Commit d32229b3 authored by David Chase's avatar David Chase

cmd/compile: in a Tarjan algorithm, DFS should really be DFS

Replaced incorrect recursion-free rendering of DFS with
something that was correct.  Enhanced test with all
permutations of IF successors to ensure that all possible
DFS traversals are exercised.

Test is improved version of
https://go-review.googlesource.com/#/c/22334

Update 15084.

Change-Id: I6e944c41244e47fe5f568dfc2b360ff93b94079e
Reviewed-on: https://go-review.googlesource.com/22347Reviewed-by: default avatarKeith Randall <khr@golang.org>
Run-TryBot: David Chase <drchase@google.com>
parent babd5da6
...@@ -5,11 +5,13 @@ ...@@ -5,11 +5,13 @@
package ssa package ssa
// mark values // mark values
type markKind uint8
const ( const (
notFound = 0 // block has not been discovered yet notFound markKind = 0 // block has not been discovered yet
notExplored = 1 // discovered and in queue, outedges not processed yet notExplored markKind = 1 // discovered and in queue, outedges not processed yet
explored = 2 // discovered and in queue, outedges processed explored markKind = 2 // discovered and in queue, outedges processed
done = 3 // all done, in output ordering done markKind = 3 // all done, in output ordering
) )
// This file contains code to compute the dominator tree // This file contains code to compute the dominator tree
...@@ -18,7 +20,7 @@ const ( ...@@ -18,7 +20,7 @@ const (
// postorder computes a postorder traversal ordering for the // postorder computes a postorder traversal ordering for the
// basic blocks in f. Unreachable blocks will not appear. // basic blocks in f. Unreachable blocks will not appear.
func postorder(f *Func) []*Block { func postorder(f *Func) []*Block {
mark := make([]byte, f.NumBlocks()) mark := make([]markKind, f.NumBlocks())
// result ordering // result ordering
var order []*Block var order []*Block
...@@ -96,7 +98,7 @@ func (cfg *Config) scratchBlocksForDom(maxBlockID int) (a, b, c, d, e, f, g, h [ ...@@ -96,7 +98,7 @@ func (cfg *Config) scratchBlocksForDom(maxBlockID int) (a, b, c, d, e, f, g, h [
// dfs performs a depth first search over the blocks starting at the set of // dfs performs a depth first search over the blocks starting at the set of
// blocks in the entries list (in arbitrary order). dfnum contains a mapping // blocks in the entries list (in arbitrary order). dfnum contains a mapping
// from block id to an int indicating the order the block was reached or // from block id to an int indicating the order the block was reached or
// notFound if the block was not reached. order contains a mapping from dfnum // 0 if the block was not reached. order contains a mapping from dfnum
// to block. // to block.
func (f *Func) dfs(entries []*Block, succFn linkedBlocks, dfnum, order, parent []ID) (fromID []*Block) { func (f *Func) dfs(entries []*Block, succFn linkedBlocks, dfnum, order, parent []ID) (fromID []*Block) {
maxBlockID := entries[0].Func.NumBlocks() maxBlockID := entries[0].Func.NumBlocks()
...@@ -114,7 +116,7 @@ func (f *Func) dfs(entries []*Block, succFn linkedBlocks, dfnum, order, parent [ ...@@ -114,7 +116,7 @@ func (f *Func) dfs(entries []*Block, succFn linkedBlocks, dfnum, order, parent [
n := ID(0) n := ID(0)
s := make([]*Block, 0, 256) s := make([]*Block, 0, 256)
for _, entry := range entries { for _, entry := range entries {
if dfnum[entry.ID] != notFound { if dfnum[entry.ID] != 0 {
continue // already found from a previous entry continue // already found from a previous entry
} }
s = append(s, entry) s = append(s, entry)
...@@ -122,18 +124,19 @@ func (f *Func) dfs(entries []*Block, succFn linkedBlocks, dfnum, order, parent [ ...@@ -122,18 +124,19 @@ func (f *Func) dfs(entries []*Block, succFn linkedBlocks, dfnum, order, parent [
for len(s) > 0 { for len(s) > 0 {
node := s[len(s)-1] node := s[len(s)-1]
s = s[:len(s)-1] s = s[:len(s)-1]
if dfnum[node.ID] != 0 {
continue // already found from a previous entry
}
n++ n++
dfnum[node.ID] = n
order[n] = node.ID
for _, w := range succFn(node) { for _, w := range succFn(node) {
// if it has a dfnum, we've already visited it // if it has a dfnum, we've already visited it
if dfnum[w.ID] == notFound { if dfnum[w.ID] == 0 {
s = append(s, w) s = append(s, w)
parent[w.ID] = node.ID parent[w.ID] = node.ID // keep overwriting this till it is visited.
dfnum[w.ID] = notExplored
} }
} }
dfnum[node.ID] = n
order[n] = node.ID
} }
} }
...@@ -154,8 +157,6 @@ func dominators(f *Func) []*Block { ...@@ -154,8 +157,6 @@ func dominators(f *Func) []*Block {
// postDominators computes the post-dominator tree for f. // postDominators computes the post-dominator tree for f.
func postDominators(f *Func) []*Block { func postDominators(f *Func) []*Block {
preds := func(b *Block) []*Block { return b.Preds }
succs := func(b *Block) []*Block { return b.Succs }
if len(f.Blocks) == 0 { if len(f.Blocks) == 0 {
return nil return nil
...@@ -170,6 +171,10 @@ func postDominators(f *Func) []*Block { ...@@ -170,6 +171,10 @@ func postDominators(f *Func) []*Block {
} }
} }
// TODO: postdominators is not really right, and it's not used yet
preds := func(b *Block) []*Block { return b.Preds }
succs := func(b *Block) []*Block { return b.Succs }
// infinite loop with no exit // infinite loop with no exit
if exits == nil { if exits == nil {
return make([]*Block, f.NumBlocks()) return make([]*Block, f.NumBlocks())
...@@ -214,7 +219,7 @@ func (f *Func) dominatorsLT(entries []*Block, predFn linkedBlocks, succFn linked ...@@ -214,7 +219,7 @@ func (f *Func) dominatorsLT(entries []*Block, predFn linkedBlocks, succFn linked
continue continue
} }
if dfnum[w] == notFound { if dfnum[w] == 0 {
// skip unreachable node // skip unreachable node
continue continue
} }
...@@ -236,7 +241,7 @@ func (f *Func) dominatorsLT(entries []*Block, predFn linkedBlocks, succFn linked ...@@ -236,7 +241,7 @@ func (f *Func) dominatorsLT(entries []*Block, predFn linkedBlocks, succFn linked
var sp ID var sp ID
// calculate the semidominator of w // calculate the semidominator of w
for _, v := range predFn(fromID[w]) { for _, v := range predFn(fromID[w]) {
if dfnum[v.ID] == notFound { if dfnum[v.ID] == 0 {
// skip unreachable predecessor // skip unreachable predecessor
continue continue
} }
......
...@@ -420,3 +420,48 @@ func TestInfiniteLoop(t *testing.T) { ...@@ -420,3 +420,48 @@ func TestInfiniteLoop(t *testing.T) {
postDoms := map[string]string{} postDoms := map[string]string{}
verifyDominators(t, fun, postDominators, postDoms) verifyDominators(t, fun, postDominators, postDoms)
} }
func TestDomTricky(t *testing.T) {
doms := map[string]string{
"4": "1",
"2": "4",
"5": "4",
"11": "4",
"15": "4", // the incorrect answer is "5"
"10": "15",
"19": "15",
}
if4 := [2]string{"2", "5"}
if5 := [2]string{"15", "11"}
if15 := [2]string{"19", "10"}
for i := 0; i < 8; i++ {
a := 1 & i
b := 1 & i >> 1
c := 1 & i >> 2
fun := Fun(testConfig(t), "1",
Bloc("1",
Valu("mem", OpInitMem, TypeMem, 0, nil),
Valu("p", OpConstBool, TypeBool, 1, nil),
Goto("4")),
Bloc("2",
Goto("11")),
Bloc("4",
If("p", if4[a], if4[1-a])), // 2, 5
Bloc("5",
If("p", if5[b], if5[1-b])), //15, 11
Bloc("10",
Exit("mem")),
Bloc("11",
Goto("15")),
Bloc("15",
If("p", if15[c], if15[1-c])), //19, 10
Bloc("19",
Goto("10")))
CheckFunc(fun.f)
verifyDominators(t, fun, dominators, doms)
verifyDominators(t, fun, dominatorsSimple, doms)
}
}
...@@ -11,7 +11,7 @@ type idAlloc struct { ...@@ -11,7 +11,7 @@ type idAlloc struct {
last ID last ID
} }
// get allocates an ID and returns it. // get allocates an ID and returns it. IDs are always > 0.
func (a *idAlloc) get() ID { func (a *idAlloc) get() ID {
x := a.last x := a.last
x++ x++
......
Markdown is supported
0%
or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment