Commit ba068c1a authored by zdjones's avatar zdjones Committed by Giovanni Bajo

cmd/compile: rename poset method dominates to reaches

The partially ordered set uses a method named 'dominates' to determine whether
two nodes are partially ordered. Dominates does a depth-first search of the
DAG, beginning at the source node, and returns true as soon as it finds a path
to the target node. In the context of the forest-of-DAGs that makes up the
poset, dominates is not necessarily checking dominance, but is checking
reachability. See the issue tracker for a more detailed discussion of the
difference.

Fortunately, reachability is logically correct everywhere dominates is currently
used in poset.go. Reachability within a DAG is sufficient to establish the
partial ordering (source < target).

This CL changes the name of the method (dominates -> reaches) and updates
all the comments in the file accordingly.

Fixes #33971.

Change-Id: Ia3a34f7b14b363801d75b05099cfc686035f7d96
Reviewed-on: https://go-review.googlesource.com/c/go/+/192617Reviewed-by: default avatarGiovanni Bajo <rasky@develer.com>
Run-TryBot: Giovanni Bajo <rasky@develer.com>
TryBot-Result: Gobot Gobot <gobot@golang.org>
parent 9d480eda
......@@ -116,10 +116,10 @@ type posetNode struct {
// the nodes are different, either because SetNonEqual was called before, or because
// we know that they are strictly ordered.
//
// It is implemented as a forest of DAGs; in each DAG, if node A dominates B,
// it means that A<B. Equality is represented by mapping two SSA values to the same
// DAG node; when a new equality relation is recorded between two existing nodes,
// the nodes are merged, adjusting incoming and outgoing edges.
// It is implemented as a forest of DAGs; in each DAG, if there is a path (directed)
// from node A to B, it means that A<B (or A<=B). Equality is represented by mapping
// two SSA values to the same DAG node; when a new equality relation is recorded
// between two existing nodes,the nodes are merged, adjusting incoming and outgoing edges.
//
// Constants are specially treated. When a constant is added to the poset, it is
// immediately linked to other constants already present; so for instance if the
......@@ -519,11 +519,11 @@ func (po *poset) dfs(r uint32, strict bool, f func(i uint32) bool) bool {
return false
}
// Returns true if i1 dominates i2.
// Returns true if there is a path from i1 to i2.
// If strict == true: if the function returns true, then i1 < i2.
// If strict == false: if the function returns true, then i1 <= i2.
// If the function returns false, no relation is known.
func (po *poset) dominates(i1, i2 uint32, strict bool) bool {
func (po *poset) reaches(i1, i2 uint32, strict bool) bool {
return po.dfs(i1, strict, func(n uint32) bool {
return n == i2
})
......@@ -537,7 +537,7 @@ func (po *poset) findroot(i uint32) uint32 {
// storing a bitset for each root using it as a mini bloom filter
// of nodes present under that root.
for _, r := range po.roots {
if po.dominates(r, i, false) {
if po.reaches(r, i, false) {
return r
}
}
......@@ -560,7 +560,7 @@ func (po *poset) mergeroot(r1, r2 uint32) uint32 {
// found, the function does not modify the DAG and returns false.
func (po *poset) collapsepath(n1, n2 *Value) bool {
i1, i2 := po.values[n1.ID], po.values[n2.ID]
if po.dominates(i1, i2, true) {
if po.reaches(i1, i2, true) {
return false
}
......@@ -796,7 +796,7 @@ func (po *poset) Ordered(n1, n2 *Value) bool {
return false
}
return i1 != i2 && po.dominates(i1, i2, true)
return i1 != i2 && po.reaches(i1, i2, true)
}
// Ordered reports whether n1<=n2. It returns false either when it is
......@@ -814,8 +814,8 @@ func (po *poset) OrderedOrEqual(n1, n2 *Value) bool {
return false
}
return i1 == i2 || po.dominates(i1, i2, false) ||
(po.dominates(i2, i1, false) && !po.dominates(i2, i1, true))
return i1 == i2 || po.reaches(i1, i2, false) ||
(po.reaches(i2, i1, false) && !po.reaches(i2, i1, true))
}
// Equal reports whether n1==n2. It returns false either when it is
......@@ -923,8 +923,8 @@ func (po *poset) setOrder(n1, n2 *Value, strict bool) bool {
// Both n1 and n2 are in the poset. This is the complex part of the algorithm
// as we need to find many different cases and DAG shapes.
// Check if n1 somehow dominates n2
if po.dominates(i1, i2, false) {
// Check if n1 somehow reaches n2
if po.reaches(i1, i2, false) {
// This is the table of all cases we need to handle:
//
// DAG New Action
......@@ -935,7 +935,7 @@ func (po *poset) setOrder(n1, n2 *Value, strict bool) bool {
// #4: N1<X<N2 | N1<N2 | do nothing
// Check if we're in case #2
if strict && !po.dominates(i1, i2, true) {
if strict && !po.reaches(i1, i2, true) {
po.addchild(i1, i2, true)
return true
}
......@@ -944,8 +944,8 @@ func (po *poset) setOrder(n1, n2 *Value, strict bool) bool {
return true
}
// Check if n2 somehow dominates n1
if po.dominates(i2, i1, false) {
// Check if n2 somehow reaches n1
if po.reaches(i2, i1, false) {
// This is the table of all cases we need to handle:
//
// DAG New Action
......@@ -1033,10 +1033,10 @@ func (po *poset) SetEqual(n1, n2 *Value) bool {
// If we already knew that n1<=n2, we can collapse the path to
// record n1==n2 (and viceversa).
if po.dominates(i1, i2, false) {
if po.reaches(i1, i2, false) {
return po.collapsepath(n1, n2)
}
if po.dominates(i2, i1, false) {
if po.reaches(i2, i1, false) {
return po.collapsepath(n2, n1)
}
......@@ -1084,10 +1084,10 @@ func (po *poset) SetNonEqual(n1, n2 *Value) bool {
i1, f1 := po.lookup(n1)
i2, f2 := po.lookup(n2)
if f1 && f2 {
if po.dominates(i1, i2, false) && !po.dominates(i1, i2, true) {
if po.reaches(i1, i2, false) && !po.reaches(i1, i2, true) {
po.addchild(i1, i2, true)
}
if po.dominates(i2, i1, false) && !po.dominates(i2, i1, true) {
if po.reaches(i2, i1, false) && !po.reaches(i2, i1, true) {
po.addchild(i2, i1, true)
}
}
......
Markdown is supported
0%
or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment