Commit 36f30ba2 authored by Keith Randall's avatar Keith Randall Committed by Keith Randall

cmd/compile,runtime: generate hash functions only for types which are map keys

Right now we generate hash functions for all types, just in case they
are used as map keys. That's a lot of wasted effort and binary size
for types which will never be used as a map key. Instead, generate
hash functions only for types that we know are map keys.

Just doing that is a bit too simple, since maps with an interface type
as a key might have to hash any concrete key type that implements that
interface. So for that case, implement hashing of such types at
runtime (instead of with generated code). It will be slower, but only
for maps with interface types as keys, and maybe only a bit slower as
the aeshash time probably dominates the dispatch time.

Reorg where we keep the equals and hash functions. Move the hash function
from the key type to the map type, saving a field in every non-map type.
That leaves only one function in the alg structure, so get rid of that and
just keep the equal function in the type descriptor itself.

cmd/go now has 10 generated hash functions, instead of 504. Makes
cmd/go 1.0% smaller. Update #6853.

Speed on non-interface keys is unchanged. Speed on interface keys
is ~20% slower:

name                  old time/op  new time/op  delta
MapInterfaceString-8  23.0ns ±21%  27.6ns ±14%  +20.01%  (p=0.002 n=10+10)
MapInterfacePtr-8     19.4ns ±16%  23.7ns ± 7%  +22.48%   (p=0.000 n=10+8)

Change-Id: I7c2e42292a46b5d4e288aaec4029bdbb01089263
Reviewed-on: https://go-review.googlesource.com/c/go/+/191198
Run-TryBot: Keith Randall <khr@golang.org>
TryBot-Result: Gobot Gobot <gobot@golang.org>
Reviewed-by: default avatarMartin Möhrmann <moehrmann@google.com>
parent 671bcb59
......@@ -6,6 +6,7 @@ package gc
import (
"cmd/compile/internal/types"
"cmd/internal/obj"
"fmt"
)
......@@ -183,10 +184,82 @@ func algtype1(t *types.Type) (AlgKind, *types.Type) {
return 0, nil
}
// Generate a helper function to compute the hash of a value of type t.
func genhash(sym *types.Sym, t *types.Type) {
// genhash returns a symbol which is the closure used to compute
// the hash of a value of type t.
func genhash(t *types.Type) *obj.LSym {
switch algtype(t) {
default:
// genhash is only called for types that have equality
Fatalf("genhash %v", t)
case AMEM0:
return sysClosure("memhash0")
case AMEM8:
return sysClosure("memhash8")
case AMEM16:
return sysClosure("memhash16")
case AMEM32:
return sysClosure("memhash32")
case AMEM64:
return sysClosure("memhash64")
case AMEM128:
return sysClosure("memhash128")
case ASTRING:
return sysClosure("strhash")
case AINTER:
return sysClosure("interhash")
case ANILINTER:
return sysClosure("nilinterhash")
case AFLOAT32:
return sysClosure("f32hash")
case AFLOAT64:
return sysClosure("f64hash")
case ACPLX64:
return sysClosure("c64hash")
case ACPLX128:
return sysClosure("c128hash")
case AMEM:
// For other sizes of plain memory, we build a closure
// that calls memhash_varlen. The size of the memory is
// encoded in the first slot of the closure.
closure := typeLookup(fmt.Sprintf(".hashfunc%d", t.Width)).Linksym()
if len(closure.P) > 0 { // already generated
return closure
}
if memhashvarlen == nil {
memhashvarlen = sysfunc("memhash_varlen")
}
ot := 0
ot = dsymptr(closure, ot, memhashvarlen, 0)
ot = duintptr(closure, ot, uint64(t.Width)) // size encoded in closure
ggloblsym(closure, int32(ot), obj.DUPOK|obj.RODATA)
return closure
case ASPECIAL:
break
}
closure := typesymprefix(".hashfunc", t).Linksym()
if len(closure.P) > 0 { // already generated
return closure
}
// Generate hash functions for subtypes.
// There are cases where we might not use these hashes,
// but in that case they will get dead-code eliminated.
// (And the closure generated by genhash will also get
// dead-code eliminated, as we call the subtype hashers
// directly.)
switch t.Etype {
case types.TARRAY:
genhash(t.Elem())
case types.TSTRUCT:
for _, f := range t.FieldSlice() {
genhash(f.Type)
}
}
sym := typesymprefix(".hash", t)
if Debug['r'] != 0 {
fmt.Printf("genhash %v %v\n", sym, t)
fmt.Printf("genhash %v %v %v\n", closure, sym, t)
}
lineno = autogeneratedPos // less confusing than end of input
......@@ -204,13 +277,7 @@ func genhash(sym *types.Sym, t *types.Type) {
np := asNode(tfn.Type.Params().Field(0).Nname)
nh := asNode(tfn.Type.Params().Field(1).Nname)
// genhash is only called for types that have equality but
// cannot be handled by the standard algorithms,
// so t must be either an array or a struct.
switch t.Etype {
default:
Fatalf("genhash %v", t)
case types.TARRAY:
// An array of pure memory would be handled by the
// standard algorithm, so the element type must not be
......@@ -302,6 +369,13 @@ func genhash(sym *types.Sym, t *types.Type) {
fn.Func.SetNilCheckDisabled(true)
funccompile(fn)
// Build closure. It doesn't close over any variables, so
// it contains just the function pointer.
dsymptr(closure, 0, sym.Linksym(), 0)
ggloblsym(closure, int32(Widthptr), obj.DUPOK|obj.RODATA)
return closure
}
func hashfor(t *types.Type) *Node {
......@@ -325,6 +399,8 @@ func hashfor(t *types.Type) *Node {
case ACPLX128:
sym = Runtimepkg.Lookup("c128hash")
default:
// Note: the caller of hashfor ensured that this symbol
// exists and has a body by calling genhash for t.
sym = typesymprefix(".hash", t)
}
......@@ -340,13 +416,82 @@ func hashfor(t *types.Type) *Node {
return n
}
// geneq generates a helper function to
// check equality of two values of type t.
func geneq(sym *types.Sym, t *types.Type) {
// sysClosure returns a closure which will call the
// given runtime function (with no closed-over variables).
func sysClosure(name string) *obj.LSym {
s := sysvar(name + "·f")
if len(s.P) == 0 {
f := sysfunc(name)
dsymptr(s, 0, f, 0)
ggloblsym(s, int32(Widthptr), obj.DUPOK|obj.RODATA)
}
return s
}
// geneq returns a symbol which is the closure used to compute
// equality for two objects of type t.
func geneq(t *types.Type) *obj.LSym {
switch algtype(t) {
case ANOEQ:
// The runtime will panic if it tries to compare
// a type with a nil equality function.
return nil
case AMEM0:
return sysClosure("memequal0")
case AMEM8:
return sysClosure("memequal8")
case AMEM16:
return sysClosure("memequal16")
case AMEM32:
return sysClosure("memequal32")
case AMEM64:
return sysClosure("memequal64")
case AMEM128:
return sysClosure("memequal128")
case ASTRING:
return sysClosure("strequal")
case AINTER:
return sysClosure("interequal")
case ANILINTER:
return sysClosure("nilinterequal")
case AFLOAT32:
return sysClosure("f32equal")
case AFLOAT64:
return sysClosure("f64equal")
case ACPLX64:
return sysClosure("c64equal")
case ACPLX128:
return sysClosure("c128equal")
case AMEM:
// make equality closure. The size of the type
// is encoded in the closure.
closure := typeLookup(fmt.Sprintf(".eqfunc%d", t.Width)).Linksym()
if len(closure.P) != 0 {
return closure
}
if memequalvarlen == nil {
memequalvarlen = sysvar("memequal_varlen") // asm func
}
ot := 0
ot = dsymptr(closure, ot, memequalvarlen, 0)
ot = duintptr(closure, ot, uint64(t.Width))
ggloblsym(closure, int32(ot), obj.DUPOK|obj.RODATA)
return closure
case ASPECIAL:
break
}
closure := typesymprefix(".eqfunc", t).Linksym()
if len(closure.P) > 0 { // already generated
return closure
}
sym := typesymprefix(".eq", t)
if Debug['r'] != 0 {
fmt.Printf("geneq %v %v\n", sym, t)
fmt.Printf("geneq %v\n", t)
}
// Autogenerate code for equality of structs and arrays.
lineno = autogeneratedPos // less confusing than end of input
dclcontext = PEXTERN
......@@ -362,7 +507,7 @@ func geneq(sym *types.Sym, t *types.Type) {
np := asNode(tfn.Type.Params().Field(0).Nname)
nq := asNode(tfn.Type.Params().Field(1).Nname)
// geneq is only called for types that have equality but
// We reach here only for types that have equality but
// cannot be handled by the standard algorithms,
// so t must be either an array or a struct.
switch t.Etype {
......@@ -481,6 +626,11 @@ func geneq(sym *types.Sym, t *types.Type) {
// are shallow.
fn.Func.SetNilCheckDisabled(true)
funccompile(fn)
// Generate a closure which points at the function we just generated.
dsymptr(closure, 0, sym.Linksym(), 0)
ggloblsym(closure, int32(Widthptr), obj.DUPOK|obj.RODATA)
return closure
}
// eqfield returns the node
......
......@@ -134,38 +134,60 @@ var runtimeDecls = [...]struct {
{"memclrNoHeapPointers", funcTag, 103},
{"memclrHasPointers", funcTag, 103},
{"memequal", funcTag, 104},
{"memequal0", funcTag, 105},
{"memequal8", funcTag, 105},
{"memequal16", funcTag, 105},
{"memequal32", funcTag, 105},
{"memequal64", funcTag, 105},
{"memequal128", funcTag, 105},
{"int64div", funcTag, 106},
{"uint64div", funcTag, 107},
{"int64mod", funcTag, 106},
{"uint64mod", funcTag, 107},
{"float64toint64", funcTag, 108},
{"float64touint64", funcTag, 109},
{"float64touint32", funcTag, 110},
{"int64tofloat64", funcTag, 111},
{"uint64tofloat64", funcTag, 112},
{"uint32tofloat64", funcTag, 113},
{"complex128div", funcTag, 114},
{"racefuncenter", funcTag, 115},
{"f32equal", funcTag, 106},
{"f64equal", funcTag, 106},
{"c64equal", funcTag, 106},
{"c128equal", funcTag, 106},
{"strequal", funcTag, 106},
{"interequal", funcTag, 106},
{"nilinterequal", funcTag, 106},
{"memhash", funcTag, 107},
{"memhash0", funcTag, 108},
{"memhash8", funcTag, 108},
{"memhash16", funcTag, 108},
{"memhash32", funcTag, 108},
{"memhash64", funcTag, 108},
{"memhash128", funcTag, 108},
{"f32hash", funcTag, 108},
{"f64hash", funcTag, 108},
{"c64hash", funcTag, 108},
{"c128hash", funcTag, 108},
{"strhash", funcTag, 108},
{"interhash", funcTag, 108},
{"nilinterhash", funcTag, 108},
{"int64div", funcTag, 109},
{"uint64div", funcTag, 110},
{"int64mod", funcTag, 109},
{"uint64mod", funcTag, 110},
{"float64toint64", funcTag, 111},
{"float64touint64", funcTag, 112},
{"float64touint32", funcTag, 113},
{"int64tofloat64", funcTag, 114},
{"uint64tofloat64", funcTag, 115},
{"uint32tofloat64", funcTag, 116},
{"complex128div", funcTag, 117},
{"racefuncenter", funcTag, 118},
{"racefuncenterfp", funcTag, 5},
{"racefuncexit", funcTag, 5},
{"raceread", funcTag, 115},
{"racewrite", funcTag, 115},
{"racereadrange", funcTag, 116},
{"racewriterange", funcTag, 116},
{"msanread", funcTag, 116},
{"msanwrite", funcTag, 116},
{"raceread", funcTag, 118},
{"racewrite", funcTag, 118},
{"racereadrange", funcTag, 119},
{"racewriterange", funcTag, 119},
{"msanread", funcTag, 119},
{"msanwrite", funcTag, 119},
{"x86HasPOPCNT", varTag, 15},
{"x86HasSSE41", varTag, 15},
{"arm64HasATOMICS", varTag, 15},
}
func runtimeTypes() []*types.Type {
var typs [117]*types.Type
var typs [120]*types.Type
typs[0] = types.Bytetype
typs[1] = types.NewPtr(typs[0])
typs[2] = types.Types[TANY]
......@@ -272,16 +294,19 @@ func runtimeTypes() []*types.Type {
typs[103] = functype(nil, []*Node{anonfield(typs[56]), anonfield(typs[50])}, nil)
typs[104] = functype(nil, []*Node{anonfield(typs[3]), anonfield(typs[3]), anonfield(typs[50])}, []*Node{anonfield(typs[15])})
typs[105] = functype(nil, []*Node{anonfield(typs[3]), anonfield(typs[3])}, []*Node{anonfield(typs[15])})
typs[106] = functype(nil, []*Node{anonfield(typs[19]), anonfield(typs[19])}, []*Node{anonfield(typs[19])})
typs[107] = functype(nil, []*Node{anonfield(typs[21]), anonfield(typs[21])}, []*Node{anonfield(typs[21])})
typs[108] = functype(nil, []*Node{anonfield(typs[17])}, []*Node{anonfield(typs[19])})
typs[109] = functype(nil, []*Node{anonfield(typs[17])}, []*Node{anonfield(typs[21])})
typs[110] = functype(nil, []*Node{anonfield(typs[17])}, []*Node{anonfield(typs[64])})
typs[111] = functype(nil, []*Node{anonfield(typs[19])}, []*Node{anonfield(typs[17])})
typs[112] = functype(nil, []*Node{anonfield(typs[21])}, []*Node{anonfield(typs[17])})
typs[113] = functype(nil, []*Node{anonfield(typs[64])}, []*Node{anonfield(typs[17])})
typs[114] = functype(nil, []*Node{anonfield(typs[23]), anonfield(typs[23])}, []*Node{anonfield(typs[23])})
typs[115] = functype(nil, []*Node{anonfield(typs[50])}, nil)
typs[116] = functype(nil, []*Node{anonfield(typs[50]), anonfield(typs[50])}, nil)
typs[106] = functype(nil, []*Node{anonfield(typs[56]), anonfield(typs[56])}, []*Node{anonfield(typs[15])})
typs[107] = functype(nil, []*Node{anonfield(typs[56]), anonfield(typs[50]), anonfield(typs[50])}, []*Node{anonfield(typs[50])})
typs[108] = functype(nil, []*Node{anonfield(typs[56]), anonfield(typs[50])}, []*Node{anonfield(typs[50])})
typs[109] = functype(nil, []*Node{anonfield(typs[19]), anonfield(typs[19])}, []*Node{anonfield(typs[19])})
typs[110] = functype(nil, []*Node{anonfield(typs[21]), anonfield(typs[21])}, []*Node{anonfield(typs[21])})
typs[111] = functype(nil, []*Node{anonfield(typs[17])}, []*Node{anonfield(typs[19])})
typs[112] = functype(nil, []*Node{anonfield(typs[17])}, []*Node{anonfield(typs[21])})
typs[113] = functype(nil, []*Node{anonfield(typs[17])}, []*Node{anonfield(typs[64])})
typs[114] = functype(nil, []*Node{anonfield(typs[19])}, []*Node{anonfield(typs[17])})
typs[115] = functype(nil, []*Node{anonfield(typs[21])}, []*Node{anonfield(typs[17])})
typs[116] = functype(nil, []*Node{anonfield(typs[64])}, []*Node{anonfield(typs[17])})
typs[117] = functype(nil, []*Node{anonfield(typs[23]), anonfield(typs[23])}, []*Node{anonfield(typs[23])})
typs[118] = functype(nil, []*Node{anonfield(typs[50])}, nil)
typs[119] = functype(nil, []*Node{anonfield(typs[50]), anonfield(typs[50])}, nil)
return typs[:]
}
......@@ -179,11 +179,34 @@ func memclrNoHeapPointers(ptr unsafe.Pointer, n uintptr)
func memclrHasPointers(ptr unsafe.Pointer, n uintptr)
func memequal(x, y *any, size uintptr) bool
func memequal0(x, y *any) bool
func memequal8(x, y *any) bool
func memequal16(x, y *any) bool
func memequal32(x, y *any) bool
func memequal64(x, y *any) bool
func memequal128(x, y *any) bool
func f32equal(p, q unsafe.Pointer) bool
func f64equal(p, q unsafe.Pointer) bool
func c64equal(p, q unsafe.Pointer) bool
func c128equal(p, q unsafe.Pointer) bool
func strequal(p, q unsafe.Pointer) bool
func interequal(p, q unsafe.Pointer) bool
func nilinterequal(p, q unsafe.Pointer) bool
func memhash(p unsafe.Pointer, h uintptr, size uintptr) uintptr
func memhash0(p unsafe.Pointer, h uintptr) uintptr
func memhash8(p unsafe.Pointer, h uintptr) uintptr
func memhash16(p unsafe.Pointer, h uintptr) uintptr
func memhash32(p unsafe.Pointer, h uintptr) uintptr
func memhash64(p unsafe.Pointer, h uintptr) uintptr
func memhash128(p unsafe.Pointer, h uintptr) uintptr
func f32hash(p unsafe.Pointer, h uintptr) uintptr
func f64hash(p unsafe.Pointer, h uintptr) uintptr
func c64hash(p unsafe.Pointer, h uintptr) uintptr
func c128hash(p unsafe.Pointer, h uintptr) uintptr
func strhash(a unsafe.Pointer, h uintptr) uintptr
func interhash(p unsafe.Pointer, h uintptr) uintptr
func nilinterhash(p unsafe.Pointer, h uintptr) uintptr
// only used on 32-bit
func int64div(int64, int64) int64
......
......@@ -828,26 +828,18 @@ const (
tflagUncommon = 1 << 0
tflagExtraStar = 1 << 1
tflagNamed = 1 << 2
tflagRegularMemory = 1 << 3
)
var (
algarray *obj.LSym
memhashvarlen *obj.LSym
memequalvarlen *obj.LSym
)
// dcommontype dumps the contents of a reflect.rtype (runtime._type).
func dcommontype(lsym *obj.LSym, t *types.Type) int {
sizeofAlg := 2 * Widthptr
if algarray == nil {
algarray = sysvar("algarray")
}
dowidth(t)
alg := algtype(t)
var algsym *obj.LSym
if alg == ASPECIAL || alg == AMEM {
algsym = dalgsym(t)
}
eqfunc := geneq(t)
sptrWeak := true
var sptr *obj.LSym
......@@ -871,7 +863,7 @@ func dcommontype(lsym *obj.LSym, t *types.Type) int {
// align uint8
// fieldAlign uint8
// kind uint8
// alg *typeAlg
// equal func(unsafe.Pointer, unsafe.Pointer) bool
// gcdata *byte
// str nameOff
// ptrToThis typeOff
......@@ -888,6 +880,9 @@ func dcommontype(lsym *obj.LSym, t *types.Type) int {
if t.Sym != nil && t.Sym.Name != "" {
tflag |= tflagNamed
}
if IsRegularMemory(t) {
tflag |= tflagRegularMemory
}
exported := false
p := t.LongString()
......@@ -930,10 +925,10 @@ func dcommontype(lsym *obj.LSym, t *types.Type) int {
i |= objabi.KindGCProg
}
ot = duint8(lsym, ot, uint8(i)) // kind
if algsym == nil {
ot = dsymptr(lsym, ot, algarray, int(alg)*sizeofAlg)
if eqfunc != nil {
ot = dsymptr(lsym, ot, eqfunc, 0) // equality function
} else {
ot = dsymptr(lsym, ot, algsym, 0)
ot = duintptr(lsym, ot, 0) // type we can't do == with
}
ot = dsymptr(lsym, ot, gcsym, 0) // gcdata
......@@ -1311,10 +1306,13 @@ func dtypesym(t *types.Type) *obj.LSym {
s1 := dtypesym(t.Key())
s2 := dtypesym(t.Elem())
s3 := dtypesym(bmap(t))
hasher := genhash(t.Key())
ot = dcommontype(lsym, t)
ot = dsymptr(lsym, ot, s1, 0)
ot = dsymptr(lsym, ot, s2, 0)
ot = dsymptr(lsym, ot, s3, 0)
ot = dsymptr(lsym, ot, hasher, 0)
var flags uint32
// Note: flags must match maptype accessors in ../../../../runtime/type.go
// and maptype builder in ../../../../reflect/type.go:MapOf.
......@@ -1673,78 +1671,6 @@ func (a typesByString) Less(i, j int) bool {
}
func (a typesByString) Swap(i, j int) { a[i], a[j] = a[j], a[i] }
func dalgsym(t *types.Type) *obj.LSym {
var lsym *obj.LSym
var hashfunc *obj.LSym
var eqfunc *obj.LSym
// dalgsym is only called for a type that needs an algorithm table,
// which implies that the type is comparable (or else it would use ANOEQ).
if algtype(t) == AMEM {
// we use one algorithm table for all AMEM types of a given size
p := fmt.Sprintf(".alg%d", t.Width)
s := typeLookup(p)
lsym = s.Linksym()
if s.AlgGen() {
return lsym
}
s.SetAlgGen(true)
if memhashvarlen == nil {
memhashvarlen = sysfunc("memhash_varlen")
memequalvarlen = sysvar("memequal_varlen") // asm func
}
// make hash closure
p = fmt.Sprintf(".hashfunc%d", t.Width)
hashfunc = typeLookup(p).Linksym()
ot := 0
ot = dsymptr(hashfunc, ot, memhashvarlen, 0)
ot = duintptr(hashfunc, ot, uint64(t.Width)) // size encoded in closure
ggloblsym(hashfunc, int32(ot), obj.DUPOK|obj.RODATA)
// make equality closure
p = fmt.Sprintf(".eqfunc%d", t.Width)
eqfunc = typeLookup(p).Linksym()
ot = 0
ot = dsymptr(eqfunc, ot, memequalvarlen, 0)
ot = duintptr(eqfunc, ot, uint64(t.Width))
ggloblsym(eqfunc, int32(ot), obj.DUPOK|obj.RODATA)
} else {
// generate an alg table specific to this type
s := typesymprefix(".alg", t)
lsym = s.Linksym()
hash := typesymprefix(".hash", t)
eq := typesymprefix(".eq", t)
hashfunc = typesymprefix(".hashfunc", t).Linksym()
eqfunc = typesymprefix(".eqfunc", t).Linksym()
genhash(hash, t)
geneq(eq, t)
// make Go funcs (closures) for calling hash and equal from Go
dsymptr(hashfunc, 0, hash.Linksym(), 0)
ggloblsym(hashfunc, int32(Widthptr), obj.DUPOK|obj.RODATA)
dsymptr(eqfunc, 0, eq.Linksym(), 0)
ggloblsym(eqfunc, int32(Widthptr), obj.DUPOK|obj.RODATA)
}
// ../../../../runtime/alg.go:/typeAlg
ot := 0
ot = dsymptr(lsym, ot, hashfunc, 0)
ot = dsymptr(lsym, ot, eqfunc, 0)
ggloblsym(lsym, int32(ot), obj.DUPOK|obj.RODATA)
return lsym
}
// maxPtrmaskBytes is the maximum length of a GC ptrmask bitmap,
// which holds 1-bit entries describing where pointers are in a given type.
// Above this length, the GC information is recorded as a GC program,
......
......@@ -47,7 +47,6 @@ const (
symUniq
symSiggen // type symbol has been generated
symAsm // on asmlist, for writing to -asmhdr
symAlgGen // algorithm table has been generated
symFunc // function symbol; uses internal ABI
)
......@@ -55,14 +54,12 @@ func (sym *Sym) OnExportList() bool { return sym.flags&symOnExportList != 0 }
func (sym *Sym) Uniq() bool { return sym.flags&symUniq != 0 }
func (sym *Sym) Siggen() bool { return sym.flags&symSiggen != 0 }
func (sym *Sym) Asm() bool { return sym.flags&symAsm != 0 }
func (sym *Sym) AlgGen() bool { return sym.flags&symAlgGen != 0 }
func (sym *Sym) Func() bool { return sym.flags&symFunc != 0 }
func (sym *Sym) SetOnExportList(b bool) { sym.flags.set(symOnExportList, b) }
func (sym *Sym) SetUniq(b bool) { sym.flags.set(symUniq, b) }
func (sym *Sym) SetSiggen(b bool) { sym.flags.set(symSiggen, b) }
func (sym *Sym) SetAsm(b bool) { sym.flags.set(symAsm, b) }
func (sym *Sym) SetAlgGen(b bool) { sym.flags.set(symAlgGen, b) }
func (sym *Sym) SetFunc(b bool) { sym.flags.set(symFunc, b) }
func (sym *Sym) IsBlank() bool {
......
......@@ -359,7 +359,7 @@ func decodetypeMethods(arch *sys.Arch, s *sym.Symbol) []methodsig {
case kindChan: // reflect.chanType
off += 2 * arch.PtrSize
case kindMap: // reflect.mapType
off += 3*arch.PtrSize + 8
off += 4*arch.PtrSize + 8
case kindInterface: // reflect.interfaceType
off += 3 * arch.PtrSize
default:
......
......@@ -1162,38 +1162,6 @@ func (ctxt *Link) doxcoff() {
toc.Attr |= sym.AttrReachable
toc.Attr |= sym.AttrVisibilityHidden
// XCOFF does not allow relocations of data symbol address to a text symbol.
// Such case occurs when a RODATA symbol retrieves a data symbol address.
// When it happens, this RODATA symbol is moved to .data section.
// runtime.algarray is a readonly symbol but stored inside .data section.
// If it stays in .data, all type symbols will be moved to .data which
// cannot be done.
algarray := ctxt.Syms.Lookup("runtime.algarray", 0)
algarray.Type = sym.SRODATA
for {
again := false
for _, s := range ctxt.Syms.Allsym {
if s.Type != sym.SRODATA {
continue
}
for ri := range s.R {
r := &s.R[ri]
if r.Type != objabi.R_ADDR {
continue
}
if r.Sym.Type != sym.Sxxx && r.Sym.Type != sym.STEXT && r.Sym.Type != sym.SRODATA {
s.Type = sym.SDATA
again = true
break
}
}
}
if !again {
break
}
}
// Add entry point to .loader symbols.
ep := ctxt.Syms.ROLookup(*flagEntrySymbol, 0)
if !ep.Attr.Reachable() {
......
......@@ -290,6 +290,10 @@ const (
// tflagNamed means the type has a name.
tflagNamed tflag = 1 << 2
// tflagRegularMemory means that equal and hash functions can treat
// this type as a single region of t.size bytes.
tflagRegularMemory tflag = 1 << 3
)
// rtype is the common implementation of most values.
......@@ -304,20 +308,12 @@ type rtype struct {
align uint8 // alignment of variable with this type
fieldAlign uint8 // alignment of struct field with this type
kind uint8 // enumeration for C
alg *typeAlg // algorithm table
gcdata *byte // garbage collection data
str nameOff // string form
ptrToThis typeOff // type for pointer to this type, may be zero
}
// a copy of runtime.typeAlg
type typeAlg struct {
// function for hashing objects of this type
// (ptr to object, seed) -> hash
hash func(unsafe.Pointer, uintptr) uintptr
// function for comparing objects of this type
// (ptr to object A, ptr to object B) -> ==?
equal func(unsafe.Pointer, unsafe.Pointer) bool
gcdata *byte // garbage collection data
str nameOff // string form
ptrToThis typeOff // type for pointer to this type, may be zero
}
// Method on non-interface type
......@@ -400,6 +396,8 @@ type mapType struct {
key *rtype // map key type
elem *rtype // map element (value) type
bucket *rtype // internal bucket structure
// function for hashing keys (ptr to key, seed) -> hash
hasher func(unsafe.Pointer, uintptr) uintptr
keysize uint8 // size of key slot
valuesize uint8 // size of value slot
bucketsize uint16 // size of bucket
......@@ -1457,7 +1455,7 @@ func (t *rtype) ConvertibleTo(u Type) bool {
}
func (t *rtype) Comparable() bool {
return t.alg != nil && t.alg.equal != nil
return t.equal != nil
}
// implements reports whether the type V implements the interface type T.
......@@ -1807,7 +1805,7 @@ func ChanOf(dir ChanDir, t Type) Type {
var ichan interface{} = (chan unsafe.Pointer)(nil)
prototype := *(**chanType)(unsafe.Pointer(&ichan))
ch := *prototype
ch.tflag = 0
ch.tflag = tflagRegularMemory
ch.dir = uintptr(dir)
ch.str = resolveReflectName(newName(s, "", false))
ch.hash = fnv1(typ.hash, 'c', byte(dir))
......@@ -1817,8 +1815,6 @@ func ChanOf(dir ChanDir, t Type) Type {
return ti.(Type)
}
func ismapkey(*rtype) bool // implemented in runtime
// MapOf returns the map type with the given key and element types.
// For example, if k represents int and e represents string,
// MapOf(k, e) represents map[int]string.
......@@ -1829,7 +1825,7 @@ func MapOf(key, elem Type) Type {
ktyp := key.(*rtype)
etyp := elem.(*rtype)
if !ismapkey(ktyp) {
if ktyp.equal == nil {
panic("reflect.MapOf: invalid key type " + ktyp.String())
}
......@@ -1860,6 +1856,9 @@ func MapOf(key, elem Type) Type {
mt.key = ktyp
mt.elem = etyp
mt.bucket = bucketOf(ktyp, etyp)
mt.hasher = func(p unsafe.Pointer, seed uintptr) uintptr {
return typehash(ktyp, p, seed)
}
mt.flags = 0
if ktyp.size > maxKeySize {
mt.keysize = uint8(ptrSize)
......@@ -2332,7 +2331,6 @@ func StructOf(fields []StructField) Type {
size uintptr
typalign uint8
comparable = true
hashable = true
methods []method
fs = make([]structField, len(fields))
......@@ -2518,8 +2516,7 @@ func StructOf(fields []StructField) Type {
repr = append(repr, ';')
}
comparable = comparable && (ft.alg.equal != nil)
hashable = hashable && (ft.alg.hash != nil)
comparable = comparable && (ft.equal != nil)
offset := align(size, uintptr(ft.align))
if ft.align > typalign {
......@@ -2634,7 +2631,7 @@ func StructOf(fields []StructField) Type {
}
typ.str = resolveReflectName(newName(str, "", false))
typ.tflag = 0
typ.tflag = 0 // TODO: set tflagRegularMemory
typ.hash = hash
typ.size = size
typ.ptrdata = typeptrdata(typ.common())
......@@ -2708,24 +2705,13 @@ func StructOf(fields []StructField) Type {
typ.gcdata = &bv.data[0]
}
}
typ.alg = new(typeAlg)
if hashable {
typ.alg.hash = func(p unsafe.Pointer, seed uintptr) uintptr {
o := seed
for _, ft := range typ.fields {
pi := add(p, ft.offset(), "&x.field safe")
o = ft.typ.alg.hash(pi, o)
}
return o
}
}
typ.equal = nil
if comparable {
typ.alg.equal = func(p, q unsafe.Pointer) bool {
typ.equal = func(p, q unsafe.Pointer) bool {
for _, ft := range typ.fields {
pi := add(p, ft.offset(), "&x.field safe")
qi := add(q, ft.offset(), "&x.field safe")
if !ft.typ.alg.equal(pi, qi) {
if !ft.typ.equal(pi, qi) {
return false
}
}
......@@ -2826,7 +2812,7 @@ func ArrayOf(count int, elem Type) Type {
var iarray interface{} = [1]unsafe.Pointer{}
prototype := *(**arrayType)(unsafe.Pointer(&iarray))
array := *prototype
array.tflag = 0
array.tflag = typ.tflag & tflagRegularMemory
array.str = resolveReflectName(newName(s, "", false))
array.hash = fnv1(typ.hash, '[')
for n := uint32(count); n > 0; n >>= 8 {
......@@ -2929,12 +2915,10 @@ func ArrayOf(count int, elem Type) Type {
etyp := typ.common()
esize := etyp.Size()
ealg := etyp.alg
array.alg = new(typeAlg)
if ealg.equal != nil {
eequal := ealg.equal
array.alg.equal = func(p, q unsafe.Pointer) bool {
array.equal = nil
if eequal := etyp.equal; eequal != nil {
array.equal = func(p, q unsafe.Pointer) bool {
for i := 0; i < count; i++ {
pi := arrayAt(p, i, esize, "i < count")
qi := arrayAt(q, i, esize, "i < count")
......@@ -2946,16 +2930,6 @@ func ArrayOf(count int, elem Type) Type {
return true
}
}
if ealg.hash != nil {
ehash := ealg.hash
array.alg.hash = func(ptr unsafe.Pointer, seed uintptr) uintptr {
o := seed
for i := 0; i < count; i++ {
o = ehash(arrayAt(ptr, i, esize, "i < count"), o)
}
return o
}
}
switch {
case count == 1 && !ifaceIndir(typ):
......
......@@ -2765,6 +2765,9 @@ func typedmemclrpartial(t *rtype, ptr unsafe.Pointer, off, size uintptr)
//go:noescape
func typedslicecopy(elemType *rtype, dst, src sliceHeader) int
//go:noescape
func typehash(t *rtype, p unsafe.Pointer, h uintptr) uintptr
// Dummy annotation marking that the value x escapes,
// for use in cases where the reflect code is so clever that
// the compiler cannot follow.
......
......@@ -34,17 +34,6 @@ const (
alg_max
)
// typeAlg is also copied/used in reflect/type.go.
// keep them in sync.
type typeAlg struct {
// function for hashing objects of this type
// (ptr to object, seed) -> hash
hash func(unsafe.Pointer, uintptr) uintptr
// function for comparing objects of this type
// (ptr to object A, ptr to object B) -> ==?
equal func(unsafe.Pointer, unsafe.Pointer) bool
}
func memhash0(p unsafe.Pointer, h uintptr) uintptr {
return h
}
......@@ -68,23 +57,9 @@ func memhash_varlen(p unsafe.Pointer, h uintptr) uintptr {
return memhash(p, h, size)
}
var algarray = [alg_max]typeAlg{
alg_NOEQ: {nil, nil},
alg_MEM0: {memhash0, memequal0},
alg_MEM8: {memhash8, memequal8},
alg_MEM16: {memhash16, memequal16},
alg_MEM32: {memhash32, memequal32},
alg_MEM64: {memhash64, memequal64},
alg_MEM128: {memhash128, memequal128},
alg_STRING: {strhash, strequal},
alg_INTER: {interhash, interequal},
alg_NILINTER: {nilinterhash, nilinterequal},
alg_FLOAT32: {f32hash, f32equal},
alg_FLOAT64: {f64hash, f64equal},
alg_CPLX64: {c64hash, c64equal},
alg_CPLX128: {c128hash, c128equal},
}
// runtime variable to check if the processor we're running on
// actually supports the instructions used by the AES-based
// hash implementation.
var useAeshash bool
// in asm_*.s
......@@ -144,14 +119,17 @@ func interhash(p unsafe.Pointer, h uintptr) uintptr {
return h
}
t := tab._type
fn := t.alg.hash
if fn == nil {
if t.equal == nil {
// Check hashability here. We could do this check inside
// typehash, but we want to report the topmost type in
// the error text (e.g. in a struct with a field of slice type
// we want to report the struct, not the slice).
panic(errorString("hash of unhashable type " + t.string()))
}
if isDirectIface(t) {
return c1 * fn(unsafe.Pointer(&a.data), h^c0)
return c1 * typehash(t, unsafe.Pointer(&a.data), h^c0)
} else {
return c1 * fn(a.data, h^c0)
return c1 * typehash(t, a.data, h^c0)
}
}
......@@ -161,15 +139,72 @@ func nilinterhash(p unsafe.Pointer, h uintptr) uintptr {
if t == nil {
return h
}
fn := t.alg.hash
if fn == nil {
if t.equal == nil {
// See comment in interhash above.
panic(errorString("hash of unhashable type " + t.string()))
}
if isDirectIface(t) {
return c1 * fn(unsafe.Pointer(&a.data), h^c0)
return c1 * typehash(t, unsafe.Pointer(&a.data), h^c0)
} else {
return c1 * fn(a.data, h^c0)
return c1 * typehash(t, a.data, h^c0)
}
}
// typehash computes the hash of the object of type t at address p.
// h is the seed.
// This function is seldom used. Most maps use for hashing either
// fixed functions (e.g. f32hash) or compiler-generated functions
// (e.g. for a type like struct { x, y string }). This implementation
// is slower but more general and is used for hashing interface types
// (called from interhash or nilinterhash, above) or for hashing in
// maps generated by reflect.MapOf (reflect_typehash, below).
func typehash(t *_type, p unsafe.Pointer, h uintptr) uintptr {
if t.tflag&tflagRegularMemory != 0 {
return memhash(p, h, t.size)
}
switch t.kind & kindMask {
case kindFloat32:
return f32hash(p, h)
case kindFloat64:
return f64hash(p, h)
case kindComplex64:
return c64hash(p, h)
case kindComplex128:
return c128hash(p, h)
case kindString:
return strhash(p, h)
case kindInterface:
i := (*interfacetype)(unsafe.Pointer(t))
if len(i.mhdr) == 0 {
return nilinterhash(p, h)
}
return interhash(p, h)
case kindArray:
a := (*arraytype)(unsafe.Pointer(t))
for i := uintptr(0); i < a.len; i++ {
h = typehash(a.elem, add(p, i*a.elem.size), h)
}
return h
case kindStruct:
s := (*structtype)(unsafe.Pointer(t))
for _, f := range s.fields {
// TODO: maybe we could hash several contiguous fields all at once.
if f.name.isBlank() {
continue
}
h = typehash(f.typ, add(p, f.offset()), h)
}
return h
default:
// Should never happen, as typehash should only be called
// with comparable types.
panic(errorString("hash of unhashable type " + t.string()))
}
}
//go:linkname reflect_typehash reflect.typehash
func reflect_typehash(t *_type, p unsafe.Pointer, h uintptr) uintptr {
return typehash(t, p, h)
}
func memequal0(p, q unsafe.Pointer) bool {
......@@ -219,7 +254,7 @@ func efaceeq(t *_type, x, y unsafe.Pointer) bool {
if t == nil {
return true
}
eq := t.alg.equal
eq := t.equal
if eq == nil {
panic(errorString("comparing uncomparable type " + t.string()))
}
......@@ -236,7 +271,7 @@ func ifaceeq(tab *itab, x, y unsafe.Pointer) bool {
return true
}
t := tab._type
eq := t.alg.equal
eq := t.equal
if eq == nil {
panic(errorString("comparing uncomparable type " + t.string()))
}
......@@ -249,7 +284,7 @@ func ifaceeq(tab *itab, x, y unsafe.Pointer) bool {
// Testing adapters for hash quality tests (see hash_test.go)
func stringHash(s string, seed uintptr) uintptr {
return algarray[alg_STRING].hash(noescape(unsafe.Pointer(&s)), seed)
return strhash(noescape(unsafe.Pointer(&s)), seed)
}
func bytesHash(b []byte, seed uintptr) uintptr {
......@@ -258,21 +293,21 @@ func bytesHash(b []byte, seed uintptr) uintptr {
}
func int32Hash(i uint32, seed uintptr) uintptr {
return algarray[alg_MEM32].hash(noescape(unsafe.Pointer(&i)), seed)
return memhash32(noescape(unsafe.Pointer(&i)), seed)
}
func int64Hash(i uint64, seed uintptr) uintptr {
return algarray[alg_MEM64].hash(noescape(unsafe.Pointer(&i)), seed)
return memhash64(noescape(unsafe.Pointer(&i)), seed)
}
func efaceHash(i interface{}, seed uintptr) uintptr {
return algarray[alg_NILINTER].hash(noescape(unsafe.Pointer(&i)), seed)
return nilinterhash(noescape(unsafe.Pointer(&i)), seed)
}
func ifaceHash(i interface {
F()
}, seed uintptr) uintptr {
return algarray[alg_INTER].hash(noescape(unsafe.Pointer(&i)), seed)
return interhash(noescape(unsafe.Pointer(&i)), seed)
}
const hashRandomBytes = sys.PtrSize / 4 * 64
......
......@@ -111,7 +111,7 @@ func makechan(t *chantype, size int) *hchan {
c.dataqsiz = uint(size)
if debugChan {
print("makechan: chan=", c, "; elemsize=", elem.size, "; elemalg=", elem.alg, "; dataqsiz=", size, "\n")
print("makechan: chan=", c, "; elemsize=", elem.size, "; dataqsiz=", size, "\n")
}
return c
}
......
......@@ -403,15 +403,14 @@ func mapaccess1(t *maptype, h *hmap, key unsafe.Pointer) unsafe.Pointer {
}
if h == nil || h.count == 0 {
if t.hashMightPanic() {
t.key.alg.hash(key, 0) // see issue 23734
t.hasher(key, 0) // see issue 23734
}
return unsafe.Pointer(&zeroVal[0])
}
if h.flags&hashWriting != 0 {
throw("concurrent map read and map write")
}
alg := t.key.alg
hash := alg.hash(key, uintptr(h.hash0))
hash := t.hasher(key, uintptr(h.hash0))
m := bucketMask(h.B)
b := (*bmap)(add(h.buckets, (hash&m)*uintptr(t.bucketsize)))
if c := h.oldbuckets; c != nil {
......@@ -438,7 +437,7 @@ bucketloop:
if t.indirectkey() {
k = *((*unsafe.Pointer)(k))
}
if alg.equal(key, k) {
if t.key.equal(key, k) {
e := add(unsafe.Pointer(b), dataOffset+bucketCnt*uintptr(t.keysize)+i*uintptr(t.elemsize))
if t.indirectelem() {
e = *((*unsafe.Pointer)(e))
......@@ -462,15 +461,14 @@ func mapaccess2(t *maptype, h *hmap, key unsafe.Pointer) (unsafe.Pointer, bool)
}
if h == nil || h.count == 0 {
if t.hashMightPanic() {
t.key.alg.hash(key, 0) // see issue 23734
t.hasher(key, 0) // see issue 23734
}
return unsafe.Pointer(&zeroVal[0]), false
}
if h.flags&hashWriting != 0 {
throw("concurrent map read and map write")
}
alg := t.key.alg
hash := alg.hash(key, uintptr(h.hash0))
hash := t.hasher(key, uintptr(h.hash0))
m := bucketMask(h.B)
b := (*bmap)(unsafe.Pointer(uintptr(h.buckets) + (hash&m)*uintptr(t.bucketsize)))
if c := h.oldbuckets; c != nil {
......@@ -497,7 +495,7 @@ bucketloop:
if t.indirectkey() {
k = *((*unsafe.Pointer)(k))
}
if alg.equal(key, k) {
if t.key.equal(key, k) {
e := add(unsafe.Pointer(b), dataOffset+bucketCnt*uintptr(t.keysize)+i*uintptr(t.elemsize))
if t.indirectelem() {
e = *((*unsafe.Pointer)(e))
......@@ -514,8 +512,7 @@ func mapaccessK(t *maptype, h *hmap, key unsafe.Pointer) (unsafe.Pointer, unsafe
if h == nil || h.count == 0 {
return nil, nil
}
alg := t.key.alg
hash := alg.hash(key, uintptr(h.hash0))
hash := t.hasher(key, uintptr(h.hash0))
m := bucketMask(h.B)
b := (*bmap)(unsafe.Pointer(uintptr(h.buckets) + (hash&m)*uintptr(t.bucketsize)))
if c := h.oldbuckets; c != nil {
......@@ -542,7 +539,7 @@ bucketloop:
if t.indirectkey() {
k = *((*unsafe.Pointer)(k))
}
if alg.equal(key, k) {
if t.key.equal(key, k) {
e := add(unsafe.Pointer(b), dataOffset+bucketCnt*uintptr(t.keysize)+i*uintptr(t.elemsize))
if t.indirectelem() {
e = *((*unsafe.Pointer)(e))
......@@ -587,10 +584,9 @@ func mapassign(t *maptype, h *hmap, key unsafe.Pointer) unsafe.Pointer {
if h.flags&hashWriting != 0 {
throw("concurrent map writes")
}
alg := t.key.alg
hash := alg.hash(key, uintptr(h.hash0))
hash := t.hasher(key, uintptr(h.hash0))
// Set hashWriting after calling alg.hash, since alg.hash may panic,
// Set hashWriting after calling t.hasher, since t.hasher may panic,
// in which case we have not actually done a write.
h.flags ^= hashWriting
......@@ -627,7 +623,7 @@ bucketloop:
if t.indirectkey() {
k = *((*unsafe.Pointer)(k))
}
if !alg.equal(key, k) {
if !t.key.equal(key, k) {
continue
}
// already have a mapping for key. Update it.
......@@ -698,7 +694,7 @@ func mapdelete(t *maptype, h *hmap, key unsafe.Pointer) {
}
if h == nil || h.count == 0 {
if t.hashMightPanic() {
t.key.alg.hash(key, 0) // see issue 23734
t.hasher(key, 0) // see issue 23734
}
return
}
......@@ -706,10 +702,9 @@ func mapdelete(t *maptype, h *hmap, key unsafe.Pointer) {
throw("concurrent map writes")
}
alg := t.key.alg
hash := alg.hash(key, uintptr(h.hash0))
hash := t.hasher(key, uintptr(h.hash0))
// Set hashWriting after calling alg.hash, since alg.hash may panic,
// Set hashWriting after calling t.hasher, since t.hasher may panic,
// in which case we have not actually done a write (delete).
h.flags ^= hashWriting
......@@ -734,7 +729,7 @@ search:
if t.indirectkey() {
k2 = *((*unsafe.Pointer)(k2))
}
if !alg.equal(key, k2) {
if !t.key.equal(key, k2) {
continue
}
// Only clear key if there are pointers in it.
......@@ -862,7 +857,6 @@ func mapiternext(it *hiter) {
b := it.bptr
i := it.i
checkBucket := it.checkBucket
alg := t.key.alg
next:
if b == nil {
......@@ -916,10 +910,10 @@ next:
// through the oldbucket, skipping any keys that will go
// to the other new bucket (each oldbucket expands to two
// buckets during a grow).
if t.reflexivekey() || alg.equal(k, k) {
if t.reflexivekey() || t.key.equal(k, k) {
// If the item in the oldbucket is not destined for
// the current new bucket in the iteration, skip it.
hash := alg.hash(k, uintptr(h.hash0))
hash := t.hasher(k, uintptr(h.hash0))
if hash&bucketMask(it.B) != checkBucket {
continue
}
......@@ -937,7 +931,7 @@ next:
}
}
if (b.tophash[offi] != evacuatedX && b.tophash[offi] != evacuatedY) ||
!(t.reflexivekey() || alg.equal(k, k)) {
!(t.reflexivekey() || t.key.equal(k, k)) {
// This is the golden data, we can return it.
// OR
// key!=key, so the entry can't be deleted or updated, so we can just return it.
......@@ -1174,8 +1168,8 @@ func evacuate(t *maptype, h *hmap, oldbucket uintptr) {
if !h.sameSizeGrow() {
// Compute hash to make our evacuation decision (whether we need
// to send this key/elem to bucket x or bucket y).
hash := t.key.alg.hash(k2, uintptr(h.hash0))
if h.flags&iterator != 0 && !t.reflexivekey() && !t.key.alg.equal(k2, k2) {
hash := t.hasher(k2, uintptr(h.hash0))
if h.flags&iterator != 0 && !t.reflexivekey() && !t.key.equal(k2, k2) {
// If key != key (NaNs), then the hash could be (and probably
// will be) entirely different from the old hash. Moreover,
// it isn't reproducible. Reproducibility is required in the
......@@ -1269,16 +1263,12 @@ func advanceEvacuationMark(h *hmap, t *maptype, newbit uintptr) {
}
}
func ismapkey(t *_type) bool {
return t.alg.hash != nil
}
// Reflect stubs. Called from ../reflect/asm_*.s
//go:linkname reflect_makemap reflect.makemap
func reflect_makemap(t *maptype, cap int) *hmap {
// Check invariants and reflects math.
if !ismapkey(t.key) {
if t.key.equal == nil {
throw("runtime.reflect_makemap: unsupported map key type")
}
if t.key.size > maxKeySize && (!t.indirectkey() || t.keysize != uint8(sys.PtrSize)) ||
......@@ -1381,10 +1371,5 @@ func reflectlite_maplen(h *hmap) int {
return h.count
}
//go:linkname reflect_ismapkey reflect.ismapkey
func reflect_ismapkey(t *_type) bool {
return ismapkey(t)
}
const maxZero = 1024 // must match value in cmd/compile/internal/gc/walk.go:zeroValSize
var zeroVal [maxZero]byte
......@@ -483,3 +483,33 @@ func BenchmarkMapStringConversion(b *testing.B) {
})
}
}
var BoolSink bool
func BenchmarkMapInterfaceString(b *testing.B) {
m := map[interface{}]bool{}
for i := 0; i < 100; i++ {
m[fmt.Sprintf("%d", i)] = true
}
key := (interface{})("A")
b.ResetTimer()
for i := 0; i < b.N; i++ {
BoolSink = m[key]
}
}
func BenchmarkMapInterfacePtr(b *testing.B) {
m := map[interface{}]bool{}
for i := 0; i < 100; i++ {
i := i
m[&i] = true
}
key := new(int)
b.ResetTimer()
for i := 0; i < b.N; i++ {
BoolSink = m[key]
}
}
......@@ -25,7 +25,7 @@ func mapaccess1_fast32(t *maptype, h *hmap, key uint32) unsafe.Pointer {
// One-bucket table. No need to hash.
b = (*bmap)(h.buckets)
} else {
hash := t.key.alg.hash(noescape(unsafe.Pointer(&key)), uintptr(h.hash0))
hash := t.hasher(noescape(unsafe.Pointer(&key)), uintptr(h.hash0))
m := bucketMask(h.B)
b = (*bmap)(add(h.buckets, (hash&m)*uintptr(t.bucketsize)))
if c := h.oldbuckets; c != nil {
......@@ -65,7 +65,7 @@ func mapaccess2_fast32(t *maptype, h *hmap, key uint32) (unsafe.Pointer, bool) {
// One-bucket table. No need to hash.
b = (*bmap)(h.buckets)
} else {
hash := t.key.alg.hash(noescape(unsafe.Pointer(&key)), uintptr(h.hash0))
hash := t.hasher(noescape(unsafe.Pointer(&key)), uintptr(h.hash0))
m := bucketMask(h.B)
b = (*bmap)(add(h.buckets, (hash&m)*uintptr(t.bucketsize)))
if c := h.oldbuckets; c != nil {
......@@ -100,9 +100,9 @@ func mapassign_fast32(t *maptype, h *hmap, key uint32) unsafe.Pointer {
if h.flags&hashWriting != 0 {
throw("concurrent map writes")
}
hash := t.key.alg.hash(noescape(unsafe.Pointer(&key)), uintptr(h.hash0))
hash := t.hasher(noescape(unsafe.Pointer(&key)), uintptr(h.hash0))
// Set hashWriting after calling alg.hash for consistency with mapassign.
// Set hashWriting after calling t.hasher for consistency with mapassign.
h.flags ^= hashWriting
if h.buckets == nil {
......@@ -190,9 +190,9 @@ func mapassign_fast32ptr(t *maptype, h *hmap, key unsafe.Pointer) unsafe.Pointer
if h.flags&hashWriting != 0 {
throw("concurrent map writes")
}
hash := t.key.alg.hash(noescape(unsafe.Pointer(&key)), uintptr(h.hash0))
hash := t.hasher(noescape(unsafe.Pointer(&key)), uintptr(h.hash0))
// Set hashWriting after calling alg.hash for consistency with mapassign.
// Set hashWriting after calling t.hasher for consistency with mapassign.
h.flags ^= hashWriting
if h.buckets == nil {
......@@ -281,9 +281,9 @@ func mapdelete_fast32(t *maptype, h *hmap, key uint32) {
throw("concurrent map writes")
}
hash := t.key.alg.hash(noescape(unsafe.Pointer(&key)), uintptr(h.hash0))
hash := t.hasher(noescape(unsafe.Pointer(&key)), uintptr(h.hash0))
// Set hashWriting after calling alg.hash for consistency with mapdelete
// Set hashWriting after calling t.hasher for consistency with mapdelete
h.flags ^= hashWriting
bucket := hash & bucketMask(h.B)
......@@ -400,7 +400,7 @@ func evacuate_fast32(t *maptype, h *hmap, oldbucket uintptr) {
if !h.sameSizeGrow() {
// Compute hash to make our evacuation decision (whether we need
// to send this key/elem to bucket x or bucket y).
hash := t.key.alg.hash(k, uintptr(h.hash0))
hash := t.hasher(k, uintptr(h.hash0))
if hash&newbit != 0 {
useY = 1
}
......
......@@ -25,7 +25,7 @@ func mapaccess1_fast64(t *maptype, h *hmap, key uint64) unsafe.Pointer {
// One-bucket table. No need to hash.
b = (*bmap)(h.buckets)
} else {
hash := t.key.alg.hash(noescape(unsafe.Pointer(&key)), uintptr(h.hash0))
hash := t.hasher(noescape(unsafe.Pointer(&key)), uintptr(h.hash0))
m := bucketMask(h.B)
b = (*bmap)(add(h.buckets, (hash&m)*uintptr(t.bucketsize)))
if c := h.oldbuckets; c != nil {
......@@ -65,7 +65,7 @@ func mapaccess2_fast64(t *maptype, h *hmap, key uint64) (unsafe.Pointer, bool) {
// One-bucket table. No need to hash.
b = (*bmap)(h.buckets)
} else {
hash := t.key.alg.hash(noescape(unsafe.Pointer(&key)), uintptr(h.hash0))
hash := t.hasher(noescape(unsafe.Pointer(&key)), uintptr(h.hash0))
m := bucketMask(h.B)
b = (*bmap)(add(h.buckets, (hash&m)*uintptr(t.bucketsize)))
if c := h.oldbuckets; c != nil {
......@@ -100,9 +100,9 @@ func mapassign_fast64(t *maptype, h *hmap, key uint64) unsafe.Pointer {
if h.flags&hashWriting != 0 {
throw("concurrent map writes")
}
hash := t.key.alg.hash(noescape(unsafe.Pointer(&key)), uintptr(h.hash0))
hash := t.hasher(noescape(unsafe.Pointer(&key)), uintptr(h.hash0))
// Set hashWriting after calling alg.hash for consistency with mapassign.
// Set hashWriting after calling t.hasher for consistency with mapassign.
h.flags ^= hashWriting
if h.buckets == nil {
......@@ -190,9 +190,9 @@ func mapassign_fast64ptr(t *maptype, h *hmap, key unsafe.Pointer) unsafe.Pointer
if h.flags&hashWriting != 0 {
throw("concurrent map writes")
}
hash := t.key.alg.hash(noescape(unsafe.Pointer(&key)), uintptr(h.hash0))
hash := t.hasher(noescape(unsafe.Pointer(&key)), uintptr(h.hash0))
// Set hashWriting after calling alg.hash for consistency with mapassign.
// Set hashWriting after calling t.hasher for consistency with mapassign.
h.flags ^= hashWriting
if h.buckets == nil {
......@@ -281,9 +281,9 @@ func mapdelete_fast64(t *maptype, h *hmap, key uint64) {
throw("concurrent map writes")
}
hash := t.key.alg.hash(noescape(unsafe.Pointer(&key)), uintptr(h.hash0))
hash := t.hasher(noescape(unsafe.Pointer(&key)), uintptr(h.hash0))
// Set hashWriting after calling alg.hash for consistency with mapdelete
// Set hashWriting after calling t.hasher for consistency with mapdelete
h.flags ^= hashWriting
bucket := hash & bucketMask(h.B)
......@@ -400,7 +400,7 @@ func evacuate_fast64(t *maptype, h *hmap, oldbucket uintptr) {
if !h.sameSizeGrow() {
// Compute hash to make our evacuation decision (whether we need
// to send this key/elem to bucket x or bucket y).
hash := t.key.alg.hash(k, uintptr(h.hash0))
hash := t.hasher(k, uintptr(h.hash0))
if hash&newbit != 0 {
useY = 1
}
......
......@@ -76,7 +76,7 @@ func mapaccess1_faststr(t *maptype, h *hmap, ky string) unsafe.Pointer {
return unsafe.Pointer(&zeroVal[0])
}
dohash:
hash := t.key.alg.hash(noescape(unsafe.Pointer(&ky)), uintptr(h.hash0))
hash := t.hasher(noescape(unsafe.Pointer(&ky)), uintptr(h.hash0))
m := bucketMask(h.B)
b := (*bmap)(add(h.buckets, (hash&m)*uintptr(t.bucketsize)))
if c := h.oldbuckets; c != nil {
......@@ -171,7 +171,7 @@ func mapaccess2_faststr(t *maptype, h *hmap, ky string) (unsafe.Pointer, bool) {
return unsafe.Pointer(&zeroVal[0]), false
}
dohash:
hash := t.key.alg.hash(noescape(unsafe.Pointer(&ky)), uintptr(h.hash0))
hash := t.hasher(noescape(unsafe.Pointer(&ky)), uintptr(h.hash0))
m := bucketMask(h.B)
b := (*bmap)(add(h.buckets, (hash&m)*uintptr(t.bucketsize)))
if c := h.oldbuckets; c != nil {
......@@ -211,9 +211,9 @@ func mapassign_faststr(t *maptype, h *hmap, s string) unsafe.Pointer {
throw("concurrent map writes")
}
key := stringStructOf(&s)
hash := t.key.alg.hash(noescape(unsafe.Pointer(&s)), uintptr(h.hash0))
hash := t.hasher(noescape(unsafe.Pointer(&s)), uintptr(h.hash0))
// Set hashWriting after calling alg.hash for consistency with mapassign.
// Set hashWriting after calling t.hasher for consistency with mapassign.
h.flags ^= hashWriting
if h.buckets == nil {
......@@ -307,9 +307,9 @@ func mapdelete_faststr(t *maptype, h *hmap, ky string) {
}
key := stringStructOf(&ky)
hash := t.key.alg.hash(noescape(unsafe.Pointer(&ky)), uintptr(h.hash0))
hash := t.hasher(noescape(unsafe.Pointer(&ky)), uintptr(h.hash0))
// Set hashWriting after calling alg.hash for consistency with mapdelete
// Set hashWriting after calling t.hasher for consistency with mapdelete
h.flags ^= hashWriting
bucket := hash & bucketMask(h.B)
......@@ -429,7 +429,7 @@ func evacuate_faststr(t *maptype, h *hmap, oldbucket uintptr) {
if !h.sameSizeGrow() {
// Compute hash to make our evacuation decision (whether we need
// to send this key/elem to bucket x or bucket y).
hash := t.key.alg.hash(k, uintptr(h.hash0))
hash := t.hasher(k, uintptr(h.hash0))
if hash&newbit != 0 {
useY = 1
}
......
......@@ -1156,3 +1156,64 @@ func TestMapTombstones(t *testing.T) {
}
runtime.MapTombstoneCheck(m)
}
type canString int
func (c canString) String() string {
return fmt.Sprintf("%d", int(c))
}
func TestMapInterfaceKey(t *testing.T) {
// Test all the special cases in runtime.typehash.
type GrabBag struct {
f32 float32
f64 float64
c64 complex64
c128 complex128
s string
i0 interface{}
i1 interface {
String() string
}
a [4]string
}
m := map[interface{}]bool{}
// Put a bunch of data in m, so that a bad hash is likely to
// lead to a bad bucket, which will lead to a missed lookup.
for i := 0; i < 1000; i++ {
m[i] = true
}
m[GrabBag{f32: 1.0}] = true
if !m[GrabBag{f32: 1.0}] {
panic("f32 not found")
}
m[GrabBag{f64: 1.0}] = true
if !m[GrabBag{f64: 1.0}] {
panic("f64 not found")
}
m[GrabBag{c64: 1.0i}] = true
if !m[GrabBag{c64: 1.0i}] {
panic("c64 not found")
}
m[GrabBag{c128: 1.0i}] = true
if !m[GrabBag{c128: 1.0i}] {
panic("c128 not found")
}
m[GrabBag{s: "foo"}] = true
if !m[GrabBag{s: "foo"}] {
panic("string not found")
}
m[GrabBag{i0: "foo"}] = true
if !m[GrabBag{i0: "foo"}] {
panic("interface{} not found")
}
m[GrabBag{i1: canString(5)}] = true
if !m[GrabBag{i1: canString(5)}] {
panic("interface{String() string} not found")
}
m[GrabBag{a: [4]string{"foo", "bar", "baz", "bop"}}] = true
if !m[GrabBag{a: [4]string{"foo", "bar", "baz", "bop"}}] {
panic("array not found")
}
}
......@@ -20,6 +20,7 @@ const (
tflagUncommon tflag = 1 << 0
tflagExtraStar tflag = 1 << 1
tflagNamed tflag = 1 << 2
tflagRegularMemory tflag = 1 << 3 // equal and hash can treat values of this type as a single region of t.size bytes
)
// Needs to be in sync with ../cmd/link/internal/ld/decodesym.go:/^func.commonsize,
......@@ -33,7 +34,9 @@ type _type struct {
align uint8
fieldalign uint8
kind uint8
alg *typeAlg
// function for comparing objects of this type
// (ptr to object A, ptr to object B) -> ==?
equal func(unsafe.Pointer, unsafe.Pointer) bool
// gcdata stores the GC type data for the garbage collector.
// If the KindGCProg bit is set in kind, gcdata is a GC program.
// Otherwise it is a ptrmask bitmap. See mbitmap.go for details.
......@@ -362,6 +365,8 @@ type maptype struct {
key *_type
elem *_type
bucket *_type // internal type representing a hash bucket
// function for hashing keys (ptr to key, seed) -> hash
hasher func(unsafe.Pointer, uintptr) uintptr
keysize uint8 // size of key slot
elemsize uint8 // size of elem slot
bucketsize uint16 // size of bucket
......@@ -497,6 +502,16 @@ func (n name) pkgPath() string {
return pkgPathName.name()
}
func (n name) isBlank() bool {
if n.bytes == nil {
return false
}
if n.nameLen() != 1 {
return false
}
return *n.data(3) == '_'
}
// typelinksinit scans the types from extra modules and builds the
// moduledata typemap used to de-duplicate type pointers.
func typelinksinit() {
......
......@@ -71,7 +71,7 @@ func test5() {
}
func test6() {
defer mustRecover("unhashable")
defer mustRecover("unhashable type main.T")
var x T
var z interface{} = x
m := make(map[interface{}]int)
......
Markdown is supported
0%
or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment