runtime: convert page allocator bitmap to sparse array
Currently the page allocator bitmap is implemented as a single giant memory mapping which is reserved at init time and committed as needed. This causes problems on systems that don't handle large uncommitted mappings well, or institute low virtual address space defaults as a memory limiting mechanism. This change modifies the implementation of the page allocator bitmap away from a directly-mapped set of bytes to a sparse array in same vein as mheap.arenas. This will hurt performance a little but the biggest gains are from the lockless allocation possible with the page allocator, so the impact of this extra layer of indirection should be minimal. In fact, this is exactly what we see: https://perf.golang.org/search?q=upload:20191125.5 This reduces the amount of mapped (PROT_NONE) memory needed on systems with 48-bit address spaces to ~600 MiB down from almost 9 GiB. The bulk of this remaining memory is used by the summaries. Go processes with 32-bit address spaces now always commit to 128 KiB of memory for the bitmap. Previously it would only commit the pages in the bitmap which represented the range of addresses (lowest address to highest address, even if there are unused regions in that range) used by the heap. Updates #35568. Updates #35451. Change-Id: I0ff10380156568642b80c366001eefd0a4e6c762 Reviewed-on: https://go-review.googlesource.com/c/go/+/207497 Run-TryBot: Michael Knyszek <mknyszek@google.com> TryBot-Result: Gobot Gobot <gobot@golang.org> Reviewed-by: Austin Clements <austin@google.com> Reviewed-by: Cherry Zhang <cherryyz@google.com>
Showing
This diff is collapsed.
Please register or sign in to comment