Commit ca0be6f8 authored by Robert Griesemer's avatar Robert Griesemer

math/big: clean up Float.SetPrec, use shorter internal representation

Change-Id: I9b78085adc12cbd240d0b8b48db6810ddb2aeadd
Reviewed-on: https://go-review.googlesource.com/5991Reviewed-by: default avatarAlan Donovan <adonovan@google.com>
parent c20a018d
......@@ -61,7 +61,7 @@ type Float struct {
neg bool
mant nat
exp int32
prec uint // TODO(gri) make this a 32bit field
prec uint32
}
// TODO(gri) provide a couple of Example tests showing typical Float intialization
......@@ -77,8 +77,9 @@ type Float struct {
// values have an empty mantissa and a 0 or infExp exponent, respectively.
const (
MaxExp = math.MaxInt32 // largest supported exponent magnitude
infExp = -MaxExp - 1 // exponent for Inf values
MaxExp = math.MaxInt32 // largest supported exponent magnitude
infExp = -MaxExp - 1 // exponent for Inf values
MaxPrec = math.MaxUint32 // largest (theoretically) supported precision; likely memory-limited
)
// NewInf returns a new infinite Float value with value +Inf (sign >= 0),
......@@ -150,11 +151,32 @@ func (mode RoundingMode) String() string {
// SetPrec sets z's precision to prec and returns the (possibly) rounded
// value of z. Rounding occurs according to z's rounding mode if the mantissa
// cannot be represented in prec bits without loss of precision.
// If prec == 0, the result is ±0 for finite z, and ±Inf for infinite z,
// with the sign set according to z. If prec > MaxPrec, it is set to MaxPrec.
func (z *Float) SetPrec(prec uint) *Float {
z.acc = Exact // optimistically assume no rounding is needed
// handle special case
if prec == 0 {
z.prec = 0
if len(z.mant) != 0 {
// truncate and compute accuracy
z.mant = z.mant[:0]
z.exp = 0
acc := Below
if z.neg {
acc = Above
}
z.acc = acc
}
return z
}
// general case
if prec > MaxPrec {
prec = MaxPrec
}
old := z.prec
z.acc = Exact
z.prec = prec
if prec < old {
z.prec = uint32(prec)
if z.prec < old {
z.round(0)
}
return z
......@@ -259,7 +281,7 @@ func (x *Float) IsInt() bool {
return len(x.mant) == 0 && x.exp != infExp
}
// x.exp > 0
return x.prec <= uint(x.exp) || x.minPrec() <= uint(x.exp) // not enough bits for fractional mantissa
return x.prec <= uint32(x.exp) || x.minPrec() <= uint(x.exp) // not enough bits for fractional mantissa
}
// IsInf reports whether x is an infinity, according to sign.
......@@ -320,7 +342,7 @@ func (z *Float) round(sbit uint) {
z.acc = Exact
// handle zero and Inf
m := uint(len(z.mant)) // present mantissa length in words
m := uint32(len(z.mant)) // present mantissa length in words
if m == 0 {
if z.exp != infExp {
z.exp = 0
......@@ -351,8 +373,8 @@ func (z *Float) round(sbit uint) {
// 1 1 > 0.5, < 1.0
// bits > z.prec: mantissa too large => round
r := bits - z.prec - 1 // rounding bit position; r >= 0
rbit := z.mant.bit(r) // rounding bit
r := uint(bits - z.prec - 1) // rounding bit position; r >= 0
rbit := z.mant.bit(r) // rounding bit
if sbit == 0 {
sbit = z.mant.sticky(r)
}
......@@ -567,9 +589,9 @@ func (z *Float) SetInt(x *Int) *Float {
// TODO(gri) can be more efficient if z.prec > 0
// but small compared to the size of x, or if there
// are many trailing 0's.
bits := uint(x.BitLen())
bits := uint32(x.BitLen())
if z.prec == 0 {
z.prec = umax(bits, 64)
z.prec = umax32(bits, 64)
}
z.acc = Exact
z.neg = x.neg
......@@ -599,7 +621,7 @@ func (z *Float) SetRat(x *Rat) *Float {
a.SetInt(x.Num())
b.SetInt(x.Denom())
if z.prec == 0 {
z.prec = umax(a.prec, b.prec)
z.prec = umax32(a.prec, b.prec)
}
return z.Quo(&a, &b)
}
......@@ -1126,7 +1148,7 @@ func (z *Float) Add(x, y *Float) *Float {
}
if z.prec == 0 {
z.prec = umax(x.prec, y.prec)
z.prec = umax32(x.prec, y.prec)
}
// TODO(gri) what about -0?
......@@ -1167,7 +1189,7 @@ func (z *Float) Sub(x, y *Float) *Float {
}
if z.prec == 0 {
z.prec = umax(x.prec, y.prec)
z.prec = umax32(x.prec, y.prec)
}
// TODO(gri) what about -0?
......@@ -1207,7 +1229,7 @@ func (z *Float) Mul(x, y *Float) *Float {
}
if z.prec == 0 {
z.prec = umax(x.prec, y.prec)
z.prec = umax32(x.prec, y.prec)
}
// TODO(gri) handle Inf
......@@ -1236,7 +1258,7 @@ func (z *Float) Quo(x, y *Float) *Float {
}
if z.prec == 0 {
z.prec = umax(x.prec, y.prec)
z.prec = umax32(x.prec, y.prec)
}
// TODO(gri) handle Inf
......@@ -1337,7 +1359,7 @@ func (x *Float) Cmp(y *Float) int {
return 0
}
func umax(x, y uint) uint {
func umax32(x, y uint32) uint32 {
if x > y {
return x
}
......
......@@ -104,6 +104,58 @@ func makeFloat(s string) *Float {
return &x
}
func TestFloatSetPrec(t *testing.T) {
for _, test := range []struct {
x string
prec uint
want string
acc Accuracy
}{
// prec 0
{"0", 0, "0", Exact},
{"-0", 0, "-0", Exact},
{"-Inf", 0, "-Inf", Exact},
{"+Inf", 0, "+Inf", Exact},
{"123", 0, "0", Below},
{"-123", 0, "-0", Above},
// prec at upper limit
{"0", MaxPrec, "0", Exact},
{"0", MaxPrec + 1, "0", Exact},
{"-0", MaxPrec, "-0", Exact},
{"-0", MaxPrec + 1, "-0", Exact},
{"-Inf", MaxPrec, "-Inf", Exact},
{"+Inf", MaxPrec + 1, "+Inf", Exact},
{"-Inf", MaxPrec, "-Inf", Exact},
{"+Inf", MaxPrec + 1, "+Inf", Exact},
// just a few regular cases - general rounding is tested elsewhere
{"1.5", 1, "2", Above},
{"-1.5", 1, "-2", Below},
{"123", 1e6, "123", Exact},
{"-123", 1e6, "-123", Exact},
} {
x := makeFloat(test.x).SetPrec(test.prec)
prec := test.prec
if prec > MaxPrec {
prec = MaxPrec
}
if got := x.Prec(); got != prec {
t.Errorf("%s.SetPrec(%d).Prec() == %d; want %d", test.x, test.prec, got, prec)
}
if got, acc := x.String(), x.Acc(); got != test.want || acc != test.acc {
t.Errorf("%s.SetPrec(%d) = %s (%s); want %s (%s)", test.x, test.prec, got, acc, test.want, test.acc)
}
// look inside x and check correct value for x.exp
if len(x.mant) == 0 {
// ±0 or ±Inf
if x.exp != 0 && x.exp != infExp {
t.Errorf("%s.SetPrec(%d): incorrect exponent %d", test.x, test.prec, x.exp)
}
}
}
}
func TestFloatSign(t *testing.T) {
for _, test := range []struct {
x string
......
......@@ -277,11 +277,11 @@ func (x *Float) bstring(buf []byte) []byte {
// adjust mantissa to use exactly x.prec bits
m := x.mant
switch w := uint(len(x.mant)) * _W; {
switch w := uint32(len(x.mant)) * _W; {
case w < x.prec:
m = nat(nil).shl(m, x.prec-w)
m = nat(nil).shl(m, uint(x.prec-w))
case w > x.prec:
m = nat(nil).shr(m, w-x.prec)
m = nat(nil).shr(m, uint(w-x.prec))
}
buf = append(buf, m.decimalString()...)
......
Markdown is supported
0%
or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment