Commit 7d469179 authored by David Crawshaw's avatar David Crawshaw

cmd/compile, etc: store method tables as offsets

This CL introduces the typeOff type and a lookup method of the same
name that can turn a typeOff offset into an *rtype.

In a typical Go binary (built with buildmode=exe, pie, c-archive, or
c-shared), there is one moduledata and all typeOff values are offsets
relative to firstmoduledata.types. This makes computing the pointer
cheap in typical programs.

With buildmode=shared (and one day, buildmode=plugin) there are
multiple modules whose relative offset is determined at runtime.
We identify a type in the general case by the pair of the original
*rtype that references it and its typeOff value. We determine
the module from the original pointer, and then use the typeOff from
there to compute the final *rtype.

To ensure there is only one *rtype representing each type, the
runtime initializes a typemap for each module, using any identical
type from an earlier module when resolving that offset. This means
that types computed from an offset match the type mapped by the
pointer dynamic relocations.

A series of followup CLs will replace other *rtype values with typeOff
(and name/*string with nameOff).

For types created at runtime by reflect, type offsets are treated as
global IDs and reference into a reflect offset map kept by the runtime.

darwin/amd64:
	cmd/go:  -57KB (0.6%)
	jujud:  -557KB (0.8%)

linux/amd64 PIE:
	cmd/go: -361KB (3.0%)
	jujud:  -3.5MB (4.2%)

For #6853.

Change-Id: Icf096fd884a0a0cb9f280f46f7a26c70a9006c96
Reviewed-on: https://go-review.googlesource.com/21285Reviewed-by: default avatarIan Lance Taylor <iant@golang.org>
Run-TryBot: David Crawshaw <crawshaw@golang.org>
TryBot-Result: Gobot Gobot <gobot@golang.org>
parent e0611b16
......@@ -75,7 +75,7 @@ func uncommonSize(t *Type) int { // Sizeof(runtime.uncommontype{})
if t.Sym == nil && len(methods(t)) == 0 {
return 0
}
return 2*Widthptr + 2*Widthint
return 2 * Widthptr
}
func makefield(name string, t *Type) *Field {
......@@ -580,13 +580,23 @@ func dextratype(s *Sym, ot int, t *Type, dataAdd int) int {
ot = dgopkgpath(s, ot, typePkg(t))
// slice header
ot = dsymptr(s, ot, s, ot+Widthptr+2*Widthint+dataAdd)
n := len(m)
ot = duintxx(s, ot, uint64(n), Widthint)
ot = duintxx(s, ot, uint64(n), Widthint)
dataAdd += Widthptr + 2 + 2
if Widthptr == 8 {
dataAdd += 4
}
mcount := len(m)
if mcount != int(uint16(mcount)) {
Fatalf("too many methods on %s: %d", t, mcount)
}
if dataAdd != int(uint16(dataAdd)) {
Fatalf("methods are too far away on %s: %d", t, dataAdd)
}
ot = duint16(s, ot, uint16(mcount))
ot = duint16(s, ot, uint16(dataAdd))
if Widthptr == 8 {
ot = duint32(s, ot, 0) // align for following pointers
}
return ot
}
......@@ -609,6 +619,7 @@ func typePkg(t *Type) *Pkg {
// dextratypeData dumps the backing array for the []method field of
// runtime.uncommontype.
func dextratypeData(s *Sym, ot int, t *Type) int {
lsym := Linksym(s)
for _, a := range methods(t) {
// ../../../../runtime/type.go:/method
exported := exportname(a.name)
......@@ -617,21 +628,24 @@ func dextratypeData(s *Sym, ot int, t *Type) int {
pkg = a.pkg
}
ot = dname(s, ot, a.name, "", pkg, exported)
ot = dmethodptr(s, ot, dtypesym(a.mtype))
ot = dmethodptr(s, ot, a.isym)
ot = dmethodptr(s, ot, a.tsym)
ot = dmethodptrOffLSym(lsym, ot, Linksym(dtypesym(a.mtype)))
ot = dmethodptrOffLSym(lsym, ot, Linksym(a.isym))
ot = dmethodptrOffLSym(lsym, ot, Linksym(a.tsym))
if Widthptr == 8 {
ot = duintxxLSym(lsym, ot, 0, 4) // pad to reflect.method size
}
}
return ot
}
func dmethodptr(s *Sym, off int, x *Sym) int {
duintptr(s, off, 0)
r := obj.Addrel(Linksym(s))
r.Off = int32(off)
r.Siz = uint8(Widthptr)
r.Sym = Linksym(x)
r.Type = obj.R_METHOD
return off + Widthptr
func dmethodptrOffLSym(s *obj.LSym, ot int, x *obj.LSym) int {
duintxxLSym(s, ot, 0, 4)
r := obj.Addrel(s)
r.Off = int32(ot)
r.Siz = 4
r.Sym = x
r.Type = obj.R_METHODOFF
return ot + 4
}
var kinds = []int{
......@@ -1286,18 +1300,29 @@ ok:
ggloblsym(s, int32(ot), int16(dupok|obj.RODATA))
// generate typelink.foo pointing at s = type.foo.
//
// The linker will leave a table of all the typelinks for
// types in the binary, so reflect can find them.
// We only need the link for unnamed composites that
// we want be able to find.
if t.Sym == nil {
// types in the binary, so the runtime can find them.
//
// When buildmode=shared, all types are in typelinks so the
// runtime can deduplicate type pointers.
keep := Ctxt.Flag_dynlink
if !keep && t.Sym == nil {
// For an unnamed type, we only need the link if the type can
// be created at run time by reflect.PtrTo and similar
// functions. If the type exists in the program, those
// functions must return the existing type structure rather
// than creating a new one.
switch t.Etype {
case TPTR32, TPTR64, TARRAY, TCHAN, TFUNC, TMAP, TSTRUCT:
slink := typelinkLSym(t)
dsymptrOffLSym(slink, 0, Linksym(s), 0)
ggloblLSym(slink, 4, int16(dupok|obj.RODATA))
keep = true
}
}
if keep {
slink := typelinkLSym(t)
dsymptrOffLSym(slink, 0, Linksym(s), 0)
ggloblLSym(slink, 4, int16(dupok|obj.RODATA))
}
return s
}
......
......@@ -457,8 +457,8 @@ const (
// R_ADDRMIPS (only used on mips64) resolves to a 32-bit external address,
// by loading the address into a register with two instructions (lui, ori).
R_ADDRMIPS
// R_ADDROFF resolves to an offset from the beginning of the section holding
// the data being relocated to the referenced symbol.
// R_ADDROFF resolves to a 32-bit offset from the beginning of the section
// holding the data being relocated to the referenced symbol.
R_ADDROFF
R_SIZE
R_CALL
......@@ -492,11 +492,12 @@ const (
// should be linked into the final binary, even if there are no other
// direct references. (This is used for types reachable by reflection.)
R_USETYPE
// R_METHOD resolves to an *rtype for a method.
// It is used when linking from the uncommonType of another *rtype, and
// may be set to zero by the linker if it determines the method text is
// unreachable by the linked program.
R_METHOD
// R_METHODOFF resolves to a 32-bit offset from the beginning of the section
// holding the data being relocated to the referenced symbol.
// It is a variant of R_ADDROFF used when linking from the uncommonType of a
// *rtype, and may be set to zero by the linker if it determines the method
// text is unreachable by the linked program.
R_METHODOFF
R_POWER_TOC
R_GOTPCREL
// R_JMPMIPS (only used on mips64) resolves to non-PC-relative target address
......
......@@ -19,7 +19,7 @@ import (
//
// This flood fill is wrapped in logic for pruning unused methods.
// All methods are mentioned by relocations on their receiver's *rtype.
// These relocations are specially defined as R_METHOD by the compiler
// These relocations are specially defined as R_METHODOFF by the compiler
// so we can detect and manipulated them here.
//
// There are three ways a method of a reachable type can be invoked:
......@@ -100,7 +100,7 @@ func deadcode(ctxt *Link) {
d.flood()
}
// Remove all remaining unreached R_METHOD relocations.
// Remove all remaining unreached R_METHODOFF relocations.
for _, m := range d.markableMethods {
for _, r := range m.r {
d.cleanupReloc(r)
......@@ -167,7 +167,7 @@ var markextra = []string{
type methodref struct {
m methodsig
src *LSym // receiver type symbol
r [3]*Reloc // R_METHOD relocations to fields of runtime.method
r [3]*Reloc // R_METHODOFF relocations to fields of runtime.method
}
func (m methodref) ifn() *LSym { return m.r[1].Sym }
......@@ -190,7 +190,7 @@ type deadcodepass struct {
func (d *deadcodepass) cleanupReloc(r *Reloc) {
if r.Sym.Attr.Reachable() {
r.Type = obj.R_ADDR
r.Type = obj.R_ADDROFF
} else {
if Debug['v'] > 1 {
fmt.Fprintf(d.ctxt.Bso, "removing method %s\n", r.Sym.Name)
......@@ -217,7 +217,7 @@ func (d *deadcodepass) mark(s, parent *LSym) {
func (d *deadcodepass) markMethod(m methodref) {
for _, r := range m.r {
d.mark(r.Sym, m.src)
r.Type = obj.R_ADDR
r.Type = obj.R_ADDROFF
}
}
......@@ -291,14 +291,14 @@ func (d *deadcodepass) flood() {
}
}
mpos := 0 // 0-3, the R_METHOD relocs of runtime.uncommontype
mpos := 0 // 0-3, the R_METHODOFF relocs of runtime.uncommontype
var methods []methodref
for i := 0; i < len(s.R); i++ {
r := &s.R[i]
if r.Sym == nil {
continue
}
if r.Type != obj.R_METHOD {
if r.Type != obj.R_METHODOFF {
d.mark(r.Sym, s)
continue
}
......
......@@ -47,9 +47,9 @@ func decode_inuxi(p []byte, sz int) uint64 {
}
}
func commonsize() int { return 6*SysArch.PtrSize + 8 } // runtime._type
func structfieldSize() int { return 3 * SysArch.PtrSize } // runtime.structfield
func uncommonSize() int { return 2*SysArch.PtrSize + 2*SysArch.IntSize } // runtime.uncommontype
func commonsize() int { return 6*SysArch.PtrSize + 8 } // runtime._type
func structfieldSize() int { return 3 * SysArch.PtrSize } // runtime.structfield
func uncommonSize() int { return 2 * SysArch.PtrSize } // runtime.uncommontype
// Type.commonType.kind
func decodetype_kind(s *LSym) uint8 {
......@@ -341,12 +341,14 @@ func decodetype_methods(s *LSym) []methodsig {
// just Sizeof(rtype)
}
numMethods := int(decode_inuxi(s.P[off+2*SysArch.PtrSize:], SysArch.IntSize))
r := decode_reloc(s, int32(off+SysArch.PtrSize))
if r.Sym != s {
panic(fmt.Sprintf("method slice pointer in %s leads to a different symbol %s", s, r.Sym))
mcount := int(decode_inuxi(s.P[off+SysArch.PtrSize:], 2))
moff := int(decode_inuxi(s.P[off+SysArch.PtrSize+2:], 2))
off += moff // offset to array of reflect.method values
var sizeofMethod int // sizeof reflect.method in program
if SysArch.PtrSize == 4 {
sizeofMethod = 4 * SysArch.PtrSize
} else {
sizeofMethod = 3 * SysArch.PtrSize
}
off = int(r.Add) // array of reflect.method values
sizeofMethod := 4 * SysArch.PtrSize // sizeof reflect.method in program
return decode_methodsig(s, off, sizeofMethod, numMethods)
return decode_methodsig(s, off, sizeofMethod, mcount)
}
......@@ -90,7 +90,7 @@ func FirstMethodNameBytes(t Type) *byte {
if ut == nil {
panic("type has no methods")
}
m := ut.methods[0]
m := ut.methods()[0]
if *m.name.data(0)&(1<<2) == 0 {
panic("method name does not have pkgPath *string")
}
......
This diff is collapsed.
......@@ -566,15 +566,16 @@ func methodReceiver(op string, v Value, methodIndex int) (rcvrtype, t *rtype, fn
} else {
rcvrtype = v.typ
ut := v.typ.uncommon()
if ut == nil || uint(i) >= uint(len(ut.methods)) {
if ut == nil || uint(i) >= uint(ut.mcount) {
panic("reflect: internal error: invalid method index")
}
m := &ut.methods[i]
m := ut.methods()[i]
if !m.name.isExported() {
panic("reflect: " + op + " of unexported method")
}
fn = unsafe.Pointer(&m.ifn)
t = m.mtyp
ifn := v.typ.textOff(m.ifn)
fn = unsafe.Pointer(&ifn)
t = v.typ.typeOff(m.mtyp)
}
return
}
......@@ -1687,11 +1688,11 @@ func (v Value) Type() Type {
}
// Method on concrete type.
ut := v.typ.uncommon()
if ut == nil || uint(i) >= uint(len(ut.methods)) {
if ut == nil || uint(i) >= uint(ut.mcount) {
panic("reflect: internal error: invalid method index")
}
m := &ut.methods[i]
return m.mtyp
m := ut.methods()[i]
return v.typ.typeOff(m.mtyp)
}
// Uint returns v's underlying value, as a uint64.
......
......@@ -93,7 +93,8 @@ func additab(m *itab, locked, canfail bool) {
// so can iterate over both in lock step;
// the loop is O(ni+nt) not O(ni*nt).
ni := len(inter.mhdr)
nt := len(x.mhdr)
nt := int(x.mcount)
xmhdr := (*[1 << 16]method)(add(unsafe.Pointer(x), uintptr(x.moff)))[:nt:nt]
j := 0
for k := 0; k < ni; k++ {
i := &inter.mhdr[k]
......@@ -104,15 +105,16 @@ func additab(m *itab, locked, canfail bool) {
ipkg = inter.pkgpath
}
for ; j < nt; j++ {
t := &x.mhdr[j]
if t.mtyp == itype && t.name.name() == iname {
t := &xmhdr[j]
if typ.typeOff(t.mtyp) == itype && t.name.name() == iname {
pkgPath := t.name.pkgPath()
if pkgPath == nil {
pkgPath = x.pkgpath
}
if t.name.isExported() || pkgPath == ipkg {
if m != nil {
*(*unsafe.Pointer)(add(unsafe.Pointer(&m.fun[0]), uintptr(k)*sys.PtrSize)) = t.ifn
ifn := typ.textOff(t.ifn)
*(*unsafe.Pointer)(add(unsafe.Pointer(&m.fun[0]), uintptr(k)*sys.PtrSize)) = ifn
}
goto nextimethod
}
......
......@@ -435,9 +435,10 @@ func schedinit() {
tracebackinit()
moduledataverify()
stackinit()
itabsinit()
mallocinit()
mcommoninit(_g_.m)
typelinksinit()
itabsinit()
msigsave(_g_.m)
initSigmask = _g_.m.sigmask
......
......@@ -486,3 +486,36 @@ func reflect_typelinks() ([]unsafe.Pointer, [][]int32) {
}
return sections, ret
}
// reflect_resolveTypeOff resolves an *rtype offset from a base type.
//go:linkname reflect_resolveTypeOff reflect.resolveTypeOff
func reflect_resolveTypeOff(rtype unsafe.Pointer, off int32) unsafe.Pointer {
return unsafe.Pointer((*_type)(rtype).typeOff(typeOff(off)))
}
// reflect_resolveTextOff resolves an function pointer offset from a base type.
//go:linkname reflect_resolveTextOff reflect.resolveTextOff
func reflect_resolveTextOff(rtype unsafe.Pointer, off int32) unsafe.Pointer {
return (*_type)(rtype).textOff(textOff(off))
}
// reflect_addReflectOff adds a pointer to the reflection offset lookup map.
//go:linkname reflect_addReflectOff reflect.addReflectOff
func reflect_addReflectOff(ptr unsafe.Pointer) int32 {
lock(&reflectOffs.lock)
if reflectOffs.m == nil {
reflectOffs.m = make(map[int32]unsafe.Pointer)
reflectOffs.minv = make(map[unsafe.Pointer]int32)
reflectOffs.next = -1
}
id, found := reflectOffs.minv[ptr]
if !found {
id = reflectOffs.next
reflectOffs.next-- // use negative offsets as IDs to aid debugging
reflectOffs.m[id] = ptr
reflectOffs.minv[ptr] = id
}
unlock(&reflectOffs.lock)
return id
}
......@@ -137,6 +137,8 @@ type moduledata struct {
gcdatamask, gcbssmask bitvector
typemap map[typeOff]*_type // offset to *_rtype in previous module
next *moduledata
}
......
......@@ -131,6 +131,92 @@ func (t *_type) name() string {
return t._string[i+1:]
}
// reflectOffs holds type offsets defined at run time by the reflect package.
//
// When a type is defined at run time, its *rtype data lives on the heap.
// There are a wide range of possible addresses the heap may use, that
// may not be representable as a 32-bit offset. Moreover the GC may
// one day start moving heap memory, in which case there is no stable
// offset that can be defined.
//
// To provide stable offsets, we add pin *rtype objects in a global map
// and treat the offset as an identifier. We use negative offsets that
// do not overlap with any compile-time module offsets.
//
// Entries are created by reflect.addReflectOff.
var reflectOffs struct {
lock mutex
next int32
m map[int32]unsafe.Pointer
minv map[unsafe.Pointer]int32
}
func (t *_type) typeOff(off typeOff) *_type {
if off == 0 {
return nil
}
base := uintptr(unsafe.Pointer(t))
var md *moduledata
for next := &firstmoduledata; next != nil; next = next.next {
if base >= next.types && base < next.etypes {
md = next
break
}
}
if md == nil {
lock(&reflectOffs.lock)
res := reflectOffs.m[int32(off)]
unlock(&reflectOffs.lock)
if res == nil {
println("runtime: typeOff", hex(off), "base", hex(base), "not in ranges:")
for next := &firstmoduledata; next != nil; next = next.next {
println("\ttypes", hex(next.types), "etypes", hex(next.etypes))
}
throw("runtime: type offset base pointer out of range")
}
return (*_type)(res)
}
if t := md.typemap[off]; t != nil {
return t
}
res := md.types + uintptr(off)
if res > md.etypes {
println("runtime: typeOff", hex(off), "out of range", hex(md.types), "-", hex(md.etypes))
throw("runtime: type offset out of range")
}
return (*_type)(unsafe.Pointer(res))
}
func (t *_type) textOff(off textOff) unsafe.Pointer {
base := uintptr(unsafe.Pointer(t))
var md *moduledata
for next := &firstmoduledata; next != nil; next = next.next {
if base >= next.types && base < next.etypes {
md = next
break
}
}
if md == nil {
lock(&reflectOffs.lock)
res := reflectOffs.m[int32(off)]
unlock(&reflectOffs.lock)
if res == nil {
println("runtime: textOff", hex(off), "base", hex(base), "not in ranges:")
for next := &firstmoduledata; next != nil; next = next.next {
println("\ttypes", hex(next.types), "etypes", hex(next.etypes))
}
throw("runtime: text offset base pointer out of range")
}
return res
}
res := md.text + uintptr(off)
if res > md.etext {
println("runtime: textOff", hex(off), "out of range", hex(md.text), "-", hex(md.etext))
throw("runtime: text offset out of range")
}
return unsafe.Pointer(res)
}
func (t *functype) in() []*_type {
// See funcType in reflect/type.go for details on data layout.
uadd := uintptr(unsafe.Sizeof(functype{}))
......@@ -154,16 +240,20 @@ func (t *functype) dotdotdot() bool {
return t.outCount&(1<<15) != 0
}
type typeOff int32
type textOff int32
type method struct {
name name
mtyp *_type
ifn unsafe.Pointer
tfn unsafe.Pointer
mtyp typeOff
ifn textOff
tfn textOff
}
type uncommontype struct {
pkgpath *string
mhdr []method
mcount uint16 // number of methods
moff uint16 // offset from this uncommontype to [mcount]method
}
type imethod struct {
......@@ -270,6 +360,18 @@ func (n *name) name() (s string) {
return s
}
func (n *name) tag() (s string) {
tl := n.tagLen()
if tl == 0 {
return ""
}
nl := n.nameLen()
hdr := (*stringStruct)(unsafe.Pointer(&s))
hdr.str = unsafe.Pointer(n.data(3 + nl + 2))
hdr.len = tl
return s
}
func (n *name) pkgPath() *string {
if *n.data(0)&(1<<2) == 0 {
return nil
......@@ -281,3 +383,200 @@ func (n *name) pkgPath() *string {
off = int(round(uintptr(off), sys.PtrSize))
return *(**string)(unsafe.Pointer(n.data(off)))
}
// typelinksinit scans the types from extra modules and builds the
// moduledata typemap used to de-duplicate type pointers.
func typelinksinit() {
if firstmoduledata.next == nil {
return
}
typehash := make(map[uint32][]*_type)
modules := []*moduledata{}
for md := &firstmoduledata; md != nil; md = md.next {
modules = append(modules, md)
}
prev, modules := modules[len(modules)-1], modules[:len(modules)-1]
for len(modules) > 0 {
// Collect types from the previous module into typehash.
collect:
for _, tl := range prev.typelinks {
var t *_type
if prev.typemap == nil {
t = (*_type)(unsafe.Pointer(prev.types + uintptr(tl)))
} else {
t = prev.typemap[typeOff(tl)]
}
// Add to typehash if not seen before.
tlist := typehash[t.hash]
for _, tcur := range tlist {
if tcur == t {
continue collect
}
}
typehash[t.hash] = append(tlist, t)
}
// If any of this module's typelinks match a type from a
// prior module, prefer that prior type by adding the offset
// to this module's typemap.
md := modules[len(modules)-1]
md.typemap = make(map[typeOff]*_type, len(md.typelinks))
for _, tl := range md.typelinks {
t := (*_type)(unsafe.Pointer(md.types + uintptr(tl)))
for _, candidate := range typehash[t.hash] {
if typesEqual(t, candidate) {
t = candidate
break
}
}
md.typemap[typeOff(tl)] = t
}
prev, modules = md, modules[:len(modules)-1]
}
}
// typesEqual reports whether two types are equal.
//
// Everywhere in the runtime and reflect packages, it is assumed that
// there is exactly one *_type per Go type, so that pointer equality
// can be used to test if types are equal. There is one place that
// breaks this assumption: buildmode=shared. In this case a type can
// appear as two different pieces of memory. This is hidden from the
// runtime and reflect package by the per-module typemap built in
// typelinksinit. It uses typesEqual to map types from later modules
// back into earlier ones.
//
// Only typelinksinit needs this function.
func typesEqual(t, v *_type) bool {
if t == v {
return true
}
kind := t.kind & kindMask
if kind != v.kind&kindMask {
return false
}
if t._string != v._string {
return false
}
ut := t.uncommon()
uv := v.uncommon()
if ut != nil || uv != nil {
if ut == nil || uv == nil {
return false
}
if !pkgPathEqual(ut.pkgpath, uv.pkgpath) {
return false
}
}
if kindBool <= kind && kind <= kindComplex128 {
return true
}
switch kind {
case kindString, kindUnsafePointer:
return true
case kindArray:
at := (*arraytype)(unsafe.Pointer(t))
av := (*arraytype)(unsafe.Pointer(v))
return typesEqual(at.elem, av.elem) && at.len == av.len
case kindChan:
ct := (*chantype)(unsafe.Pointer(t))
cv := (*chantype)(unsafe.Pointer(v))
return ct.dir == cv.dir && typesEqual(ct.elem, cv.elem)
case kindFunc:
ft := (*functype)(unsafe.Pointer(t))
fv := (*functype)(unsafe.Pointer(v))
if ft.outCount != fv.outCount || ft.inCount != fv.inCount {
return false
}
tin, vin := ft.in(), fv.in()
for i := 0; i < len(tin); i++ {
if !typesEqual(tin[i], vin[i]) {
return false
}
}
tout, vout := ft.out(), fv.out()
for i := 0; i < len(tout); i++ {
if !typesEqual(tout[i], vout[i]) {
return false
}
}
return true
case kindInterface:
it := (*interfacetype)(unsafe.Pointer(t))
iv := (*interfacetype)(unsafe.Pointer(v))
if !pkgPathEqual(it.pkgpath, iv.pkgpath) {
return false
}
if len(it.mhdr) != len(iv.mhdr) {
return false
}
for i := range it.mhdr {
tm := &it.mhdr[i]
vm := &iv.mhdr[i]
if tm.name.name() != vm.name.name() {
return false
}
if !pkgPathEqual(tm.name.pkgPath(), vm.name.pkgPath()) {
return false
}
if !typesEqual(tm._type, vm._type) {
return false
}
}
return true
case kindMap:
mt := (*maptype)(unsafe.Pointer(t))
mv := (*maptype)(unsafe.Pointer(v))
return typesEqual(mt.key, mv.key) && typesEqual(mt.elem, mv.elem)
case kindPtr:
pt := (*ptrtype)(unsafe.Pointer(t))
pv := (*ptrtype)(unsafe.Pointer(v))
return typesEqual(pt.elem, pv.elem)
case kindSlice:
st := (*slicetype)(unsafe.Pointer(t))
sv := (*slicetype)(unsafe.Pointer(v))
return typesEqual(st.elem, sv.elem)
case kindStruct:
st := (*structtype)(unsafe.Pointer(t))
sv := (*structtype)(unsafe.Pointer(v))
if len(st.fields) != len(sv.fields) {
return false
}
for i := range st.fields {
tf := &st.fields[i]
vf := &sv.fields[i]
if tf.name.name() != vf.name.name() {
return false
}
if !pkgPathEqual(tf.name.pkgPath(), vf.name.pkgPath()) {
return false
}
if !typesEqual(tf.typ, vf.typ) {
return false
}
if tf.name.tag() != vf.name.tag() {
return false
}
if tf.offset != vf.offset {
return false
}
}
return true
default:
println("runtime: impossible type kind", kind)
throw("runtime: impossible type kind")
return false
}
}
func pkgPathEqual(p, q *string) bool {
if p == q {
return true
}
if p == nil || q == nil {
return false
}
return *p == *q
}
Markdown is supported
0%
or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment