Commit 62e53b79 authored by Austin Clements's avatar Austin Clements

runtime: use signals to preempt Gs for suspendG

This adds support for pausing a running G by sending a signal to its
M.

The main complication is that we want to target a G, but can only send
a signal to an M. Hence, the protocol we use is to simply mark the G
for preemption (which we already do) and send the M a "wake up and
look around" signal. The signal checks if it's running a G with a
preemption request and stops it if so in the same way that stack check
preemptions stop Gs. Since the preemption may fail (the G could be
moved or the signal could arrive at an unsafe point), we keep a count
of the number of received preemption signals. This lets stopG detect
if its request failed and should be retried without an explicit
channel back to suspendG.

For #10958, #24543.

Change-Id: I3e1538d5ea5200aeb434374abb5d5fdc56107e53
Reviewed-on: https://go-review.googlesource.com/c/go/+/201760
Run-TryBot: Austin Clements <austin@google.com>
Reviewed-by: default avatarCherry Zhang <cherryyz@google.com>
parent d16ec137
...@@ -39,11 +39,25 @@ func TestMain(m *testing.M) { ...@@ -39,11 +39,25 @@ func TestMain(m *testing.M) {
} }
func waitSig(t *testing.T, c <-chan os.Signal, sig os.Signal) { func waitSig(t *testing.T, c <-chan os.Signal, sig os.Signal) {
waitSig1(t, c, sig, false)
}
func waitSigAll(t *testing.T, c <-chan os.Signal, sig os.Signal) {
waitSig1(t, c, sig, true)
}
func waitSig1(t *testing.T, c <-chan os.Signal, sig os.Signal, all bool) {
// Sleep multiple times to give the kernel more tries to // Sleep multiple times to give the kernel more tries to
// deliver the signal. // deliver the signal.
for i := 0; i < 10; i++ { for i := 0; i < 10; i++ {
select { select {
case s := <-c: case s := <-c:
// If the caller notified for all signals on
// c, filter out SIGURG, which is used for
// runtime preemption and can come at
// unpredictable times.
if all && s == syscall.SIGURG {
continue
}
if s != sig { if s != sig {
t.Fatalf("signal was %v, want %v", s, sig) t.Fatalf("signal was %v, want %v", s, sig)
} }
...@@ -74,17 +88,17 @@ func TestSignal(t *testing.T) { ...@@ -74,17 +88,17 @@ func TestSignal(t *testing.T) {
// Send this process a SIGWINCH // Send this process a SIGWINCH
t.Logf("sigwinch...") t.Logf("sigwinch...")
syscall.Kill(syscall.Getpid(), syscall.SIGWINCH) syscall.Kill(syscall.Getpid(), syscall.SIGWINCH)
waitSig(t, c1, syscall.SIGWINCH) waitSigAll(t, c1, syscall.SIGWINCH)
// Send two more SIGHUPs, to make sure that // Send two more SIGHUPs, to make sure that
// they get delivered on c1 and that not reading // they get delivered on c1 and that not reading
// from c does not block everything. // from c does not block everything.
t.Logf("sighup...") t.Logf("sighup...")
syscall.Kill(syscall.Getpid(), syscall.SIGHUP) syscall.Kill(syscall.Getpid(), syscall.SIGHUP)
waitSig(t, c1, syscall.SIGHUP) waitSigAll(t, c1, syscall.SIGHUP)
t.Logf("sighup...") t.Logf("sighup...")
syscall.Kill(syscall.Getpid(), syscall.SIGHUP) syscall.Kill(syscall.Getpid(), syscall.SIGHUP)
waitSig(t, c1, syscall.SIGHUP) waitSigAll(t, c1, syscall.SIGHUP)
// The first SIGHUP should be waiting for us on c. // The first SIGHUP should be waiting for us on c.
waitSig(t, c, syscall.SIGHUP) waitSig(t, c, syscall.SIGHUP)
......
...@@ -196,7 +196,7 @@ func markroot(gcw *gcWork, i uint32) { ...@@ -196,7 +196,7 @@ func markroot(gcw *gcWork, i uint32) {
gp.waitsince = work.tstart gp.waitsince = work.tstart
} }
// scang must be done on the system stack in case // scanstack must be done on the system stack in case
// we're trying to scan our own stack. // we're trying to scan our own stack.
systemstack(func() { systemstack(func() {
// If this is a self-scan, put the user G in // If this is a self-scan, put the user G in
...@@ -716,6 +716,10 @@ func scanstack(gp *g, gcw *gcWork) { ...@@ -716,6 +716,10 @@ func scanstack(gp *g, gcw *gcWork) {
println("stack trace goroutine", gp.goid) println("stack trace goroutine", gp.goid)
} }
if debugScanConservative && gp.asyncSafePoint {
print("scanning async preempted goroutine ", gp.goid, " stack [", hex(gp.stack.lo), ",", hex(gp.stack.hi), ")\n")
}
// Scan the saved context register. This is effectively a live // Scan the saved context register. This is effectively a live
// register that gets moved back and forth between the // register that gets moved back and forth between the
// register and sched.ctxt without a write barrier. // register and sched.ctxt without a write barrier.
......
...@@ -143,3 +143,9 @@ func syscall_now() (sec int64, nsec int32) { ...@@ -143,3 +143,9 @@ func syscall_now() (sec int64, nsec int32) {
// gsignalStack is unused on js. // gsignalStack is unused on js.
type gsignalStack struct{} type gsignalStack struct{}
const preemptMSupported = false
func preemptM(mp *m) {
// No threads, so nothing to do.
}
...@@ -483,3 +483,11 @@ func signame(sig uint32) string { ...@@ -483,3 +483,11 @@ func signame(sig uint32) string {
} }
return sigtable[sig].name return sigtable[sig].name
} }
const preemptMSupported = false
func preemptM(mp *m) {
// Not currently supported.
//
// TODO: Use a note like we use signals on POSIX OSes
}
...@@ -1062,3 +1062,11 @@ func setThreadCPUProfiler(hz int32) { ...@@ -1062,3 +1062,11 @@ func setThreadCPUProfiler(hz int32) {
stdcall6(_SetWaitableTimer, profiletimer, uintptr(unsafe.Pointer(&due)), uintptr(ms), 0, 0, 0) stdcall6(_SetWaitableTimer, profiletimer, uintptr(unsafe.Pointer(&due)), uintptr(ms), 0, 0, 0)
atomic.Store((*uint32)(unsafe.Pointer(&getg().m.profilehz)), uint32(hz)) atomic.Store((*uint32)(unsafe.Pointer(&getg().m.profilehz)), uint32(hz))
} }
const preemptMSupported = false
func preemptM(mp *m) {
// Not currently supported.
//
// TODO: Use SuspendThread/GetThreadContext/ResumeThread
}
...@@ -13,6 +13,11 @@ ...@@ -13,6 +13,11 @@
// 2. Synchronous safe-points occur when a running goroutine checks // 2. Synchronous safe-points occur when a running goroutine checks
// for a preemption request. // for a preemption request.
// //
// 3. Asynchronous safe-points occur at any instruction in user code
// where the goroutine can be safely paused and a conservative
// stack and register scan can find stack roots. The runtime can
// stop a goroutine at an async safe-point using a signal.
//
// At both blocked and synchronous safe-points, a goroutine's CPU // At both blocked and synchronous safe-points, a goroutine's CPU
// state is minimal and the garbage collector has complete information // state is minimal and the garbage collector has complete information
// about its entire stack. This makes it possible to deschedule a // about its entire stack. This makes it possible to deschedule a
...@@ -26,9 +31,32 @@ ...@@ -26,9 +31,32 @@
// to fail and enter the stack growth implementation, which will // to fail and enter the stack growth implementation, which will
// detect that it was actually a preemption and redirect to preemption // detect that it was actually a preemption and redirect to preemption
// handling. // handling.
//
// Preemption at asynchronous safe-points is implemented by suspending
// the thread using an OS mechanism (e.g., signals) and inspecting its
// state to determine if the goroutine was at an asynchronous
// safe-point. Since the thread suspension itself is generally
// asynchronous, it also checks if the running goroutine wants to be
// preempted, since this could have changed. If all conditions are
// satisfied, it adjusts the signal context to make it look like the
// signaled thread just called asyncPreempt and resumes the thread.
// asyncPreempt spills all registers and enters the scheduler.
//
// (An alternative would be to preempt in the signal handler itself.
// This would let the OS save and restore the register state and the
// runtime would only need to know how to extract potentially
// pointer-containing registers from the signal context. However, this
// would consume an M for every preempted G, and the scheduler itself
// is not designed to run from a signal handler, as it tends to
// allocate memory and start threads in the preemption path.)
package runtime package runtime
import (
"runtime/internal/atomic"
"runtime/internal/sys"
)
type suspendGState struct { type suspendGState struct {
g *g g *g
...@@ -87,6 +115,8 @@ func suspendG(gp *g) suspendGState { ...@@ -87,6 +115,8 @@ func suspendG(gp *g) suspendGState {
// Drive the goroutine to a preemption point. // Drive the goroutine to a preemption point.
stopped := false stopped := false
var asyncM *m
var asyncGen uint32
for i := 0; ; i++ { for i := 0; ; i++ {
switch s := readgstatus(gp); s { switch s := readgstatus(gp); s {
default: default:
...@@ -160,7 +190,7 @@ func suspendG(gp *g) suspendGState { ...@@ -160,7 +190,7 @@ func suspendG(gp *g) suspendGState {
case _Grunning: case _Grunning:
// Optimization: if there is already a pending preemption request // Optimization: if there is already a pending preemption request
// (from the previous loop iteration), don't bother with the atomics. // (from the previous loop iteration), don't bother with the atomics.
if gp.preemptStop && gp.preempt && gp.stackguard0 == stackPreempt { if gp.preemptStop && gp.preempt && gp.stackguard0 == stackPreempt && asyncM == gp.m && atomic.Load(&asyncM.preemptGen) == asyncGen {
break break
} }
...@@ -174,7 +204,12 @@ func suspendG(gp *g) suspendGState { ...@@ -174,7 +204,12 @@ func suspendG(gp *g) suspendGState {
gp.preempt = true gp.preempt = true
gp.stackguard0 = stackPreempt gp.stackguard0 = stackPreempt
// TODO: Inject asynchronous preemption. // Send asynchronous preemption.
asyncM = gp.m
asyncGen = atomic.Load(&asyncM.preemptGen)
if preemptMSupported && debug.asyncpreemptoff == 0 {
preemptM(asyncM)
}
casfrom_Gscanstatus(gp, _Gscanrunning, _Grunning) casfrom_Gscanstatus(gp, _Gscanrunning, _Grunning)
} }
...@@ -245,5 +280,113 @@ func asyncPreempt() ...@@ -245,5 +280,113 @@ func asyncPreempt()
//go:nosplit //go:nosplit
func asyncPreempt2() { func asyncPreempt2() {
// TODO: Enter scheduler gp := getg()
gp.asyncSafePoint = true
mcall(preemptPark)
gp.asyncSafePoint = false
}
// asyncPreemptStack is the bytes of stack space required to inject an
// asyncPreempt call.
var asyncPreemptStack = ^uintptr(0)
func init() {
f := findfunc(funcPC(asyncPreempt))
total := funcMaxSPDelta(f)
f = findfunc(funcPC(asyncPreempt2))
total += funcMaxSPDelta(f)
// Add some overhead for return PCs, etc.
asyncPreemptStack = uintptr(total) + 8*sys.PtrSize
if asyncPreemptStack > _StackLimit {
// We need more than the nosplit limit. This isn't
// unsafe, but it may limit asynchronous preemption.
//
// This may be a problem if we start using more
// registers. In that case, we should store registers
// in a context object. If we pre-allocate one per P,
// asyncPreempt can spill just a few registers to the
// stack, then grab its context object and spill into
// it. When it enters the runtime, it would allocate a
// new context for the P.
print("runtime: asyncPreemptStack=", asyncPreemptStack, "\n")
throw("async stack too large")
}
}
// wantAsyncPreempt returns whether an asynchronous preemption is
// queued for gp.
func wantAsyncPreempt(gp *g) bool {
return gp.preemptStop && readgstatus(gp)&^_Gscan == _Grunning
}
// isAsyncSafePoint reports whether gp at instruction PC is an
// asynchronous safe point. This indicates that:
//
// 1. It's safe to suspend gp and conservatively scan its stack and
// registers. There are no potentially hidden pointer values and it's
// not in the middle of an atomic sequence like a write barrier.
//
// 2. gp has enough stack space to inject the asyncPreempt call.
//
// 3. It's generally safe to interact with the runtime, even if we're
// in a signal handler stopped here. For example, there are no runtime
// locks held, so acquiring a runtime lock won't self-deadlock.
func isAsyncSafePoint(gp *g, pc, sp uintptr) bool {
mp := gp.m
// Only user Gs can have safe-points. We check this first
// because it's extremely common that we'll catch mp in the
// scheduler processing this G preemption.
if mp.curg != gp {
return false
}
// Check M state.
if mp.p == 0 || !canPreemptM(mp) {
return false
}
// Check stack space.
if sp < gp.stack.lo || sp-gp.stack.lo < asyncPreemptStack {
return false
}
// Check if PC is an unsafe-point.
f := findfunc(pc)
if !f.valid() {
// Not Go code.
return false
}
smi := pcdatavalue(f, _PCDATA_StackMapIndex, pc, nil)
if smi == -2 {
// Unsafe-point marked by compiler. This includes
// atomic sequences (e.g., write barrier) and nosplit
// functions (except at calls).
return false
}
if funcdata(f, _FUNCDATA_LocalsPointerMaps) == nil {
// This is assembly code. Don't assume it's
// well-formed.
//
// TODO: Are there cases that are safe but don't have a
// locals pointer map, like empty frame functions?
return false
}
if hasPrefix(funcname(f), "runtime.") ||
hasPrefix(funcname(f), "runtime/internal/") ||
hasPrefix(funcname(f), "reflect.") {
// For now we never async preempt the runtime or
// anything closely tied to the runtime. Known issues
// include: various points in the scheduler ("don't
// preempt between here and here"), much of the defer
// implementation (untyped info on stack), bulk write
// barriers (write barrier check),
// reflect.{makeFuncStub,methodValueCall}.
//
// TODO(austin): We should improve this, or opt things
// in incrementally.
return false
}
return true
} }
...@@ -423,6 +423,11 @@ type g struct { ...@@ -423,6 +423,11 @@ type g struct {
preemptStop bool // transition to _Gpreempted on preemption; otherwise, just deschedule preemptStop bool // transition to _Gpreempted on preemption; otherwise, just deschedule
preemptShrink bool // shrink stack at synchronous safe point preemptShrink bool // shrink stack at synchronous safe point
// asyncSafePoint is set if g is stopped at an asynchronous
// safe point. This means there are frames on the stack
// without precise pointer information.
asyncSafePoint bool
paniconfault bool // panic (instead of crash) on unexpected fault address paniconfault bool // panic (instead of crash) on unexpected fault address
gcscandone bool // g has scanned stack; protected by _Gscan bit in status gcscandone bool // g has scanned stack; protected by _Gscan bit in status
throwsplit bool // must not split stack throwsplit bool // must not split stack
...@@ -531,6 +536,11 @@ type m struct { ...@@ -531,6 +536,11 @@ type m struct {
vdsoSP uintptr // SP for traceback while in VDSO call (0 if not in call) vdsoSP uintptr // SP for traceback while in VDSO call (0 if not in call)
vdsoPC uintptr // PC for traceback while in VDSO call vdsoPC uintptr // PC for traceback while in VDSO call
// preemptGen counts the number of completed preemption
// signals. This is used to detect when a preemption is
// requested, but fails. Accessed atomically.
preemptGen uint32
dlogPerM dlogPerM
mOS mOS
......
...@@ -38,6 +38,38 @@ const ( ...@@ -38,6 +38,38 @@ const (
_SIG_IGN uintptr = 1 _SIG_IGN uintptr = 1
) )
// sigPreempt is the signal used for non-cooperative preemption.
//
// There's no good way to choose this signal, but there are some
// heuristics:
//
// 1. It should be a signal that's passed-through by debuggers by
// default. On Linux, this is SIGALRM, SIGURG, SIGCHLD, SIGIO,
// SIGVTALRM, SIGPROF, and SIGWINCH, plus some glibc-internal signals.
//
// 2. It shouldn't be used internally by libc in mixed Go/C binaries
// because libc may assume it's the only thing that can handle these
// signals. For example SIGCANCEL or SIGSETXID.
//
// 3. It should be a signal that can happen spuriously without
// consequences. For example, SIGALRM is a bad choice because the
// signal handler can't tell if it was caused by the real process
// alarm or not (arguably this means the signal is broken, but I
// digress). SIGUSR1 and SIGUSR2 are also bad because those are often
// used in meaningful ways by applications.
//
// 4. We need to deal with platforms without real-time signals (like
// macOS), so those are out.
//
// We use SIGURG because it meets all of these criteria, is extremely
// unlikely to be used by an application for its "real" meaning (both
// because out-of-band data is basically unused and because SIGURG
// doesn't report which socket has the condition, making it pretty
// useless), and even if it is, the application has to be ready for
// spurious SIGURG. SIGIO wouldn't be a bad choice either, but is more
// likely to be used for real.
const sigPreempt = _SIGURG
// Stores the signal handlers registered before Go installed its own. // Stores the signal handlers registered before Go installed its own.
// These signal handlers will be invoked in cases where Go doesn't want to // These signal handlers will be invoked in cases where Go doesn't want to
// handle a particular signal (e.g., signal occurred on a non-Go thread). // handle a particular signal (e.g., signal occurred on a non-Go thread).
...@@ -290,6 +322,36 @@ func sigpipe() { ...@@ -290,6 +322,36 @@ func sigpipe() {
dieFromSignal(_SIGPIPE) dieFromSignal(_SIGPIPE)
} }
// doSigPreempt handles a preemption signal on gp.
func doSigPreempt(gp *g, ctxt *sigctxt) {
// Check if this G wants to be preempted and is safe to
// preempt.
if wantAsyncPreempt(gp) && isAsyncSafePoint(gp, ctxt.sigpc(), ctxt.sigsp()) {
// Inject a call to asyncPreempt.
ctxt.pushCall(funcPC(asyncPreempt))
}
// Acknowledge the preemption.
atomic.Xadd(&gp.m.preemptGen, 1)
}
const preemptMSupported = pushCallSupported
// preemptM sends a preemption request to mp. This request may be
// handled asynchronously and may be coalesced with other requests to
// the M. When the request is received, if the running G or P are
// marked for preemption and the goroutine is at an asynchronous
// safe-point, it will preempt the goroutine. It always atomically
// increments mp.preemptGen after handling a preemption request.
func preemptM(mp *m) {
if !pushCallSupported {
// This architecture doesn't support ctxt.pushCall
// yet, so doSigPreempt won't work.
return
}
signalM(mp, sigPreempt)
}
// sigFetchG fetches the value of G safely when running in a signal handler. // sigFetchG fetches the value of G safely when running in a signal handler.
// On some architectures, the g value may be clobbered when running in a VDSO. // On some architectures, the g value may be clobbered when running in a VDSO.
// See issue #32912. // See issue #32912.
...@@ -446,6 +508,14 @@ func sighandler(sig uint32, info *siginfo, ctxt unsafe.Pointer, gp *g) { ...@@ -446,6 +508,14 @@ func sighandler(sig uint32, info *siginfo, ctxt unsafe.Pointer, gp *g) {
return return
} }
if sig == sigPreempt {
// Might be a preemption signal.
doSigPreempt(gp, c)
// Even if this was definitely a preemption signal, it
// may have been coalesced with another signal, so we
// still let it through to the application.
}
flags := int32(_SigThrow) flags := int32(_SigThrow)
if sig < uint32(len(sigtable)) { if sig < uint32(len(sigtable)) {
flags = sigtable[sig].flags flags = sigtable[sig].flags
......
...@@ -1072,7 +1072,11 @@ func isShrinkStackSafe(gp *g) bool { ...@@ -1072,7 +1072,11 @@ func isShrinkStackSafe(gp *g) bool {
// The syscall might have pointers into the stack and // The syscall might have pointers into the stack and
// often we don't have precise pointer maps for the innermost // often we don't have precise pointer maps for the innermost
// frames. // frames.
return gp.syscallsp == 0 //
// We also can't copy the stack if we're at an asynchronous
// safe-point because we don't have precise pointer maps for
// all frames.
return gp.syscallsp == 0 && !gp.asyncSafePoint
} }
// Maybe shrink the stack being used by gp. // Maybe shrink the stack being used by gp.
......
...@@ -784,6 +784,25 @@ func funcspdelta(f funcInfo, targetpc uintptr, cache *pcvalueCache) int32 { ...@@ -784,6 +784,25 @@ func funcspdelta(f funcInfo, targetpc uintptr, cache *pcvalueCache) int32 {
return x return x
} }
// funcMaxSPDelta returns the maximum spdelta at any point in f.
func funcMaxSPDelta(f funcInfo) int32 {
datap := f.datap
p := datap.pclntable[f.pcsp:]
pc := f.entry
val := int32(-1)
max := int32(0)
for {
var ok bool
p, ok = step(p, &pc, &val, pc == f.entry)
if !ok {
return max
}
if val > max {
max = val
}
}
}
func pcdatastart(f funcInfo, table int32) int32 { func pcdatastart(f funcInfo, table int32) int32 {
return *(*int32)(add(unsafe.Pointer(&f.nfuncdata), unsafe.Sizeof(f.nfuncdata)+uintptr(table)*4)) return *(*int32)(add(unsafe.Pointer(&f.nfuncdata), unsafe.Sizeof(f.nfuncdata)+uintptr(table)*4))
} }
......
Markdown is supported
0%
or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment