Commit 426bfbe9 authored by Ian Lance Taylor's avatar Ian Lance Taylor

runtime: move sighandler into signal_unix.go

We couldn't do this before because sighandler was compiled for nacl.

Updates #30439

Change-Id: Ieec9938b6a1796c48d251cd8b1db1a42c25f3943
Reviewed-on: https://go-review.googlesource.com/c/go/+/200739
Run-TryBot: Ian Lance Taylor <iant@golang.org>
Reviewed-by: default avatarBrad Fitzpatrick <bradfitz@golang.org>
TryBot-Result: Gobot Gobot <gobot@golang.org>
parent df380693
// Copyright 2013 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
// +build aix darwin dragonfly freebsd linux netbsd openbsd solaris
package runtime
import (
"unsafe"
)
// crashing is the number of m's we have waited for when implementing
// GOTRACEBACK=crash when a signal is received.
var crashing int32
// testSigtrap is used by the runtime tests. If non-nil, it is called
// on SIGTRAP. If it returns true, the normal behavior on SIGTRAP is
// suppressed.
var testSigtrap func(info *siginfo, ctxt *sigctxt, gp *g) bool
// sighandler is invoked when a signal occurs. The global g will be
// set to a gsignal goroutine and we will be running on the alternate
// signal stack. The parameter g will be the value of the global g
// when the signal occurred. The sig, info, and ctxt parameters are
// from the system signal handler: they are the parameters passed when
// the SA is passed to the sigaction system call.
//
// The garbage collector may have stopped the world, so write barriers
// are not allowed.
//
//go:nowritebarrierrec
func sighandler(sig uint32, info *siginfo, ctxt unsafe.Pointer, gp *g) {
_g_ := getg()
c := &sigctxt{info, ctxt}
if sig == _SIGPROF {
sigprof(c.sigpc(), c.sigsp(), c.siglr(), gp, _g_.m)
return
}
if sig == _SIGTRAP && testSigtrap != nil && testSigtrap(info, (*sigctxt)(noescape(unsafe.Pointer(c))), gp) {
return
}
flags := int32(_SigThrow)
if sig < uint32(len(sigtable)) {
flags = sigtable[sig].flags
}
if flags&_SigPanic != 0 && gp.throwsplit {
// We can't safely sigpanic because it may grow the
// stack. Abort in the signal handler instead.
flags = (flags &^ _SigPanic) | _SigThrow
}
if isAbortPC(c.sigpc()) {
// On many architectures, the abort function just
// causes a memory fault. Don't turn that into a panic.
flags = _SigThrow
}
if c.sigcode() != _SI_USER && flags&_SigPanic != 0 {
// The signal is going to cause a panic.
// Arrange the stack so that it looks like the point
// where the signal occurred made a call to the
// function sigpanic. Then set the PC to sigpanic.
// Have to pass arguments out of band since
// augmenting the stack frame would break
// the unwinding code.
gp.sig = sig
gp.sigcode0 = uintptr(c.sigcode())
gp.sigcode1 = uintptr(c.fault())
gp.sigpc = c.sigpc()
c.preparePanic(sig, gp)
return
}
if c.sigcode() == _SI_USER || flags&_SigNotify != 0 {
if sigsend(sig) {
return
}
}
if c.sigcode() == _SI_USER && signal_ignored(sig) {
return
}
if flags&_SigKill != 0 {
dieFromSignal(sig)
}
if flags&_SigThrow == 0 {
return
}
_g_.m.throwing = 1
_g_.m.caughtsig.set(gp)
if crashing == 0 {
startpanic_m()
}
if sig < uint32(len(sigtable)) {
print(sigtable[sig].name, "\n")
} else {
print("Signal ", sig, "\n")
}
print("PC=", hex(c.sigpc()), " m=", _g_.m.id, " sigcode=", c.sigcode(), "\n")
if _g_.m.lockedg != 0 && _g_.m.ncgo > 0 && gp == _g_.m.g0 {
print("signal arrived during cgo execution\n")
gp = _g_.m.lockedg.ptr()
}
print("\n")
level, _, docrash := gotraceback()
if level > 0 {
goroutineheader(gp)
tracebacktrap(c.sigpc(), c.sigsp(), c.siglr(), gp)
if crashing > 0 && gp != _g_.m.curg && _g_.m.curg != nil && readgstatus(_g_.m.curg)&^_Gscan == _Grunning {
// tracebackothers on original m skipped this one; trace it now.
goroutineheader(_g_.m.curg)
traceback(^uintptr(0), ^uintptr(0), 0, _g_.m.curg)
} else if crashing == 0 {
tracebackothers(gp)
print("\n")
}
dumpregs(c)
}
if docrash {
crashing++
if crashing < mcount()-int32(extraMCount) {
// There are other m's that need to dump their stacks.
// Relay SIGQUIT to the next m by sending it to the current process.
// All m's that have already received SIGQUIT have signal masks blocking
// receipt of any signals, so the SIGQUIT will go to an m that hasn't seen it yet.
// When the last m receives the SIGQUIT, it will fall through to the call to
// crash below. Just in case the relaying gets botched, each m involved in
// the relay sleeps for 5 seconds and then does the crash/exit itself.
// In expected operation, the last m has received the SIGQUIT and run
// crash/exit and the process is gone, all long before any of the
// 5-second sleeps have finished.
print("\n-----\n\n")
raiseproc(_SIGQUIT)
usleep(5 * 1000 * 1000)
}
crash()
}
printDebugLog()
exit(2)
}
......@@ -370,6 +370,149 @@ func sigtrampgo(sig uint32, info *siginfo, ctx unsafe.Pointer) {
}
}
// crashing is the number of m's we have waited for when implementing
// GOTRACEBACK=crash when a signal is received.
var crashing int32
// testSigtrap is used by the runtime tests. If non-nil, it is called
// on SIGTRAP. If it returns true, the normal behavior on SIGTRAP is
// suppressed.
var testSigtrap func(info *siginfo, ctxt *sigctxt, gp *g) bool
// sighandler is invoked when a signal occurs. The global g will be
// set to a gsignal goroutine and we will be running on the alternate
// signal stack. The parameter g will be the value of the global g
// when the signal occurred. The sig, info, and ctxt parameters are
// from the system signal handler: they are the parameters passed when
// the SA is passed to the sigaction system call.
//
// The garbage collector may have stopped the world, so write barriers
// are not allowed.
//
//go:nowritebarrierrec
func sighandler(sig uint32, info *siginfo, ctxt unsafe.Pointer, gp *g) {
_g_ := getg()
c := &sigctxt{info, ctxt}
if sig == _SIGPROF {
sigprof(c.sigpc(), c.sigsp(), c.siglr(), gp, _g_.m)
return
}
if sig == _SIGTRAP && testSigtrap != nil && testSigtrap(info, (*sigctxt)(noescape(unsafe.Pointer(c))), gp) {
return
}
flags := int32(_SigThrow)
if sig < uint32(len(sigtable)) {
flags = sigtable[sig].flags
}
if flags&_SigPanic != 0 && gp.throwsplit {
// We can't safely sigpanic because it may grow the
// stack. Abort in the signal handler instead.
flags = (flags &^ _SigPanic) | _SigThrow
}
if isAbortPC(c.sigpc()) {
// On many architectures, the abort function just
// causes a memory fault. Don't turn that into a panic.
flags = _SigThrow
}
if c.sigcode() != _SI_USER && flags&_SigPanic != 0 {
// The signal is going to cause a panic.
// Arrange the stack so that it looks like the point
// where the signal occurred made a call to the
// function sigpanic. Then set the PC to sigpanic.
// Have to pass arguments out of band since
// augmenting the stack frame would break
// the unwinding code.
gp.sig = sig
gp.sigcode0 = uintptr(c.sigcode())
gp.sigcode1 = uintptr(c.fault())
gp.sigpc = c.sigpc()
c.preparePanic(sig, gp)
return
}
if c.sigcode() == _SI_USER || flags&_SigNotify != 0 {
if sigsend(sig) {
return
}
}
if c.sigcode() == _SI_USER && signal_ignored(sig) {
return
}
if flags&_SigKill != 0 {
dieFromSignal(sig)
}
if flags&_SigThrow == 0 {
return
}
_g_.m.throwing = 1
_g_.m.caughtsig.set(gp)
if crashing == 0 {
startpanic_m()
}
if sig < uint32(len(sigtable)) {
print(sigtable[sig].name, "\n")
} else {
print("Signal ", sig, "\n")
}
print("PC=", hex(c.sigpc()), " m=", _g_.m.id, " sigcode=", c.sigcode(), "\n")
if _g_.m.lockedg != 0 && _g_.m.ncgo > 0 && gp == _g_.m.g0 {
print("signal arrived during cgo execution\n")
gp = _g_.m.lockedg.ptr()
}
print("\n")
level, _, docrash := gotraceback()
if level > 0 {
goroutineheader(gp)
tracebacktrap(c.sigpc(), c.sigsp(), c.siglr(), gp)
if crashing > 0 && gp != _g_.m.curg && _g_.m.curg != nil && readgstatus(_g_.m.curg)&^_Gscan == _Grunning {
// tracebackothers on original m skipped this one; trace it now.
goroutineheader(_g_.m.curg)
traceback(^uintptr(0), ^uintptr(0), 0, _g_.m.curg)
} else if crashing == 0 {
tracebackothers(gp)
print("\n")
}
dumpregs(c)
}
if docrash {
crashing++
if crashing < mcount()-int32(extraMCount) {
// There are other m's that need to dump their stacks.
// Relay SIGQUIT to the next m by sending it to the current process.
// All m's that have already received SIGQUIT have signal masks blocking
// receipt of any signals, so the SIGQUIT will go to an m that hasn't seen it yet.
// When the last m receives the SIGQUIT, it will fall through to the call to
// crash below. Just in case the relaying gets botched, each m involved in
// the relay sleeps for 5 seconds and then does the crash/exit itself.
// In expected operation, the last m has received the SIGQUIT and run
// crash/exit and the process is gone, all long before any of the
// 5-second sleeps have finished.
print("\n-----\n\n")
raiseproc(_SIGQUIT)
usleep(5 * 1000 * 1000)
}
crash()
}
printDebugLog()
exit(2)
}
// sigpanic turns a synchronous signal into a run-time panic.
// If the signal handler sees a synchronous panic, it arranges the
// stack to look like the function where the signal occurred called
......
Markdown is supported
0%
or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment