute start time in nanoseconds
// that the background mark phase started.
bgMarkStartTime int64
// heapGoal is the goal memstats.heap_live for when this cycle
// ends. This is computed at the beginning of each cycle.
heapGoal uint64
// dedicatedMarkWorkersNeeded is the number of dedicated mark
// workers that need to be started. This is computed at the
// beginning of each cycle and decremented atomically as
// dedicated mark workers get started.
dedicatedMarkWorkersNeeded int64
// workRatioAvg is a moving average of the scan work ratio
// (scan work per byte marked).
workRatioAvg float64
// assistRatio is the ratio of allocated bytes to scan work
// that should be performed by mutator assists. This is
// computed at the beginning of each cycle.
assistRatio float64
// fractionalUtilizationGoal is the fraction of wall clock
// time that should be spent in the fractional mark worker.
// For example, if the overall mark utilization goal is 25%
// and GOMAXPROCS is 6, one P will be a dedicated mark worker
// and this will be set to 0.5 so that 50% of the time some P
// is in a fractional mark worker. This is computed at the
// beginning of each cycle.
fractionalUtilizationGoal float64
// triggerRatio is the heap growth ratio at which the garbage
// collection cycle should start. E.g., if this is 0.6, then
// GC should start when the live heap has reached 1.6 times
// the heap size marked by the previous cycle. This is updated
// at the end of of each cycle.
triggerRatio float64
// reviseTimer is a timer that triggers periodic revision of
// control variables during the cycle.
reviseTimer timer
_ [_CacheLineSize]byte
// fractionalMarkWorkersNeeded is the number of fractional
// mark workers that need to be started. This is either 0 or
// 1. This is potentially updated atomically at every
// scheduling point (hence it gets its own cache line).
fractionalMarkWorkersNeeded int64
_ [_CacheLineSize]byte
}
// startCycle resets the GC controller's state and computes estimates
// for a new GC cycle. The caller must hold worldsema.
func (c *gcControllerState) startCycle() {
c.scanWork = 0
c.bgScanCredit = 0
c.assistTime = 0
c.dedicatedMarkTime = 0
c.fractionalMarkTime = 0
c.idleMarkTime = 0
// If this is the first GC cycle or we're operating on a very
// small heap, fake heap_marked so it looks like next_gc is
// the appropriate growth from heap_marked, even though the
// real heap_marked may not have a meaningful value (on the
// first cycle) or may be much smaller (resulting in a large
// error response).
if memstats.next_gc <= heapminimum {
memstats.heap_marked = uint64(float64(memstats.next_gc) / (1 + c.triggerRatio))
memstats.heap_reachable = memstats.heap_marked
}
// Compute the heap goal for this cycle
c.heapGoal = memstats.heap_reachable + memstats.heap_reachable*uint64(gcpercent)/100
// Compute the total mark utilization goal and divide it among
// dedicated and fractional workers.
totalUtilizationGoal := float64(gomaxprocs) * gcGoalUtilization
c.dedicatedMarkWorkersNeeded = int64(totalUtilizationGoal)
c.fractionalUtilizationGoal = totalUtilizationGoal - float64(c.dedicatedMarkWorkersNeeded)
if c.fractionalUtilizationGoal > 0 {
c.fractionalMarkWorkersNeeded = 1
} else {
c.fractionalMarkWorkersNeeded = 0
}
// Clear per-P state
for _, p := range &allp {
if p == nil {
break
}
p.gcAssistTime = 0
}
// Compute initial values for controls that are updated
// throughout the cycle.
c.revise()
// Set up a timer to revise periodically
c.reviseTimer.f = func(interface{}, uintptr) {
gcController.revise()
}
c.reviseTimer.period = 10 * 1000 * 1000
c.reviseTimer.when = nanotime() + c.reviseTimer.period
addtimer(&c.reviseTimer)
}
// revise updates the assist ratio during the GC cycle to account for
// improved estimates. This should be called periodically during
// concurrent mark.
func (c *gcControllerState) revise() {
// Estimate the size of the marked heap. We don't have much to
// go on, so at the beginning of the cycle this uses the
// marked heap size from last cycle. If the reachable heap has
// grown since last cycle, we'll eventually mark more than
// this and we can revise our estimate. This way, if we
// overshoot our initial estimate, the assist ratio will climb
// smoothly and put more pressure on mutator assists to finish
// the cycle.
heapMarkedEstimate := memstats.heap_marked
if heapMarkedEstimate < work.bytesMarked {
heapMarkedEstimate = work.bytesMarked
}
// Compute the expected work based on this estimate.
scanWorkExpected := uint64(float64(heapMarkedEstimate) * c.workRatioAvg)
// Compute the mutator assist ratio so by the time the mutator
// allocates the remaining heap bytes up to next_gc, it will
// have done (or stolen) the estimated amount of scan work.
heapDistance := int64(c.heapGoal) - int64(work.initialHeapLive)
if heapDistance <= 1024*1024 {
// heapDistance can be negative if GC start is delayed
// or if the allocation that pushed heap_live over
// next_gc is large or if the trigger is really close
// to GOGC. We don't want to set the assist negative
// (or divide by zero, or set it really high), so
// enforce a minimum on the distance.
heapDistance = 1024 * 1024
}
c.assistRatio = float64(scanWorkExpected) / float64(heapDistance)
}
// endCycle updates the GC controller state at the end of the
// concurrent part of the GC cycle.
func (c *gcControllerState) endCycle() {
// Proportional response gain for the trigger controller. Must
// be in [0, 1]. Lower values smooth out transient effects but
// take longer to respond to phase changes. Higher values
// react to phase changes quickly, but are more affected by
// transient changes. Values near 1 may be unstable.
const triggerGain = 0.5
// EWMA weight given to this cycle's scan work ratio.
const workRatioWeight = 0.75
// Stop the revise timer
deltimer(&c.reviseTimer)
// Compute next cycle trigger ratio. First, this computes the
// "error" for this cycle; that is, how far off the trigger
// was from what it should have been, accounting for both heap
// growth and GC CPU utilization. We computing the actual heap
// growth during this cycle and scale that by how far off from
// the goal CPU utilization we were (to estimate the heap
// growth if we had the desired CPU utilization). The
// difference between this estimate and the GOGC-based goal
// heap growth is the error.
goalGrowthRatio := float64(gcpercent) / 100
actualGrowthRatio := float64(memstats.heap_live)/float64(memstats.heap_marked) - 1
duration := nanotime() - c.bgMarkStartTime
var utilization float64
if duration <= 0 {
// Avoid divide-by-zero computing utilization. This
// has the effect of ignoring the utilization in the
// error term.
utilization = gcGoalUtilization
} else {
utilization = float64(c.assistTime+c.dedicatedMarkTime+c.fractionalMarkTime) / float64(duration*int64(gomaxprocs))
}
triggerError := goalGrowthRatio - c.triggerRatio - utilization/gcGoalUtilization*(actualGrowthRatio-c.triggerRatio)
// Finally, we adjust the trigger for next time by this error,
// damped by the proportional gain.
c.triggerRatio += triggerGain * triggerError
if c.triggerRatio < 0 {
// This can happen if the mutator is allocating very
// quickly or the GC is scanning very slowly.
c.triggerRatio = 0
} else if c.triggerRatio > goalGrowthRatio*0.95 {
// Ensure there's always a little margin so that the
// mutator assist ratio isn't infinity.
c.triggerRatio = goalGrowthRatio * 0.95
}
// Compute the scan work ratio for this cycle.
workRatio := float64(c.scanWork) / float64(work.bytesMarked)
// Update EWMA of recent scan work ratios.
c.workRatioAvg = workRatioWeight*workRatio + (1-workRatioWeight)*c.workRatioAvg
}
// findRunnableGCWorker returns the background mark worker for _p_ if it
// should be run. This must only be called when gcBlackenEnabled != 0.
func (c *gcControllerState) findRunnableGCWorker(_p_ *p) *g {
if gcBlackenEnabled == 0 {
throw("gcControllerState.findRunnable: blackening not enabled")
}
if _p_.gcBgMarkWorker == nil {
throw("gcControllerState.findRunnable: no background mark worker")
}
if work.bgMarkDone != 0 {
// Background mark is done. Don't schedule background
// mark worker any more. (This is not just an
// optimization. Without this we can spin scheduling
// the background worker and having it return
// immediately with no work to do.)
return nil
}
decIfPositive := func(ptr *int64) bool {
if *ptr > 0 {
if xaddint64(ptr, -1) >= 0 {
return true
}
// We lost a race
xaddint64(ptr, +1)
}
return false
}
if decIfPositive(&c.dedicatedMarkWorkersNeeded) {
// This P is now dedicated to marking until the end of
// the concurrent mark phase.
_p_.gcMarkWorkerMode = gcMarkWorkerDedicatedMode
// TODO(austin): This P isn't going to run anything
// else for a while, so kick everything out of its run
// queue.
} else {
if _p_.gcw.wbuf == 0 && work.full == 0 && work.partial == 0 {
// No work to be done right now. This can
// happen at the end of the mark phase when
// there are still assists tapering off. Don't
// bother running background mark because
// it'll just return immediately.
return nil
}
if !decIfPositive(&c.fractionalMarkWorkersNeeded) {
// No more workers are need right now.
return nil
}
// This P has picked the token for the fractional
// worker. If this P were to run the worker for the
// next time slice, then at the end of that time
// slice, would it be under the utilization goal?
//
// TODO(austin): We could fast path this and basically
// eliminate contention on c.fractionalMarkWorkersNeeded by
// precomputing the minimum time at which it's worth
// next scheduling the fractional worker. Then Ps
// don't have to fight in the window where we've
// passed that deadline and no one has started the
// worker yet.
//
// TODO(austin): Shorter preemption interval for mark
// worker to improve fairness and give this
// finer-grained control over schedule?
now := nanotime() - gcController.bgMarkStartTime
then := now + forcePreemptNS
timeUsedIfRun := c.fractionalMarkTime + forcePreemptNS
if float64(timeUsedIfRun)/float64(then) > c.fractionalUtilizationGoal {
// Nope, we'd overshoot the utilization goal
xaddint64(&c.fractionalMarkWorkersNeeded, +1)
return nil
}
_p_.gcMarkWorkerMode = gcMarkWorkerFractionalMode
}
// Run the background mark worker
gp := _p_.gcBgMarkWorker
casgstatus(gp, _Gwaiting, _Grunnable)
if trace.enabled {
traceGoUnpark(gp, 0)
}
return gp
}
// gcGoalUtilization is the goal CPU utilization for background
// marking as a fraction of GOMAXPROCS.
const gcGoalUtilization = 0.25
// gcBgCreditSlack is the amount of scan work credit background
// scanning can accumulate locally before updating
// gcController.bgScanCredit. Lower values give mutator assists more
// accurate accounting of background scanning. Higher values reduce
// memory contention.
const gcBgCreditSlack = 2000
// gcAssistTimeSlack is the nanoseconds of mutator assist time that
// can accumulate on a P before updating gcController.assistTime.
const gcAssistTimeSlack = 5000
// Determine whether to initiate a GC.
// If the GC is already working no need to trigger another one.
// This should establish a feedback loop where if the GC does not
// have sufficient time to complete then more memory will be
// requested from the OS increasing heap size thus allow future
// GCs more time to complete.
// memstat.heap_live read has a benign race.
// A false negative simple does not start a GC, a false positive
// will start a GC needlessly. Neither have correctness issues.
func shouldtriggergc() bool {
return memstats.heap_live >= memstats.next_gc && atomicloaduint(&bggc.working) == 0
}
var work struct {
full uint64 // lock-free list of full blocks workbuf
empty uint64 // lock-free list of empty blocks workbuf
partial uint64 // lock-free list of partially filled blocks workbuf
pad0 [_CacheLineSize]uint8 // prevents false-sharing between full/empty and nproc/nwait
nproc uint32
tstart int64
nwait uint32
ndone uint32
alldone note
markfor *parfor
bgMarkReady note // signal background mark worker has started
bgMarkDone uint32 // cas to 1 when at a background mark completion point
// Background mark completion signaling
bgMarkWake struct {
lock mutex
g *g
wake bool
}
// Copy of mheap.allspans for marker or sweeper.
spans []*mspan
// totaltime is the CPU nanoseconds spent in GC since the
// program started if debug.gctrace > 0.
totaltime int64
// bytesMarked is the number of bytes marked this cycle. This
// includes bytes blackened in scanned objects, noscan objects
// that go straight to black, and permagrey objects scanned by
// markroot during the concurrent scan phase. This is updated
// atomically during the cycle. Updates may be batched
// arbitrarily, since the value is only read at the end of the
// cycle.
//
// Because of benign races during marking, this number may not
// be the exact number of marked bytes, but it should be very
// close.
bytesMarked uint64
// initialHeapLive is the value of memstats.heap_live at the
// beginning of this GC cycle.
initialHeapLive uint64
}
// GC runs a garbage collection.
func GC() {
startGC(gcForceBlockMode)
}
const (
gcBackgroundMode = iota // concurrent GC
gcForceMode // stop-the-world GC now
gcForceBlockMode // stop-the-world GC now and wait for sweep
)
func startGC(mode int) {
// The gc is turned off (via enablegc) until the bootstrap has completed.
// Also, malloc gets called in the guts of a number of libraries that might be
// holding locks. To avoid deadlocks during stoptheworld, don't bother
// trying to run gc while holding a lock. The next mallocgc without a lock
// will do the gc instead.
mp := acquirem()
if gp := getg(); gp == mp.g0 || mp.locks > 1 || !memstats.enablegc || panicking != 0 || gcpercent < 0 {
releasem(mp)
return
}
releasem(mp)
mp = nil
if mode != gcBackgroundMode {
// special synchronous cases
gc(mode)
return
}
// trigger concurrent GC
readied := false
lock(&bggc.lock)
if !bggc.started {
bggc.working = 1
bggc.started = true
readied = true
go backgroundgc()
} else if bggc.working == 0 {
bggc.working = 1
readied = true
ready(bggc.g, 0)
}
unlock(&bggc.lock)
if readied {
// This G just started or ready()d the GC goroutine.
// Switch directly to it by yielding.
Gosched()
}
}
// State of the background concurrent GC goroutine.
var bggc struct {
lock mutex
g *g
working uint
started bool
}
// backgroundgc is running in a goroutine and does the concurrent GC work.
// bggc holds the state of the backgroundgc.
func backgroundgc() {
bggc.g = getg()
for {
gc(gcBackgroundMode)
lock(&bggc.lock)
bggc.working = 0
goparkunlock(&bggc.lock, "Concurrent GC wait", traceEvGoBlock, 1)
}
}
func gc(mode int) {
// debug.gctrace variables
var stwprocs, maxprocs int32
var tSweepTerm, tScan, tInstallWB, tMark, tMarkTerm int64
var heap0, heap1, heap2, heapGoal uint64
// Ok, we're doing it! Stop everybody else
semacquire(&worldsema, false)
// Pick up the remaining unswept/not being swept spans concurrently
//
// This shouldn't happen if we're being invoked in background
// mode since proportional sweep should have just finished
// sweeping everything, but rounding errors, etc, may leave a
// few spans unswept. In forced mode, this is necessary since
// GC can be forced at any point in the sweeping cycle.
for gosweepone() != ^uintptr(0) {
sweep.nbgsweep++
}
gctimer.count++
if mode == gcBackgroundMode {
gcBgMarkStartWorkers()
gctimer.cycle.sweepterm = nanotime()
}
if debug.gctrace > 0 {
stwprocs, maxprocs = gcprocs(), gomaxprocs
tSweepTerm = nanotime()
if mode == gcBackgroundMode {
// We started GC when heap_live == next_gc,
// but the mutator may have allocated between
// then and now. Report heap when GC started.
heap0 = memstats.next_gc
} else {
heap0 = memstats.heap_live
}
}
if trace.enabled {
traceGCStart()
}
systemstack(stoptheworld)
systemstack(finishsweep_m) // finish sweep before we start concurrent scan.
// clearpools before we start the GC. If we wait they memory will not be
// reclaimed until the next GC cycle.
clearpools()
work.bytesMarked = 0
work.initialHeapLive = memstats.heap_live
if mode == gcBackgroundMode { // Do as much work concurrently as possible
gcController.startCycle()
heapGoal = gcController.heapGoal
systemstack(func() {
gcphase = _GCscan
// Concurrent scan.
starttheworld()
gctimer.cycle.scan = nanotime()
if debug.gctrace > 0 {
tScan = nanotime()
}
gcscan_m()
gctimer.cycle.installmarkwb = nanotime()
// Enter mark phase. This enables write
// barriers.
if debug.gctrace > 0 {
tInstallWB = nanotime()
}
atomicstore(&gcphase, _GCmark)
// Ensure all Ps have observed the phase
// change and have write barriers enabled
// before any blackening occurs.
forEachP(func(*p) {})
})
// Concurrent mark.
gcBgMarkPrepare() // Must happen before assist enable.
// At this point all Ps have enabled the mark phase
// write barrier, thus maintaining the no white to
// black invariant. Mutator assists and mark workers
// can now be enabled to safely blacken grey objects.
atomicstore(&gcBlackenEnabled, 1)
gctimer.cycle.mark = nanotime()
if debug.gctrace > 0 {
tMark = nanotime()
}
// Wait for background mark completion.
lock(&work.bgMarkWake.lock)
if work.bgMarkWake.wake {
// Wakeup already happened
unlock(&work.bgMarkWake.lock)
} else {
work.bgMarkWake.g = getg()
goparkunlock(&work.bgMarkWake.lock, "mark wait (idle)", traceEvGoBlock, 1)
}
work.bgMarkWake.wake = false
work.bgMarkWake.g = nil
// Begin mark termination.
gctimer.cycle.markterm = nanotime()
if debug.gctrace > 0 {
tMarkTerm = nanotime()
}
systemstack(stoptheworld)
// The gcphase is _GCmark, it will transition to _GCmarktermination
// below. The important thing is that the wb remains active until
// all marking is complete. This includes writes made by the GC.
gcController.endCycle()
} else {
// For non-concurrent GC (mode != gcBackgroundMode)
// The g stacks have not been scanned so clear g state
// such that mark termination scans all stacks.
gcResetGState()
if debug.gctrace > 0 {
t := nanotime()
tScan, tInstallWB, tMark, tMarkTerm = t, t, t, t
heapGoal = heap0
}
}
// World is stopped.
// Start marktermination which includes enabling the write barrier.
atomicstore(&gcBlackenEnabled, 0)
gcphase = _GCmarktermination
if debug.gctrace > 0 {
heap1 = memstats.heap_live
}
startTime := nanotime()
mp := acquirem()
mp.preemptoff = "gcing"
_g_ := getg()
_g_.m.traceback = 2
gp := _g_.m.curg
casgstatus(gp, _Grunning, _Gwaiting)
gp.waitreason = "garbage collection"
// Run gc on the g0 stack. We do this so that the g stack
// we're currently running on will no longer change. Cuts
// the root set down a bit (g0 stacks are not scanned, and
// we don't need to scan gc's internal state). We also
// need to switch to g0 so we can shrink the stack.
systemstack(func() {
gcMark(startTime)
if debug.gctrace > 0 {
heap2 = work.bytesMarked
}
if debug.gccheckmark > 0 {
// Run a full stop-the-world mark using checkmark bits,
// to check that we didn't forget to mark anything during
// the concurrent mark process.
initCheckmarks()
gcMark(startTime)
clearCheckmarks()
}
// marking is complete so we can turn the write barrier off
gcphase = _GCoff
gcSweep(mode)
if debug.gctrace > 1 {
startTime = nanotime()
// The g stacks have been scanned so
// they have gcscanvalid==true and gcworkdone==true.
// Reset these so that all stacks will be rescanned.
gcResetGState()
finishsweep_m()
// Still in STW but gcphase is _GCoff, reset to _GCmarktermination
// At this point all objects will be found during the gcMark which
// does a complete STW mark and object scan.
gcphase = _GCmarktermination
gcMark(startTime)
gcphase = _GCoff // marking is done, turn off wb.
gcSweep(mode)
}
})
_g_.m.traceback = 0
casgstatus(gp, _Gwaiting, _Grunning)
if trace.enabled {
traceGCDone()
}
// all done
mp.preemptoff = ""
if mode == gcBackgroundMode {
gctimer.cycle.sweep = nanotime()
}
semrelease(&worldsema)
if mode == gcBackgroundMode {
if gctimer.verbose > 1 {
GCprinttimes()
} else if gctimer.verbose > 0 {
calctimes() // ignore result
}
}
if gcphase != _GCoff {
throw("gc done but gcphase != _GCoff")
}
systemstack(starttheworld)
releasem(mp)
mp = nil
memstats.numgc++
if debug.gctrace > 0 {
tEnd := nanotime()
// Update work.totaltime
sweepTermCpu := int64(stwprocs) * (tScan - tSweepTerm)
scanCpu := tInstallWB - tScan
installWBCpu := int64(0)
// We report idle marking time below, but omit it from
// the overall utilization here since it's "free".
markCpu := gcController.assistTime + gcController.dedicatedMarkTime + gcController.fractionalMarkTime
markTermCpu := int64(stwprocs) * (tEnd - tMarkTerm)
cycleCpu := sweepTermCpu + scanCpu + installWBCpu + markCpu + markTermCpu
work.totaltime += cycleCpu
// Compute overall utilization
totalCpu := sched.totaltime + (tEnd-sched.procresizetime)*int64(gomaxprocs)
util := work.totaltime * 100 / totalCpu
var sbuf [24]byte
printlock()
print("gc #", memstats.numgc,
" @", string(itoaDiv(sbuf[:], uint64(tEnd-runtimeInitTime)/1e6, 3)), "s ",
util, "%: ",
(tScan-tSweepTerm)/1e6,
"+", (tInstallWB-tScan)/1e6,
"+", (tMark-tInstallWB)/1e6,
"+", (tMarkTerm-tMark)/1e6,
"+", (tEnd-tMarkTerm)/1e6, " ms clock, ",
sweepTermCpu/1e6,
"+", scanCpu/1e6,
"+", installWBCpu/1e6,
"+", gcController.assistTime/1e6,
"/", (gcController.dedicatedMarkTime+gcController.fractionalMarkTime)/1e6,
"/", gcController.idleMarkTime/1e6,
"+", markTermCpu/1e6, " ms cpu, ",
heap0>>20, "->", heap1>>20, "->", heap2>>20, " MB, ",
heapGoal>>20, " MB goal, ",
maxprocs, " P")
if mode != gcBackgroundMode {
print(" (forced)")
}
print("\n")
printunlock()
}
sweep.nbgsweep = 0
sweep.npausesweep = 0
// now that gc is done, kick off finalizer thread if needed
if !concurrentSweep {
// give the queued finalizers, if any, a chance to run
Gosched()
}
}
// gcBgMarkStartWorkers prepares background mark worker goroutines.
// These goroutines will not run until the mark phase, but they must
// be started while the work is not stopped and from a regular G
// stack. The caller must hold worldsema.
func gcBgMarkStartWorkers() {
// Background marking is performed by per-P G's. Ensure that
// each P has a background GC G.
for _, p := range &allp {
if p == nil || p.status == _Pdead {
break
}
if p.gcBgMarkWorker == nil {
go gcBgMarkWorker(p)
notetsleepg(&work.bgMarkReady, -1)
noteclear(&work.bgMarkReady)
}
}
}
// gcBgMarkPrepare sets up state for background marking.
// Mutator assists must not yet be enabled.
func gcBgMarkPrepare() {
// Background marking will stop when the work queues are empty
// and there are no more workers (note that, since this is
// concurrent, this may be a transient state, but mark
// termination will clean it up). Between background workers
// and assists, we don't really know how many workers there
// will be, so we pretend to have an arbitrarily large number
// of workers, almost all of which are "waiting". While a
// worker is working it decrements nwait. If nproc == nwait,
// there are no workers.
work.nproc = ^uint32(0)
work.nwait = ^uint32(0)
// Background GC and assists race to set this to 1 on
// completion so that this only gets one "done" signal.
work.bgMarkDone = 0
gcController.bgMarkStartTime = nanotime()
}
func gcBgMarkWorker(p *p) {
// Register this G as the background mark worker for p.
if p.gcBgMarkWorker != nil {
throw("P already has a background mark worker")
}
gp := getg()
mp := acquirem()
p.gcBgMarkWorker = gp
// After this point, the background mark worker is scheduled
// cooperatively by gcController.findRunnable. Hence, it must
// never be preempted, as this would put it into _Grunnable
// and put it on a run queue. Instead, when the preempt flag
// is set, this puts itself into _Gwaiting to be woken up by
// gcController.findRunnable at the appropriate time.
notewakeup(&work.bgMarkReady)
for {
// Go to sleep until woken by gcContoller.findRunnable.
// We can't releasem yet since even the call to gopark
// may be preempted.
gopark(func(g *g, mp unsafe.Pointer) bool {
releasem((*m)(mp))
return true
}, unsafe.Pointer(mp), "mark worker (idle)", traceEvGoBlock, 0)
// Loop until the P dies and disassociates this
// worker. (The P may later be reused, in which case
// it will get a new worker.)
if p.gcBgMarkWorker != gp {
break
}
// Disable preemption so we can use the gcw. If the
// scheduler wants to preempt us, we'll stop draining,
// dispose the gcw, and then preempt.
mp = acquirem()
if gcBlackenEnabled == 0 {
throw("gcBgMarkWorker: blackening not enabled")
}
startTime := nanotime()
xadd(&work.nwait, -1)
done := false
switch p.gcMarkWorkerMode {
default:
throw("gcBgMarkWorker: unexpected gcMarkWorkerMode")
case gcMarkWorkerDedicatedMode:
gcDrain(&p.gcw, gcBgCreditSlack)
// gcDrain did the xadd(&work.nwait +1) to
// match the decrement above. It only returns
// at a mark completion point.
done = true
case gcMarkWorkerFractionalMode, gcMarkWorkerIdleMode:
gcDrainUntilPreempt(&p.gcw, gcBgCreditSlack)
// Was this the last worker and did we run out
// of work?
done = xadd(&work.nwait, +1) == work.nproc && work.full == 0 && work.partial == 0
}
// We're not in mark termination, so there's no need
// to dispose p.gcw.
// If this worker reached a background mark completion
// point, signal the main GC goroutine.
if done {
gcBgMarkDone()
}
duration := nanotime() - startTime
switch p.gcMarkWorkerMode {
case gcMarkWorkerDedicatedMode:
xaddint64(&gcController.dedicatedMarkTime, duration)
case gcMarkWorkerFractionalMode:
xaddint64(&gcController.fractionalMarkTime, duration)
xaddint64(&gcController.fractionalMarkWorkersNeeded, 1)
case gcMarkWorkerIdleMode:
xaddint64(&gcController.idleMarkTime, duration)
}
}
}
// gcBgMarkDone signals the completion of background marking. This can
// be called multiple times during a cycle; only the first call has
// any effect.
func gcBgMarkDone() {
if cas(&work.bgMarkDone, 0, 1) {
// This is the first worker to reach completion.
// Signal the main GC goroutine.
lock(&work.bgMarkWake.lock)
if work.bgMarkWake.g == nil {
// It hasn't parked yet.
work.bgMarkWake.wake = true
} else {
ready(work.bgMarkWake.g, 0)
}
unlock(&work.bgMarkWake.lock)
}
}
// gcMark runs the mark (or, for concurrent GC, mark termination)
// STW is in effect at this point.
//TODO go:nowritebarrier
func gcMark(start_time int64) {
if debug.allocfreetrace > 0 {
tracegc()
}
if gcphase != _GCmarktermination {
throw("in gcMark expecting to see gcphase as _GCmarktermination")
}
t0 := start_time
work.tstart = start_time
gcCopySpans() // TODO(rlh): should this be hoisted and done only once? Right now it is done for normal marking and also for checkmarking.
// Gather all cached GC work. All other Ps are stopped, so
// it's safe to manipulate their GC work caches. During mark
// termination, these caches can still be used temporarily,
// but must be disposed to the global lists immediately.
for i := 0; i < int(gomaxprocs); i++ {
allp[i].gcw.dispose()
}
work.nwait = 0
work.ndone = 0
work.nproc = uint32(gcprocs())
if trace.enabled {
traceGCScanStart()
}
parforsetup(work.markfor, work.nproc, uint32(_RootCount+allglen), false, markroot)
if work.nproc > 1 {
noteclear(&work.alldone)
helpgc(int32(work.nproc))
}
gchelperstart()
parfordo(work.markfor)
var gcw gcWork
gcDrain(&gcw, -1)
gcw.dispose()
if work.full != 0 {
throw("work.full != 0")
}
if work.partial != 0 {
throw("work.partial != 0")
}
if work.nproc > 1 {
notesleep(&work.alldone)
}
for i := 0; i < int(gomaxprocs); i++ {
if allp[i].gcw.wbuf != 0 {
throw("P has cached GC work at end of mark termination")
}
}
if trace.enabled {
traceGCScanDone()
}
shrinkfinish()
cachestats()
// Compute the reachable heap size at the beginning of the
// cycle. This is approximately the marked heap size at the
// end (which we know) minus the amount of marked heap that
// was allocated after marking began (which we don't know, but
// is approximately the amount of heap that was allocated
// since marking began).
allocatedDuringCycle := memstats.heap_live - work.initialHeapLive
if work.bytesMarked >= allocatedDuringCycle {
memstats.heap_reachable = work.bytesMarked - allocatedDuringCycle
} else {
// This can happen if most of the allocation during
// the cycle never became reachable from the heap.
// Just set the reachable heap appropriation to 0 and
// let the heapminimum kick in below.
memstats.heap_reachable = 0
}
// Trigger the next GC cycle when the allocated heap has grown
// by triggerRatio over the reachable heap size. Assume that
// we're in steady state, so the reachable heap size is the
// same now as it was at the beginning of the GC cycle.
memstats.next_gc = uint64(float64(memstats.heap_reachable) * (1 + gcController.triggerRatio))
if memstats.next_gc < heapminimum {
memstats.next_gc = heapminimum
}
if int64(memstats.next_gc) < 0 {
print("next_gc=", memstats.next_gc, " bytesMarked=", work.bytesMarked, " heap_live=", memstats.heap_live, " initialHeapLive=", work.initialHeapLive, "\n")
throw("next_gc underflow")
}
// Update other GC heap size stats.
memstats.heap_live = work.bytesMarked
memstats.heap_marked = work.bytesMarked
if trace.enabled {
traceHeapAlloc()
traceNextGC()
}
t4 := nanotime()
atomicstore64(&memstats.last_gc, uint64(unixnanotime())) // must be Unix time to make sense to user
memstats.pause_ns[memstats.numgc%uint32(len(memstats.pause_ns))] = uint64(t4 - t0)
memstats.pause_end[memstats.numgc%uint32(len(memstats.pause_end))] = uint64(t4)
memstats.pause_total_ns += uint64(t4 - t0)
}
func gcSweep(mode int) {
if gcphase != _GCoff {
throw("gcSweep being done but phase is not GCoff")
}
gcCopySpans()
lock(&mheap_.lock)
mheap_.sweepgen += 2
mheap_.sweepdone = 0
sweep.spanidx = 0
unlock(&mheap_.lock)
if !_ConcurrentSweep || mode == gcForceBlockMode {
// Special case synchronous sweep.
// Record that no proportional sweeping has to happen.
lock(&mheap_.lock)
mheap_.sweepPagesPerByte = 0
mheap_.pagesSwept = 0
unlock(&mheap_.lock)
// Sweep all spans eagerly.
for sweepone() != ^uintptr(0) {
sweep.npausesweep++
}
// Do an additional mProf_GC, because all 'free' events are now real as well.
mProf_GC()
mProf_GC()
return
}
// Account how much sweeping needs to be done before the next
// GC cycle and set up proportional sweep statistics.
var pagesToSweep uintptr
for _, s := range work.spans {
if s.state == mSpanInUse {
pagesToSweep += s.npages
}
}
heapDistance := int64(memstats.next_gc) - int64(memstats.heap_live)
// Add a little margin so rounding errors and concurrent
// sweep are less likely to leave pages unswept when GC starts.
heapDistance -= 1024 * 1024
if heapDistance < _PageSize {
// Avoid setting the sweep ratio extremely high
heapDistance = _PageSize
}
lock(&mheap_.lock)
mheap_.sweepPagesPerByte = float64(pagesToSweep) / float64(heapDistance)
mheap_.pagesSwept = 0
unlock(&mheap_.lock)
// Background sweep.
lock(&sweep.lock)
if sweep.parked {
sweep.parked = false
ready(sweep.g, 0)
}
unlock(&sweep.lock)
mProf_GC()
}
func gcCopySpans() {
// Cache runtime.mheap_.allspans in work.spans to avoid conflicts with
// resizing/freeing allspans.
// New spans can be created while GC progresses, but they are not garbage for
// this round:
// - new stack spans can be created even while the world is stopped.
// - new malloc spans can be created during the concurrent sweep
// Even if this is stop-the-world, a concurrent exitsyscall can allocate a stack from heap.
lock(&mheap_.lock)
// Free the old cached mark array if necessary.
if work.spans != nil && &work.spans[0] != &h_allspans[0] {
sysFree(unsafe.Pointer(&work.spans[0]), uintptr(len(work.spans))*unsafe.Sizeof(work.spans[0]), &memstats.other_sys)
}
// Cache the current array for sweeping.
mheap_.gcspans = mheap_.allspans
work.spans = h_allspans
unlock(&mheap_.lock)
}
// gcResetGState resets the GC state of all G's and returns the length
// of allgs.
func gcResetGState() (numgs int) {
// This may be called during a concurrent phase, so make sure
// allgs doesn't change.
lock(&allglock)
for _, gp := range allgs {
gp.gcworkdone = false // set to true in gcphasework
gp.gcscanvalid = false // stack has not been scanned
gp.gcalloc = 0
gp.gcscanwork = 0
}
numgs = len(allgs)
unlock(&allglock)
return
}
// Hooks for other packages
var poolcleanup func()
//go:linkname sync_runtime_registerPoolCleanup sync.runtime_registerPoolCleanup
func sync_runtime_registerPoolCleanup(f func()) {
poolcleanup = f
}
func clearpools() {
// clear sync.Pools
if poolcleanup != nil {
poolcleanup()
}
// Clear central sudog cache.
// Leave per-P caches alone, they have strictly bounded size.
// Disconnect cached list before dropping it on the floor,
// so that a dangling ref to one entry does not pin all of them.
lock(&sched.sudoglock)
var sg, sgnext *sudog
for sg = sched.sudogcache; sg != nil; sg = sgnext {
sgnext = sg.next
sg.next = nil
}
sched.sudogcache = nil
unlock(&sched.sudoglock)
// Clear central defer pools.
// Leave per-P pools alone, they have strictly bounded size.
lock(&sched.deferlock)
for i := range sched.deferpool {
// disconnect cached list before dropping it on the floor,
// so that a dangling ref to one entry does not pin all of them.
var d, dlink *_defer
for d = sched.deferpool[i]; d != nil; d = dlink {
dlink = d.link
d.link = nil
}
sched.deferpool[i] = nil
}
unlock(&sched.deferlock)
for _, p := range &allp {
if p == nil {
break
}
// clear tinyalloc pool
if c := p.mcache; c != nil {
c.tiny = nil
c.tinyoffset = 0
}
}
}
// Timing
//go:nowritebarrier
func gchelper() {
_g_ := getg()
_g_.m.traceback = 2
gchelperstart()
if trace.enabled {
traceGCScanStart()
}
// parallel mark for over GC roots
parfordo(work.markfor)
if gcphase != _GCscan {
var gcw gcWork
gcDrain(&gcw, -1) // blocks in getfull
gcw.dispose()
}
if trace.enabled {
traceGCScanDone()
}
nproc := work.nproc // work.nproc can change right after we increment work.ndone
if xadd(&work.ndone, +1) == nproc-1 {
notewakeup(&work.alldone)
}
_g_.m.traceback = 0
}
func gchelperstart() {
_g_ := getg()
if _g_.m.helpgc < 0 || _g_.m.helpgc >= _MaxGcproc {
throw("gchelperstart: bad m->helpgc")
}
if _g_ != _g_.m.g0 {
throw("gchelper not running on g0 stack")
}
}
// gcchronograph holds timer information related to GC phases
// max records the maximum time spent in each GC phase since GCstarttimes.
// total records the total time spent in each GC phase since GCstarttimes.
// cycle records the absolute time (as returned by nanoseconds()) that each GC phase last started at.
type gcchronograph struct {
count int64
verbose int64
maxpause int64
max gctimes
total gctimes
cycle gctimes
}
// gctimes records the time in nanoseconds of each phase of the concurrent GC.
type gctimes struct {
sweepterm int64 // stw
scan int64
installmarkwb int64 // stw
mark int64
markterm int64 // stw
sweep int64
}
var gctimer gcchronograph
// GCstarttimes initializes the gc times. All previous times are lost.
func GCstarttimes(verbose int64) {
gctimer = gcchronograph{verbose: verbose}
}
// GCendtimes stops the gc timers.
func GCendtimes() {
gctimer.verbose = 0
}
// calctimes converts gctimer.cycle into the elapsed times, updates gctimer.total
// and updates gctimer.max with the max pause time.
func calctimes() gctimes {
var times gctimes
var max = func(a, b int64) int64 {
if a > b {
return a
}
return b
}
times.sweepterm = gctimer.cycle.scan - gctimer.cycle.sweepterm
gctimer.total.sweepterm += times.sweepterm
gctimer.max.sweepterm = max(gctimer.max.sweepterm, times.sweepterm)
gctimer.maxpause = max(gctimer.maxpause, gctimer.max.sweepterm)
times.scan = gctimer.cycle.installmarkwb - gctimer.cycle.scan
gctimer.total.scan += times.scan
gctimer.max.scan = max(gctimer.max.scan, times.scan)
times.installmarkwb = gctimer.cycle.mark - gctimer.cycle.installmarkwb
gctimer.total.installmarkwb += times.installmarkwb
gctimer.max.installmarkwb = max(gctimer.max.installmarkwb, times.installmarkwb)
gctimer.maxpause = max(gctimer.maxpause, gctimer.max.installmarkwb)
times.mark = gctimer.cycle.markterm - gctimer.cycle.mark
gctimer.total.mark += times.mark
gctimer.max.mark = max(gctimer.max.mark, times.mark)
times.markterm = gctimer.cycle.sweep - gctimer.cycle.markterm
gctimer.total.markterm += times.markterm
gctimer.max.markterm = max(gctimer.max.markterm, times.markterm)
gctimer.maxpause = max(gctimer.maxpause, gctimer.max.markterm)
return times
}
// GCprinttimes prints latency information in nanoseconds about various
// phases in the GC. The information for each phase includes the maximum pause
// and total time since the most recent call to GCstarttimes as well as
// the information from the most recent Concurent GC cycle. Calls from the
// application to runtime.GC() are ignored.
func GCprinttimes() {
if gctimer.verbose == 0 {
println("GC timers not enabled")
return
}
// Explicitly put times on the heap so printPhase can use it.
times := new(gctimes)
*times = calctimes()
cycletime := gctimer.cycle.sweep - gctimer.cycle.sweepterm
pause := times.sweepterm + times.installmarkwb + times.markterm
gomaxprocs := GOMAXPROCS(-1)
printlock()
print("GC: #", gctimer.count, " ", cycletime, "ns @", gctimer.cycle.sweepterm, " pause=", pause, " maxpause=", gctimer.maxpause, " goroutines=", allglen, " gomaxprocs=", gomaxprocs, "\n")
printPhase := func(label string, get func(*gctimes) int64, procs int) {
print("GC: ", label, " ", get(times), "ns\tmax=", get(&gctimer.max), "\ttotal=", get(&gctimer.total), "\tprocs=", procs, "\n")
}
printPhase("sweep term:", func(t *gctimes) int64 { return t.sweepterm }, gomaxprocs)
printPhase("scan: ", func(t *gctimes) int64 { return t.scan }, 1)
printPhase("install wb:", func(t *gctimes) int64 { return t.installmarkwb }, gomaxprocs)
printPhase("mark: ", func(t *gctimes) int64 { return t.mark }, 1)
printPhase("mark term: ", func(t *gctimes) int64 { return t.markterm }, gomaxprocs)
printunlock()
}
// itoaDiv formats val/(10**dec) into buf.
func itoaDiv(buf []byte, val uint64, dec int) []byte {
i := len(buf) - 1
idec := i - dec
for val >= 10 || i >= idec {
buf[i] = byte(val%10 + '0')
i--
if i == idec {
buf[i] = '.'
i--
}
val /= 10
}
buf[i] = byte(val + '0')
return buf[i:]
}