Commit 21810981 authored by Ken Thompson's avatar Ken Thompson

SVN=114204

parent cb87526c
// Copyright 2009 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package asin
import sys "sys"
import atan "atan"
import sqrt "sqrt"
export asin, acos
/*
* asin(arg) and acos(arg) return the arcsin, arccos,
* respectively of their arguments.
*
* Arctan is called after appropriate range reduction.
*/
const
(
pio2 = .15707963267948966192313216e1;
)
func
asin(arg double)double
{
var temp, x double;
var sign bool;
sign = false;
x = arg;
if x < 0 {
x = -x;
sign = true;
}
if arg > 1 {
return sys.NaN();
}
temp = sqrt.sqrt(1 - x*x);
if x > 0.7 {
temp = pio2 - atan.atan(temp/x);
} else {
temp = atan.atan(x/temp);
}
if sign {
temp = -temp;
}
return temp;
}
func
acos(arg double)double
{
if(arg > 1 || arg < -1) {
return sys.NaN();
}
return pio2 - asin(arg);
}
// Copyright 2009 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package atan
export atan
/*
floating-point arctangent
atan returns the value of the arctangent of its
argument in the range [-pi/2,pi/2].
there are no error returns.
coefficients are #5077 from Hart & Cheney. (19.56D)
*/
const
(
p4 = .161536412982230228262e2;
p3 = .26842548195503973794141e3;
p2 = .11530293515404850115428136e4;
p1 = .178040631643319697105464587e4;
p0 = .89678597403663861959987488e3;
q4 = .5895697050844462222791e2;
q3 = .536265374031215315104235e3;
q2 = .16667838148816337184521798e4;
q1 = .207933497444540981287275926e4;
q0 = .89678597403663861962481162e3;
pio2 = .15707963267948966192313216e1;
pio4 = .7853981633974483096156608e0;
sq2p1 = .2414213562373095048802e1; // sqrt(2)+1
sq2m1 = .414213562373095048802e0; // sqrt(2)-1
)
/*
xatan evaluates a series valid in the
range [-0.414...,+0.414...]. (tan(pi/8))
*/
func
xatan(arg double) double
{
var argsq, value double;
argsq = arg*arg;
value = ((((p4*argsq + p3)*argsq + p2)*argsq + p1)*argsq + p0);
value = value/(((((argsq + q4)*argsq + q3)*argsq + q2)*argsq + q1)*argsq + q0);
return value*arg;
}
/*
satan reduces its argument (known to be positive)
to the range [0,0.414...] and calls xatan.
*/
func
satan(arg double) double
{
if arg < sq2m1 {
return xatan(arg);
}
if arg > sq2p1 {
return pio2 - xatan(1/arg);
}
return pio4 + xatan((arg-1)/(arg+1));
}
/*
atan makes its argument positive and
calls the inner routine satan.
*/
func
atan(arg double) double
{
if arg > 0 {
return satan(arg);
}
return -satan(-arg);
}
// Copyright 2009 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package atan2
import atan "atan"
export atan2
/*
atan2 discovers what quadrant the angle
is in and calls atan.
*/
const
(
pio2 = .15707963267948966192313216e1;
pi = .3141592653589793238462643383276e1;
)
func
atan2(arg1, arg2 double) double
{
var x double;
if arg1+arg2 == arg1 {
if arg1 >= 0 {
return pio2;
}
return -pio2;
}
x = atan.atan(arg1/arg2);
if arg2 < 0 {
if x <= 0 {
return x + pi;
}
return x - pi;
}
return x;
}
// Copyright 2009 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package exp
import sys "sys"
import floor "floor"
export exp
/*
exp returns the exponential func of its
floating-point argument.
The coefficients are #1069 from Hart and Cheney. (22.35D)
*/
const
(
p0 = .2080384346694663001443843411e7;
p1 = .3028697169744036299076048876e5;
p2 = .6061485330061080841615584556e2;
q0 = .6002720360238832528230907598e7;
q1 = .3277251518082914423057964422e6;
q2 = .1749287689093076403844945335e4;
log2e = .14426950408889634073599247e1;
sqrt2 = .14142135623730950488016887e1;
maxf = 10000;
)
func
exp(arg double) double
{
var x, fract, temp1, temp2, xsq double;
var ent int;
if arg == 0 {
return 1;
}
if arg < -maxf {
return 0;
}
if arg > maxf {
return sys.Inf(1);
}
x = arg*log2e;
ent = int(floor.floor(x));
fract = (x-double(ent)) - 0.5;
xsq = fract*fract;
temp1 = ((p2*xsq+p1)*xsq+p0)*fract;
temp2 = ((xsq+q2)*xsq+q1)*xsq + q0;
return sys.ldexp(sqrt2*(temp2+temp1)/(temp2-temp1), ent);
}
// Copyright 2009 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package fabs
export fabs
func
fabs(arg double) double
{
if arg < 0 {
return -arg;
}
return arg;
}
// Copyright 2009 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package floor
import sys "sys"
export floor, ceil
/*
* floor and ceil-- greatest integer <= arg
* (resp least >=)
*/
func
floor(arg double) double
{
var fract, d double;
d = arg;
if d < 0 {
d,fract = sys.modf(-d);
if fract != 0.0 {
d = d+1;
}
d = -d;
} else {
d,fract = sys.modf(d);
}
return d;
}
func
ceil(arg double) double
{
return -floor(-arg);
}
// Copyright 2009 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package fmod
import sys "sys"
export fmod
/*
floating-point mod func without infinity or NaN checking
*/
func
fmod(x, y double) double
{
var yexp, rexp int;
var r, yfr, rfr double;
var sign bool;
if y == 0 {
return x;
}
if y < 0 {
y = -y;
}
yexp,yfr = sys.frexp(y);
sign = false;
if x < 0 {
r = -x;
sign = true;
} else {
r = x;
}
for r >= y {
rexp,rfr = sys.frexp(r);
if rfr < yfr {
rexp = rexp - 1;
}
r = r - sys.ldexp(y, rexp-yexp);
}
if sign {
r = -r;
}
return r;
}
// Copyright 2009 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package hypot
export hypot
/*
hypot -- sqrt(p*p + q*q), but overflows only if the result does.
See Cleve Moler and Donald Morrison,
Replacing Square Roots by Pythagorean Sums
IBM Journal of Research and Development,
Vol. 27, Number 6, pp. 577-581, Nov. 1983
*/
func
hypot(p, q double) double
{
var r, s, pfac double;
if p < 0 {
p = -p;
}
if q < 0 {
q = -q;
}
if p < q {
r = p;
p = q;
q = r;
}
if p == 0 {
return 0;
}
pfac = p;
q = q/p;
r = q;
p = 1;
for ;; {
r = r*r;
s = r+4;
if s == 4 {
return p*pfac;
}
r = r/s;
p = p + 2*r*p;
q = q*r;
r = q/p;
}
}
// Copyright 2009 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package log
import sys "sys"
export log, log10
/*
log returns the natural logarithm of its floating
point argument.
The coefficients are #2705 from Hart & Cheney. (19.38D)
It calls frexp.
*/
const
(
log2 = .693147180559945309e0;
ln10o1 = .4342944819032518276511;
sqrto2 = .707106781186547524e0;
p0 = -.240139179559210510e2;
p1 = .309572928215376501e2;
p2 = -.963769093377840513e1;
p3 = .421087371217979714e0;
q0 = -.120069589779605255e2;
q1 = .194809660700889731e2;
q2 = -.891110902798312337e1;
)
func
log(arg double) double
{
var x, z, zsq, temp double;
var exp int;
if arg <= 0 {
return sys.NaN();
}
exp,x = sys.frexp(arg);
for x < 0.5 {
x = x*2;
exp = exp-1;
}
if x < sqrto2 {
x = x*2;
exp = exp-1;
}
z = (x-1) / (x+1);
zsq = z*z;
temp = ((p3*zsq + p2)*zsq + p1)*zsq + p0;
temp = temp/(((zsq + q2)*zsq + q1)*zsq + q0);
temp = temp*z + double(exp)*log2;
return temp;
}
func
log10(arg double) double
{
if arg <= 0 {
return sys.NaN();
}
return log(arg) * ln10o1;
}
// Copyright 2009 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package main
import math "math"
const
(
length = 10;
)
var
(
vf [length]double;
asin [length]double;
atan [length]double;
exp [length]double;
floor [length]double;
log [length]double;
pow [length]double;
sin [length]double;
sinh [length]double;
sqrt [length]double;
tan [length]double;
tanh [length]double;
)
func init();
func ck(a,b double);
func
main()
{
init();
for i:=0; i<length; i=i+1 {
f := vf[i];
ck(asin[i], math.asin(f/10));
ck(atan[i], math.atan(f));
ck(exp[i], math.exp(f));
ck(floor[i], math.floor(f));
ck(log[i], math.log(math.fabs(f)));
ck(pow[i], math.pow(10, f));
ck(sin[i], math.sin(f));
ck(sinh[i], math.sinh(f));
ck(sqrt[i], math.sqrt(math.fabs(f)));
ck(tan[i], math.tan(f));
ck(tanh[i], math.tanh(f));
ck(math.fabs(tanh[i]*math.sqrt(2)),
math.hypot(tanh[i], tanh[i]));
}
}
func
ck(a,b double)
{
d := a-b;
if d < 0 {
d = -d;
}
e := 1e-14;
if a != 0 {
e = e*a;
if e < 0 {
e = -e;
}
}
if d > e {
panic a, " ", b, "\n";
}
}
func
init()
{
vf[0] = 4.9790119248836735e+00;
vf[1] = 7.7388724745781045e+00;
vf[2] = -2.7688005719200159e-01;
vf[3] = -5.0106036182710749e+00;
vf[4] = 9.6362937071984173e+00;
vf[5] = 2.9263772392439646e+00;
vf[6] = 5.2290834314593066e+00;
vf[7] = 2.7279399104360102e+00;
vf[8] = 1.8253080916808550e+00;
vf[9] = -8.6859247685756013e+00;
asin[0] = 5.2117697218417440e-01;
asin[1] = 8.8495619865825236e-01;
asin[2] = -2.7691544662819413e-02;
asin[3] = -5.2482360935268932e-01;
asin[4] = 1.3002662421166553e+00;
asin[5] = 2.9698415875871901e-01;
asin[6] = 5.5025938468083364e-01;
asin[7] = 2.7629597861677200e-01;
asin[8] = 1.8355989225745148e-01;
asin[9] = -1.0523547536021498e+00;
atan[0] = 1.3725902621296217e+00;
atan[1] = 1.4422906096452980e+00;
atan[2] = -2.7011324359471755e-01;
atan[3] = -1.3738077684543379e+00;
atan[4] = 1.4673921193587666e+00;
atan[5] = 1.2415173565870167e+00;
atan[6] = 1.3818396865615167e+00;
atan[7] = 1.2194305844639670e+00;
atan[8] = 1.0696031952318783e+00;
atan[9] = -1.4561721938838085e+00;
exp[0] = 1.4533071302642137e+02;
exp[1] = 2.2958822575694450e+03;
exp[2] = 7.5814542574851664e-01;
exp[3] = 6.6668778421791010e-03;
exp[4] = 1.5310493273896035e+04;
exp[5] = 1.8659907517999329e+01;
exp[6] = 1.8662167355098713e+02;
exp[7] = 1.5301332413189379e+01;
exp[8] = 6.2047063430646876e+00;
exp[9] = 1.6894712385826522e-04;
floor[0] = 4.0000000000000000e+00;
floor[1] = 7.0000000000000000e+00;
floor[2] = -1.0000000000000000e+00;
floor[3] = -6.0000000000000000e+00;
floor[4] = 9.0000000000000000e+00;
floor[5] = 2.0000000000000000e+00;
floor[6] = 5.0000000000000000e+00;
floor[7] = 2.0000000000000000e+00;
floor[8] = 1.0000000000000000e+00;
floor[9] = -9.0000000000000000e+00;
log[0] = 1.6052314626930630e+00;
log[1] = 2.0462560018708768e+00;
log[2] = -1.2841708730962657e+00;
log[3] = 1.6115563905281544e+00;
log[4] = 2.2655365644872018e+00;
log[5] = 1.0737652208918380e+00;
log[6] = 1.6542360106073545e+00;
log[7] = 1.0035467127723465e+00;
log[8] = 6.0174879014578053e-01;
log[9] = 2.1617038728473527e+00;
pow[0] = 9.5282232631648415e+04;
pow[1] = 5.4811599352999900e+07;
pow[2] = 5.2859121715894400e-01;
pow[3] = 9.7587991957286472e-06;
pow[4] = 4.3280643293460450e+09;
pow[5] = 8.4406761805034551e+02;
pow[6] = 1.6946633276191194e+05;
pow[7] = 5.3449040147551940e+02;
pow[8] = 6.6881821384514159e+01;
pow[9] = 2.0609869004248744e-09;
sin[0] = -9.6466616586009283e-01;
sin[1] = 9.9338225271646543e-01;
sin[2] = -2.7335587039794395e-01;
sin[3] = 9.5586257685042800e-01;
sin[4] = -2.0994210667799692e-01;
sin[5] = 2.1355787807998605e-01;
sin[6] = -8.6945689711673619e-01;
sin[7] = 4.0195666811555783e-01;
sin[8] = 9.6778633541688000e-01;
sin[9] = -6.7344058690503452e-01;
sinh[0] = 7.2661916084208533e+01;
sinh[1] = 1.1479409110035194e+03;
sinh[2] = -2.8043136512812520e-01;
sinh[3] = -7.4994290911815868e+01;
sinh[4] = 7.6552466042906761e+03;
sinh[5] = 9.3031583421672010e+00;
sinh[6] = 9.3308157558281088e+01;
sinh[7] = 7.6179893137269143e+00;
sinh[8] = 3.0217691805496156e+00;
sinh[9] = -2.9595057572444951e+03;
sqrt[0] = 2.2313699659365484e+00;
sqrt[1] = 2.7818829009464263e+00;
sqrt[2] = 5.2619393496314792e-01;
sqrt[3] = 2.2384377628763938e+00;
sqrt[4] = 3.1042380236055380e+00;
sqrt[5] = 1.7106657298385224e+00;
sqrt[6] = 2.2867189227054791e+00;
sqrt[7] = 1.6516476350711160e+00;
sqrt[8] = 1.3510396336454586e+00;
sqrt[9] = 2.9471892997524950e+00;
tan[0] = -3.6613165650402277e+00;
tan[1] = 8.6490023264859754e+00;
tan[2] = -2.8417941955033615e-01;
tan[3] = 3.2532901859747287e+00;
tan[4] = 2.1472756403802937e-01;
tan[5] = -2.1860091071106700e-01;
tan[6] = -1.7600028178723679e+00;
tan[7] = -4.3898089147528178e-01;
tan[8] = -3.8438855602011305e+00;
tan[9] = 9.1098879337768517e-01;
tanh[0] = 9.9990531206936328e-01;
tanh[1] = 9.9999962057085307e-01;
tanh[2] = -2.7001505097318680e-01;
tanh[3] = -9.9991110943061700e-01;
tanh[4] = 9.9999999146798441e-01;
tanh[5] = 9.9427249436125233e-01;
tanh[6] = 9.9994257600983156e-01;
tanh[7] = 9.9149409509772863e-01;
tanh[8] = 9.4936501296239700e-01;
tanh[9] = -9.9999994291374019e-01;
}
// Copyright 2009 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package math
import
(
math "asin"
math "atan"
math "atan2"
math "exp"
math "fabs"
math "floor"
math "fmod"
math "hypot"
math "log"
math "pow"
math "pow10"
math "sin"
math "sinh"
math "sqrt"
math "sys"
math "tan"
math "tanh"
)
export
(
asin, acos
atan
atan2
exp
fabs
floor, ceil
fmod
hypot
log, log10
pow
pow10
sin, cos
sinh, cosh
sqrt
modf, frexp, ldexp
NaN, isInf, Inf
tan
tanh
)
// Copyright 2009 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package pow
import sys "sys"
import floor "floor"
import sqrt "sqrt"
import log "log"
import exp "exp"
export pow
/*
arg1 ^ arg2 (exponentiation)
*/
func
pow(arg1,arg2 double) double
{
var temp double;
var l long;
if arg2 < 0 {
return 1/pow(arg1, -arg2);
}
if arg1 <= 0 {
if(arg1 == 0) {
if arg2 <= 0 {
return sys.NaN();
}
return 0;
}
temp = floor.floor(arg2);
if temp != arg2 {
return sys.NaN();
}
l = long(temp);
if l&1 != 0 {
return -pow(-arg1, arg2);
}
return pow(-arg1, arg2);
}
temp = floor.floor(arg2);
if temp != arg2 {
if arg2-temp == .5 {
if temp == 0 {
return sqrt.sqrt(arg1);
}
return pow(arg1, temp) * sqrt.sqrt(arg1);
}
return exp.exp(arg2 * log.log(arg1));
}
l = long(temp);
temp = 1;
for {
if l&1 != 0 {
temp = temp*arg1;
}
l = l>>1;
if l == 0 {
return temp;
}
arg1 = arg1*arg1;
}
}
// Copyright 2009 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package pow10
export pow10
/*
* this table might overflow 127-bit exponent representations.
* in that case, truncate it after 1.0e38.
* it is important to get all one can from this
* routine since it is used in atof to scale numbers.
* the presumption is that GO converts fp numbers better
* than multipication of lower powers of 10.
*/
const
(
tabsize = 70;
)
var tab[tabsize] double;
func init();
var initdone bool;
//{
// 1.0e0, 1.0e1, 1.0e2, 1.0e3, 1.0e4, 1.0e5, 1.0e6, 1.0e7, 1.0e8, 1.0e9,
// 1.0e10,1.0e11,1.0e12,1.0e13,1.0e14,1.0e15,1.0e16,1.0e17,1.0e18,1.0e19,
// 1.0e20,1.0e21,1.0e22,1.0e23,1.0e24,1.0e25,1.0e26,1.0e27,1.0e28,1.0e29,
// 1.0e30,1.0e31,1.0e32,1.0e33,1.0e34,1.0e35,1.0e36,1.0e37,1.0e38,1.0e39,
// 1.0e40,1.0e41,1.0e42,1.0e43,1.0e44,1.0e45,1.0e46,1.0e47,1.0e48,1.0e49,
// 1.0e50,1.0e51,1.0e52,1.0e53,1.0e54,1.0e55,1.0e56,1.0e57,1.0e58,1.0e59,
// 1.0e60,1.0e61,1.0e62,1.0e63,1.0e64,1.0e65,1.0e66,1.0e67,1.0e68,1.0e69,
//};
func
pow10(e int) double
{
if !initdone {
init();
}
if e < 0 {
return 1/pow10(-e);
}
if e < tabsize {
return tab[e];
}
m := e/2;
return pow10(m) * pow10(e-m);
}
func
init()
{
initdone = true;
tab[0] = 1.0;
for i:=1; i<tabsize; i=i+1 {
tab[i] = tab[i-1]*10;
}
}
// Copyright 2009 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package sin
import sys "sys"
export sin, cos
const
(
p0 = .1357884097877375669092680e8;
p1 = -.4942908100902844161158627e7;
p2 = .4401030535375266501944918e6;
p3 = -.1384727249982452873054457e5;
p4 = .1459688406665768722226959e3;
q0 = .8644558652922534429915149e7;
q1 = .4081792252343299749395779e6;
q2 = .9463096101538208180571257e4;
q3 = .1326534908786136358911494e3;
piu2 = .6366197723675813430755350e0; // 2/pi
)
func
sinus(arg double, quad int) double
{
var e, f, ysq, x, y, temp1, temp2 double;
var k long;
x = arg;
if(x < 0) {
x = -x;
quad = quad+2;
}
x = x * piu2; /* underflow? */
if x > 32764 {
e,y = sys.modf(x);
e = e + double(quad);
temp1,f = sys.modf(0.25*e);
quad = int(e - 4*f);
} else {
k = long(x);
y = x - double(k);
quad = (quad + k) & 3;
}
if quad&1 != 0 {
y = 1-y;
}
if quad > 1 {
y = -y;
}
ysq = y*y;
temp1 = ((((p4*ysq+p3)*ysq+p2)*ysq+p1)*ysq+p0)*y;
temp2 = ((((ysq+q3)*ysq+q2)*ysq+q1)*ysq+q0);
return temp1/temp2;
}
func
cos(arg double) double
{
if arg < 0 {
arg = -arg;
}
return sinus(arg, 1);
}
func
sin(arg double) double
{
return sinus(arg, 0);
}
// Copyright 2009 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package sinh
import exp "exp"
export sinh, cosh
/*
sinh(arg) returns the hyperbolic sine of its floating-
point argument.
The exponential func is called for arguments
greater in magnitude than 0.5.
A series is used for arguments smaller in magnitude than 0.5.
The coefficients are #2029 from Hart & Cheney. (20.36D)
cosh(arg) is computed from the exponential func for
all arguments.
*/
const
(
p0 = -0.6307673640497716991184787251e+6;
p1 = -0.8991272022039509355398013511e+5;
p2 = -0.2894211355989563807284660366e+4;
p3 = -0.2630563213397497062819489e+2;
q0 = -0.6307673640497716991212077277e+6;
q1 = 0.1521517378790019070696485176e+5;
q2 = -0.173678953558233699533450911e+3;
)
func
sinh(arg double) double
{
var temp, argsq double;
var sign bool;
sign = false;
if arg < 0 {
arg = -arg;
sign = true;
}
switch true {
case arg > 21:
temp = exp.exp(arg)/2;
case arg > 0.5:
temp = (exp.exp(arg) - exp.exp(-arg))/2;
default:
argsq = arg*arg;
temp = (((p3*argsq+p2)*argsq+p1)*argsq+p0)*arg;
temp = temp/(((argsq+q2)*argsq+q1)*argsq+q0);
}
if sign {
temp = -temp;
}
return temp;
}
func
cosh(arg double) double
{
if arg < 0 {
arg = - arg;
}
if arg > 21 {
return exp.exp(arg)/2;
}
return (exp.exp(arg) + exp.exp(-arg))/2;
}
// Copyright 2009 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package sqrt
import sys "sys"
export sqrt
/*
sqrt returns the square root of its floating
point argument. Newton's method.
calls frexp
*/
func
sqrt(arg double) double
{
var x, temp double;
var exp, i int;
if sys.isInf(arg, 1) {
return arg;
}
if arg <= 0 {
if arg < 0 {
return sys.NaN();
}
return 0;
}
exp,x = sys.frexp(arg);
for x < 0.5 {
x = x*2;
exp = exp-1;
}
if exp&1 != 0 {
x = x*2;
exp = exp-1;
}
temp = 0.5 * (1+x);
for exp > 60 {
temp = temp * double(1<<30);
exp = exp - 60;
}
for exp < -60 {
temp = temp / double(1<<30);
exp = exp + 60;
}
if exp >= 0 {
temp = temp * double(1 << (exp/2));
} else {
temp = temp / double(1 << (-exp/2));
}
for i=0; i<=4; i=i+1 {
temp = 0.5*(temp + arg/temp);
}
return temp;
}
// Copyright 2009 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package sys
func modf(a double) (double, double);
func frexp(a double) (int, double);
func ldexp(double, int) double;
func Inf(n int) double;
func NaN() double;
func isInf(arg double, n int) bool;
export modf, frexp, ldexp
export NaN, isInf, Inf
// Copyright 2009 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package tan
import sys "sys"
export tan
/*
floating point tangent
Coefficients are #4285 from Hart & Cheney. (19.74D)
*/
const
(
p0 = -.1306820264754825668269611177e+5;
p1 = .1055970901714953193602353981e+4;
p2 = -.1550685653483266376941705728e+2;
p3 = .3422554387241003435328470489e-1;
p4 = .3386638642677172096076369e-4;
q0 = -.1663895238947119001851464661e+5;
q1 = .4765751362916483698926655581e+4;
q2 = -.1555033164031709966900124574e+3;
piu4 = .1273239544735162686151070107e+1; // 4/pi
)
func
tan(arg double) double
{
var temp, e, x, xsq double;
var i long;
var flag, sign bool;
flag = false;
sign = false;
x = arg;
if(x < 0) {
x = -x;
sign = true;
}
x = x * piu4; /* overflow? */
e,x = sys.modf(x);
i = long(e);
switch i & 3 {
case 1:
x = 1 - x;
flag = true;
case 2:
sign = !sign;
flag = true;
case 3:
x = 1 - x;
sign = !sign;
}
xsq = x*x;
temp = ((((p4*xsq+p3)*xsq+p2)*xsq+p1)*xsq+p0)*x;
temp = temp/(((xsq+q2)*xsq+q1)*xsq+q0);
if flag {
if(temp == 0) {
return sys.NaN();
}
temp = 1/temp;
}
if sign {
temp = -temp;
}
return temp;
}
// Copyright 2009 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package tanh
import sinh "sinh"
export tanh
/*
tanh(arg) computes the hyperbolic tangent of its floating
point argument.
sinh and cosh are called except for large arguments, which
would cause overflow improperly.
*/
func
tanh(arg double) double
{
if arg < 0 {
arg = -arg;
if arg > 21 {
return -1;
}
return -sinh.sinh(arg)/sinh.cosh(arg);
}
if arg > 21 {
return 1;
}
return sinh.sinh(arg)/sinh.cosh(arg);
}
Markdown is supported
0%
or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment