Commit a36dda78 authored by Yao Zhang's avatar Yao Zhang Committed by Minux Ma

runtime: added go files for linux/mips64{,le} support

Change-Id: I14b537922b97d4bce9e0523d98a822da906348f1
Reviewed-on: https://go-review.googlesource.com/14447Reviewed-by: default avatarMinux Ma <minux@golang.org>
parent 980b00f5
// +build mips64 mips64le
// +build linux
package runtime
const (
_EINTR = 0x4
_EAGAIN = 0xb
_ENOMEM = 0xc
_PROT_NONE = 0x0
_PROT_READ = 0x1
_PROT_WRITE = 0x2
_PROT_EXEC = 0x4
_MAP_ANON = 0x800
_MAP_PRIVATE = 0x2
_MAP_FIXED = 0x10
_MADV_DONTNEED = 0x4
_MADV_HUGEPAGE = 0xe
_MADV_NOHUGEPAGE = 0xf
_SA_RESTART = 0x10000000
_SA_ONSTACK = 0x8000000
_SA_SIGINFO = 0x8
_SIGHUP = 0x1
_SIGINT = 0x2
_SIGQUIT = 0x3
_SIGILL = 0x4
_SIGTRAP = 0x5
_SIGABRT = 0x6
_SIGEMT = 0x7
_SIGFPE = 0x8
_SIGKILL = 0x9
_SIGBUS = 0xa
_SIGSEGV = 0xb
_SIGSYS = 0xc
_SIGPIPE = 0xd
_SIGALRM = 0xe
_SIGUSR1 = 0x10
_SIGUSR2 = 0x11
_SIGCHLD = 0x12
_SIGPWR = 0x13
_SIGWINCH = 0x14
_SIGURG = 0x15
_SIGIO = 0x16
_SIGSTOP = 0x17
_SIGTSTP = 0x18
_SIGCONT = 0x19
_SIGTTIN = 0x1a
_SIGTTOU = 0x1b
_SIGVTALRM = 0x1c
_SIGPROF = 0x1d
_SIGXCPU = 0x1e
_SIGXFSZ = 0x1f
_FPE_INTDIV = 0x1
_FPE_INTOVF = 0x2
_FPE_FLTDIV = 0x3
_FPE_FLTOVF = 0x4
_FPE_FLTUND = 0x5
_FPE_FLTRES = 0x6
_FPE_FLTINV = 0x7
_FPE_FLTSUB = 0x8
_BUS_ADRALN = 0x1
_BUS_ADRERR = 0x2
_BUS_OBJERR = 0x3
_SEGV_MAPERR = 0x1
_SEGV_ACCERR = 0x2
_ITIMER_REAL = 0x0
_ITIMER_VIRTUAL = 0x1
_ITIMER_PROF = 0x2
_EPOLLIN = 0x1
_EPOLLOUT = 0x4
_EPOLLERR = 0x8
_EPOLLHUP = 0x10
_EPOLLRDHUP = 0x2000
_EPOLLET = 0x80000000
_EPOLL_CLOEXEC = 0x80000
_EPOLL_CTL_ADD = 0x1
_EPOLL_CTL_DEL = 0x2
_EPOLL_CTL_MOD = 0x3
)
//struct Sigset {
// uint64 sig[1];
//};
//typedef uint64 Sigset;
type timespec struct {
tv_sec int64
tv_nsec int64
}
func (ts *timespec) set_sec(x int64) {
ts.tv_sec = x
}
func (ts *timespec) set_nsec(x int32) {
ts.tv_nsec = int64(x)
}
type timeval struct {
tv_sec int64
tv_usec int64
}
func (tv *timeval) set_usec(x int32) {
tv.tv_usec = int64(x)
}
type sigactiont struct {
sa_flags uint32
sa_handler uintptr
sa_mask [2]uint64
// linux header does not have sa_restorer field,
// but it is used in setsig(). it is no harm to put it here
sa_restorer uintptr
}
type siginfo struct {
si_signo int32
si_code int32
si_errno int32
__pad0 [1]int32
// below here is a union; si_addr is the only field we use
si_addr uint64
}
type itimerval struct {
it_interval timeval
it_value timeval
}
type epollevent struct {
events uint32
pad_cgo_0 [4]byte
data [8]byte // unaligned uintptr
}
const (
_O_RDONLY = 0x0
_O_CLOEXEC = 0x80000
_SA_RESTORER = 0
)
type sigaltstackt struct {
ss_sp *byte
ss_size uintptr
ss_flags int32
}
type sigcontext struct {
sc_regs [32]uint64
sc_fpregs [32]uint64
sc_mdhi uint64
sc_hi1 uint64
sc_hi2 uint64
sc_hi3 uint64
sc_mdlo uint64
sc_lo1 uint64
sc_lo2 uint64
sc_lo3 uint64
sc_pc uint64
sc_fpc_csr uint32
sc_used_math uint32
sc_dsp uint32
sc_reserved uint32
}
type ucontext struct {
uc_flags uint64
uc_link *ucontext
uc_stack sigaltstackt
uc_mcontext sigcontext
uc_sigmask uint64
}
// Copyright 2015 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
// +build mips64 mips64le
// +build linux
package runtime
import "unsafe"
// On mips64, Linux limits the user address space to 40 bits (see
// TASK_SIZE64 in the Linux kernel). This has grown over time,
// so here we allow 48 bit addresses.
//
// In addition to the 16 bits taken from the top, we can take 3 from the
// bottom, because node must be pointer-aligned, giving a total of 19 bits
// of count.
const (
addrBits = 48
cntBits = 64 - addrBits + 3
)
func lfstackPack(node *lfnode, cnt uintptr) uint64 {
return uint64(uintptr(unsafe.Pointer(node)))<<(64-addrBits) | uint64(cnt&(1<<cntBits-1))
}
func lfstackUnpack(val uint64) (node *lfnode, cnt uintptr) {
node = (*lfnode)(unsafe.Pointer(uintptr(val >> cntBits << 3)))
cnt = uintptr(val & (1<<cntBits - 1))
return
}
// Copyright 2015 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
// +build mips64 mips64le
// +build linux
package runtime
var randomNumber uint32
//go:nosplit
func cputicks() int64 {
// Currently cputicks() is used in blocking profiler and to seed fastrand1().
// nanotime() is a poor approximation of CPU ticks that is enough for the profiler.
// randomNumber provides better seeding of fastrand1.
return nanotime() + int64(randomNumber)
}
// Copyright 2015 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
// +build linux
// +build mips64 mips64le
package runtime
import "unsafe"
type sigctxt struct {
info *siginfo
ctxt unsafe.Pointer
}
func (c *sigctxt) regs() *sigcontext { return &(*ucontext)(c.ctxt).uc_mcontext }
func (c *sigctxt) r0() uint64 { return c.regs().sc_regs[0] }
func (c *sigctxt) r1() uint64 { return c.regs().sc_regs[1] }
func (c *sigctxt) r2() uint64 { return c.regs().sc_regs[2] }
func (c *sigctxt) r3() uint64 { return c.regs().sc_regs[3] }
func (c *sigctxt) r4() uint64 { return c.regs().sc_regs[4] }
func (c *sigctxt) r5() uint64 { return c.regs().sc_regs[5] }
func (c *sigctxt) r6() uint64 { return c.regs().sc_regs[6] }
func (c *sigctxt) r7() uint64 { return c.regs().sc_regs[7] }
func (c *sigctxt) r8() uint64 { return c.regs().sc_regs[8] }
func (c *sigctxt) r9() uint64 { return c.regs().sc_regs[9] }
func (c *sigctxt) r10() uint64 { return c.regs().sc_regs[10] }
func (c *sigctxt) r11() uint64 { return c.regs().sc_regs[11] }
func (c *sigctxt) r12() uint64 { return c.regs().sc_regs[12] }
func (c *sigctxt) r13() uint64 { return c.regs().sc_regs[13] }
func (c *sigctxt) r14() uint64 { return c.regs().sc_regs[14] }
func (c *sigctxt) r15() uint64 { return c.regs().sc_regs[15] }
func (c *sigctxt) r16() uint64 { return c.regs().sc_regs[16] }
func (c *sigctxt) r17() uint64 { return c.regs().sc_regs[17] }
func (c *sigctxt) r18() uint64 { return c.regs().sc_regs[18] }
func (c *sigctxt) r19() uint64 { return c.regs().sc_regs[19] }
func (c *sigctxt) r20() uint64 { return c.regs().sc_regs[20] }
func (c *sigctxt) r21() uint64 { return c.regs().sc_regs[21] }
func (c *sigctxt) r22() uint64 { return c.regs().sc_regs[22] }
func (c *sigctxt) r23() uint64 { return c.regs().sc_regs[23] }
func (c *sigctxt) r24() uint64 { return c.regs().sc_regs[24] }
func (c *sigctxt) r25() uint64 { return c.regs().sc_regs[25] }
func (c *sigctxt) r26() uint64 { return c.regs().sc_regs[26] }
func (c *sigctxt) r27() uint64 { return c.regs().sc_regs[27] }
func (c *sigctxt) r28() uint64 { return c.regs().sc_regs[28] }
func (c *sigctxt) r29() uint64 { return c.regs().sc_regs[29] }
func (c *sigctxt) r30() uint64 { return c.regs().sc_regs[30] }
func (c *sigctxt) r31() uint64 { return c.regs().sc_regs[31] }
func (c *sigctxt) sp() uint64 { return c.regs().sc_regs[29] }
func (c *sigctxt) pc() uint64 { return c.regs().sc_pc }
func (c *sigctxt) link() uint64 { return c.regs().sc_regs[31] }
func (c *sigctxt) lo() uint64 { return c.regs().sc_mdlo }
func (c *sigctxt) hi() uint64 { return c.regs().sc_mdhi }
func (c *sigctxt) sigcode() uint32 { return uint32(c.info.si_code) }
func (c *sigctxt) sigaddr() uint64 { return c.info.si_addr }
func (c *sigctxt) set_r30(x uint64) { c.regs().sc_regs[30] = x }
func (c *sigctxt) set_pc(x uint64) { c.regs().sc_pc = x }
func (c *sigctxt) set_sp(x uint64) { c.regs().sc_regs[29] = x }
func (c *sigctxt) set_link(x uint64) { c.regs().sc_regs[31] = x }
func (c *sigctxt) set_sigcode(x uint32) { c.info.si_code = int32(x) }
func (c *sigctxt) set_sigaddr(x uint64) {
*(*uintptr)(add(unsafe.Pointer(c.info), 2*ptrSize)) = uintptr(x)
}
// Copyright 2015 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
// +build linux
// +build mips64 mips64le
package runtime
import "unsafe"
func dumpregs(c *sigctxt) {
print("r0 ", hex(c.r0()), "\t")
print("r1 ", hex(c.r1()), "\n")
print("r2 ", hex(c.r2()), "\t")
print("r3 ", hex(c.r3()), "\n")
print("r4 ", hex(c.r4()), "\t")
print("r5 ", hex(c.r5()), "\n")
print("r6 ", hex(c.r6()), "\t")
print("r7 ", hex(c.r7()), "\n")
print("r8 ", hex(c.r8()), "\t")
print("r9 ", hex(c.r9()), "\n")
print("r10 ", hex(c.r10()), "\t")
print("r11 ", hex(c.r11()), "\n")
print("r12 ", hex(c.r12()), "\t")
print("r13 ", hex(c.r13()), "\n")
print("r14 ", hex(c.r14()), "\t")
print("r15 ", hex(c.r15()), "\n")
print("r16 ", hex(c.r16()), "\t")
print("r17 ", hex(c.r17()), "\n")
print("r18 ", hex(c.r18()), "\t")
print("r19 ", hex(c.r19()), "\n")
print("r20 ", hex(c.r20()), "\t")
print("r21 ", hex(c.r21()), "\n")
print("r22 ", hex(c.r22()), "\t")
print("r23 ", hex(c.r23()), "\n")
print("r24 ", hex(c.r24()), "\t")
print("r25 ", hex(c.r25()), "\n")
print("r26 ", hex(c.r26()), "\t")
print("r27 ", hex(c.r27()), "\n")
print("r28 ", hex(c.r28()), "\t")
print("r29 ", hex(c.r29()), "\n")
print("r30 ", hex(c.r30()), "\t")
print("r31 ", hex(c.r31()), "\n")
print("pc ", hex(c.pc()), "\t")
print("link ", hex(c.link()), "\n")
print("lo ", hex(c.lo()), "\t")
print("hi ", hex(c.hi()), "\n")
}
var crashing int32
// May run during STW, so write barriers are not allowed.
//go:nowritebarrier
func sighandler(sig uint32, info *siginfo, ctxt unsafe.Pointer, gp *g) {
_g_ := getg()
c := &sigctxt{info, ctxt}
if sig == _SIGPROF {
sigprof(uintptr(c.pc()), uintptr(c.sp()), uintptr(c.link()), gp, _g_.m)
return
}
flags := int32(_SigThrow)
if sig < uint32(len(sigtable)) {
flags = sigtable[sig].flags
}
if c.sigcode() != _SI_USER && flags&_SigPanic != 0 {
// Make it look like a call to the signal func.
// Have to pass arguments out of band since
// augmenting the stack frame would break
// the unwinding code.
gp.sig = sig
gp.sigcode0 = uintptr(c.sigcode())
gp.sigcode1 = uintptr(c.sigaddr())
gp.sigpc = uintptr(c.pc())
// We arrange link, and pc to pretend the panicking
// function calls sigpanic directly.
// Always save LINK to stack so that panics in leaf
// functions are correctly handled. This smashes
// the stack frame but we're not going back there
// anyway.
sp := c.sp() - ptrSize
c.set_sp(sp)
*(*uint64)(unsafe.Pointer(uintptr(sp))) = c.link()
pc := uintptr(gp.sigpc)
// If we don't recognize the PC as code
// but we do recognize the link register as code,
// then assume this was a call to non-code and treat like
// pc == 0, to make unwinding show the context.
if pc != 0 && findfunc(pc) == nil && findfunc(uintptr(c.link())) != nil {
pc = 0
}
// Don't bother saving PC if it's zero, which is
// probably a call to a nil func: the old link register
// is more useful in the stack trace.
if pc != 0 {
c.set_link(uint64(pc))
}
// In case we are panicking from external C code
c.set_r30(uint64(uintptr(unsafe.Pointer(gp))))
c.set_pc(uint64(funcPC(sigpanic)))
return
}
if c.sigcode() == _SI_USER || flags&_SigNotify != 0 {
if sigsend(sig) {
return
}
}
if flags&_SigKill != 0 {
exit(2)
}
if flags&_SigThrow == 0 {
return
}
_g_.m.throwing = 1
_g_.m.caughtsig.set(gp)
if crashing == 0 {
startpanic()
}
if sig < uint32(len(sigtable)) {
print(sigtable[sig].name, "\n")
} else {
print("Signal ", sig, "\n")
}
print("PC=", hex(c.pc()), " m=", _g_.m.id, "\n")
if _g_.m.lockedg != nil && _g_.m.ncgo > 0 && gp == _g_.m.g0 {
print("signal arrived during cgo execution\n")
gp = _g_.m.lockedg
}
print("\n")
level, _, docrash := gotraceback()
if level > 0 {
goroutineheader(gp)
tracebacktrap(uintptr(c.pc()), uintptr(c.sp()), uintptr(c.link()), gp)
if crashing > 0 && gp != _g_.m.curg && _g_.m.curg != nil && readgstatus(_g_.m.curg)&^_Gscan == _Grunning {
// tracebackothers on original m skipped this one; trace it now.
goroutineheader(_g_.m.curg)
traceback(^uintptr(0), ^uintptr(0), 0, gp)
} else if crashing == 0 {
tracebackothers(gp)
print("\n")
}
dumpregs(c)
}
if docrash {
crashing++
if crashing < sched.mcount {
// There are other m's that need to dump their stacks.
// Relay SIGQUIT to the next m by sending it to the current process.
// All m's that have already received SIGQUIT have signal masks blocking
// receipt of any signals, so the SIGQUIT will go to an m that hasn't seen it yet.
// When the last m receives the SIGQUIT, it will fall through to the call to
// crash below. Just in case the relaying gets botched, each m involved in
// the relay sleeps for 5 seconds and then does the crash/exit itself.
// In expected operation, the last m has received the SIGQUIT and run
// crash/exit and the process is gone, all long before any of the
// 5-second sleeps have finished.
print("\n-----\n\n")
raiseproc(_SIGQUIT)
usleep(5 * 1000 * 1000)
}
crash()
}
exit(2)
}
Markdown is supported
0%
or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment