Commit 646939c0 authored by Robert Griesemer's avatar Robert Griesemer

cmd/compile: re-vendor math/big to pick up bug fix

The changes to internal/big are completely automatic
by running vendor.bash in that directory.

Also added respective test case.

For #14553.

Change-Id: I98b124bcc9ad9e9bd987943719be27864423cb5d
Reviewed-on: https://go-review.googlesource.com/20199Reviewed-by: default avatarBrad Fitzpatrick <bradfitz@golang.org>
parent 3858efcc
......@@ -874,15 +874,15 @@ func (x *Float) Float32() (float32, Accuracy) {
emax = bias // 127 largest unbiased exponent (normal)
)
// Float mantissa m is 0.5 <= m < 1.0; compute exponent for floatxx mantissa.
// Float mantissa m is 0.5 <= m < 1.0; compute exponent for float32 mantissa.
e := x.exp - 1 // exponent for mantissa m with 1.0 <= m < 2.0
p := mbits + 1 // precision of normal float
// If the exponent is too small, we may have a denormal number
// in which case we have fewer mantissa bits available: reduce
// precision accordingly.
// in which case we have fewer mantissa bits available: recompute
// precision.
if e < emin {
p -= emin - int(e)
p = mbits + 1 - emin + int(e)
// Make sure we have at least 1 bit so that we don't
// lose numbers rounded up to the smallest denormal.
if p < 1 {
......@@ -931,7 +931,9 @@ func (x *Float) Float32() (float32, Accuracy) {
return 0.0, Below
}
// bexp = 0
mant = msb32(r.mant) >> (fbits - r.prec)
// recompute precision
p = mbits + 1 - emin + int(e)
mant = msb32(r.mant) >> uint(fbits-p)
} else {
// normal number: emin <= e <= emax
bexp = uint32(e+bias) << mbits
......@@ -981,15 +983,15 @@ func (x *Float) Float64() (float64, Accuracy) {
emax = bias // 1023 largest unbiased exponent (normal)
)
// Float mantissa m is 0.5 <= m < 1.0; compute exponent for floatxx mantissa.
// Float mantissa m is 0.5 <= m < 1.0; compute exponent for float64 mantissa.
e := x.exp - 1 // exponent for mantissa m with 1.0 <= m < 2.0
p := mbits + 1 // precision of normal float
// If the exponent is too small, we may have a denormal number
// in which case we have fewer mantissa bits available: reduce
// precision accordingly.
// in which case we have fewer mantissa bits available: recompute
// precision.
if e < emin {
p -= emin - int(e)
p = mbits + 1 - emin + int(e)
// Make sure we have at least 1 bit so that we don't
// lose numbers rounded up to the smallest denormal.
if p < 1 {
......@@ -1038,7 +1040,9 @@ func (x *Float) Float64() (float64, Accuracy) {
return 0.0, Below
}
// bexp = 0
mant = msb64(r.mant) >> (fbits - r.prec)
// recompute precision
p = mbits + 1 - emin + int(e)
mant = msb64(r.mant) >> uint(fbits-p)
} else {
// normal number: emin <= e <= emax
bexp = uint64(e+bias) << mbits
......@@ -1427,7 +1431,7 @@ func (z *Float) Add(x, y *Float) *Float {
}
if x.form == finite && y.form == finite {
// x + y (commom case)
// x + y (common case)
z.neg = x.neg
if x.neg == y.neg {
// x + y == x + y
......
......@@ -843,6 +843,32 @@ func TestFloatFloat32(t *testing.T) {
{"1p-149", math.SmallestNonzeroFloat32, Exact},
{"0x.fffffep-126", math.Float32frombits(0x7fffff), Exact}, // largest denormal
// special cases (see issue 14553)
{"0x0.bp-149", math.Float32frombits(0x000000000), Below}, // ToNearestEven rounds down (to even)
{"0x0.cp-149", math.Float32frombits(0x000000001), Above},
{"0x1.0p-149", math.Float32frombits(0x000000001), Exact},
{"0x1.7p-149", math.Float32frombits(0x000000001), Below},
{"0x1.8p-149", math.Float32frombits(0x000000002), Above},
{"0x1.9p-149", math.Float32frombits(0x000000002), Above},
{"0x2.0p-149", math.Float32frombits(0x000000002), Exact},
{"0x2.8p-149", math.Float32frombits(0x000000002), Below}, // ToNearestEven rounds down (to even)
{"0x2.9p-149", math.Float32frombits(0x000000003), Above},
{"0x3.0p-149", math.Float32frombits(0x000000003), Exact},
{"0x3.7p-149", math.Float32frombits(0x000000003), Below},
{"0x3.8p-149", math.Float32frombits(0x000000004), Above}, // ToNearestEven rounds up (to even)
{"0x4.0p-149", math.Float32frombits(0x000000004), Exact},
{"0x4.8p-149", math.Float32frombits(0x000000004), Below}, // ToNearestEven rounds down (to even)
{"0x4.9p-149", math.Float32frombits(0x000000005), Above},
// specific case from issue 14553
{"0x7.7p-149", math.Float32frombits(0x000000007), Below},
{"0x7.8p-149", math.Float32frombits(0x000000008), Above},
{"0x7.9p-149", math.Float32frombits(0x000000008), Above},
// normals
{"0x.ffffffp-126", math.Float32frombits(0x00800000), Above}, // rounded up to smallest normal
{"1p-126", math.Float32frombits(0x00800000), Exact}, // smallest normal
......@@ -915,6 +941,27 @@ func TestFloatFloat64(t *testing.T) {
{"1p-1074", math.SmallestNonzeroFloat64, Exact},
{"0x.fffffffffffffp-1022", math.Float64frombits(0x000fffffffffffff), Exact}, // largest denormal
// special cases (see issue 14553)
{"0x0.bp-1074", math.Float64frombits(0x00000000000000000), Below}, // ToNearestEven rounds down (to even)
{"0x0.cp-1074", math.Float64frombits(0x00000000000000001), Above},
{"0x1.0p-1074", math.Float64frombits(0x00000000000000001), Exact},
{"0x1.7p-1074", math.Float64frombits(0x00000000000000001), Below},
{"0x1.8p-1074", math.Float64frombits(0x00000000000000002), Above},
{"0x1.9p-1074", math.Float64frombits(0x00000000000000002), Above},
{"0x2.0p-1074", math.Float64frombits(0x00000000000000002), Exact},
{"0x2.8p-1074", math.Float64frombits(0x00000000000000002), Below}, // ToNearestEven rounds down (to even)
{"0x2.9p-1074", math.Float64frombits(0x00000000000000003), Above},
{"0x3.0p-1074", math.Float64frombits(0x00000000000000003), Exact},
{"0x3.7p-1074", math.Float64frombits(0x00000000000000003), Below},
{"0x3.8p-1074", math.Float64frombits(0x00000000000000004), Above}, // ToNearestEven rounds up (to even)
{"0x4.0p-1074", math.Float64frombits(0x00000000000000004), Exact},
{"0x4.8p-1074", math.Float64frombits(0x00000000000000004), Below}, // ToNearestEven rounds down (to even)
{"0x4.9p-1074", math.Float64frombits(0x00000000000000005), Above},
// normals
{"0x.fffffffffffff8p-1022", math.Float64frombits(0x0010000000000000), Above}, // rounded up to smallest normal
{"1p-1022", math.Float64frombits(0x0010000000000000), Exact}, // smallest normal
......
......@@ -85,7 +85,7 @@ func (z *Float) scan(r io.ByteScanner, base int) (f *Float, b int, err error) {
if fcount < 0 {
// The mantissa has a "decimal" point ddd.dddd; and
// -fcount is the number of digits to the right of '.'.
// Adjust relevant exponent accodingly.
// Adjust relevant exponent accordingly.
d := int64(fcount)
switch b {
case 10:
......
// run
// Copyright 2016 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
// This test checks if the compiler's internal constant
// arithmetic correctly rounds denormal float32 values.
package main
import (
"fmt"
"math"
)
func main() {
for _, t := range []struct {
value float32
bits uint32
}{
{0e+00, 0x00000000},
{1e-45, 0x00000000},
{2e-45, 0x00000001},
{3e-45, 0x00000002},
{4e-45, 0x00000003},
{5e-45, 0x00000004},
{6e-45, 0x00000004},
{7e-45, 0x00000005},
{8e-45, 0x00000006},
{9e-45, 0x00000006},
{1.0e-44, 0x00000007},
{1.1e-44, 0x00000008},
{1.2e-44, 0x00000009},
} {
got := math.Float32bits(t.value)
want := t.bits
if got != want {
panic(fmt.Sprintf("bits(%g) = 0x%08x; want 0x%08x", t.value, got, want))
}
}
}
Markdown is supported
0%
or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment