Commit 61d8a337 authored by Robert Griesemer's avatar Robert Griesemer

spec: more precise description of select statement

- use previously defined terms (with links) throughout
- specify evaluation order more precisely (in particular,
  the evaluation time of rhs expressions in receive cases
  was not specified)
- added extra example case

Not a language change.

Description matches observed behavior of code compiled
with gc and gccgo.

Fixes #7669.

LGTM=iant, r, rsc
R=r, rsc, iant, ken, josharian
CC=golang-codereviews
https://golang.org/cl/91230043
parent 51f3cbab
<!--{
"Title": "The Go Programming Language Specification",
"Subtitle": "Version of May 7, 2014",
"Subtitle": "Version of May 14, 2014",
"Path": "/ref/spec"
}-->
......@@ -1331,8 +1331,8 @@ make(chan int, 100)
<p>
The capacity, in number of elements, sets the size of the buffer in the channel.
If the capacity is zero or absent, the channel is unbuffered and communication
succeeds only when both a sender and receiver are ready. Otherwise, the channel is
buffered and communication operations succeed without blocking if the buffer
succeeds only when both a sender and receiver are ready. Otherwise, the channel
is buffered and communication succeeds without blocking if the buffer
is not full (sends) or not empty (receives).
A <code>nil</code> channel is never ready for communication.
</p>
......@@ -4879,8 +4879,12 @@ go func(ch chan&lt;- bool) { for { sleep(10); ch &lt;- true; }} (c)
<h3 id="Select_statements">Select statements</h3>
<p>
A "select" statement chooses which of a set of possible communications
will proceed. It looks similar to a "switch" statement but with the
A "select" statement chooses which of a set of possible
<a href="#Send_statements">send</a> or
<a href="#Receive_operator">receive</a>
operations will proceed.
It looks similar to a
<a href="#Switch_statements">"switch"</a> statement but with the
cases all referring to communication operations.
</p>
......@@ -4893,41 +4897,63 @@ RecvExpr = Expression .
</pre>
<p>
RecvExpr must be a <a href="#Receive_operator">receive operation</a>.
For all the cases in the "select"
statement, the channel expressions are evaluated in top-to-bottom order, along with
any expressions that appear on the right hand side of send statements.
A channel may be <code>nil</code>,
which is equivalent to that case not
being present in the select statement
except, if a send, its expression is still evaluated.
If any of the resulting operations can proceed, one of those is
chosen and the corresponding communication and statements are
evaluated. Otherwise, if there is a default case, that executes;
if there is no default case, the statement blocks until one of the communications can
complete. There can be at most one default case and it may appear anywhere in the
"select" statement.
If there are no cases with non-<code>nil</code> channels,
the statement blocks forever.
Even if the statement blocks,
the channel and send expressions are evaluated only once,
upon entering the select statement.
A case with a RecvStmt may assign the result of a RecvExpr to one or
two variables, which may be declared using a
<a href="#Short_variable_declarations">short variable declaration</a>.
The RecvExpr must be a (possibly parenthesized) receive operation.
There can be at most one default case and it may appear anywhere
in the list of cases.
</p>
<p>
Since all the channels and send expressions are evaluated, any side
effects in that evaluation will occur for all the communications
in the "select" statement.
Execution of a "select" statement proceeds in several steps:
</p>
<ol>
<li>
For all the cases in the statement, the channel operands of receive operations
and the channel and right-hand-side expressions of send statements are
evaluated exactly once, in source order, upon entering the "select" statement.
The result is a set of channels to receive from or send to,
and the corresponding values to send.
Any side effects in that evaluation will occur irrespective of which (if any)
communication operation is selected to proceed.
Expressions on the left-hand side of a RecvStmt with a short variable declaration
or assignment are not yet evaluated.
</li>
<li>
If one or more of the communications can proceed,
a single one that can proceed is chosen via a uniform pseudo-random selection.
Otherwise, if there is a default case, that case is chosen.
If there is no default case, the "select" statement blocks until
at least one of the communications can proceed.
</li>
<li>
Unless the selected case is the default case, the respective communication
operation is executed.
</li>
<li>
If the selected case is a RecvStmt with a short variable declaration or
an assignment, the left-hand side expressions are evaluated and the
received value (or values) are assigned.
</li>
<li>
The statement list of the selected case is executed.
</li>
</ol>
<p>
If multiple cases can proceed, a uniform pseudo-random choice is made to decide
which single communication will execute.
<p>
The receive case may declare one or two new variables using a
<a href="#Short_variable_declarations">short variable declaration</a>.
Since communication on <code>nil</code> channels can never proceed,
a select with only <code>nil</code> channels and no default case blocks forever.
</p>
<pre>
var c, c1, c2, c3 chan int
var a []int
var c, c1, c2, c3, c4 chan int
var i1, i2 int
select {
case i1 = &lt;-c1:
......@@ -4940,6 +4966,10 @@ case i3, ok := (&lt;-c3): // same as: i3, ok := &lt;-c3
} else {
print("c3 is closed\n")
}
case a[f()] = &lt;-c4:
// same as:
// case t := &lt;-c4
// a[f()] = t
default:
print("no communication\n")
}
......
Markdown is supported
0%
or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment