Commit 2368b003 authored by Rémy Oudompheng's avatar Rémy Oudompheng Committed by Russ Cox

strconv: implement faster parsing of decimal numbers.

The algorithm is the same as in the double-conversion library
which also implements Florian Loitsch's fast printing algorithm.
It uses extended floats with a 64-bit mantissa, but cannot give
an answer for all cases.

                           old ns/op  new ns/op  speedup
BenchmarkAtof64Decimal         332        322      1.0x
BenchmarkAtof64Float           385        373      1.0x
BenchmarkAtof64FloatExp       9777        419     23.3x
BenchmarkAtof64Big            3934        691      5.7x
BenchmarkAtof64RandomBits    34060        899     37.9x
BenchmarkAtof64RandomFloats   1329        680      2.0x

See F. Loitsch, ``Printing Floating-Point Numbers Quickly and
Accurately with Integers'', Proceedings of the ACM, 2010.

R=ality, rsc
CC=golang-dev, remy
https://golang.org/cl/5494068
parent c99f4f5b
......@@ -10,6 +10,7 @@ GOFILES=\
atof.go\
atoi.go\
decimal.go\
extfloat.go\
ftoa.go\
itoa.go\
quote.go\
......
......@@ -263,6 +263,18 @@ func (d *decimal) atof32int() float32 {
return f
}
// Reads a uint64 decimal mantissa, which might be truncated.
func (d *decimal) atou64() (mant uint64, digits int) {
const uint64digits = 19
for i, c := range d.d[:d.nd] {
if i == uint64digits {
return mant, i
}
mant = 10*mant + uint64(c-'0')
}
return mant, d.nd
}
// Exact powers of 10.
var float64pow10 = []float64{
1e0, 1e1, 1e2, 1e3, 1e4, 1e5, 1e6, 1e7, 1e8, 1e9,
......@@ -375,6 +387,17 @@ func atof64(s string) (f float64, err error) {
if f, ok := d.atof64(); ok {
return f, nil
}
// Try another fast path.
ext := new(extFloat)
if ok := ext.AssignDecimal(&d); ok {
b, ovf := ext.floatBits()
f = math.Float64frombits(b)
if ovf {
err = rangeError(fnParseFloat, s)
}
return f, err
}
}
b, ovf := d.floatBits(&float64info)
f = math.Float64frombits(b)
......
......@@ -5,9 +5,12 @@
package strconv_test
import (
"math"
"math/rand"
"reflect"
. "strconv"
"testing"
"time"
)
type atofTest struct {
......@@ -113,6 +116,17 @@ var atoftests = []atofTest{
{"2.2250738585072011e-308", "2.225073858507201e-308", nil},
}
type atofSimpleTest struct {
x float64
s string
}
var (
atofRandomTests []atofSimpleTest
benchmarksRandomBits [1024]string
benchmarksRandomNormal [1024]string
)
func init() {
// The atof routines return NumErrors wrapping
// the error and the string. Convert the table above.
......@@ -122,6 +136,31 @@ func init() {
test.err = &NumError{"ParseFloat", test.in, test.err}
}
}
// Generate random inputs for tests and benchmarks
rand.Seed(time.Now().UnixNano())
if testing.Short() {
atofRandomTests = make([]atofSimpleTest, 100)
} else {
atofRandomTests = make([]atofSimpleTest, 10000)
}
for i := range atofRandomTests {
n := uint64(rand.Uint32())<<32 | uint64(rand.Uint32())
x := math.Float64frombits(n)
s := FormatFloat(x, 'g', -1, 64)
atofRandomTests[i] = atofSimpleTest{x, s}
}
for i := range benchmarksRandomBits {
bits := uint64(rand.Uint32())<<32 | uint64(rand.Uint32())
x := math.Float64frombits(bits)
benchmarksRandomBits[i] = FormatFloat(x, 'g', -1, 64)
}
for i := range benchmarksRandomNormal {
x := rand.NormFloat64()
benchmarksRandomNormal[i] = FormatFloat(x, 'g', -1, 64)
}
}
func testAtof(t *testing.T, opt bool) {
......@@ -156,6 +195,19 @@ func TestAtof(t *testing.T) { testAtof(t, true) }
func TestAtofSlow(t *testing.T) { testAtof(t, false) }
func TestAtofRandom(t *testing.T) {
for _, test := range atofRandomTests {
x, _ := ParseFloat(test.s, 64)
switch {
default:
t.Errorf("number %s badly parsed as %b (expected %b)", test.s, test.x, x)
case x == test.x:
case math.IsNaN(test.x) && math.IsNaN(x):
}
}
t.Logf("tested %d random numbers", len(atofRandomTests))
}
func BenchmarkAtof64Decimal(b *testing.B) {
for i := 0; i < b.N; i++ {
ParseFloat("33909", 64)
......@@ -179,3 +231,15 @@ func BenchmarkAtof64Big(b *testing.B) {
ParseFloat("123456789123456789123456789", 64)
}
}
func BenchmarkAtof64RandomBits(b *testing.B) {
for i := 0; i < b.N; i++ {
ParseFloat(benchmarksRandomBits[i%1024], 64)
}
}
func BenchmarkAtof64RandomFloats(b *testing.B) {
for i := 0; i < b.N; i++ {
ParseFloat(benchmarksRandomNormal[i%1024], 64)
}
}
// Copyright 2011 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package strconv
import "math"
// An extFloat represents an extended floating-point number, with more
// precision than a float64. It does not try to save bits: the
// number represented by the structure is mant*(2^exp), with a negative
// sign if neg is true.
type extFloat struct {
mant uint64
exp int
neg bool
}
// Powers of ten taken from double-conversion library.
// http://code.google.com/p/double-conversion/
const (
firstPowerOfTen = -348
stepPowerOfTen = 8
)
var smallPowersOfTen = [...]extFloat{
{1 << 63, -63, false}, // 1
{0xa << 60, -60, false}, // 1e1
{0x64 << 57, -57, false}, // 1e2
{0x3e8 << 54, -54, false}, // 1e3
{0x2710 << 50, -50, false}, // 1e4
{0x186a0 << 47, -47, false}, // 1e5
{0xf4240 << 44, -44, false}, // 1e6
{0x989680 << 40, -40, false}, // 1e7
}
var powersOfTen = [...]extFloat{
{0xfa8fd5a0081c0288, -1220, false}, // 10^-348
{0xbaaee17fa23ebf76, -1193, false}, // 10^-340
{0x8b16fb203055ac76, -1166, false}, // 10^-332
{0xcf42894a5dce35ea, -1140, false}, // 10^-324
{0x9a6bb0aa55653b2d, -1113, false}, // 10^-316
{0xe61acf033d1a45df, -1087, false}, // 10^-308
{0xab70fe17c79ac6ca, -1060, false}, // 10^-300
{0xff77b1fcbebcdc4f, -1034, false}, // 10^-292
{0xbe5691ef416bd60c, -1007, false}, // 10^-284
{0x8dd01fad907ffc3c, -980, false}, // 10^-276
{0xd3515c2831559a83, -954, false}, // 10^-268
{0x9d71ac8fada6c9b5, -927, false}, // 10^-260
{0xea9c227723ee8bcb, -901, false}, // 10^-252
{0xaecc49914078536d, -874, false}, // 10^-244
{0x823c12795db6ce57, -847, false}, // 10^-236
{0xc21094364dfb5637, -821, false}, // 10^-228
{0x9096ea6f3848984f, -794, false}, // 10^-220
{0xd77485cb25823ac7, -768, false}, // 10^-212
{0xa086cfcd97bf97f4, -741, false}, // 10^-204
{0xef340a98172aace5, -715, false}, // 10^-196
{0xb23867fb2a35b28e, -688, false}, // 10^-188
{0x84c8d4dfd2c63f3b, -661, false}, // 10^-180
{0xc5dd44271ad3cdba, -635, false}, // 10^-172
{0x936b9fcebb25c996, -608, false}, // 10^-164
{0xdbac6c247d62a584, -582, false}, // 10^-156
{0xa3ab66580d5fdaf6, -555, false}, // 10^-148
{0xf3e2f893dec3f126, -529, false}, // 10^-140
{0xb5b5ada8aaff80b8, -502, false}, // 10^-132
{0x87625f056c7c4a8b, -475, false}, // 10^-124
{0xc9bcff6034c13053, -449, false}, // 10^-116
{0x964e858c91ba2655, -422, false}, // 10^-108
{0xdff9772470297ebd, -396, false}, // 10^-100
{0xa6dfbd9fb8e5b88f, -369, false}, // 10^-92
{0xf8a95fcf88747d94, -343, false}, // 10^-84
{0xb94470938fa89bcf, -316, false}, // 10^-76
{0x8a08f0f8bf0f156b, -289, false}, // 10^-68
{0xcdb02555653131b6, -263, false}, // 10^-60
{0x993fe2c6d07b7fac, -236, false}, // 10^-52
{0xe45c10c42a2b3b06, -210, false}, // 10^-44
{0xaa242499697392d3, -183, false}, // 10^-36
{0xfd87b5f28300ca0e, -157, false}, // 10^-28
{0xbce5086492111aeb, -130, false}, // 10^-20
{0x8cbccc096f5088cc, -103, false}, // 10^-12
{0xd1b71758e219652c, -77, false}, // 10^-4
{0x9c40000000000000, -50, false}, // 10^4
{0xe8d4a51000000000, -24, false}, // 10^12
{0xad78ebc5ac620000, 3, false}, // 10^20
{0x813f3978f8940984, 30, false}, // 10^28
{0xc097ce7bc90715b3, 56, false}, // 10^36
{0x8f7e32ce7bea5c70, 83, false}, // 10^44
{0xd5d238a4abe98068, 109, false}, // 10^52
{0x9f4f2726179a2245, 136, false}, // 10^60
{0xed63a231d4c4fb27, 162, false}, // 10^68
{0xb0de65388cc8ada8, 189, false}, // 10^76
{0x83c7088e1aab65db, 216, false}, // 10^84
{0xc45d1df942711d9a, 242, false}, // 10^92
{0x924d692ca61be758, 269, false}, // 10^100
{0xda01ee641a708dea, 295, false}, // 10^108
{0xa26da3999aef774a, 322, false}, // 10^116
{0xf209787bb47d6b85, 348, false}, // 10^124
{0xb454e4a179dd1877, 375, false}, // 10^132
{0x865b86925b9bc5c2, 402, false}, // 10^140
{0xc83553c5c8965d3d, 428, false}, // 10^148
{0x952ab45cfa97a0b3, 455, false}, // 10^156
{0xde469fbd99a05fe3, 481, false}, // 10^164
{0xa59bc234db398c25, 508, false}, // 10^172
{0xf6c69a72a3989f5c, 534, false}, // 10^180
{0xb7dcbf5354e9bece, 561, false}, // 10^188
{0x88fcf317f22241e2, 588, false}, // 10^196
{0xcc20ce9bd35c78a5, 614, false}, // 10^204
{0x98165af37b2153df, 641, false}, // 10^212
{0xe2a0b5dc971f303a, 667, false}, // 10^220
{0xa8d9d1535ce3b396, 694, false}, // 10^228
{0xfb9b7cd9a4a7443c, 720, false}, // 10^236
{0xbb764c4ca7a44410, 747, false}, // 10^244
{0x8bab8eefb6409c1a, 774, false}, // 10^252
{0xd01fef10a657842c, 800, false}, // 10^260
{0x9b10a4e5e9913129, 827, false}, // 10^268
{0xe7109bfba19c0c9d, 853, false}, // 10^276
{0xac2820d9623bf429, 880, false}, // 10^284
{0x80444b5e7aa7cf85, 907, false}, // 10^292
{0xbf21e44003acdd2d, 933, false}, // 10^300
{0x8e679c2f5e44ff8f, 960, false}, // 10^308
{0xd433179d9c8cb841, 986, false}, // 10^316
{0x9e19db92b4e31ba9, 1013, false}, // 10^324
{0xeb96bf6ebadf77d9, 1039, false}, // 10^332
{0xaf87023b9bf0ee6b, 1066, false}, // 10^340
}
// floatBits returns the bits of the float64 that best approximates
// the extFloat passed as receiver. Overflow is set to true if
// the resulting float64 is ±Inf.
func (f *extFloat) floatBits() (bits uint64, overflow bool) {
flt := &float64info
f.Normalize()
exp := f.exp + 63
// Exponent too small.
if exp < flt.bias+1 {
n := flt.bias + 1 - exp
f.mant >>= uint(n)
exp += n
}
// Extract 1+flt.mantbits bits.
mant := f.mant >> (63 - flt.mantbits)
if f.mant&(1<<(62-flt.mantbits)) != 0 {
// Round up.
mant += 1
}
// Rounding might have added a bit; shift down.
if mant == 2<<flt.mantbits {
mant >>= 1
exp++
}
// Infinities.
if exp-flt.bias >= 1<<flt.expbits-1 {
goto overflow
}
// Denormalized?
if mant&(1<<flt.mantbits) == 0 {
exp = flt.bias
}
goto out
overflow:
// ±Inf
mant = 0
exp = 1<<flt.expbits - 1 + flt.bias
overflow = true
out:
// Assemble bits.
bits = mant & (uint64(1)<<flt.mantbits - 1)
bits |= uint64((exp-flt.bias)&(1<<flt.expbits-1)) << flt.mantbits
if f.neg {
bits |= 1 << (flt.mantbits + flt.expbits)
}
return
}
// Assign sets f to the value of x.
func (f *extFloat) Assign(x float64) {
if x < 0 {
x = -x
f.neg = true
}
x, f.exp = math.Frexp(x)
f.mant = uint64(x * float64(1<<64))
f.exp -= 64
}
// Normalize normalizes f so that the highest bit of the mantissa is
// set, and returns the number by which the mantissa was left-shifted.
func (f *extFloat) Normalize() uint {
if f.mant == 0 {
return 0
}
exp_before := f.exp
for f.mant < (1 << 55) {
f.mant <<= 8
f.exp -= 8
}
for f.mant < (1 << 63) {
f.mant <<= 1
f.exp -= 1
}
return uint(exp_before - f.exp)
}
// Multiply sets f to the product f*g: the result is correctly rounded,
// but not normalized.
func (f *extFloat) Multiply(g extFloat) {
fhi, flo := f.mant>>32, uint64(uint32(f.mant))
ghi, glo := g.mant>>32, uint64(uint32(g.mant))
// Cross products.
cross1 := fhi * glo
cross2 := flo * ghi
// f.mant*g.mant is fhi*ghi << 64 + (cross1+cross2) << 32 + flo*glo
f.mant = fhi*ghi + (cross1 >> 32) + (cross2 >> 32)
rem := uint64(uint32(cross1)) + uint64(uint32(cross2)) + ((flo * glo) >> 32)
// Round up.
rem += (1 << 31)
f.mant += (rem >> 32)
f.exp = f.exp + g.exp + 64
}
var uint64pow10 = [...]uint64{
1, 1e1, 1e2, 1e3, 1e4, 1e5, 1e6, 1e7, 1e8, 1e9,
1e10, 1e11, 1e12, 1e13, 1e14, 1e15, 1e16, 1e17, 1e18, 1e19,
}
// AssignDecimal sets f to an approximate value of the decimal d. It
// returns true if the value represented by f is guaranteed to be the
// best approximation of d after being rounded to a float64.
func (f *extFloat) AssignDecimal(d *decimal) (ok bool) {
const uint64digits = 19
const errorscale = 8
mant10, digits := d.atou64()
exp10 := d.dp - digits
errors := 0 // An upper bound for error, computed in errorscale*ulp.
if digits < d.nd {
// the decimal number was truncated.
errors += errorscale / 2
}
f.mant = mant10
f.exp = 0
f.neg = d.neg
// Multiply by powers of ten.
i := (exp10 - firstPowerOfTen) / stepPowerOfTen
if exp10 < firstPowerOfTen || i >= len(powersOfTen) {
return false
}
adjExp := (exp10 - firstPowerOfTen) % stepPowerOfTen
// We multiply by exp%step
if digits+adjExp <= uint64digits {
// We can multiply the mantissa
f.mant *= uint64(float64pow10[adjExp])
f.Normalize()
} else {
f.Normalize()
f.Multiply(smallPowersOfTen[adjExp])
errors += errorscale / 2
}
// We multiply by 10 to the exp - exp%step.
f.Multiply(powersOfTen[i])
if errors > 0 {
errors += 1
}
errors += errorscale / 2
// Normalize
shift := f.Normalize()
errors <<= shift
// Now f is a good approximation of the decimal.
// Check whether the error is too large: that is, if the mantissa
// is perturbated by the error, the resulting float64 will change.
// The 64 bits mantissa is 1 + 52 bits for float64 + 11 extra bits.
//
// In many cases the approximation will be good enough.
const denormalExp = -1023 - 63
flt := &float64info
var extrabits uint
if f.exp <= denormalExp || f.exp >= 1023-64 {
extrabits = uint(63 - flt.mantbits + 1 + uint(denormalExp-f.exp))
} else {
extrabits = uint(63 - flt.mantbits)
}
halfway := uint64(1) << (extrabits - 1)
mant_extra := f.mant & (1<<extrabits - 1)
// Do a signed comparison here! If the error estimate could make
// the mantissa round differently for the conversion to double,
// then we can't give a definite answer.
if int64(halfway)-int64(errors) < int64(mant_extra) &&
int64(mant_extra) < int64(halfway)+int64(errors) {
return false
}
return true
}
Markdown is supported
0%
or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment