Commit 79fb16d3 authored by Russ Cox's avatar Russ Cox

objdump: implement disassembly

There is some duplication here with cmd/nm.
There is a TODO to address that after 1.3 is out.

Update #7452

x86 disassembly works and is tested.

The arm disassembler does not exist yet
and is therefore not yet hooked up.

LGTM=crawshaw, iant
R=crawshaw, iant
CC=golang-codereviews
https://golang.org/cl/91360046
parent e7ad1ebe
x86.go: bundle
./bundle -p main -x x86_ rsc.io/x86/x86asm >x86.go
./bundle -p main -x x86_ rsc.io/x86/x86asm | gofmt >x86.go
bundle:
go build -o bundle code.google.com/p/rsc/cmd/bundle
// Copyright 2013 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
// Parsing of ELF executables (Linux, FreeBSD, and so on).
package main
import (
"debug/elf"
"os"
)
func elfSymbols(f *os.File) (syms []Sym, goarch string) {
p, err := elf.NewFile(f)
if err != nil {
errorf("parsing %s: %v", f.Name(), err)
return
}
elfSyms, err := p.Symbols()
if err != nil {
errorf("parsing %s: %v", f.Name(), err)
return
}
switch p.Machine {
case elf.EM_X86_64:
goarch = "amd64"
case elf.EM_386:
goarch = "386"
case elf.EM_ARM:
goarch = "arm"
}
for _, s := range elfSyms {
sym := Sym{Addr: s.Value, Name: s.Name, Size: int64(s.Size), Code: '?'}
switch s.Section {
case elf.SHN_UNDEF:
sym.Code = 'U'
case elf.SHN_COMMON:
sym.Code = 'B'
default:
i := int(s.Section)
if i <= 0 || i > len(p.Sections) {
break
}
sect := p.Sections[i-1]
switch sect.Flags & (elf.SHF_WRITE | elf.SHF_ALLOC | elf.SHF_EXECINSTR) {
case elf.SHF_ALLOC | elf.SHF_EXECINSTR:
sym.Code = 'T'
case elf.SHF_ALLOC:
sym.Code = 'R'
case elf.SHF_ALLOC | elf.SHF_WRITE:
sym.Code = 'D'
}
}
if elf.ST_BIND(s.Info) == elf.STB_LOCAL {
sym.Code += 'a' - 'A'
}
syms = append(syms, sym)
}
return
}
// Copyright 2013 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
// Parsing of Mach-O executables (OS X).
package main
import (
"debug/macho"
"os"
"sort"
)
func machoSymbols(f *os.File) (syms []Sym, goarch string) {
p, err := macho.NewFile(f)
if err != nil {
errorf("parsing %s: %v", f.Name(), err)
return
}
if p.Symtab == nil {
errorf("%s: no symbol table", f.Name())
return
}
switch p.Cpu {
case macho.Cpu386:
goarch = "386"
case macho.CpuAmd64:
goarch = "amd64"
case macho.CpuArm:
goarch = "arm"
}
// Build sorted list of addresses of all symbols.
// We infer the size of a symbol by looking at where the next symbol begins.
var addrs []uint64
for _, s := range p.Symtab.Syms {
addrs = append(addrs, s.Value)
}
sort.Sort(uint64s(addrs))
for _, s := range p.Symtab.Syms {
sym := Sym{Name: s.Name, Addr: s.Value, Code: '?'}
i := sort.Search(len(addrs), func(x int) bool { return addrs[x] > s.Value })
if i < len(addrs) {
sym.Size = int64(addrs[i] - s.Value)
}
if s.Sect == 0 {
sym.Code = 'U'
} else if int(s.Sect) <= len(p.Sections) {
sect := p.Sections[s.Sect-1]
switch sect.Seg {
case "__TEXT":
sym.Code = 'R'
case "__DATA":
sym.Code = 'D'
}
switch sect.Seg + " " + sect.Name {
case "__TEXT __text":
sym.Code = 'T'
case "__DATA __bss", "__DATA __noptrbss":
sym.Code = 'B'
}
}
syms = append(syms, sym)
}
return
}
type uint64s []uint64
func (x uint64s) Len() int { return len(x) }
func (x uint64s) Swap(i, j int) { x[i], x[j] = x[j], x[i] }
func (x uint64s) Less(i, j int) bool { return x[i] < x[j] }
......@@ -2,17 +2,24 @@
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
// Objdump is a minimal simulation of the GNU objdump tool,
// just enough to support pprof.
// Objdump disassembles executable files.
//
// Usage:
//
// go tool objdump [-s symregexp] binary
//
// Objdump prints a disassembly of all text symbols (code) in the binary.
// If the -s option is present, objdump only disassembles
// symbols with names matching the regular expression.
//
// Alternate usage:
//
// go tool objdump binary start end
//
// Objdump disassembles the binary starting at the start address and
// In this mode, objdump disassembles the binary starting at the start address and
// stopping at the end address. The start and end addresses are program
// counters written in hexadecimal with optional leading 0x prefix.
//
// It prints a sequence of stanzas of the form:
// In this mode, objdump prints a sequence of stanzas of the form:
//
// file:line
// address: assembly
......@@ -21,49 +28,61 @@
//
// Each stanza gives the disassembly for a contiguous range of addresses
// all mapped to the same original source file and line number.
// This mode is intended for use by pprof.
//
// The disassembler is missing (golang.org/issue/7452) but will be added
// The ARM disassembler is missing (golang.org/issue/7452) but will be added
// before the Go 1.3 release.
//
// This tool is intended for use only by pprof; its interface may change or
// it may be deleted entirely in future releases.
package main
import (
"bufio"
"bytes"
"debug/elf"
"debug/gosym"
"debug/macho"
"debug/pe"
"flag"
"fmt"
"io"
"log"
"os"
"regexp"
"sort"
"strconv"
"strings"
"text/tabwriter"
)
func printUsage(w *os.File) {
fmt.Fprintf(w, "usage: objdump binary start end\n")
fmt.Fprintf(w, "disassembles binary from start PC to end PC.\n")
fmt.Fprintf(w, "start and end are hexadecimal numbers with optional leading 0x prefix.\n")
}
var symregexp = flag.String("s", "", "only dump symbols matching this regexp")
var symRE *regexp.Regexp
func usage() {
printUsage(os.Stderr)
fmt.Fprintf(os.Stderr, "usage: go tool objdump [-s symregexp] binary [start end]\n\n")
flag.PrintDefaults()
os.Exit(2)
}
type lookupFunc func(addr uint64) (sym string, base uint64)
type disasmFunc func(code []byte, pc uint64, lookup lookupFunc) (text string, size int)
func main() {
log.SetFlags(0)
log.SetPrefix("objdump: ")
flag.Usage = usage
flag.Parse()
if flag.NArg() != 3 {
if flag.NArg() != 1 && flag.NArg() != 3 {
usage()
}
if *symregexp != "" {
re, err := regexp.Compile(*symregexp)
if err != nil {
log.Fatalf("invalid -s regexp: %v", err)
}
symRE = re
}
f, err := os.Open(flag.Arg(0))
if err != nil {
log.Fatal(err)
......@@ -74,12 +93,140 @@ func main() {
log.Fatalf("reading %s: %v", flag.Arg(0), err)
}
syms, goarch, err := loadSymbols(f)
if err != nil {
log.Fatalf("reading %s: %v", flag.Arg(0), err)
}
// Filter out section symbols, overwriting syms in place.
keep := syms[:0]
for _, sym := range syms {
switch sym.Name {
case "text", "_text", "etext", "_etext":
// drop
default:
keep = append(keep, sym)
}
}
syms = keep
disasm := disasms[goarch]
if disasm == nil {
log.Fatalf("reading %s: unknown architecture", flag.Arg(0))
}
lookup := func(addr uint64) (string, uint64) {
i := sort.Search(len(syms), func(i int) bool { return syms[i].Addr > addr })
if i > 0 {
s := syms[i-1]
if s.Addr <= addr && addr < s.Addr+uint64(s.Size) && s.Name != "etext" && s.Name != "_etext" {
return s.Name, s.Addr
}
}
return "", 0
}
pcln := gosym.NewLineTable(pclntab, textStart)
tab, err := gosym.NewTable(symtab, pcln)
if err != nil {
log.Fatalf("reading %s: %v", flag.Arg(0), err)
}
if flag.NArg() == 1 {
// disassembly of entire object - our format
dump(tab, lookup, disasm, syms, textData, textStart)
os.Exit(exitCode)
}
// disassembly of specific piece of object - gnu objdump format for pprof
gnuDump(tab, lookup, disasm, textData, textStart)
os.Exit(exitCode)
}
// base returns the final element in the path.
// It works on both Windows and Unix paths.
func base(path string) string {
path = path[strings.LastIndex(path, "/")+1:]
path = path[strings.LastIndex(path, `\`)+1:]
return path
}
func dump(tab *gosym.Table, lookup lookupFunc, disasm disasmFunc, syms []Sym, textData []byte, textStart uint64) {
stdout := bufio.NewWriter(os.Stdout)
defer stdout.Flush()
printed := false
for _, sym := range syms {
if sym.Code != 'T' || sym.Size == 0 || sym.Name == "_text" || sym.Name == "text" || sym.Addr < textStart || symRE != nil && !symRE.MatchString(sym.Name) {
continue
}
if sym.Addr >= textStart+uint64(len(textData)) || sym.Addr+uint64(sym.Size) > textStart+uint64(len(textData)) {
break
}
if printed {
fmt.Fprintf(stdout, "\n")
} else {
printed = true
}
file, _, _ := tab.PCToLine(sym.Addr)
fmt.Fprintf(stdout, "TEXT %s(SB) %s\n", sym.Name, file)
tw := tabwriter.NewWriter(stdout, 1, 8, 1, '\t', 0)
start := sym.Addr
end := sym.Addr + uint64(sym.Size)
for pc := start; pc < end; {
i := pc - textStart
text, size := disasm(textData[i:end-textStart], pc, lookup)
file, line, _ := tab.PCToLine(pc)
fmt.Fprintf(tw, "\t%s:%d\t%#x\t%x\t%s\n", base(file), line, pc, textData[i:i+uint64(size)], text)
pc += uint64(size)
}
tw.Flush()
}
}
func disasm_386(code []byte, pc uint64, lookup lookupFunc) (string, int) {
return disasm_x86(code, pc, lookup, 32)
}
func disasm_amd64(code []byte, pc uint64, lookup lookupFunc) (string, int) {
return disasm_x86(code, pc, lookup, 64)
}
func disasm_x86(code []byte, pc uint64, lookup lookupFunc, arch int) (string, int) {
inst, err := x86_Decode(code, 64)
var text string
size := inst.Len
if err != nil || size == 0 || inst.Op == 0 {
size = 1
text = "?"
} else {
text = x86_plan9Syntax(inst, pc, lookup)
}
return text, size
}
func disasm_arm(code []byte, pc uint64, lookup lookupFunc) (string, int) {
/*
inst, size, err := arm_Decode(code, 64)
var text string
if err != nil || size == 0 || inst.Op == 0 {
size = 1
text = "?"
} else {
text = arm_plan9Syntax(inst, pc, lookup)
}
return text, size
*/
return "?", 4
}
var disasms = map[string]disasmFunc{
"386": disasm_386,
"amd64": disasm_amd64,
"arm": disasm_arm,
}
func gnuDump(tab *gosym.Table, lookup lookupFunc, disasm disasmFunc, textData []byte, textStart uint64) {
start, err := strconv.ParseUint(strings.TrimPrefix(flag.Arg(1), "0x"), 16, 64)
if err != nil {
log.Fatalf("invalid start PC: %v", err)
......@@ -90,6 +237,7 @@ func main() {
}
stdout := bufio.NewWriter(os.Stdout)
defer stdout.Flush()
// For now, find spans of same PC/line/fn and
// emit them as having dummy instructions.
......@@ -105,13 +253,10 @@ func main() {
return
}
fmt.Fprintf(stdout, "%s:%d\n", spanFile, spanLine)
for pc := spanPC; pc < endPC; pc++ {
// TODO(rsc): Disassemble instructions here.
if textStart <= pc && pc-textStart < uint64(len(textData)) {
fmt.Fprintf(stdout, " %x: byte %#x\n", pc, textData[pc-textStart])
} else {
fmt.Fprintf(stdout, " %x: ?\n", pc)
}
for pc := spanPC; pc < endPC; {
text, size := disasm(textData[pc-textStart:], pc, lookup)
fmt.Fprintf(stdout, " %x: %s\n", pc, text)
pc += uint64(size)
}
spanPC = 0
}
......@@ -124,8 +269,6 @@ func main() {
}
}
flush(end)
stdout.Flush()
}
func loadTables(f *os.File) (textStart uint64, textData, symtab, pclntab []byte, err error) {
......@@ -217,3 +360,59 @@ func loadPETable(f *pe.File, sname, ename string) ([]byte, error) {
}
return data[ssym.Value:esym.Value], nil
}
// TODO(rsc): This code is taken from cmd/nm. Arrange some way to share the code.
var exitCode = 0
func errorf(format string, args ...interface{}) {
log.Printf(format, args...)
exitCode = 1
}
func loadSymbols(f *os.File) (syms []Sym, goarch string, err error) {
f.Seek(0, 0)
buf := make([]byte, 16)
io.ReadFull(f, buf)
f.Seek(0, 0)
for _, p := range parsers {
if bytes.HasPrefix(buf, p.prefix) {
syms, goarch = p.parse(f)
sort.Sort(byAddr(syms))
return
}
}
err = fmt.Errorf("unknown file format")
return
}
type Sym struct {
Addr uint64
Size int64
Code rune
Name string
Type string
}
var parsers = []struct {
prefix []byte
parse func(*os.File) ([]Sym, string)
}{
{[]byte("\x7FELF"), elfSymbols},
{[]byte("\xFE\xED\xFA\xCE"), machoSymbols},
{[]byte("\xFE\xED\xFA\xCF"), machoSymbols},
{[]byte("\xCE\xFA\xED\xFE"), machoSymbols},
{[]byte("\xCF\xFA\xED\xFE"), machoSymbols},
{[]byte("MZ"), peSymbols},
{[]byte("\x00\x00\x01\xEB"), plan9Symbols}, // 386
{[]byte("\x00\x00\x04\x07"), plan9Symbols}, // mips
{[]byte("\x00\x00\x06\x47"), plan9Symbols}, // arm
{[]byte("\x00\x00\x8A\x97"), plan9Symbols}, // amd64
}
type byAddr []Sym
func (x byAddr) Len() int { return len(x) }
func (x byAddr) Swap(i, j int) { x[i], x[j] = x[j], x[i] }
func (x byAddr) Less(i, j int) bool { return x[i].Addr < x[j].Addr }
......@@ -79,19 +79,10 @@ func TestObjDump(t *testing.T) {
}
syms := loadSyms(t)
tmpDir, err := ioutil.TempDir("", "TestObjDump")
if err != nil {
t.Fatal("TempDir failed: ", err)
}
defer os.RemoveAll(tmpDir)
exepath := filepath.Join(tmpDir, "testobjdump.exe")
out, err := exec.Command("go", "build", "-o", exepath, "cmd/objdump").CombinedOutput()
if err != nil {
t.Fatalf("go build -o %v cmd/objdump: %v\n%s", exepath, err, string(out))
}
tmp, exe := buildObjdump(t)
defer os.RemoveAll(tmp)
srcPath, srcLineNo := runObjDump(t, exepath, syms["cmd/objdump.TestObjDump"])
srcPath, srcLineNo := runObjDump(t, exe, syms["cmd/objdump.TestObjDump"])
fi1, err := os.Stat("objdump_test.go")
if err != nil {
t.Fatalf("Stat failed: %v", err)
......@@ -107,3 +98,86 @@ func TestObjDump(t *testing.T) {
t.Fatalf("line number = %v; want 76", srcLineNo)
}
}
func buildObjdump(t *testing.T) (tmp, exe string) {
tmp, err := ioutil.TempDir("", "TestObjDump")
if err != nil {
t.Fatal("TempDir failed: ", err)
}
exe = filepath.Join(tmp, "testobjdump.exe")
out, err := exec.Command("go", "build", "-o", exe, "cmd/objdump").CombinedOutput()
if err != nil {
os.RemoveAll(tmp)
t.Fatalf("go build -o %v cmd/objdump: %v\n%s", exe, err, string(out))
}
return
}
var x86Need = []string{
"fmthello.go:6",
"TEXT main.main(SB)",
"JMP main.main(SB)",
"CALL fmt.Println(SB)",
"RET",
}
var armNeed = []string{
"fmthello.go:6",
"TEXT main.main(SB)",
"B main.main(SB)",
"BL fmt.Println(SB)",
"RET",
}
// objdump is fully cross platform: it can handle binaries
// from any known operating system and architecture.
// We could in principle add binaries to testdata and check
// all the supported systems during this test. However, the
// binaries would be about 1 MB each, and we don't want to
// add that much junk to the hg repository. Instead, build a
// binary for the current system (only) and test that objdump
// can handle that one.
func TestDisasm(t *testing.T) {
if runtime.GOOS == "plan9" {
t.Skip("skipping test; see http://golang.org/issue/7947")
}
tmp, exe := buildObjdump(t)
defer os.RemoveAll(tmp)
hello := filepath.Join(tmp, "hello.exe")
out, err := exec.Command("go", "build", "-o", hello, "testdata/fmthello.go").CombinedOutput()
if err != nil {
t.Fatalf("go build fmthello.go: %v\n%s", err, out)
}
need := []string{
"fmthello.go:6",
"TEXT main.main(SB)",
}
switch runtime.GOARCH {
case "amd64", "386":
need = append(need, x86Need...)
case "arm":
need = append(need, armNeed...)
t.Skip("disassembler not ready on arm yet")
}
out, err = exec.Command(exe, "-s", "main.main", hello).CombinedOutput()
if err != nil {
t.Fatalf("objdump fmthello.exe: %v\n%s", err, out)
}
text := string(out)
ok := true
for _, s := range need {
if !strings.Contains(text, s) {
t.Errorf("disassembly missing '%s'", s)
ok = false
}
}
if !ok {
t.Logf("full disassembly:\n%s", text)
}
}
// Copyright 2013 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
// Parsing of PE executables (Microsoft Windows).
package main
import (
"debug/pe"
"os"
"sort"
)
func peSymbols(f *os.File) (syms []Sym, goarch string) {
p, err := pe.NewFile(f)
if err != nil {
errorf("parsing %s: %v", f.Name(), err)
return
}
// Build sorted list of addresses of all symbols.
// We infer the size of a symbol by looking at where the next symbol begins.
var addrs []uint64
var imageBase uint64
switch oh := p.OptionalHeader.(type) {
case *pe.OptionalHeader32:
imageBase = uint64(oh.ImageBase)
goarch = "386"
case *pe.OptionalHeader64:
imageBase = oh.ImageBase
goarch = "amd64"
default:
errorf("parsing %s: file format not recognized", f.Name())
return
}
for _, s := range p.Symbols {
const (
N_UNDEF = 0 // An undefined (extern) symbol
N_ABS = -1 // An absolute symbol (e_value is a constant, not an address)
N_DEBUG = -2 // A debugging symbol
)
sym := Sym{Name: s.Name, Addr: uint64(s.Value), Code: '?'}
switch s.SectionNumber {
case N_UNDEF:
sym.Code = 'U'
case N_ABS:
sym.Code = 'C'
case N_DEBUG:
sym.Code = '?'
default:
if s.SectionNumber < 0 {
errorf("parsing %s: invalid section number %d", f.Name(), s.SectionNumber)
return
}
if len(p.Sections) < int(s.SectionNumber) {
errorf("parsing %s: section number %d is large then max %d", f.Name(), s.SectionNumber, len(p.Sections))
return
}
sect := p.Sections[s.SectionNumber-1]
const (
text = 0x20
data = 0x40
bss = 0x80
permX = 0x20000000
permR = 0x40000000
permW = 0x80000000
)
ch := sect.Characteristics
switch {
case ch&text != 0:
sym.Code = 'T'
case ch&data != 0:
if ch&permW == 0 {
sym.Code = 'R'
} else {
sym.Code = 'D'
}
case ch&bss != 0:
sym.Code = 'B'
}
sym.Addr += imageBase + uint64(sect.VirtualAddress)
}
syms = append(syms, sym)
addrs = append(addrs, sym.Addr)
}
sort.Sort(uint64s(addrs))
for i := range syms {
j := sort.Search(len(addrs), func(x int) bool { return addrs[x] > syms[i].Addr })
if j < len(addrs) {
syms[i].Size = int64(addrs[j] - syms[i].Addr)
}
}
return
}
// Copyright 2014 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
// Parsing of Plan 9 a.out executables.
package main
import (
"debug/plan9obj"
"os"
"sort"
)
func plan9Symbols(f *os.File) (syms []Sym, goarch string) {
p, err := plan9obj.NewFile(f)
if err != nil {
errorf("parsing %s: %v", f.Name(), err)
return
}
plan9Syms, err := p.Symbols()
if err != nil {
errorf("parsing %s: %v", f.Name(), err)
return
}
goarch = "386"
// Build sorted list of addresses of all symbols.
// We infer the size of a symbol by looking at where the next symbol begins.
var addrs []uint64
for _, s := range plan9Syms {
addrs = append(addrs, s.Value)
}
sort.Sort(uint64s(addrs))
for _, s := range plan9Syms {
sym := Sym{Addr: s.Value, Name: s.Name, Code: rune(s.Type)}
i := sort.Search(len(addrs), func(x int) bool { return addrs[x] > s.Value })
if i < len(addrs) {
sym.Size = int64(addrs[i] - s.Value)
}
syms = append(syms, sym)
}
return
}
package main
import "fmt"
func main() {
fmt.Println("hello, world")
}
Markdown is supported
0%
or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment