Commit cfc8099a authored by Joel Sing's avatar Joel Sing

[dev.cc] runtime: convert netbsd/amd64 port to Go

LGTM=rsc
R=rsc
CC=golang-codereviews
https://golang.org/cl/169620043
parent d3526ea0
...@@ -84,8 +84,8 @@ const ( ...@@ -84,8 +84,8 @@ const (
) )
type sigaltstackt struct { type sigaltstackt struct {
ss_sp *byte ss_sp uintptr
ss_size uint64 ss_size uintptr
ss_flags int32 ss_flags int32
pad_cgo_0 [4]byte pad_cgo_0 [4]byte
} }
...@@ -103,8 +103,8 @@ type siginfo struct { ...@@ -103,8 +103,8 @@ type siginfo struct {
} }
type stackt struct { type stackt struct {
ss_sp *byte ss_sp uintptr
ss_size uint64 ss_size uintptr
ss_flags int32 ss_flags int32
pad_cgo_0 [4]byte pad_cgo_0 [4]byte
} }
...@@ -114,12 +114,24 @@ type timespec struct { ...@@ -114,12 +114,24 @@ type timespec struct {
tv_nsec int64 tv_nsec int64
} }
func (ts *timespec) set_sec(x int32) {
ts.tv_sec = int64(x)
}
func (ts *timespec) set_nsec(x int32) {
ts.tv_nsec = int64(x)
}
type timeval struct { type timeval struct {
tv_sec int64 tv_sec int64
tv_usec int32 tv_usec int32
pad_cgo_0 [4]byte pad_cgo_0 [4]byte
} }
func (tv *timeval) set_usec(x int32) {
tv.tv_usec = x
}
type itimerval struct { type itimerval struct {
it_interval timeval it_interval timeval
it_value timeval it_value timeval
......
// Copyright 2011 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package runtime
import "unsafe"
const (
_ESRCH = 3
_ENOTSUP = 91
// From NetBSD's <sys/time.h>
_CLOCK_REALTIME = 0
_CLOCK_VIRTUAL = 1
_CLOCK_PROF = 2
_CLOCK_MONOTONIC = 3
)
var sigset_none = sigset{}
var sigset_all = sigset{[4]uint32{^uint32(0), ^uint32(0), ^uint32(0), ^uint32(0)}}
// From NetBSD's <sys/sysctl.h>
const (
_CTL_HW = 6
_HW_NCPU = 3
)
func getncpu() int32 {
mib := [2]uint32{_CTL_HW, _HW_NCPU}
out := uint32(0)
nout := unsafe.Sizeof(out)
ret := sysctl(&mib[0], 2, (*byte)(unsafe.Pointer(&out)), &nout, nil, 0)
if ret >= 0 {
return int32(out)
}
return 1
}
//go:nosplit
func semacreate() uintptr {
return 1
}
//go:nosplit
func semasleep(ns int64) int32 {
_g_ := getg()
// spin-mutex lock
for {
if xchg(&_g_.m.waitsemalock, 1) == 0 {
break
}
osyield()
}
for {
// lock held
if _g_.m.waitsemacount == 0 {
// sleep until semaphore != 0 or timeout.
// thrsleep unlocks m.waitsemalock.
if ns < 0 {
// TODO(jsing) - potential deadlock!
//
// There is a potential deadlock here since we
// have to release the waitsemalock mutex
// before we call lwp_park() to suspend the
// thread. This allows another thread to
// release the lock and call lwp_unpark()
// before the thread is actually suspended.
// If this occurs the current thread will end
// up sleeping indefinitely. Unfortunately
// the NetBSD kernel does not appear to provide
// a mechanism for unlocking the userspace
// mutex once the thread is actually parked.
atomicstore(&_g_.m.waitsemalock, 0)
lwp_park(nil, 0, unsafe.Pointer(&_g_.m.waitsemacount), nil)
} else {
var ts timespec
var nsec int32
ns += nanotime()
ts.set_sec(timediv(ns, 1000000000, &nsec))
ts.set_nsec(nsec)
// TODO(jsing) - potential deadlock!
// See above for details.
atomicstore(&_g_.m.waitsemalock, 0)
lwp_park(&ts, 0, unsafe.Pointer(&_g_.m.waitsemacount), nil)
}
// reacquire lock
for {
if xchg(&_g_.m.waitsemalock, 1) == 0 {
break
}
osyield()
}
}
// lock held (again)
if _g_.m.waitsemacount != 0 {
// semaphore is available.
_g_.m.waitsemacount--
// spin-mutex unlock
atomicstore(&_g_.m.waitsemalock, 0)
return 0
}
// semaphore not available.
// if there is a timeout, stop now.
// otherwise keep trying.
if ns >= 0 {
break
}
}
// lock held but giving up
// spin-mutex unlock
atomicstore(&_g_.m.waitsemalock, 0)
return -1
}
//go:nosplit
func semawakeup(mp *m) {
// spin-mutex lock
for {
if xchg(&mp.waitsemalock, 1) == 0 {
break
}
osyield()
}
mp.waitsemacount++
// TODO(jsing) - potential deadlock, see semasleep() for details.
// Confirm that LWP is parked before unparking...
ret := lwp_unpark(int32(mp.procid), unsafe.Pointer(&mp.waitsemacount))
if ret != 0 && ret != _ESRCH {
// semawakeup can be called on signal stack.
systemstack(func() {
print("thrwakeup addr=", &mp.waitsemacount, " sem=", mp.waitsemacount, " ret=", ret, "\n")
})
}
// spin-mutex unlock
atomicstore(&mp.waitsemalock, 0)
}
func newosproc(mp *m, stk unsafe.Pointer) {
if false {
print("newosproc stk=", stk, " m=", mp, " g=", mp.g0, " id=", mp.id, "/", int32(mp.tls[0]), " ostk=", &mp, "\n")
}
mp.tls[0] = uintptr(mp.id) // so 386 asm can find it
var uc ucontextt
getcontext(unsafe.Pointer(&uc))
uc.uc_flags = _UC_SIGMASK | _UC_CPU
uc.uc_link = nil
uc.uc_sigmask = sigset_all
lwp_mcontext_init(&uc.uc_mcontext, stk, mp, mp.g0, funcPC(mstart))
ret := lwp_create(unsafe.Pointer(&uc), 0, unsafe.Pointer(&mp.procid))
if ret < 0 {
print("runtime: failed to create new OS thread (have ", mcount()-1, " already; errno=", -ret, ")\n")
gothrow("runtime.newosproc")
}
}
func osinit() {
ncpu = getncpu()
}
var urandom_data [_HashRandomBytes]byte
var urandom_dev = []byte("/dev/urandom\x00")
//go:nosplit
func get_random_data(rnd *unsafe.Pointer, rnd_len *int32) {
fd := open(&urandom_dev[0], 0 /* O_RDONLY */, 0)
if read(fd, unsafe.Pointer(&urandom_data), _HashRandomBytes) == _HashRandomBytes {
*rnd = unsafe.Pointer(&urandom_data[0])
*rnd_len = _HashRandomBytes
} else {
*rnd = nil
*rnd_len = 0
}
close(fd)
}
func goenvs() {
goenvs_unix()
}
// Called to initialize a new m (including the bootstrap m).
// Called on the parent thread (main thread in case of bootstrap), can allocate memory.
func mpreinit(mp *m) {
mp.gsignal = malg(32 * 1024)
mp.gsignal.m = mp
}
// Called to initialize a new m (including the bootstrap m).
// Called on the new thread, can not allocate memory.
func minit() {
_g_ := getg()
_g_.m.procid = uint64(lwp_self())
// Initialize signal handling
signalstack((*byte)(unsafe.Pointer(_g_.m.gsignal.stack.lo)), 32*1024)
sigprocmask(_SIG_SETMASK, &sigset_none, nil)
}
// Called from dropm to undo the effect of an minit.
func unminit() {
signalstack(nil, 0)
}
func memlimit() uintptr {
return 0
}
func sigtramp()
type sigactiont struct {
sa_sigaction uintptr
sa_mask sigset
sa_flags int32
}
func setsig(i int32, fn uintptr, restart bool) {
var sa sigactiont
sa.sa_flags = _SA_SIGINFO | _SA_ONSTACK
if restart {
sa.sa_flags |= _SA_RESTART
}
sa.sa_mask = sigset_all
if fn == funcPC(sighandler) {
fn = funcPC(sigtramp)
}
sa.sa_sigaction = fn
sigaction(i, &sa, nil)
}
func getsig(i int32) uintptr {
var sa sigactiont
sigaction(i, nil, &sa)
if sa.sa_sigaction == funcPC(sigtramp) {
return funcPC(sighandler)
}
return sa.sa_sigaction
}
func signalstack(p *byte, n int32) {
var st sigaltstackt
st.ss_sp = uintptr(unsafe.Pointer(p))
st.ss_size = uintptr(n)
st.ss_flags = 0
if p == nil {
st.ss_flags = _SS_DISABLE
}
sigaltstack(&st, nil)
}
func unblocksignals() {
sigprocmask(_SIG_SETMASK, &sigset_none, nil)
}
...@@ -2,17 +2,15 @@ ...@@ -2,17 +2,15 @@
// Use of this source code is governed by a BSD-style // Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file. // license that can be found in the LICENSE file.
#include "runtime.h" package runtime
#include "defs_GOOS_GOARCH.h"
#include "os_GOOS.h"
void import "unsafe"
runtime·lwp_mcontext_init(McontextT *mc, void *stack, M *mp, G *gp, void (*fn)(void))
{ func lwp_mcontext_init(mc *mcontextt, stk unsafe.Pointer, mp *m, gp *g, fn uintptr) {
// Machine dependent mcontext initialisation for LWP. // Machine dependent mcontext initialisation for LWP.
mc->__gregs[REG_RIP] = (uint64)runtime·lwp_tramp; mc.__gregs[_REG_RIP] = uint64(funcPC(lwp_tramp))
mc->__gregs[REG_RSP] = (uint64)stack; mc.__gregs[_REG_RSP] = uint64(uintptr(stk))
mc->__gregs[REG_R8] = (uint64)mp; mc.__gregs[_REG_R8] = uint64(uintptr(unsafe.Pointer(mp)))
mc->__gregs[REG_R9] = (uint64)gp; mc.__gregs[_REG_R9] = uint64(uintptr(unsafe.Pointer(gp)))
mc->__gregs[REG_R12] = (uint64)fn; mc.__gregs[_REG_R12] = uint64(fn)
} }
// Copyright 2010 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package runtime
const (
_SS_DISABLE = 4
_SIG_BLOCK = 1
_SIG_UNBLOCK = 2
_SIG_SETMASK = 3
_NSIG = 33
_SI_USER = 0
// From NetBSD's <sys/ucontext.h>
_UC_SIGMASK = 0x01
_UC_CPU = 0x04
)
// Copyright 2011 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
#include "runtime.h"
#include "defs_GOOS_GOARCH.h"
#include "os_GOOS.h"
#include "signal_unix.h"
#include "stack.h"
#include "textflag.h"
enum
{
ESRCH = 3,
ENOTSUP = 91,
// From NetBSD's <sys/time.h>
CLOCK_REALTIME = 0,
CLOCK_VIRTUAL = 1,
CLOCK_PROF = 2,
CLOCK_MONOTONIC = 3
};
extern SigTab runtime·sigtab[];
static Sigset sigset_none;
static Sigset sigset_all = { ~(uint32)0, ~(uint32)0, ~(uint32)0, ~(uint32)0, };
extern void runtime·getcontext(UcontextT *context);
extern int32 runtime·lwp_create(UcontextT *context, uintptr flags, void *lwpid);
extern void runtime·lwp_mcontext_init(void *mc, void *stack, M *mp, G *gp, void (*fn)(void));
extern int32 runtime·lwp_park(Timespec *abstime, int32 unpark, void *hint, void *unparkhint);
extern int32 runtime·lwp_unpark(int32 lwp, void *hint);
extern int32 runtime·lwp_self(void);
// From NetBSD's <sys/sysctl.h>
#define CTL_HW 6
#define HW_NCPU 3
static int32
getncpu(void)
{
uint32 mib[2];
uint32 out;
int32 ret;
uintptr nout;
// Fetch hw.ncpu via sysctl.
mib[0] = CTL_HW;
mib[1] = HW_NCPU;
nout = sizeof out;
out = 0;
ret = runtime·sysctl(mib, 2, (byte*)&out, &nout, nil, 0);
if(ret >= 0)
return out;
else
return 1;
}
#pragma textflag NOSPLIT
uintptr
runtime·semacreate(void)
{
return 1;
}
static void
semasleep(void)
{
int64 ns;
Timespec ts;
ns = (int64)(uint32)g->m->scalararg[0] | (int64)(uint32)g->m->scalararg[1]<<32;
g->m->scalararg[0] = 0;
g->m->scalararg[1] = 0;
// spin-mutex lock
while(runtime·xchg(&g->m->waitsemalock, 1))
runtime·osyield();
for(;;) {
// lock held
if(g->m->waitsemacount == 0) {
// sleep until semaphore != 0 or timeout.
// thrsleep unlocks m->waitsemalock.
if(ns < 0) {
// TODO(jsing) - potential deadlock!
//
// There is a potential deadlock here since we
// have to release the waitsemalock mutex
// before we call lwp_park() to suspend the
// thread. This allows another thread to
// release the lock and call lwp_unpark()
// before the thread is actually suspended.
// If this occurs the current thread will end
// up sleeping indefinitely. Unfortunately
// the NetBSD kernel does not appear to provide
// a mechanism for unlocking the userspace
// mutex once the thread is actually parked.
runtime·atomicstore(&g->m->waitsemalock, 0);
runtime·lwp_park(nil, 0, &g->m->waitsemacount, nil);
} else {
ns = ns + runtime·nanotime();
// NOTE: tv_nsec is int64 on amd64, so this assumes a little-endian system.
ts.tv_nsec = 0;
ts.tv_sec = runtime·timediv(ns, 1000000000, (int32*)&ts.tv_nsec);
// TODO(jsing) - potential deadlock!
// See above for details.
runtime·atomicstore(&g->m->waitsemalock, 0);
runtime·lwp_park(&ts, 0, &g->m->waitsemacount, nil);
}
// reacquire lock
while(runtime·xchg(&g->m->waitsemalock, 1))
runtime·osyield();
}
// lock held (again)
if(g->m->waitsemacount != 0) {
// semaphore is available.
g->m->waitsemacount--;
// spin-mutex unlock
runtime·atomicstore(&g->m->waitsemalock, 0);
g->m->scalararg[0] = 0; // semaphore acquired
return;
}
// semaphore not available.
// if there is a timeout, stop now.
// otherwise keep trying.
if(ns >= 0)
break;
}
// lock held but giving up
// spin-mutex unlock
runtime·atomicstore(&g->m->waitsemalock, 0);
g->m->scalararg[0] = -1;
return;
}
#pragma textflag NOSPLIT
int32
runtime·semasleep(int64 ns)
{
int32 r;
void (*fn)(void);
g->m->scalararg[0] = (uint32)ns;
g->m->scalararg[1] = (uint32)(ns>>32);
fn = semasleep;
runtime·onM(&fn);
r = g->m->scalararg[0];
g->m->scalararg[0] = 0;
return r;
}
static void badsemawakeup(void);
#pragma textflag NOSPLIT
void
runtime·semawakeup(M *mp)
{
uint32 ret;
void (*fn)(void);
void *oldptr;
uintptr oldscalar;
// spin-mutex lock
while(runtime·xchg(&mp->waitsemalock, 1))
runtime·osyield();
mp->waitsemacount++;
// TODO(jsing) - potential deadlock, see semasleep() for details.
// Confirm that LWP is parked before unparking...
ret = runtime·lwp_unpark(mp->procid, &mp->waitsemacount);
if(ret != 0 && ret != ESRCH) {
// semawakeup can be called on signal stack.
// Save old ptrarg/scalararg so we can restore them.
oldptr = g->m->ptrarg[0];
oldscalar = g->m->scalararg[0];
g->m->ptrarg[0] = mp;
g->m->scalararg[0] = ret;
fn = badsemawakeup;
if(g == g->m->gsignal)
fn();
else
runtime·onM(&fn);
g->m->ptrarg[0] = oldptr;
g->m->scalararg[0] = oldscalar;
}
// spin-mutex unlock
runtime·atomicstore(&mp->waitsemalock, 0);
}
static void
badsemawakeup(void)
{
M *mp;
int32 ret;
mp = g->m->ptrarg[0];
g->m->ptrarg[0] = nil;
ret = g->m->scalararg[0];
g->m->scalararg[0] = 0;
runtime·printf("thrwakeup addr=%p sem=%d ret=%d\n", &mp->waitsemacount, mp->waitsemacount, ret);
}
void
runtime·newosproc(M *mp, void *stk)
{
UcontextT uc;
int32 ret;
if(0) {
runtime·printf(
"newosproc stk=%p m=%p g=%p id=%d/%d ostk=%p\n",
stk, mp, mp->g0, mp->id, (int32)mp->tls[0], &mp);
}
mp->tls[0] = mp->id; // so 386 asm can find it
runtime·getcontext(&uc);
uc.uc_flags = _UC_SIGMASK | _UC_CPU;
uc.uc_link = nil;
uc.uc_sigmask = sigset_all;
runtime·lwp_mcontext_init(&uc.uc_mcontext, stk, mp, mp->g0, runtime·mstart);
ret = runtime·lwp_create(&uc, 0, &mp->procid);
if(ret < 0) {
runtime·printf("runtime: failed to create new OS thread (have %d already; errno=%d)\n", runtime·mcount() - 1, -ret);
runtime·throw("runtime.newosproc");
}
}
void
runtime·osinit(void)
{
runtime·ncpu = getncpu();
}
#pragma textflag NOSPLIT
void
runtime·get_random_data(byte **rnd, int32 *rnd_len)
{
#pragma dataflag NOPTR
static byte urandom_data[HashRandomBytes];
int32 fd;
fd = runtime·open("/dev/urandom", 0 /* O_RDONLY */, 0);
if(runtime·read(fd, urandom_data, HashRandomBytes) == HashRandomBytes) {
*rnd = urandom_data;
*rnd_len = HashRandomBytes;
} else {
*rnd = nil;
*rnd_len = 0;
}
runtime·close(fd);
}
void
runtime·goenvs(void)
{
runtime·goenvs_unix();
}
// Called to initialize a new m (including the bootstrap m).
// Called on the parent thread (main thread in case of bootstrap), can allocate memory.
void
runtime·mpreinit(M *mp)
{
mp->gsignal = runtime·malg(32*1024);
mp->gsignal->m = mp;
}
// Called to initialize a new m (including the bootstrap m).
// Called on the new thread, can not allocate memory.
void
runtime·minit(void)
{
g->m->procid = runtime·lwp_self();
// Initialize signal handling
runtime·signalstack((byte*)g->m->gsignal->stack.lo, 32*1024);
runtime·sigprocmask(SIG_SETMASK, &sigset_none, nil);
}
// Called from dropm to undo the effect of an minit.
void
runtime·unminit(void)
{
runtime·signalstack(nil, 0);
}
uintptr
runtime·memlimit(void)
{
return 0;
}
extern void runtime·sigtramp(void);
typedef struct sigaction {
union {
void (*_sa_handler)(int32);
void (*_sa_sigaction)(int32, Siginfo*, void *);
} _sa_u; /* signal handler */
uint32 sa_mask[4]; /* signal mask to apply */
int32 sa_flags; /* see signal options below */
} SigactionT;
void
runtime·setsig(int32 i, GoSighandler *fn, bool restart)
{
SigactionT sa;
runtime·memclr((byte*)&sa, sizeof sa);
sa.sa_flags = SA_SIGINFO|SA_ONSTACK;
if(restart)
sa.sa_flags |= SA_RESTART;
sa.sa_mask[0] = ~0U;
sa.sa_mask[1] = ~0U;
sa.sa_mask[2] = ~0U;
sa.sa_mask[3] = ~0U;
if (fn == runtime·sighandler)
fn = (void*)runtime·sigtramp;
sa._sa_u._sa_sigaction = (void*)fn;
runtime·sigaction(i, &sa, nil);
}
GoSighandler*
runtime·getsig(int32 i)
{
SigactionT sa;
runtime·memclr((byte*)&sa, sizeof sa);
runtime·sigaction(i, nil, &sa);
if((void*)sa._sa_u._sa_sigaction == runtime·sigtramp)
return runtime·sighandler;
return (void*)sa._sa_u._sa_sigaction;
}
void
runtime·signalstack(byte *p, int32 n)
{
StackT st;
st.ss_sp = (void*)p;
st.ss_size = n;
st.ss_flags = 0;
if(p == nil)
st.ss_flags = SS_DISABLE;
runtime·sigaltstack(&st, nil);
}
void
runtime·unblocksignals(void)
{
runtime·sigprocmask(SIG_SETMASK, &sigset_none, nil);
}
#pragma textflag NOSPLIT
int8*
runtime·signame(int32 sig)
{
return runtime·sigtab[sig].name;
}
...@@ -6,15 +6,37 @@ package runtime ...@@ -6,15 +6,37 @@ package runtime
import "unsafe" import "unsafe"
func setitimer(mode int32, new, old unsafe.Pointer) //go:noescape
func sigaction(sig int32, new, old unsafe.Pointer) func setitimer(mode int32, new, old *itimerval)
func sigaltstack(new, old unsafe.Pointer)
func sigprocmask(mode int32, new, old unsafe.Pointer) //go:noescape
func sigaction(sig int32, new, old *sigactiont)
//go:noescape
func sigaltstack(new, old *sigaltstackt)
//go:noescape
func sigprocmask(mode int32, new, old *sigset)
//go:noescape
func sysctl(mib *uint32, miblen uint32, out *byte, size *uintptr, dst *byte, ndst uintptr) int32 func sysctl(mib *uint32, miblen uint32, out *byte, size *uintptr, dst *byte, ndst uintptr) int32
func lwp_tramp() func lwp_tramp()
func raise(sig int32) func raise(sig int32)
//go:noescape
func getcontext(ctxt unsafe.Pointer) func getcontext(ctxt unsafe.Pointer)
//go:noescape
func lwp_create(ctxt unsafe.Pointer, flags uintptr, lwpid unsafe.Pointer) int32 func lwp_create(ctxt unsafe.Pointer, flags uintptr, lwpid unsafe.Pointer) int32
func lwp_park(abstime unsafe.Pointer, unpark int32, hint, unparkhint unsafe.Pointer) int32
//go:noescape
func lwp_park(abstime *timespec, unpark int32, hint, unparkhint unsafe.Pointer) int32
//go:noescape
func lwp_unpark(lwp int32, hint unsafe.Pointer) int32 func lwp_unpark(lwp int32, hint unsafe.Pointer) int32
func lwp_self() int32 func lwp_self() int32
func osyield()
// Copyright 2010 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
typedef uintptr kevent_udata;
struct sigaction;
void runtime·sigpanic(void);
void runtime·setitimer(int32, Itimerval*, Itimerval*);
void runtime·sigaction(int32, struct sigaction*, struct sigaction*);
void runtime·sigaltstack(SigaltstackT*, SigaltstackT*);
void runtime·sigprocmask(int32, Sigset*, Sigset*);
void runtime·unblocksignals(void);
int32 runtime·sysctl(uint32*, uint32, byte*, uintptr*, byte*, uintptr);
extern void runtime·lwp_tramp(void);
enum {
SS_DISABLE = 4,
SIG_BLOCK = 1,
SIG_UNBLOCK = 2,
SIG_SETMASK = 3,
NSIG = 33,
SI_USER = 0,
// From NetBSD's <sys/ucontext.h>
_UC_SIGMASK = 0x01,
_UC_CPU = 0x04,
};
// Copyright 2009 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package runtime
type sigTabT struct {
flags int32
name string
}
var sigtable = [...]sigTabT{
/* 0 */ {0, "SIGNONE: no trap"},
/* 1 */ {_SigNotify + _SigKill, "SIGHUP: terminal line hangup"},
/* 2 */ {_SigNotify + _SigKill, "SIGINT: interrupt"},
/* 3 */ {_SigNotify + _SigThrow, "SIGQUIT: quit"},
/* 4 */ {_SigThrow, "SIGILL: illegal instruction"},
/* 5 */ {_SigThrow, "SIGTRAP: trace trap"},
/* 6 */ {_SigNotify + _SigThrow, "SIGABRT: abort"},
/* 7 */ {_SigThrow, "SIGEMT: emulate instruction executed"},
/* 8 */ {_SigPanic, "SIGFPE: floating-point exception"},
/* 9 */ {0, "SIGKILL: kill"},
/* 10 */ {_SigPanic, "SIGBUS: bus error"},
/* 11 */ {_SigPanic, "SIGSEGV: segmentation violation"},
/* 12 */ {_SigThrow, "SIGSYS: bad system call"},
/* 13 */ {_SigNotify, "SIGPIPE: write to broken pipe"},
/* 14 */ {_SigNotify, "SIGALRM: alarm clock"},
/* 15 */ {_SigNotify + _SigKill, "SIGTERM: termination"},
/* 16 */ {_SigNotify, "SIGURG: urgent condition on socket"},
/* 17 */ {0, "SIGSTOP: stop"},
/* 18 */ {_SigNotify + _SigDefault, "SIGTSTP: keyboard stop"},
/* 19 */ {0, "SIGCONT: continue after stop"},
/* 20 */ {_SigNotify, "SIGCHLD: child status has changed"},
/* 21 */ {_SigNotify + _SigDefault, "SIGTTIN: background read from tty"},
/* 22 */ {_SigNotify + _SigDefault, "SIGTTOU: background write to tty"},
/* 23 */ {_SigNotify, "SIGIO: i/o now possible"},
/* 24 */ {_SigNotify, "SIGXCPU: cpu limit exceeded"},
/* 25 */ {_SigNotify, "SIGXFSZ: file size limit exceeded"},
/* 26 */ {_SigNotify, "SIGVTALRM: virtual alarm clock"},
/* 27 */ {_SigNotify, "SIGPROF: profiling alarm clock"},
/* 28 */ {_SigNotify, "SIGWINCH: window size change"},
/* 29 */ {_SigNotify, "SIGINFO: status request from keyboard"},
/* 30 */ {_SigNotify, "SIGUSR1: user-defined signal 1"},
/* 31 */ {_SigNotify, "SIGUSR2: user-defined signal 2"},
/* 32 */ {_SigNotify, "SIGTHR: reserved"},
}
// Copyright 2013 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package runtime
import "unsafe"
type sigctxt struct {
info *siginfo
ctxt unsafe.Pointer
}
func (c *sigctxt) regs() *mcontextt {
return (*mcontextt)(unsafe.Pointer(&(*ucontextt)(c.ctxt).uc_mcontext))
}
func (c *sigctxt) rax() uint64 { return c.regs().__gregs[_REG_RAX] }
func (c *sigctxt) rbx() uint64 { return c.regs().__gregs[_REG_RBX] }
func (c *sigctxt) rcx() uint64 { return c.regs().__gregs[_REG_RCX] }
func (c *sigctxt) rdx() uint64 { return c.regs().__gregs[_REG_RDX] }
func (c *sigctxt) rdi() uint64 { return c.regs().__gregs[_REG_RDI] }
func (c *sigctxt) rsi() uint64 { return c.regs().__gregs[_REG_RSI] }
func (c *sigctxt) rbp() uint64 { return c.regs().__gregs[_REG_RBP] }
func (c *sigctxt) rsp() uint64 { return c.regs().__gregs[_REG_RSP] }
func (c *sigctxt) r8() uint64 { return c.regs().__gregs[_REG_R8] }
func (c *sigctxt) r9() uint64 { return c.regs().__gregs[_REG_R8] }
func (c *sigctxt) r10() uint64 { return c.regs().__gregs[_REG_R10] }
func (c *sigctxt) r11() uint64 { return c.regs().__gregs[_REG_R11] }
func (c *sigctxt) r12() uint64 { return c.regs().__gregs[_REG_R12] }
func (c *sigctxt) r13() uint64 { return c.regs().__gregs[_REG_R13] }
func (c *sigctxt) r14() uint64 { return c.regs().__gregs[_REG_R14] }
func (c *sigctxt) r15() uint64 { return c.regs().__gregs[_REG_R15] }
func (c *sigctxt) rip() uint64 { return c.regs().__gregs[_REG_RIP] }
func (c *sigctxt) rflags() uint64 { return c.regs().__gregs[_REG_RFLAGS] }
func (c *sigctxt) cs() uint64 { return c.regs().__gregs[_REG_CS] }
func (c *sigctxt) fs() uint64 { return c.regs().__gregs[_REG_FS] }
func (c *sigctxt) gs() uint64 { return c.regs().__gregs[_REG_GS] }
func (c *sigctxt) sigcode() uint64 { return uint64(c.info._code) }
func (c *sigctxt) sigaddr() uint64 {
return uint64(*(*uint64)(unsafe.Pointer(&c.info._reason[0])))
}
func (c *sigctxt) set_rip(x uint64) { c.regs().__gregs[_REG_RIP] = x }
func (c *sigctxt) set_rsp(x uint64) { c.regs().__gregs[_REG_RSP] = x }
func (c *sigctxt) set_sigcode(x uint64) { c.info._code = int32(x) }
func (c *sigctxt) set_sigaddr(x uint64) {
*(*uint64)(unsafe.Pointer(&c.info._reason[0])) = x
}
// Copyright 2013 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
#define SIG_REGS(ctxt) (((UcontextT*)(ctxt))->uc_mcontext)
#define SIG_RAX(info, ctxt) (SIG_REGS(ctxt).__gregs[REG_RAX])
#define SIG_RBX(info, ctxt) (SIG_REGS(ctxt).__gregs[REG_RBX])
#define SIG_RCX(info, ctxt) (SIG_REGS(ctxt).__gregs[REG_RCX])
#define SIG_RDX(info, ctxt) (SIG_REGS(ctxt).__gregs[REG_RDX])
#define SIG_RDI(info, ctxt) (SIG_REGS(ctxt).__gregs[REG_RDI])
#define SIG_RSI(info, ctxt) (SIG_REGS(ctxt).__gregs[REG_RSI])
#define SIG_RBP(info, ctxt) (SIG_REGS(ctxt).__gregs[REG_RBP])
#define SIG_RSP(info, ctxt) (SIG_REGS(ctxt).__gregs[REG_RSP])
#define SIG_R8(info, ctxt) (SIG_REGS(ctxt).__gregs[REG_R8])
#define SIG_R9(info, ctxt) (SIG_REGS(ctxt).__gregs[REG_R9])
#define SIG_R10(info, ctxt) (SIG_REGS(ctxt).__gregs[REG_R10])
#define SIG_R11(info, ctxt) (SIG_REGS(ctxt).__gregs[REG_R11])
#define SIG_R12(info, ctxt) (SIG_REGS(ctxt).__gregs[REG_R12])
#define SIG_R13(info, ctxt) (SIG_REGS(ctxt).__gregs[REG_R13])
#define SIG_R14(info, ctxt) (SIG_REGS(ctxt).__gregs[REG_R14])
#define SIG_R15(info, ctxt) (SIG_REGS(ctxt).__gregs[REG_R15])
#define SIG_RIP(info, ctxt) (SIG_REGS(ctxt).__gregs[REG_RIP])
#define SIG_RFLAGS(info, ctxt) (SIG_REGS(ctxt).__gregs[REG_RFLAGS])
#define SIG_CS(info, ctxt) (SIG_REGS(ctxt).__gregs[REG_CS])
#define SIG_FS(info, ctxt) (SIG_REGS(ctxt).__gregs[REG_FS])
#define SIG_GS(info, ctxt) (SIG_REGS(ctxt).__gregs[REG_GS])
#define SIG_CODE0(info, ctxt) ((info)->_code)
#define SIG_CODE1(info, ctxt) (*(uintptr*)&(info)->_reason[0])
// Copyright 2009 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
#include "textflag.h"
#define N SigNotify
#define K SigKill
#define T SigThrow
#define P SigPanic
#define D SigDefault
#pragma dataflag NOPTR
SigTab runtime·sigtab[] = {
/* 0 */ 0, "SIGNONE: no trap",
/* 1 */ N+K, "SIGHUP: terminal line hangup",
/* 2 */ N+K, "SIGINT: interrupt",
/* 3 */ N+T, "SIGQUIT: quit",
/* 4 */ T, "SIGILL: illegal instruction",
/* 5 */ T, "SIGTRAP: trace trap",
/* 6 */ N+T, "SIGABRT: abort",
/* 7 */ T, "SIGEMT: emulate instruction executed",
/* 8 */ P, "SIGFPE: floating-point exception",
/* 9 */ 0, "SIGKILL: kill",
/* 10 */ P, "SIGBUS: bus error",
/* 11 */ P, "SIGSEGV: segmentation violation",
/* 12 */ T, "SIGSYS: bad system call",
/* 13 */ N, "SIGPIPE: write to broken pipe",
/* 14 */ N, "SIGALRM: alarm clock",
/* 15 */ N+K, "SIGTERM: termination",
/* 16 */ N, "SIGURG: urgent condition on socket",
/* 17 */ 0, "SIGSTOP: stop",
/* 18 */ N+D, "SIGTSTP: keyboard stop",
/* 19 */ 0, "SIGCONT: continue after stop",
/* 20 */ N, "SIGCHLD: child status has changed",
/* 21 */ N+D, "SIGTTIN: background read from tty",
/* 22 */ N+D, "SIGTTOU: background write to tty",
/* 23 */ N, "SIGIO: i/o now possible",
/* 24 */ N, "SIGXCPU: cpu limit exceeded",
/* 25 */ N, "SIGXFSZ: file size limit exceeded",
/* 26 */ N, "SIGVTALRM: virtual alarm clock",
/* 27 */ N, "SIGPROF: profiling alarm clock",
/* 28 */ N, "SIGWINCH: window size change",
/* 29 */ N, "SIGINFO: status request from keyboard",
/* 30 */ N, "SIGUSR1: user-defined signal 1",
/* 31 */ N, "SIGUSR2: user-defined signal 2",
/* 32 */ N, "SIGTHR: reserved",
};
#undef N
#undef K
#undef T
#undef P
#undef D
Markdown is supported
0%
or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment