Commit c4a3a9c7 authored by Vlad Krasnov's avatar Vlad Krasnov Committed by Brad Fitzpatrick

crypto/elliptic: improve P256 implementation on amd64 a bit

Minor modifications to the optimized amd64 implememntation.

* Reduce window size: reduces size of the lookup tables by 40%
* Revised scalar inversion formula, with less operations
* Field square function now uses intental loop, saving call overhead

This change will serve as a basis for an arm64 implementation.

Performance results on Skylake MacBook Pro:

pkg:crypto/elliptic goos:darwin goarch:amd64
BaseMultP256      17.8µs ± 1%    17.5µs ± 1%  -1.41%  (p=0.003 n=10+10)
ScalarMultP256    70.7µs ± 1%    68.9µs ± 2%  -2.57%  (p=0.000 n=9+9)
pkg:crypto/ecdsa goos:darwin goarch:amd64
SignP256          32.7µs ± 1%    31.4µs ± 1%  -3.96%  (p=0.000 n=10+8)
VerifyP256        95.1µs ± 1%    93.5µs ± 2%  -1.73%  (p=0.001 n=10+9)

name            old alloc/op   new alloc/op   delta
pkg:crypto/elliptic goos:darwin goarch:amd64
BaseMultP256        288B ± 0%      288B ± 0%    ~     (all equal)
ScalarMultP256      256B ± 0%      256B ± 0%    ~     (all equal)
pkg:crypto/ecdsa goos:darwin goarch:amd64
SignP256          2.90kB ± 0%    2.90kB ± 0%    ~     (all equal)
VerifyP256          976B ± 0%      976B ± 0%    ~     (all equal)

name            old allocs/op  new allocs/op  delta
pkg:crypto/elliptic goos:darwin goarch:amd64
BaseMultP256        6.00 ± 0%      6.00 ± 0%    ~     (all equal)
ScalarMultP256      5.00 ± 0%      5.00 ± 0%    ~     (all equal)
pkg:crypto/ecdsa goos:darwin goarch:amd64
SignP256            34.0 ± 0%      34.0 ± 0%    ~     (all equal)
VerifyP256          17.0 ± 0%      17.0 ± 0%    ~     (all equal)

Change-Id: I3f0e2e197a54e7bc7916dedc5dbf085e2c4aea24
Reviewed-on: https://go-review.googlesource.com/99622Reviewed-by: default avatarVlad Krasnov <vlad@cloudflare.com>
Reviewed-by: default avatarFilippo Valsorda <filippo@golang.org>
Run-TryBot: Vlad Krasnov <vlad@cloudflare.com>
TryBot-Result: Gobot Gobot <gobot@golang.org>
parent efa0d1f2
......@@ -31,7 +31,7 @@ type (
var (
p256 p256Curve
p256Precomputed *[37][64 * 8]uint64
p256Precomputed *[43][32 * 8]uint64
precomputeOnce sync.Once
)
......@@ -50,14 +50,14 @@ func (curve p256Curve) Params() *CurveParams {
return curve.CurveParams
}
// Functions implemented in p256_asm_amd64.s
// Functions implemented in p256_asm_*64.s
// Montgomery multiplication modulo P256
//go:noescape
func p256Mul(res, in1, in2 []uint64)
// Montgomery square modulo P256
// Montgomery square modulo P256, repeated n times (n >= 1)
//go:noescape
func p256Sqr(res, in []uint64)
func p256Sqr(res, in []uint64, n int)
// Montgomery multiplication by 1
//go:noescape
......@@ -121,11 +121,20 @@ func (curve p256Curve) Inverse(k *big.Int) *big.Int {
k = new(big.Int).Mod(k, p256.N)
}
// table will store precomputed powers of x. The four words at index
// 4×i store x^(i+1).
var table [4 * 15]uint64
// table will store precomputed powers of x.
var table [4 * 9]uint64
var (
_1 = table[4*0 : 4*1]
_11 = table[4*1 : 4*2]
_101 = table[4*2 : 4*3]
_111 = table[4*3 : 4*4]
_1111 = table[4*4 : 4*5]
_10101 = table[4*5 : 4*6]
_101111 = table[4*6 : 4*7]
x = table[4*7 : 4*8]
t = table[4*8 : 4*9]
)
x := make([]uint64, 4)
fromBig(x[:], k)
// This code operates in the Montgomery domain where R = 2^256 mod n
// and n is the order of the scalar field. (See initP256 for the
......@@ -133,53 +142,49 @@ func (curve p256Curve) Inverse(k *big.Int) *big.Int {
// multiplication of x and y in the calculates (x × y × R^-1) mod n. RR
// is R×R mod n thus the Montgomery multiplication x and RR gives x×R,
// i.e. converts x into the Montgomery domain.
// Window values borrowed from https://briansmith.org/ecc-inversion-addition-chains-01#p256_scalar_inversion
RR := []uint64{0x83244c95be79eea2, 0x4699799c49bd6fa6, 0x2845b2392b6bec59, 0x66e12d94f3d95620}
p256OrdMul(table[:4], x, RR)
// Prepare the table, no need in constant time access, because the
// power is not a secret. (Entry 0 is never used.)
for i := 2; i < 16; i += 2 {
p256OrdSqr(table[4*(i-1):], table[4*((i/2)-1):], 1)
p256OrdMul(table[4*i:], table[4*(i-1):], table[:4])
}
x[0] = table[4*14+0] // f
x[1] = table[4*14+1]
x[2] = table[4*14+2]
x[3] = table[4*14+3]
p256OrdSqr(x, x, 4)
p256OrdMul(x, x, table[4*14:4*14+4]) // ff
t := make([]uint64, 4, 4)
t[0] = x[0]
t[1] = x[1]
t[2] = x[2]
t[3] = x[3]
p256OrdSqr(x, x, 8)
p256OrdMul(x, x, t) // ffff
t[0] = x[0]
t[1] = x[1]
t[2] = x[2]
t[3] = x[3]
p256OrdSqr(x, x, 16)
p256OrdMul(x, x, t) // ffffffff
t[0] = x[0]
t[1] = x[1]
t[2] = x[2]
t[3] = x[3]
p256OrdSqr(x, x, 64) // ffffffff0000000000000000
p256OrdMul(x, x, t) // ffffffff00000000ffffffff
p256OrdSqr(x, x, 32) // ffffffff00000000ffffffff00000000
p256OrdMul(x, x, t) // ffffffff00000000ffffffffffffffff
// Remaining 32 windows
expLo := [32]byte{0xb, 0xc, 0xe, 0x6, 0xf, 0xa, 0xa, 0xd, 0xa, 0x7, 0x1, 0x7, 0x9, 0xe, 0x8, 0x4, 0xf, 0x3, 0xb, 0x9, 0xc, 0xa, 0xc, 0x2, 0xf, 0xc, 0x6, 0x3, 0x2, 0x5, 0x4, 0xf}
for i := 0; i < 32; i++ {
p256OrdSqr(x, x, 4)
p256OrdMul(x, x, table[4*(expLo[i]-1):])
p256OrdMul(_1, x, RR) // _1
p256OrdSqr(x, _1, 1) // _10
p256OrdMul(_11, x, _1) // _11
p256OrdMul(_101, x, _11) // _101
p256OrdMul(_111, x, _101) // _111
p256OrdSqr(x, _101, 1) // _1010
p256OrdMul(_1111, _101, x) // _1111
p256OrdSqr(t, x, 1) // _10100
p256OrdMul(_10101, t, _1) // _10101
p256OrdSqr(x, _10101, 1) // _101010
p256OrdMul(_101111, _101, x) // _101111
p256OrdMul(x, _10101, x) // _111111 = x6
p256OrdSqr(t, x, 2) // _11111100
p256OrdMul(t, t, _11) // _11111111 = x8
p256OrdSqr(x, t, 8) // _ff00
p256OrdMul(x, x, t) // _ffff = x16
p256OrdSqr(t, x, 16) // _ffff0000
p256OrdMul(t, t, x) // _ffffffff = x32
p256OrdSqr(x, t, 64)
p256OrdMul(x, x, t)
p256OrdSqr(x, x, 32)
p256OrdMul(x, x, t)
sqrs := []uint8{
6, 5, 4, 5, 5,
4, 3, 3, 5, 9,
6, 2, 5, 6, 5,
4, 5, 5, 3, 10,
2, 5, 5, 3, 7, 6}
muls := [][]uint64{
_101111, _111, _11, _1111, _10101,
_101, _101, _101, _111, _101111,
_1111, _1, _1, _1111, _111,
_111, _111, _101, _11, _101111,
_11, _11, _11, _1, _10101, _1111}
for i, s := range sqrs {
p256OrdSqr(x, x, int(s))
p256OrdMul(x, x, muls[i])
}
// Multiplying by one in the Montgomery domain converts a Montgomery
......@@ -309,7 +314,7 @@ func (p *p256Point) p256PointToAffine() (x, y *big.Int) {
zInv := make([]uint64, 4)
zInvSq := make([]uint64, 4)
p256Inverse(zInv, p.xyz[8:12])
p256Sqr(zInvSq, zInv)
p256Sqr(zInvSq, zInv, 1)
p256Mul(zInv, zInv, zInvSq)
p256Mul(zInvSq, p.xyz[0:4], zInvSq)
......@@ -346,71 +351,43 @@ func p256Inverse(out, in []uint64) {
p16 := stack[4*3 : 4*3+4]
p32 := stack[4*4 : 4*4+4]
p256Sqr(out, in)
p256Sqr(out, in, 1)
p256Mul(p2, out, in) // 3*p
p256Sqr(out, p2)
p256Sqr(out, out)
p256Sqr(out, p2, 2)
p256Mul(p4, out, p2) // f*p
p256Sqr(out, p4)
p256Sqr(out, out)
p256Sqr(out, out)
p256Sqr(out, out)
p256Sqr(out, p4, 4)
p256Mul(p8, out, p4) // ff*p
p256Sqr(out, p8)
for i := 0; i < 7; i++ {
p256Sqr(out, out)
}
p256Sqr(out, p8, 8)
p256Mul(p16, out, p8) // ffff*p
p256Sqr(out, p16)
for i := 0; i < 15; i++ {
p256Sqr(out, out)
}
p256Sqr(out, p16, 16)
p256Mul(p32, out, p16) // ffffffff*p
p256Sqr(out, p32)
for i := 0; i < 31; i++ {
p256Sqr(out, out)
}
p256Sqr(out, p32, 32)
p256Mul(out, out, in)
for i := 0; i < 32*4; i++ {
p256Sqr(out, out)
}
p256Sqr(out, out, 128)
p256Mul(out, out, p32)
for i := 0; i < 32; i++ {
p256Sqr(out, out)
}
p256Sqr(out, out, 32)
p256Mul(out, out, p32)
for i := 0; i < 16; i++ {
p256Sqr(out, out)
}
p256Sqr(out, out, 16)
p256Mul(out, out, p16)
for i := 0; i < 8; i++ {
p256Sqr(out, out)
}
p256Sqr(out, out, 8)
p256Mul(out, out, p8)
p256Sqr(out, out)
p256Sqr(out, out)
p256Sqr(out, out)
p256Sqr(out, out)
p256Sqr(out, out, 4)
p256Mul(out, out, p4)
p256Sqr(out, out)
p256Sqr(out, out)
p256Sqr(out, out, 2)
p256Mul(out, out, p2)
p256Sqr(out, out)
p256Sqr(out, out)
p256Sqr(out, out, 2)
p256Mul(out, out, in)
}
......@@ -426,16 +403,16 @@ func boothW5(in uint) (int, int) {
return int(d), int(s & 1)
}
func boothW7(in uint) (int, int) {
var s uint = ^((in >> 7) - 1)
var d uint = (1 << 8) - in - 1
func boothW6(in uint) (int, int) {
var s uint = ^((in >> 6) - 1)
var d uint = (1 << 7) - in - 1
d = (d & s) | (in & (^s))
d = (d >> 1) + (d & 1)
return int(d), int(s & 1)
}
func initTable() {
p256Precomputed = new([37][64 * 8]uint64)
p256Precomputed = new([43][32 * 8]uint64)
basePoint := []uint64{
0x79e730d418a9143c, 0x75ba95fc5fedb601, 0x79fb732b77622510, 0x18905f76a53755c6,
......@@ -448,19 +425,19 @@ func initTable() {
zInv := make([]uint64, 4)
zInvSq := make([]uint64, 4)
for j := 0; j < 64; j++ {
for j := 0; j < 32; j++ {
copy(t1, t2)
for i := 0; i < 37; i++ {
// The window size is 7 so we need to double 7 times.
for i := 0; i < 43; i++ {
// The window size is 6 so we need to double 6 times.
if i != 0 {
for k := 0; k < 7; k++ {
for k := 0; k < 6; k++ {
p256PointDoubleAsm(t1, t1)
}
}
// Convert the point to affine form. (Its values are
// still in Montgomery form however.)
p256Inverse(zInv, t1[8:12])
p256Sqr(zInvSq, zInv)
p256Sqr(zInvSq, zInv, 1)
p256Mul(zInv, zInv, zInvSq)
p256Mul(t1[:4], t1[:4], zInvSq)
......@@ -481,8 +458,8 @@ func initTable() {
func (p *p256Point) p256BaseMult(scalar []uint64) {
precomputeOnce.Do(initTable)
wvalue := (scalar[0] << 1) & 0xff
sel, sign := boothW7(uint(wvalue))
wvalue := (scalar[0] << 1) & 0x7f
sel, sign := boothW6(uint(wvalue))
p256SelectBase(p.xyz[0:8], p256Precomputed[0][0:], sel)
p256NegCond(p.xyz[4:8], sign)
......@@ -499,17 +476,17 @@ func (p *p256Point) p256BaseMult(scalar []uint64) {
t0.xyz[10] = 0xffffffffffffffff
t0.xyz[11] = 0x00000000fffffffe
index := uint(6)
index := uint(5)
zero := sel
for i := 1; i < 37; i++ {
for i := 1; i < 43; i++ {
if index < 192 {
wvalue = ((scalar[index/64] >> (index % 64)) + (scalar[index/64+1] << (64 - (index % 64)))) & 0xff
wvalue = ((scalar[index/64] >> (index % 64)) + (scalar[index/64+1] << (64 - (index % 64)))) & 0x7f
} else {
wvalue = (scalar[index/64] >> (index % 64)) & 0xff
wvalue = (scalar[index/64] >> (index % 64)) & 0x7f
}
index += 7
sel, sign = boothW7(uint(wvalue))
index += 6
sel, sign = boothW6(uint(wvalue))
p256SelectBase(t0.xyz[0:8], p256Precomputed[i][0:], sel)
p256PointAddAffineAsm(p.xyz[0:12], p.xyz[0:12], t0.xyz[0:8], sign, sel, zero)
zero |= sel
......
......@@ -162,10 +162,14 @@ TEXT ·p256NegCond(SB),NOSPLIT,$0
RET
/* ---------------------------------------*/
// func p256Sqr(res, in []uint64)
// func p256Sqr(res, in []uint64, n int)
TEXT ·p256Sqr(SB),NOSPLIT,$0
MOVQ res+0(FP), res_ptr
MOVQ in+24(FP), x_ptr
MOVQ n+48(FP), BX
sqrLoop:
// y[1:] * y[0]
MOVQ (8*0)(x_ptr), t0
......@@ -316,6 +320,9 @@ TEXT ·p256Sqr(SB),NOSPLIT,$0
MOVQ acc1, (8*1)(res_ptr)
MOVQ acc2, (8*2)(res_ptr)
MOVQ acc3, (8*3)(res_ptr)
MOVQ res_ptr, x_ptr
DECQ BX
JNE sqrLoop
RET
/* ---------------------------------------*/
......@@ -677,7 +684,7 @@ TEXT ·p256SelectBase(SB),NOSPLIT,$0
PXOR X1, X1
PXOR X2, X2
PXOR X3, X3
MOVQ $32, AX
MOVQ $16, AX
MOVOU X15, X13
......
Markdown is supported
0%
or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment