Commit 0c247bf4 authored by Andrew Gerrand's avatar Andrew Gerrand

math/big: refine Fibonacci example

Change-Id: Id9e8c3f89e021b9f389ab3c8403e6a8450fa9f5f
Reviewed-on: https://go-review.googlesource.com/11231Reviewed-by: default avatarRobert Griesemer <gri@golang.org>
Reviewed-by: default avatarJosh Bleecher Snyder <josharian@gmail.com>
parent 2a5745d8
......@@ -51,34 +51,30 @@ func ExampleInt_Scan() {
// Output: 18446744073709551617
}
// Example_fibonacci demonstrates how to use big.Int to compute the smallest
// Fibonacci number with 100 decimal digits, and find out whether it is prime.
// This example demonstrates how to use big.Int to compute the smallest
// Fibonacci number with 100 decimal digits and to test whether it is prime.
func Example_fibonacci() {
// create and initialize big.Ints from int64s
fib1 := big.NewInt(0)
fib2 := big.NewInt(1)
// Initialize two big ints with the first two numbers in the sequence.
a := big.NewInt(0)
b := big.NewInt(1)
// initialize limit as 10^99 (the smallest integer with 100 digits)
// Initialize limit as 10^99, the smallest integer with 100 digits.
var limit big.Int
limit.Exp(big.NewInt(10), big.NewInt(99), nil)
// loop while fib1 is smaller than 1e100
for fib1.Cmp(&limit) < 0 {
// Compute the next Fibonacci number:
// t1 := fib2
// t2 := fib1.Add(fib1, fib2) // Note that Add "assigns" to fib1!
// fib1 = t1
// fib2 = t2
// Using Go's multi-value ("parallel") assignment, we can simply write:
fib1, fib2 = fib2, fib1.Add(fib1, fib2)
// Loop while a is smaller than 1e100.
for a.Cmp(&limit) < 0 {
// Compute the next Fibonacci number, storing it in a.
a.Add(a, b)
// Swap a and b so that b is the next number in the sequence.
a, b = b, a
}
fmt.Println(a) // 100-digit Fibonacci number
fmt.Println(fib1) // 100-digit Fibonacci number
// Test fib1 for primality. The ProbablyPrimes parameter sets the number
// of Miller-Rabin rounds to be performed. 20 is a good value.
isPrime := fib1.ProbablyPrime(20)
fmt.Println(isPrime)
// Test a for primality.
// (ProbablyPrimes' argument sets the number of Miller-Rabin
// rounds to be performed. 20 is a good value.)
fmt.Println(a.ProbablyPrime(20))
// Output:
// 1344719667586153181419716641724567886890850696275767987106294472017884974410332069524504824747437757
......
Markdown is supported
0%
or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment