Commit c3c53661 authored by Joel Sing's avatar Joel Sing

cmd/asm,cmd/internal/obj/riscv: implement integer computational instructions

Add support for assembling integer computational instructions.

Based on the riscv-go port.

Updates #27532

Change-Id: Ibf02649eebd65ce96002a9ca0624266d96def2cd
Reviewed-on: https://go-review.googlesource.com/c/go/+/195079
Run-TryBot: Joel Sing <joel@sing.id.au>
TryBot-Result: Gobot Gobot <gobot@golang.org>
Reviewed-by: default avatarCherry Zhang <cherryyz@google.com>
parent 606fa2db
......@@ -417,7 +417,7 @@ func (p *Parser) asmJump(op obj.As, cond string, a []obj.Addr) {
prog.Reg = reg
break
}
if p.arch.Family == sys.MIPS || p.arch.Family == sys.MIPS64 {
if p.arch.Family == sys.MIPS || p.arch.Family == sys.MIPS64 || p.arch.Family == sys.RISCV64 {
// 3-operand jumps.
// First two must be registers
target = &a[2]
......@@ -579,7 +579,7 @@ func (p *Parser) asmInstruction(op obj.As, cond string, a []obj.Addr) {
prog.To = a[1]
case 3:
switch p.arch.Family {
case sys.MIPS, sys.MIPS64:
case sys.MIPS, sys.MIPS64, sys.RISCV64:
prog.From = a[0]
prog.Reg = p.getRegister(prog, op, &a[1])
prog.To = a[2]
......
......@@ -9,3 +9,71 @@ TEXT asmtest(SB),DUPOK|NOSPLIT,$0
// Arbitrary bytes (entered in little-endian mode)
WORD $0x12345678 // WORD $305419896 // 78563412
WORD $0x9abcdef0 // WORD $2596069104 // f0debc9a
// Unprivileged ISA
// 2.4: Integer Computational Instructions
ADDI $2047, X5, X6 // 1383f27f
ADDI $-2048, X5, X6 // 13830280
ADDI $2047, X5 // 9382f27f
ADDI $-2048, X5 // 93820280
SLTI $55, X5, X7 // 93a37203
SLTIU $55, X5, X7 // 93b37203
ANDI $1, X5, X6 // 13f31200
ANDI $1, X5 // 93f21200
ORI $1, X5, X6 // 13e31200
ORI $1, X5 // 93e21200
XORI $1, X5, X6 // 13c31200
XORI $1, X5 // 93c21200
SLLI $1, X5, X6 // 13931200
SLLI $1, X5 // 93921200
SRLI $1, X5, X6 // 13d31200
SRLI $1, X5 // 93d21200
SRAI $1, X5, X6 // 13d31240
SRAI $1, X5 // 93d21240
ADD X6, X5, X7 // b3836200
ADD X5, X6 // 33035300
ADD $2047, X5, X6 // 1383f27f
ADD $-2048, X5, X6 // 13830280
ADD $2047, X5 // 9382f27f
ADD $-2048, X5 // 93820280
SLT X6, X5, X7 // b3a36200
SLT $55, X5, X7 // 93a37203
SLTU X6, X5, X7 // b3b36200
SLTU $55, X5, X7 // 93b37203
AND X6, X5, X7 // b3f36200
AND X5, X6 // 33735300
AND $1, X5, X6 // 13f31200
AND $1, X5 // 93f21200
OR X6, X5, X7 // b3e36200
OR X5, X6 // 33635300
OR $1, X5, X6 // 13e31200
OR $1, X5 // 93e21200
XOR X6, X5, X7 // b3c36200
XOR X5, X6 // 33435300
XOR $1, X5, X6 // 13c31200
XOR $1, X5 // 93c21200
SLL X6, X5, X7 // b3936200
SLL X5, X6 // 33135300
SLL $1, X5, X6 // 13931200
SLL $1, X5 // 93921200
SRL X6, X5, X7 // b3d36200
SRL X5, X6 // 33535300
SRL $1, X5, X6 // 13d31200
SRL $1, X5 // 93d21200
SUB X6, X5, X7 // b3836240
SUB X5, X6 // 33035340
SRA X6, X5, X7 // b3d36240
SRA X5, X6 // 33535340
SRA $1, X5, X6 // 13d31240
SRA $1, X5 // 93d21240
......@@ -31,8 +31,43 @@ var RISCV64DWARFRegisters = map[int16]int16{}
func buildop(ctxt *obj.Link) {}
// progedit is called individually for each *obj.Prog. It normalizes instruction
// formats and eliminates as many pseudo-instructions as possible.
func progedit(ctxt *obj.Link, p *obj.Prog, newprog obj.ProgAlloc) {
// TODO(jsing): Implement.
// Expand binary instructions to ternary ones.
if p.Reg == 0 {
switch p.As {
case AADDI, ASLTI, ASLTIU, AANDI, AORI, AXORI, ASLLI, ASRLI, ASRAI,
AADD, AAND, AOR, AXOR, ASLL, ASRL, ASUB, ASRA:
p.Reg = p.To.Reg
}
}
// Rewrite instructions with constant operands to refer to the immediate
// form of the instruction.
if p.From.Type == obj.TYPE_CONST {
switch p.As {
case AADD:
p.As = AADDI
case ASLT:
p.As = ASLTI
case ASLTU:
p.As = ASLTIU
case AAND:
p.As = AANDI
case AOR:
p.As = AORI
case AXOR:
p.As = AXORI
case ASLL:
p.As = ASLLI
case ASRL:
p.As = ASRLI
case ASRA:
p.As = ASRAI
}
}
}
// setPCs sets the Pc field in all instructions reachable from p.
......@@ -83,6 +118,103 @@ func preprocess(ctxt *obj.Link, cursym *obj.LSym, newprog obj.ProgAlloc) {
}
}
func regVal(r, min, max int16) uint32 {
if r < min || r > max {
panic(fmt.Sprintf("register out of range, want %d < %d < %d", min, r, max))
}
return uint32(r - min)
}
// regI returns an integer register.
func regI(r int16) uint32 {
return regVal(r, REG_X0, REG_X31)
}
// regAddr extracts a register from an Addr.
func regAddr(a obj.Addr, min, max int16) uint32 {
if a.Type != obj.TYPE_REG {
panic(fmt.Sprintf("ill typed: %+v", a))
}
return regVal(a.Reg, min, max)
}
// regIAddr extracts the integer register from an Addr.
func regIAddr(a obj.Addr) uint32 {
return regAddr(a, REG_X0, REG_X31)
}
// immFits reports whether immediate value x fits in nbits bits as a
// signed integer.
func immFits(x int64, nbits uint) bool {
nbits--
var min int64 = -1 << nbits
var max int64 = 1<<nbits - 1
return min <= x && x <= max
}
// immI extracts the integer literal of the specified size from an Addr.
func immI(a obj.Addr, nbits uint) uint32 {
if a.Type != obj.TYPE_CONST {
panic(fmt.Sprintf("ill typed: %+v", a))
}
if !immFits(a.Offset, nbits) {
panic(fmt.Sprintf("immediate %d in %v cannot fit in %d bits", a.Offset, a, nbits))
}
return uint32(a.Offset)
}
func wantImm(p *obj.Prog, pos string, a obj.Addr, nbits uint) {
if a.Type != obj.TYPE_CONST {
p.Ctxt.Diag("%v\texpected immediate in %s position but got %s", p, pos, obj.Dconv(p, &a))
return
}
if !immFits(a.Offset, nbits) {
p.Ctxt.Diag("%v\timmediate in %s position cannot be larger than %d bits but got %d", p, pos, nbits, a.Offset)
}
}
func wantReg(p *obj.Prog, pos string, descr string, r, min, max int16) {
if r < min || r > max {
p.Ctxt.Diag("%v\texpected %s register in %s position but got non-%s register %s", p, descr, pos, descr, regName(int(r)))
}
}
// wantIntReg checks that r is an integer register.
func wantIntReg(p *obj.Prog, pos string, r int16) {
wantReg(p, pos, "integer", r, REG_X0, REG_X31)
}
func wantRegAddr(p *obj.Prog, pos string, a *obj.Addr, descr string, min int16, max int16) {
if a == nil {
p.Ctxt.Diag("%v\texpected register in %s position but got nothing", p, pos)
return
}
if a.Type != obj.TYPE_REG {
p.Ctxt.Diag("%v\texpected register in %s position but got %s", p, pos, obj.Dconv(p, a))
return
}
if a.Reg < min || a.Reg > max {
p.Ctxt.Diag("%v\texpected %s register in %s position but got non-%s register %s", p, descr, pos, descr, obj.Dconv(p, a))
}
}
// wantIntRegAddr checks that a contains an integer register.
func wantIntRegAddr(p *obj.Prog, pos string, a *obj.Addr) {
wantRegAddr(p, pos, a, "integer", REG_X0, REG_X31)
}
func validateRIII(p *obj.Prog) {
wantIntRegAddr(p, "from", &p.From)
wantIntReg(p, "reg", p.Reg)
wantIntRegAddr(p, "to", &p.To)
}
func validateII(p *obj.Prog) {
wantImm(p, "from", p.From, 12)
wantIntReg(p, "reg", p.Reg)
wantIntRegAddr(p, "to", &p.To)
}
func validateRaw(p *obj.Prog) {
// Treat the raw value specially as a 32-bit unsigned integer.
// Nobody wants to enter negative machine code.
......@@ -96,6 +228,42 @@ func validateRaw(p *obj.Prog) {
}
}
// encodeR encodes an R-type RISC-V instruction.
func encodeR(p *obj.Prog, rs1 uint32, rs2 uint32, rd uint32) uint32 {
ins := encode(p.As)
if ins == nil {
panic("encodeR: could not encode instruction")
}
if ins.rs2 != 0 && rs2 != 0 {
panic("encodeR: instruction uses rs2, but rs2 was nonzero")
}
// Use Scond for the floating-point rounding mode override.
// TODO(sorear): Is there a more appropriate way to handle opcode extension bits like this?
return ins.funct7<<25 | ins.rs2<<20 | rs2<<20 | rs1<<15 | ins.funct3<<12 | uint32(p.Scond)<<12 | rd<<7 | ins.opcode
}
func encodeRIII(p *obj.Prog) uint32 {
return encodeR(p, regI(p.Reg), regIAddr(p.From), regIAddr(p.To))
}
// encodeI encodes an I-type RISC-V instruction.
func encodeI(p *obj.Prog, rd uint32) uint32 {
imm := immI(p.From, 12)
rs1 := regI(p.Reg)
ins := encode(p.As)
if ins == nil {
panic("encodeI: could not encode instruction")
}
imm |= uint32(ins.csr)
return imm<<20 | rs1<<15 | ins.funct3<<12 | rd<<7 | ins.opcode
}
func encodeII(p *obj.Prog) uint32 {
return encodeI(p, regIAddr(p.To))
}
// encodeRaw encodes a raw instruction value.
func encodeRaw(p *obj.Prog) uint32 {
// Treat the raw value specially as a 32-bit unsigned integer.
// Nobody wants to enter negative machine code.
......@@ -116,6 +284,22 @@ type encoding struct {
}
var (
// Encodings have the following naming convention:
//
// 1. the instruction encoding (R/I/S/SB/U/UJ), in lowercase
// 2. zero or more register operand identifiers (I = integer
// register, F = float register), in uppercase
// 3. the word "Encoding"
//
// For example, rIIIEncoding indicates an R-type instruction with two
// integer register inputs and an integer register output; sFEncoding
// indicates an S-type instruction with rs2 being a float register.
rIIIEncoding = encoding{encode: encodeRIII, validate: validateRIII, length: 4}
iIEncoding = encoding{encode: encodeII, validate: validateII, length: 4}
// rawEncoding encodes a raw instruction byte sequence.
rawEncoding = encoding{encode: encodeRaw, validate: validateRaw, length: 4}
// pseudoOpEncoding panics if encoding is attempted, but does no validation.
......@@ -131,6 +315,29 @@ var (
var encodingForAs = [ALAST & obj.AMask]encoding{
// TODO(jsing): Implement remaining instructions.
// Unprivileged ISA
// 2.4: Integer Computational Instructions
AADDI & obj.AMask: iIEncoding,
ASLTI & obj.AMask: iIEncoding,
ASLTIU & obj.AMask: iIEncoding,
AANDI & obj.AMask: iIEncoding,
AORI & obj.AMask: iIEncoding,
AXORI & obj.AMask: iIEncoding,
ASLLI & obj.AMask: iIEncoding,
ASRLI & obj.AMask: iIEncoding,
ASRAI & obj.AMask: iIEncoding,
AADD & obj.AMask: rIIIEncoding,
ASLT & obj.AMask: rIIIEncoding,
ASLTU & obj.AMask: rIIIEncoding,
AAND & obj.AMask: rIIIEncoding,
AOR & obj.AMask: rIIIEncoding,
AXOR & obj.AMask: rIIIEncoding,
ASLL & obj.AMask: rIIIEncoding,
ASRL & obj.AMask: rIIIEncoding,
ASUB & obj.AMask: rIIIEncoding,
ASRA & obj.AMask: rIIIEncoding,
// Escape hatch
AWORD & obj.AMask: rawEncoding,
......
Markdown is supported
0%
or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment