Commit 2dd066d4 authored by Raul Silvera's avatar Raul Silvera Committed by Hyang-Ah Hana Kim

test: improve test coverage for heap sampling

Update the test in test/heapsampling.go to more thoroughly validate heap sampling.
Lower the sampling rate on the test to ensure allocations both smaller and
larger than the sampling rate are tested.

Tighten up the validation check to a 10% difference between the unsampled and correct value.
Because of the nature of random sampling, it is possible that the unsampled value fluctuates
over that range. To avoid flakes, run the experiment three times and only report an issue if the
same location consistently falls out of range on all experiments.

This tests the sampling fix in cl/158337.

Change-Id: I54a709e5c75827b8b1c2d87cdfb425ab09759677
GitHub-Last-Rev: 7c04f126034f9e323efc220c896d75e7984ffd39
GitHub-Pull-Request: golang/go#26944
Reviewed-on: https://go-review.googlesource.com/c/go/+/129117
Run-TryBot: Austin Clements <austin@google.com>
TryBot-Result: Gobot Gobot <gobot@golang.org>
Reviewed-by: default avatarAustin Clements <austin@google.com>
parent 6ebfbbaa
...@@ -18,38 +18,113 @@ var a16 *[16]byte ...@@ -18,38 +18,113 @@ var a16 *[16]byte
var a512 *[512]byte var a512 *[512]byte
var a256 *[256]byte var a256 *[256]byte
var a1k *[1024]byte var a1k *[1024]byte
var a64k *[64 * 1024]byte var a16k *[16 * 1024]byte
var a17k *[17 * 1024]byte
var a18k *[18 * 1024]byte
// This test checks that heap sampling produces reasonable // This test checks that heap sampling produces reasonable results.
// results. Note that heap sampling uses randomization, so the results // Note that heap sampling uses randomization, so the results vary for
// vary for run to run. This test only checks that the resulting // run to run. To avoid flakes, this test performs multiple
// values appear reasonable. // experiments and only complains if all of them consistently fail.
func main() { func main() {
const countInterleaved = 10000 // Sample at 16K instead of default 512K to exercise sampling more heavily.
allocInterleaved(countInterleaved) runtime.MemProfileRate = 16 * 1024
checkAllocations(getMemProfileRecords(), "main.allocInterleaved", countInterleaved, []int64{256 * 1024, 1024, 256 * 1024, 512, 256 * 1024, 256})
const count = 100000 if err := testInterleavedAllocations(); err != nil {
alloc(count) panic(err.Error())
checkAllocations(getMemProfileRecords(), "main.alloc", count, []int64{1024, 512, 256}) }
if err := testSmallAllocations(); err != nil {
panic(err.Error())
}
}
// Repeatedly exercise a set of allocations and check that the heap
// profile collected by the runtime unsamples to a reasonable
// value. Because sampling is based on randomization, there can be
// significant variability on the unsampled data. To account for that,
// the testcase allows for a 10% margin of error, but only fails if it
// consistently fails across three experiments, avoiding flakes.
func testInterleavedAllocations() error {
const iters = 100000
// Sizes of the allocations performed by each experiment.
frames := []string{"main.allocInterleaved1", "main.allocInterleaved2", "main.allocInterleaved3"}
// Pass if at least one of three experiments has no errors. Use a separate
// function for each experiment to identify each experiment in the profile.
allocInterleaved1(iters)
if checkAllocations(getMemProfileRecords(), frames[0:1], iters, allocInterleavedSizes) == nil {
// Passed on first try, report no error.
return nil
}
allocInterleaved2(iters)
if checkAllocations(getMemProfileRecords(), frames[0:2], iters, allocInterleavedSizes) == nil {
// Passed on second try, report no error.
return nil
}
allocInterleaved3(iters)
// If it fails a third time, we may be onto something.
return checkAllocations(getMemProfileRecords(), frames[0:3], iters, allocInterleavedSizes)
} }
// allocInterleaved stress-tests the heap sampling logic by var allocInterleavedSizes = []int64{17 * 1024, 1024, 18 * 1024, 512, 16 * 1024, 256}
// interleaving large and small allocations.
// allocInterleaved stress-tests the heap sampling logic by interleaving large and small allocations.
func allocInterleaved(n int) { func allocInterleaved(n int) {
for i := 0; i < n; i++ { for i := 0; i < n; i++ {
// Test verification depends on these lines being contiguous. // Test verification depends on these lines being contiguous.
a64k = new([64 * 1024]byte) a17k = new([17 * 1024]byte)
a1k = new([1024]byte) a1k = new([1024]byte)
a64k = new([64 * 1024]byte) a18k = new([18 * 1024]byte)
a512 = new([512]byte) a512 = new([512]byte)
a64k = new([64 * 1024]byte) a16k = new([16 * 1024]byte)
a256 = new([256]byte) a256 = new([256]byte)
// Test verification depends on these lines being contiguous.
}
}
func allocInterleaved1(n int) {
allocInterleaved(n)
}
func allocInterleaved2(n int) {
allocInterleaved(n)
}
func allocInterleaved3(n int) {
allocInterleaved(n)
}
// Repeatedly exercise a set of allocations and check that the heap
// profile collected by the runtime unsamples to a reasonable
// value. Because sampling is based on randomization, there can be
// significant variability on the unsampled data. To account for that,
// the testcase allows for a 10% margin of error, but only fails if it
// consistently fails across three experiments, avoiding flakes.
func testSmallAllocations() error {
const iters = 100000
// Sizes of the allocations performed by each experiment.
sizes := []int64{1024, 512, 256}
frames := []string{"main.allocSmall1", "main.allocSmall2", "main.allocSmall3"}
// Pass if at least one of three experiments has no errors. Use a separate
// function for each experiment to identify each experiment in the profile.
allocSmall1(iters)
if checkAllocations(getMemProfileRecords(), frames[0:1], iters, sizes) == nil {
// Passed on first try, report no error.
return nil
}
allocSmall2(iters)
if checkAllocations(getMemProfileRecords(), frames[0:2], iters, sizes) == nil {
// Passed on second try, report no error.
return nil
} }
allocSmall3(iters)
// If it fails a third time, we may be onto something.
return checkAllocations(getMemProfileRecords(), frames[0:3], iters, sizes)
} }
// alloc performs only small allocations for sanity testing. // allocSmall performs only small allocations for sanity testing.
func alloc(n int) { func allocSmall(n int) {
for i := 0; i < n; i++ { for i := 0; i < n; i++ {
// Test verification depends on these lines being contiguous. // Test verification depends on these lines being contiguous.
a1k = new([1024]byte) a1k = new([1024]byte)
...@@ -58,36 +133,86 @@ func alloc(n int) { ...@@ -58,36 +133,86 @@ func alloc(n int) {
} }
} }
// Three separate instances of testing to avoid flakes. Will report an error
// only if they all consistently report failures.
func allocSmall1(n int) {
allocSmall(n)
}
func allocSmall2(n int) {
allocSmall(n)
}
func allocSmall3(n int) {
allocSmall(n)
}
// checkAllocations validates that the profile records collected for // checkAllocations validates that the profile records collected for
// the named function are consistent with count contiguous allocations // the named function are consistent with count contiguous allocations
// of the specified sizes. // of the specified sizes.
func checkAllocations(records []runtime.MemProfileRecord, fname string, count int64, size []int64) { // Check multiple functions and only report consistent failures across
a := allocObjects(records, fname) // multiple tests.
firstLine := 0 // Look only at samples that include the named frames, and group the
for ln := range a { // allocations by their line number. All these allocations are done from
// the same leaf function, so their line numbers are the same.
func checkAllocations(records []runtime.MemProfileRecord, frames []string, count int64, size []int64) error {
objectsPerLine := map[int][]int64{}
bytesPerLine := map[int][]int64{}
totalCount := []int64{}
// Compute the line number of the first allocation. All the
// allocations are from the same leaf, so pick the first one.
var firstLine int
for ln := range allocObjects(records, frames[0]) {
if firstLine == 0 || firstLine > ln { if firstLine == 0 || firstLine > ln {
firstLine = ln firstLine = ln
} }
} }
var totalcount int64 for _, frame := range frames {
var objectCount int64
a := allocObjects(records, frame)
for s := range size {
// Allocations of size size[s] should be on line firstLine + s.
ln := firstLine + s
objectsPerLine[ln] = append(objectsPerLine[ln], a[ln].objects)
bytesPerLine[ln] = append(bytesPerLine[ln], a[ln].bytes)
objectCount += a[ln].objects
}
totalCount = append(totalCount, objectCount)
}
for i, w := range size { for i, w := range size {
ln := firstLine + i ln := firstLine + i
s := a[ln] if err := checkValue(frames[0], ln, "objects", count, objectsPerLine[ln]); err != nil {
checkValue(fname, ln, "objects", count, s.objects) return err
checkValue(fname, ln, "bytes", count*w, s.bytes) }
totalcount += s.objects if err := checkValue(frames[0], ln, "bytes", count*w, bytesPerLine[ln]); err != nil {
} return err
// Check the total number of allocations, to ensure some sampling occurred. }
if totalwant := count * int64(len(size)); totalcount <= 0 || totalcount > totalwant*1024 {
panic(fmt.Sprintf("%s want total count > 0 && <= %d, got %d", fname, totalwant*1024, totalcount))
} }
return checkValue(frames[0], 0, "total", count*int64(len(size)), totalCount)
} }
// checkValue checks an unsampled value against a range. // checkValue checks an unsampled value against its expected value.
func checkValue(fname string, ln int, name string, want, got int64) { // Given that this is a sampled value, it will be unexact and will change
if got < 0 || got > 1024*want { // from run to run. Only report it as a failure if all the values land
panic(fmt.Sprintf("%s:%d want %s >= 0 && <= %d, got %d", fname, ln, name, 1024*want, got)) // consistently far from the expected value.
func checkValue(fname string, ln int, testName string, want int64, got []int64) error {
if got == nil {
return fmt.Errorf("Unexpected empty result")
}
min, max := got[0], got[0]
for _, g := range got[1:] {
if g < min {
min = g
}
if g > max {
max = g
}
}
margin := want / 10 // 10% margin.
if min > want+margin || max < want-margin {
return fmt.Errorf("%s:%d want %s in [%d: %d], got %v", fname, ln, testName, want-margin, want+margin, got)
} }
return nil
} }
func getMemProfileRecords() []runtime.MemProfileRecord { func getMemProfileRecords() []runtime.MemProfileRecord {
...@@ -124,24 +249,35 @@ type allocStat struct { ...@@ -124,24 +249,35 @@ type allocStat struct {
bytes, objects int64 bytes, objects int64
} }
// allocObjects examines the profile records for the named function // allocObjects examines the profile records for samples including the
// and returns the allocation stats aggregated by source line number. // named function and returns the allocation stats aggregated by
// source line number of the allocation (at the leaf frame).
func allocObjects(records []runtime.MemProfileRecord, function string) map[int]allocStat { func allocObjects(records []runtime.MemProfileRecord, function string) map[int]allocStat {
a := make(map[int]allocStat) a := make(map[int]allocStat)
for _, r := range records { for _, r := range records {
var pcs []uintptr
for _, s := range r.Stack0 { for _, s := range r.Stack0 {
if s == 0 { if s == 0 {
break break
} }
if f := runtime.FuncForPC(s); f != nil { pcs = append(pcs, s)
name := f.Name() }
_, line := f.FileLine(s) frames := runtime.CallersFrames(pcs)
if name == function { line := 0
allocStat := a[line] for {
allocStat.bytes += r.AllocBytes frame, more := frames.Next()
allocStat.objects += r.AllocObjects name := frame.Function
a[line] = allocStat if line == 0 {
} line = frame.Line
}
if name == function {
allocStat := a[line]
allocStat.bytes += r.AllocBytes
allocStat.objects += r.AllocObjects
a[line] = allocStat
}
if !more {
break
} }
} }
} }
......
Markdown is supported
0%
or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment