Commit 581526ce authored by Matthew Dempsky's avatar Matthew Dempsky

cmd/compile: rewrite untyped constant conversion logic

This CL detangles the hairy mess that was convlit+defaultlit. In
particular, it makes the following changes:

1. convlit1 now follows the standard typecheck behavior of setting
"n.Type = nil" if there's an error. Notably, this means for a lot of
test cases, we now avoid reporting useless follow-on error messages.
For example, after reporting that "1 << s + 1.0" has an invalid shift,
we no longer also report that it can't be assigned to string.

2. Previously, assignconvfn had some extra logic for trying to
suppress errors from convlit/defaultlit so that it could provide its
own errors with better context information. Instead, this extra
context information is now passed down into convlit1 directly.

3. Relatedly, this CL also removes redundant calls to defaultlit prior
to assignconv. As a consequence, when an expression doesn't make sense
for a particular assignment (e.g., assigning an untyped string to an
integer), the error messages now say "untyped string" instead of just
"string". This is more consistent with go/types behavior.

4. defaultlit2 is now smarter about only trying to convert pairs of
untyped constants when it's likely to succeed. This allows us to
report better error messages for things like 3+"x"; instead of "cannot
convert 3 to string" we now report "mismatched types untyped number
and untyped string".

Passes toolstash-check.

Change-Id: I26822a02dc35855bd0ac774907b1cf5737e91882
Reviewed-on: https://go-review.googlesource.com/c/go/+/187657
Run-TryBot: Matthew Dempsky <mdempsky@google.com>
TryBot-Result: Gobot Gobot <gobot@golang.org>
Reviewed-by: default avatarRobert Griesemer <gri@golang.org>
parent ad1f2c96
......@@ -204,223 +204,207 @@ func trunccmplxlit(oldv *Mpcplx, t *types.Type) *Mpcplx {
return cv
}
// canReuseNode indicates whether it is known to be safe
// to reuse a Node.
type canReuseNode bool
// TODO(mdempsky): Replace these with better APIs.
func convlit(n *Node, t *types.Type) *Node { return convlit1(n, t, false, nil) }
func defaultlit(n *Node, t *types.Type) *Node { return convlit1(n, t, false, nil) }
const (
noReuse canReuseNode = false // not necessarily safe to reuse
reuseOK canReuseNode = true // safe to reuse
)
// convert n, if literal, to type t.
// implicit conversion.
// The result of convlit MUST be assigned back to n, e.g.
// n.Left = convlit(n.Left, t)
func convlit(n *Node, t *types.Type) *Node {
return convlit1(n, t, false, noReuse)
}
// convlit1 converts an untyped expression n to type t. If n already
// has a type, convlit1 has no effect.
//
// For explicit conversions, t must be non-nil, and integer-to-string
// conversions are allowed.
//
// For implicit conversions (e.g., assignments), t may be nil; if so,
// n is converted to its default type.
//
// If there's an error converting n to t, context is used in the error
// message.
func convlit1(n *Node, t *types.Type, explicit bool, context func() string) *Node {
if explicit && t == nil {
Fatalf("explicit conversion missing type")
}
if t != nil && t.IsUntyped() {
Fatalf("bad conversion to untyped: %v", t)
}
// convlit1 converts n, if literal, to type t.
// It returns a new node if necessary.
// The result of convlit1 MUST be assigned back to n, e.g.
// n.Left = convlit1(n.Left, t, explicit, reuse)
func convlit1(n *Node, t *types.Type, explicit bool, reuse canReuseNode) *Node {
if n == nil || t == nil || n.Type == nil || t.IsUntyped() || n.Type == t {
if n == nil || n.Type == nil {
// Allow sloppy callers.
return n
}
if !explicit && !n.Type.IsUntyped() {
if !n.Type.IsUntyped() {
// Already typed; nothing to do.
return n
}
if n.Op == OLITERAL && !reuse {
if n.Op == OLITERAL {
// Can't always set n.Type directly on OLITERAL nodes.
// See discussion on CL 20813.
n = n.rawcopy()
reuse = true
}
switch n.Op {
default:
if n.Type == types.Idealbool {
if !t.IsBoolean() {
t = types.Types[TBOOL]
}
switch n.Op {
case ONOT:
n.Left = convlit(n.Left, t)
case OANDAND, OOROR:
n.Left = convlit(n.Left, t)
n.Right = convlit(n.Right, t)
}
n.Type = t
// Nil is technically not a constant, so handle it specially.
if n.Type.Etype == TNIL {
if t == nil {
yyerror("use of untyped nil")
n.SetDiag(true)
n.Type = nil
return n
}
if n.Type.IsUntyped() {
if t.IsInterface() {
n.Left, n.Right = defaultlit2(n.Left, n.Right, true)
n.Type = n.Left.Type // same as n.Right.Type per defaultlit2
} else {
n.Left = convlit(n.Left, t)
n.Right = convlit(n.Right, t)
n.Type = t
}
if !t.HasNil() {
// Leave for caller to handle.
return n
}
n.Type = t
return n
}
// target is invalid type for a constant? leave alone.
case OLITERAL:
if !okforconst[t.Etype] && n.Type.Etype != TNIL {
return defaultlitreuse(n, nil, reuse)
}
if t == nil || !okforconst[t.Etype] {
t = defaultType(idealkind(n))
}
case OLSH, ORSH:
n.Left = convlit1(n.Left, t, explicit && n.Left.Type.IsUntyped(), noReuse)
t = n.Left.Type
if t != nil && t.Etype == TIDEAL && n.Val().Ctype() != CTINT {
n.SetVal(toint(n.Val()))
}
if t != nil && !t.IsInteger() {
yyerror("invalid operation: %v (shift of type %v)", n, t)
t = nil
}
switch n.Op {
default:
Fatalf("unexpected untyped expression: %v", n)
case OLITERAL:
v := convertVal(n.Val(), t, explicit)
if v.U == nil {
break
}
n.SetVal(v)
n.Type = t
return n
case OCOMPLEX:
if n.Type.Etype == TIDEAL {
switch t.Etype {
default:
// If trying to convert to non-complex type,
// leave as complex128 and let typechecker complain.
t = types.Types[TCOMPLEX128]
fallthrough
case types.TCOMPLEX128:
n.Type = t
n.Left = convlit(n.Left, types.Types[TFLOAT64])
n.Right = convlit(n.Right, types.Types[TFLOAT64])
case TCOMPLEX64:
n.Type = t
n.Left = convlit(n.Left, types.Types[TFLOAT32])
n.Right = convlit(n.Right, types.Types[TFLOAT32])
}
case OPLUS, ONEG, OBITNOT, ONOT, OREAL, OIMAG:
ot := operandType(n.Op, t)
if ot == nil {
n = defaultlit(n, nil)
break
}
n.Left = convlit(n.Left, ot)
if n.Left.Type == nil {
n.Type = nil
return n
}
n.Type = t
return n
}
// avoid repeated calculations, errors
if types.Identical(n.Type, t) {
return n
}
ct := consttype(n)
var et types.EType
if ct == 0 {
goto bad
}
case OADD, OSUB, OMUL, ODIV, OMOD, OOR, OXOR, OAND, OANDNOT, OOROR, OANDAND, OCOMPLEX:
ot := operandType(n.Op, t)
if ot == nil {
n = defaultlit(n, nil)
break
}
et = t.Etype
if et == TINTER {
if ct == CTNIL && n.Type == types.Types[TNIL] {
n.Type = t
n.Left = convlit(n.Left, ot)
n.Right = convlit(n.Right, ot)
if n.Left.Type == nil || n.Right.Type == nil {
n.Type = nil
return n
}
return defaultlitreuse(n, nil, reuse)
}
switch ct {
default:
goto bad
case CTNIL:
switch et {
default:
if !types.Identical(n.Left.Type, n.Right.Type) {
yyerror("invalid operation: %v (mismatched types %v and %v)", n, n.Left.Type, n.Right.Type)
n.Type = nil
goto bad
// let normal conversion code handle it
case TSTRING:
return n
}
case TARRAY:
goto bad
n.Type = t
return n
case TCHAN, TFUNC, TINTER, TMAP, TPTR, TSLICE, TUNSAFEPTR:
case OEQ, ONE, OLT, OLE, OGT, OGE:
if !t.IsBoolean() {
break
}
n.Type = t
return n
case CTSTR, CTBOOL:
if et != n.Type.Etype {
goto bad
}
case CTINT, CTRUNE, CTFLT, CTCPLX:
if n.Type.Etype == TUNSAFEPTR && t.Etype != TUINTPTR {
goto bad
case OLSH, ORSH:
n.Left = convlit1(n.Left, t, explicit, nil)
n.Type = n.Left.Type
if n.Type != nil && !n.Type.IsInteger() {
yyerror("invalid operation: %v (shift of type %v)", n, n.Type)
n.Type = nil
}
ct := n.Val().Ctype()
if isInt[et] {
switch ct {
default:
goto bad
case CTCPLX, CTFLT, CTRUNE:
n.SetVal(toint(n.Val()))
fallthrough
case CTINT:
overflow(n.Val(), t)
}
} else if isFloat[et] {
switch ct {
default:
goto bad
case CTCPLX, CTINT, CTRUNE:
n.SetVal(toflt(n.Val()))
fallthrough
case CTFLT:
n.SetVal(Val{truncfltlit(n.Val().U.(*Mpflt), t)})
}
} else if isComplex[et] {
switch ct {
default:
goto bad
case CTFLT, CTINT, CTRUNE:
n.SetVal(tocplx(n.Val()))
fallthrough
return n
}
case CTCPLX:
n.SetVal(Val{trunccmplxlit(n.Val().U.(*Mpcplx), t)})
if !n.Diag() {
if !t.Broke() {
if explicit {
yyerror("cannot convert %L to type %v", n, t)
} else if context != nil {
yyerror("cannot use %L as type %v in %s", n, t, context())
} else {
yyerror("cannot use %L as type %v", n, t)
}
} else if et == types.TSTRING && (ct == CTINT || ct == CTRUNE) && explicit {
n.SetVal(tostr(n.Val()))
} else {
goto bad
}
n.SetDiag(true)
}
n.Type = t
n.Type = nil
return n
}
bad:
if !n.Diag() {
if !t.Broke() {
yyerror("cannot convert %L to type %v", n, t)
func operandType(op Op, t *types.Type) *types.Type {
switch op {
case OCOMPLEX:
if t.IsComplex() {
return floatForComplex(t)
}
case OREAL, OIMAG:
if t.IsFloat() {
return complexForFloat(t)
}
default:
if okfor[op][t.Etype] {
return t
}
n.SetDiag(true)
}
return nil
}
if n.Type.IsUntyped() {
n = defaultlitreuse(n, nil, reuse)
// convertVal converts v into a representation appropriate for t. If
// no such representation exists, it returns Val{} instead.
//
// If explicit is true, then conversions from integer to string are
// also allowed.
func convertVal(v Val, t *types.Type, explicit bool) Val {
switch ct := v.Ctype(); ct {
case CTBOOL:
if t.IsBoolean() {
return v
}
case CTSTR:
if t.IsString() {
return v
}
case CTINT, CTRUNE:
if explicit && t.IsString() {
return tostr(v)
}
fallthrough
case CTFLT, CTCPLX:
switch {
case t.IsInteger():
v = toint(v)
overflow(v, t)
return v
case t.IsFloat():
v = toflt(v)
v = Val{truncfltlit(v.U.(*Mpflt), t)}
return v
case t.IsComplex():
v = tocplx(v)
v = Val{trunccmplxlit(v.U.(*Mpcplx), t)}
return v
}
}
return n
return Val{}
}
func tocplx(v Val) Val {
......@@ -609,8 +593,7 @@ func evconst(n *Node) {
case OCONV:
if okforconst[n.Type.Etype] && nl.Op == OLITERAL {
// TODO(mdempsky): There should be a convval function.
setconst(n, convlit1(nl, n.Type, true, false).Val())
setconst(n, convertVal(nl.Val(), n.Type, true))
}
case OCONVNOP:
......@@ -1128,102 +1111,6 @@ func idealkind(n *Node) Ctype {
}
}
// The result of defaultlit MUST be assigned back to n, e.g.
// n.Left = defaultlit(n.Left, t)
func defaultlit(n *Node, t *types.Type) *Node {
return defaultlitreuse(n, t, noReuse)
}
// The result of defaultlitreuse MUST be assigned back to n, e.g.
// n.Left = defaultlitreuse(n.Left, t, reuse)
func defaultlitreuse(n *Node, t *types.Type, reuse canReuseNode) *Node {
if n == nil || !n.Type.IsUntyped() {
return n
}
if n.Op == OLITERAL && !reuse {
n = n.rawcopy()
reuse = true
}
lno := setlineno(n)
ctype := idealkind(n)
var t1 *types.Type
switch ctype {
default:
if t != nil {
n = convlit(n, t)
lineno = lno
return n
}
switch n.Val().Ctype() {
case CTNIL:
lineno = lno
if !n.Diag() {
yyerror("use of untyped nil")
n.SetDiag(true)
}
n.Type = nil
case CTSTR:
t1 := types.Types[TSTRING]
n = convlit1(n, t1, false, reuse)
default:
yyerror("defaultlit: unknown literal: %v", n)
}
lineno = lno
return n
case CTxxx:
Fatalf("defaultlit: idealkind is CTxxx: %+v", n)
case CTBOOL:
t1 := types.Types[TBOOL]
if t != nil && t.IsBoolean() {
t1 = t
}
n = convlit1(n, t1, false, reuse)
lineno = lno
return n
case CTINT:
t1 = types.Types[TINT]
case CTRUNE:
t1 = types.Runetype
case CTFLT:
t1 = types.Types[TFLOAT64]
case CTCPLX:
t1 = types.Types[TCOMPLEX128]
}
// Note: n.Val().Ctype() can be CTxxx (not a constant) here
// in the case of an untyped non-constant value, like 1<<i.
v1 := n.Val()
if t != nil {
if t.IsInteger() {
t1 = t
v1 = toint(n.Val())
} else if t.IsFloat() {
t1 = t
v1 = toflt(n.Val())
} else if t.IsComplex() {
t1 = t
v1 = tocplx(n.Val())
}
if n.Val().Ctype() != CTxxx {
n.SetVal(v1)
}
}
if n.Val().Ctype() != CTxxx {
overflow(n.Val(), t1)
}
n = convlit1(n, t1, false, reuse)
lineno = lno
return n
}
// defaultlit on both nodes simultaneously;
// if they're both ideal going in they better
// get the same type going out.
......@@ -1248,37 +1135,46 @@ func defaultlit2(l *Node, r *Node, force bool) (*Node, *Node) {
return l, r
}
if l.Type.IsBoolean() {
l = convlit(l, types.Types[TBOOL])
r = convlit(r, types.Types[TBOOL])
}
lkind := idealkind(l)
rkind := idealkind(r)
if lkind == CTCPLX || rkind == CTCPLX {
l = convlit(l, types.Types[TCOMPLEX128])
r = convlit(r, types.Types[TCOMPLEX128])
// Can't mix bool with non-bool, string with non-string, or nil with anything (untyped).
if l.Type.IsBoolean() != r.Type.IsBoolean() {
return l, r
}
if lkind == CTFLT || rkind == CTFLT {
l = convlit(l, types.Types[TFLOAT64])
r = convlit(r, types.Types[TFLOAT64])
if l.Type.IsString() != r.Type.IsString() {
return l, r
}
if lkind == CTRUNE || rkind == CTRUNE {
l = convlit(l, types.Runetype)
r = convlit(r, types.Runetype)
if l.isNil() || r.isNil() {
return l, r
}
l = convlit(l, types.Types[TINT])
r = convlit(r, types.Types[TINT])
k := idealkind(l)
if rk := idealkind(r); rk > k {
k = rk
}
t := defaultType(k)
l = convlit(l, t)
r = convlit(r, t)
return l, r
}
func defaultType(k Ctype) *types.Type {
switch k {
case CTBOOL:
return types.Types[TBOOL]
case CTSTR:
return types.Types[TSTRING]
case CTINT:
return types.Types[TINT]
case CTRUNE:
return types.Runetype
case CTFLT:
return types.Types[TFLOAT64]
case CTCPLX:
return types.Types[TCOMPLEX128]
}
Fatalf("bad idealkind: %v", k)
return nil
}
// strlit returns the value of a literal string Node as a string.
func strlit(n *Node) string {
return n.Val().U.(string)
......
......@@ -1549,11 +1549,25 @@ func (s *state) ssaOp(op Op, t *types.Type) ssa.Op {
}
func floatForComplex(t *types.Type) *types.Type {
if t.Size() == 8 {
switch t.Etype {
case TCOMPLEX64:
return types.Types[TFLOAT32]
} else {
case TCOMPLEX128:
return types.Types[TFLOAT64]
}
Fatalf("unexpected type: %v", t)
return nil
}
func complexForFloat(t *types.Type) *types.Type {
switch t.Etype {
case TFLOAT32:
return types.Types[TCOMPLEX64]
case TFLOAT64:
return types.Types[TCOMPLEX128]
}
Fatalf("unexpected type: %v", t)
return nil
}
type opAndTwoTypes struct {
......
......@@ -798,11 +798,10 @@ func assignconvfn(n *Node, t *types.Type, context func() string) *Node {
yyerror("use of untyped nil")
}
old := n
od := old.Diag()
old.SetDiag(true) // silence errors about n; we'll issue one below
n = defaultlit(n, t)
old.SetDiag(od)
n = convlit1(n, t, false, context)
if n.Type == nil {
return n
}
if t.Etype == TBLANK {
return n
}
......@@ -826,9 +825,7 @@ func assignconvfn(n *Node, t *types.Type, context func() string) *Node {
var why string
op := assignop(n.Type, t, &why)
if op == 0 {
if !old.Diag() {
yyerror("cannot use %L as type %v in %s%s", n, t, context(), why)
}
yyerror("cannot use %L as type %v in %s%s", n, t, context(), why)
op = OCONV
}
......
......@@ -709,7 +709,11 @@ func typecheck1(n *Node, top int) (res *Node) {
if t.Etype != TIDEAL && !types.Identical(l.Type, r.Type) {
l, r = defaultlit2(l, r, true)
if r.Type.IsInterface() == l.Type.IsInterface() || aop == 0 {
if l.Type == nil || r.Type == nil {
n.Type = nil
return n
}
if l.Type.IsInterface() == r.Type.IsInterface() || aop == 0 {
yyerror("invalid operation: %v (mismatched types %v and %v)", n, l.Type, r.Type)
n.Type = nil
return n
......@@ -1049,10 +1053,7 @@ func typecheck1(n *Node, top int) (res *Node) {
}
case TMAP:
n.Right = defaultlit(n.Right, t.Key())
if n.Right.Type != nil {
n.Right = assignconv(n.Right, t.Key(), "map index")
}
n.Right = assignconv(n.Right, t.Key(), "map index")
n.Type = t.Elem()
n.Op = OINDEXMAP
n.ResetAux()
......@@ -1104,13 +1105,11 @@ func typecheck1(n *Node, top int) (res *Node) {
return n
}
n.Right = defaultlit(n.Right, t.Elem())
r := n.Right
if r.Type == nil {
n.Right = assignconv(n.Right, t.Elem(), "send")
if n.Right.Type == nil {
n.Type = nil
return n
}
n.Right = assignconv(r, t.Elem(), "send")
n.Type = nil
case OSLICEHEADER:
......@@ -1638,7 +1637,7 @@ func typecheck1(n *Node, top int) (res *Node) {
ok |= ctxExpr
checkwidth(n.Type) // ensure width is calculated for backend
n.Left = typecheck(n.Left, ctxExpr)
n.Left = convlit1(n.Left, n.Type, true, noReuse)
n.Left = convlit1(n.Left, n.Type, true, nil)
t := n.Left.Type
if t == nil || n.Type == nil {
n.Type = nil
......@@ -2862,7 +2861,6 @@ func typecheckcomplit(n *Node) (res *Node) {
r := *vp
pushtype(r, t.Elem())
r = typecheck(r, ctxExpr)
r = defaultlit(r, t.Elem())
*vp = assignconv(r, t.Elem(), "array or slice literal")
i++
......@@ -2900,14 +2898,12 @@ func typecheckcomplit(n *Node) (res *Node) {
r := l.Left
pushtype(r, t.Key())
r = typecheck(r, ctxExpr)
r = defaultlit(r, t.Key())
l.Left = assignconv(r, t.Key(), "map key")
cs.add(lineno, l.Left, "key", "map literal")
r = l.Right
pushtype(r, t.Elem())
r = typecheck(r, ctxExpr)
r = defaultlit(r, t.Elem())
l.Right = assignconv(r, t.Elem(), "map value")
}
......
......@@ -1281,6 +1281,15 @@ func (t *Type) IsPtrShaped() bool {
t.Etype == TMAP || t.Etype == TCHAN || t.Etype == TFUNC
}
// HasNil reports whether the set of values determined by t includes nil.
func (t *Type) HasNil() bool {
switch t.Etype {
case TCHAN, TFUNC, TINTER, TMAP, TPTR, TSLICE, TUNSAFEPTR:
return true
}
return false
}
func (t *Type) IsString() bool {
return t.Etype == TSTRING
}
......
......@@ -28,8 +28,8 @@ var _ = int(unsafe.Pointer(uintptr(65))) // ERROR "convert"
// implicit conversions merit scrutiny
var s string
var bad1 string = 1 // ERROR "conver|incompatible|invalid|cannot"
var bad2 = s + 1 // ERROR "conver|incompatible|invalid"
var bad3 = s + 'a' // ERROR "conver|incompatible|invalid"
var bad2 = s + 1 // ERROR "conver|incompatible|invalid|cannot"
var bad3 = s + 'a' // ERROR "conver|incompatible|invalid|cannot"
var bad4 = "a" + 1 // ERROR "literals|incompatible|convert|invalid"
var bad5 = "a" + 'a' // ERROR "literals|incompatible|convert|invalid"
......
......@@ -18,7 +18,7 @@ var (
_ = sum()
_ = sum(1.0, 2.0)
_ = sum(1.5) // ERROR "integer"
_ = sum("hello") // ERROR ".hello. .type string. as type int|incompatible"
_ = sum("hello") // ERROR ".hello. .type untyped string. as type int|incompatible"
_ = sum([]int{1}) // ERROR "\[\]int literal.*as type int|incompatible"
)
......
......@@ -12,6 +12,5 @@ type Foo struct {
func main() {
var s []int
var _ string = append(s, Foo{""}) // ERROR "cannot use .. \(type string\) as type int in field value" "cannot use Foo literal \(type Foo\) as type int in append" "cannot use append\(s\, Foo literal\) \(type \[\]int\) as type string in assignment"
var _ string = append(s, Foo{""}) // ERROR "cannot use .. \(type untyped string\) as type int in field value" "cannot use Foo literal \(type Foo\) as type int in append" "cannot use append\(s\, Foo literal\) \(type \[\]int\) as type string in assignment"
}
......@@ -8,4 +8,4 @@
package p
var _ = []int{a: true, true} // ERROR "undefined: a" "cannot use true \(type bool\) as type int in array or slice literal"
var _ = []int{a: true, true} // ERROR "undefined: a" "cannot use true \(type untyped bool\) as type int in array or slice literal"
......@@ -11,5 +11,5 @@ package main
func main() {
_ = copy(nil, []int{}) // ERROR "use of untyped nil"
_ = copy([]int{}, nil) // ERROR "use of untyped nil"
_ = 1+true // ERROR "cannot convert true" "mismatched types int and bool"
_ = 1 + true // ERROR "mismatched types untyped number and untyped bool"
}
......@@ -10,8 +10,8 @@
package main
func main() {
_ = []byte{"foo"} // ERROR "cannot convert"
_ = []int{"foo"} // ERROR "cannot convert"
_ = []rune{"foo"} // ERROR "cannot convert"
_ = []byte{"foo"} // ERROR "cannot use"
_ = []int{"foo"} // ERROR "cannot use"
_ = []rune{"foo"} // ERROR "cannot use"
_ = []string{"foo"} // OK
}
......@@ -13,7 +13,7 @@ func main() {
var n byte // ERROR "not a type|expected type"
var y = float32(0) // ERROR "cannot call|expected function"
const (
a = 1 + iota // ERROR "invalid operation|incompatible types" "cannot convert iota"
a = 1 + iota // ERROR "invalid operation|incompatible types"
)
}
......
......@@ -18,13 +18,13 @@ func h(x float64) int { return 0 }
var (
s uint = 33
u = 1.0 << s // ERROR "invalid operation|shift of non-integer operand"
v float32 = 1 << s // ERROR "invalid" "as type float32"
v float32 = 1 << s // ERROR "invalid"
)
// non-constant shift expressions
var (
e1 = g(2.0 << s) // ERROR "invalid|shift of non-integer operand" "as type interface"
f1 = h(2 << s) // ERROR "invalid" "as type float64"
e1 = g(2.0 << s) // ERROR "invalid|shift of non-integer operand"
f1 = h(2 << s) // ERROR "invalid"
g1 int64 = 1.1 << s // ERROR "truncated"
)
......@@ -66,6 +66,7 @@ func _() {
u2 = 1<<s != 1.0 // ERROR "non-integer|float64"
v float32 = 1 << s // ERROR "non-integer|float32"
w int64 = 1.0 << 33 // 1.0<<33 is a constant shift expression
_, _, _, _, _, _, _, _, _, _ = j, k, m, n, o, u, u1, u2, v, w
)
......
Markdown is supported
0%
or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment