Commit dd24b109 authored by Keith Randall's avatar Keith Randall

cmd/compile: improve tighten pass

Move a value to the block which is the lowest common ancestor in the
dominator tree of all of its uses.  Make sure not to move a value into a
loop.

Makes the tighten pass on average (across go1 benchmarks) 40% slower.
Still not a big contributor to overall compile time.

Binary size is just a tad smaller.

name                      old time/op    new time/op    delta
BinaryTree17-12              2.77s ± 9%     2.76s ± 9%     ~     (p=0.878 n=8+8)
Fannkuch11-12                2.75s ± 1%     2.74s ± 1%     ~     (p=0.232 n=8+7)
FmtFprintfEmpty-12          48.9ns ± 9%    47.7ns ± 0%     ~     (p=0.431 n=8+8)
FmtFprintfString-12          143ns ± 8%     142ns ± 1%     ~     (p=0.257 n=8+7)
FmtFprintfInt-12             123ns ± 1%     122ns ± 1%   -1.04%  (p=0.026 n=7+8)
FmtFprintfIntInt-12          195ns ± 7%     185ns ± 0%   -5.32%  (p=0.000 n=8+8)
FmtFprintfPrefixedInt-12     194ns ± 4%     195ns ± 0%   +0.81%  (p=0.015 n=7+7)
FmtFprintfFloat-12           267ns ± 0%     268ns ± 0%   +0.37%  (p=0.001 n=7+6)
FmtManyArgs-12               800ns ± 0%     762ns ± 1%   -4.78%  (p=0.000 n=8+8)
GobDecode-12                7.67ms ± 2%    7.60ms ± 2%     ~     (p=0.234 n=8+8)
GobEncode-12                6.55ms ± 0%    6.57ms ± 1%     ~     (p=0.336 n=7+8)
Gzip-12                      237ms ± 0%     238ms ± 0%   +0.40%  (p=0.017 n=7+7)
Gunzip-12                   40.8ms ± 0%    40.2ms ± 0%   -1.52%  (p=0.000 n=7+8)
HTTPClientServer-12          208µs ± 3%     209µs ± 3%     ~     (p=0.955 n=8+7)
JSONEncode-12               16.2ms ± 1%    17.2ms ±11%   +5.80%  (p=0.001 n=7+8)
JSONDecode-12               57.3ms ±12%    55.5ms ± 3%     ~     (p=0.867 n=8+7)
Mandelbrot200-12            4.68ms ± 6%    4.46ms ± 1%     ~     (p=0.442 n=8+8)
GoParse-12                  4.27ms ±44%    3.42ms ± 1%  -19.95%  (p=0.005 n=8+8)
RegexpMatchEasy0_32-12      75.1ns ± 0%    75.8ns ± 1%   +0.99%  (p=0.002 n=7+7)
RegexpMatchEasy0_1K-12       963ns ± 0%    1021ns ± 6%   +5.98%  (p=0.001 n=7+7)
RegexpMatchEasy1_32-12      72.4ns ±11%    70.8ns ± 1%     ~     (p=0.368 n=8+8)
RegexpMatchEasy1_1K-12       394ns ± 1%     399ns ± 0%   +1.23%  (p=0.000 n=8+7)
RegexpMatchMedium_32-12      114ns ± 0%     115ns ± 1%   +0.63%  (p=0.021 n=7+7)
RegexpMatchMedium_1K-12     35.9µs ± 0%    37.6µs ± 1%   +4.72%  (p=0.000 n=7+8)
RegexpMatchHard_32-12       1.93µs ± 2%    1.91µs ± 0%   -0.91%  (p=0.001 n=7+7)
RegexpMatchHard_1K-12       60.2µs ± 3%    61.2µs ±10%     ~     (p=0.442 n=8+8)
Revcomp-12                   404ms ± 1%     406ms ± 1%     ~     (p=0.054 n=8+7)
Template-12                 64.6ms ± 1%    63.5ms ± 1%   -1.66%  (p=0.000 n=8+8)
TimeParse-12                 347ns ± 8%     309ns ± 0%  -11.13%  (p=0.000 n=8+7)
TimeFormat-12                343ns ± 4%     331ns ± 0%   -3.34%  (p=0.000 n=8+7)

Change-Id: Id6da1239ddd4d0cb074ff29cffb06302d1c6d08f
Reviewed-on: https://go-review.googlesource.com/28712
Run-TryBot: Keith Randall <khr@golang.org>
TryBot-Result: Gobot Gobot <gobot@golang.org>
Reviewed-by: default avatarDavid Chase <drchase@google.com>
parent b7426089
......@@ -135,9 +135,11 @@ func fuseBlockPlain(b *Block) bool {
p := e.b
p.Succs[e.i] = Edge{c, i}
}
if f := b.Func; f.Entry == b {
f := b.Func
if f.Entry == b {
f.Entry = c
}
f.invalidateCFG()
// trash b, just in case
b.Kind = BlockInvalid
......
// Copyright 2016 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package ssa
// Code to compute lowest common ancestors in the dominator tree.
// https://en.wikipedia.org/wiki/Lowest_common_ancestor
// https://en.wikipedia.org/wiki/Range_minimum_query#Solution_using_constant_time_and_linearithmic_space
// lcaRange is a data structure that can compute lowest common ancestor queries
// in O(n lg n) precomputed space and O(1) time per query.
type lcaRange struct {
// Additional information about each block (indexed by block ID).
blocks []lcaRangeBlock
// Data structure for range minimum queries.
// rangeMin[k][i] contains the ID of the minimum depth block
// in the Euler tour from positions i to i+1<<k-1, inclusive.
rangeMin [][]ID
}
type lcaRangeBlock struct {
b *Block
parent ID // parent in dominator tree. 0 = no parent (entry or unreachable)
firstChild ID // first child in dominator tree
sibling ID // next child of parent
pos int32 // an index in the Euler tour where this block appears (any one of its occurrences)
depth int32 // depth in dominator tree (root=0, its children=1, etc.)
}
func makeLCArange(f *Func) *lcaRange {
dom := f.idom()
// Build tree
blocks := make([]lcaRangeBlock, f.NumBlocks())
for _, b := range f.Blocks {
blocks[b.ID].b = b
if dom[b.ID] == nil {
continue // entry or unreachable
}
parent := dom[b.ID].ID
blocks[b.ID].parent = parent
blocks[b.ID].sibling = blocks[parent].firstChild
blocks[parent].firstChild = b.ID
}
// Compute euler tour ordering.
// Each reachable block will appear #children+1 times in the tour.
tour := make([]ID, 0, f.NumBlocks()*2-1)
type queueEntry struct {
bid ID // block to work on
cid ID // child we're already working on (0 = haven't started yet)
}
q := []queueEntry{{f.Entry.ID, 0}}
for len(q) > 0 {
n := len(q) - 1
bid := q[n].bid
cid := q[n].cid
q = q[:n]
// Add block to tour.
blocks[bid].pos = int32(len(tour))
tour = append(tour, bid)
// Proceed down next child edge (if any).
if cid == 0 {
// This is our first visit to b. Set its depth.
blocks[bid].depth = blocks[blocks[bid].parent].depth + 1
// Then explore its first child.
cid = blocks[bid].firstChild
} else {
// We've seen b before. Explore the next child.
cid = blocks[cid].sibling
}
if cid != 0 {
q = append(q, queueEntry{bid, cid}, queueEntry{cid, 0})
}
}
// Compute fast range-minimum query data structure
var rangeMin [][]ID
rangeMin = append(rangeMin, tour) // 1-size windows are just the tour itself.
for logS, s := 1, 2; s < len(tour); logS, s = logS+1, s*2 {
r := make([]ID, len(tour)-s+1)
for i := 0; i < len(tour)-s+1; i++ {
bid := rangeMin[logS-1][i]
bid2 := rangeMin[logS-1][i+s/2]
if blocks[bid2].depth < blocks[bid].depth {
bid = bid2
}
r[i] = bid
}
rangeMin = append(rangeMin, r)
}
return &lcaRange{blocks: blocks, rangeMin: rangeMin}
}
// find returns the lowest common ancestor of a and b.
func (lca *lcaRange) find(a, b *Block) *Block {
if a == b {
return a
}
// Find the positions of a and bin the Euler tour.
p1 := lca.blocks[a.ID].pos
p2 := lca.blocks[b.ID].pos
if p1 > p2 {
p1, p2 = p2, p1
}
// The lowest common ancestor is the minimum depth block
// on the tour from p1 to p2. We've precomputed minimum
// depth blocks for powers-of-two subsequences of the tour.
// Combine the right two precomputed values to get the answer.
logS := uint(log2(int64(p2 - p1)))
bid1 := lca.rangeMin[logS][p1]
bid2 := lca.rangeMin[logS][p2-1<<logS+1]
if lca.blocks[bid1].depth < lca.blocks[bid2].depth {
return lca.blocks[bid1].b
}
return lca.blocks[bid2].b
}
// Copyright 2016 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package ssa
import "testing"
type lca interface {
find(a, b *Block) *Block
}
func lcaEqual(f *Func, lca1, lca2 lca) bool {
for _, b := range f.Blocks {
for _, c := range f.Blocks {
if lca1.find(b, c) != lca2.find(b, c) {
return false
}
}
}
return true
}
func testLCAgen(t *testing.T, bg blockGen, size int) {
c := NewConfig("amd64", DummyFrontend{t}, nil, true)
fun := Fun(c, "entry", bg(size)...)
CheckFunc(fun.f)
if size == 4 {
t.Logf(fun.f.String())
}
lca1 := makeLCArange(fun.f)
lca2 := makeLCAeasy(fun.f)
for _, b := range fun.f.Blocks {
for _, c := range fun.f.Blocks {
l1 := lca1.find(b, c)
l2 := lca2.find(b, c)
if l1 != l2 {
t.Errorf("lca(%s,%s)=%s, want %s", b, c, l1, l2)
}
}
}
}
func TestLCALinear(t *testing.T) {
testLCAgen(t, genLinear, 10)
testLCAgen(t, genLinear, 100)
}
func TestLCAFwdBack(t *testing.T) {
testLCAgen(t, genFwdBack, 10)
testLCAgen(t, genFwdBack, 100)
}
func TestLCAManyPred(t *testing.T) {
testLCAgen(t, genManyPred, 10)
testLCAgen(t, genManyPred, 100)
}
func TestLCAMaxPred(t *testing.T) {
testLCAgen(t, genMaxPred, 10)
testLCAgen(t, genMaxPred, 100)
}
func TestLCAMaxPredValue(t *testing.T) {
testLCAgen(t, genMaxPredValue, 10)
testLCAgen(t, genMaxPredValue, 100)
}
// Simple implementation of LCA to compare against.
type lcaEasy struct {
parent []*Block
}
func makeLCAeasy(f *Func) *lcaEasy {
return &lcaEasy{parent: dominators(f)}
}
func (lca *lcaEasy) find(a, b *Block) *Block {
da := lca.depth(a)
db := lca.depth(b)
for da > db {
da--
a = lca.parent[a.ID]
}
for da < db {
db--
b = lca.parent[b.ID]
}
for a != b {
a = lca.parent[a.ID]
b = lca.parent[b.ID]
}
return a
}
func (lca *lcaEasy) depth(b *Block) int {
n := 0
for b != nil {
b = lca.parent[b.ID]
n++
}
return n
}
......@@ -189,6 +189,7 @@ func nto(x int64) int64 {
}
// log2 returns logarithm in base of uint64(n), with log2(0) = -1.
// Rounds down.
func log2(n int64) (l int64) {
l = -1
x := uint64(n)
......
......@@ -92,6 +92,9 @@ func TestLog2(t *testing.T) {
{1, 0},
{2, 1},
{4, 2},
{7, 2},
{8, 3},
{9, 3},
{1024, 10}}
for _, tc := range log2Tests {
......
......@@ -7,90 +7,135 @@ package ssa
// tighten moves Values closer to the Blocks in which they are used.
// This can reduce the amount of register spilling required,
// if it doesn't also create more live values.
// For now, it handles only the trivial case in which a
// Value with one or fewer args is only used in a single Block,
// and not in a phi value.
// TODO: Do something smarter.
// A Value can be moved to any block that
// dominates all blocks in which it is used.
// Figure out when that will be an improvement.
func tighten(f *Func) {
// For each value, the number of blocks in which it is used.
uses := make([]int32, f.NumValues())
canMove := make([]bool, f.NumValues())
for _, b := range f.Blocks {
for _, v := range b.Values {
switch v.Op {
case OpPhi, OpGetClosurePtr, OpArg, OpSelect0, OpSelect1:
// Phis need to stay in their block.
// GetClosurePtr & Arg must stay in the entry block.
// Tuple selectors must stay with the tuple generator.
continue
}
if len(v.Args) > 0 && v.Args[len(v.Args)-1].Type.IsMemory() {
// We can't move values which have a memory arg - it might
// make two memory values live across a block boundary.
continue
}
// Count arguments which will need a register.
narg := 0
for _, a := range v.Args {
switch a.Op {
case OpConst8, OpConst16, OpConst32, OpConst64, OpAddr:
// Probably foldable into v, don't count as an argument needing a register.
// TODO: move tighten to a machine-dependent phase and use v.rematerializeable()?
default:
narg++
}
}
if narg >= 2 && !v.Type.IsBoolean() {
// Don't move values with more than one input, as that may
// increase register pressure.
// We make an exception for boolean-typed values, as they will
// likely be converted to flags, and we want flag generators
// moved next to uses (because we only have 1 flag register).
continue
}
canMove[v.ID] = true
}
}
// Build data structure for fast least-common-ancestor queries.
lca := makeLCArange(f)
// For each value, whether that value is ever an arg to a phi value.
phi := make([]bool, f.NumValues())
// For each moveable value, record the block that dominates all uses found so far.
target := make([]*Block, f.NumValues())
// For each value, one block in which that value is used.
home := make([]*Block, f.NumValues())
// Grab loop information.
// We use this to make sure we don't tighten a value into a (deeper) loop.
idom := f.idom()
loops := f.loopnest()
loops.calculateDepths()
changed := true
for changed {
changed = false
// Reset uses
for i := range uses {
uses[i] = 0
// Reset target
for i := range target {
target[i] = nil
}
// No need to reset home; any relevant values will be written anew anyway.
// No need to reset phi; once used in a phi, always used in a phi.
// Compute target locations (for moveable values only).
// target location = the least common ancestor of all uses in the dominator tree.
for _, b := range f.Blocks {
for _, v := range b.Values {
for _, w := range v.Args {
for i, a := range v.Args {
if !canMove[a.ID] {
continue
}
use := b
if v.Op == OpPhi {
phi[w.ID] = true
use = b.Preds[i].b
}
if target[a.ID] == nil {
target[a.ID] = use
} else {
target[a.ID] = lca.find(target[a.ID], use)
}
uses[w.ID]++
home[w.ID] = b
}
}
if b.Control != nil {
uses[b.Control.ID]++
home[b.Control.ID] = b
if c := b.Control; c != nil {
if !canMove[c.ID] {
continue
}
if target[c.ID] == nil {
target[c.ID] = b
} else {
target[c.ID] = lca.find(target[c.ID], b)
}
}
}
// If the target location is inside a loop,
// move the target location up to just before the loop head.
for _, b := range f.Blocks {
for i := 0; i < len(b.Values); i++ {
v := b.Values[i]
switch v.Op {
case OpPhi, OpGetClosurePtr, OpConvert, OpArg:
// GetClosurePtr & Arg must stay in entry block.
// OpConvert must not float over call sites.
// TODO do we instead need a dependence edge of some sort for OpConvert?
// Would memory do the trick, or do we need something else that relates
// to safe point operations?
origloop := loops.b2l[b.ID]
for _, v := range b.Values {
t := target[v.ID]
if t == nil {
continue
default:
}
if v.Op == OpSelect0 || v.Op == OpSelect1 {
// tuple selector must stay with tuple generator
continue
targetloop := loops.b2l[t.ID]
for targetloop != nil && (origloop == nil || targetloop.depth > origloop.depth) {
t = idom[targetloop.header.ID]
target[v.ID] = t
targetloop = loops.b2l[t.ID]
}
if len(v.Args) > 0 && v.Args[len(v.Args)-1].Type.IsMemory() {
// We can't move values which have a memory arg - it might
// make two memory values live across a block boundary.
}
}
// Move values to target locations.
for _, b := range f.Blocks {
for i := 0; i < len(b.Values); i++ {
v := b.Values[i]
t := target[v.ID]
if t == nil || t == b {
// v is not moveable, or is already in correct place.
continue
}
if uses[v.ID] == 1 && !phi[v.ID] && home[v.ID] != b && (len(v.Args) < 2 || v.Type.IsBoolean()) {
// v is used in exactly one block, and it is not b.
// Furthermore, it takes at most one input,
// so moving it will not increase the
// number of live values anywhere.
// Move v to that block.
// Also move bool generators even if they have more than 1 input.
// They will likely be converted to flags, and we want flag
// generators moved next to uses (because we only have 1 flag register).
c := home[v.ID]
c.Values = append(c.Values, v)
v.Block = c
last := len(b.Values) - 1
b.Values[i] = b.Values[last]
b.Values[last] = nil
b.Values = b.Values[:last]
changed = true
}
// Move v to the block which dominates its uses.
t.Values = append(t.Values, v)
v.Block = t
last := len(b.Values) - 1
b.Values[i] = b.Values[last]
b.Values[last] = nil
b.Values = b.Values[:last]
changed = true
i--
}
}
}
......
......@@ -23,6 +23,7 @@ func trim(f *Func) {
j := b.Succs[0].i
p.Succs[i] = Edge{s, j}
s.Preds[j] = Edge{p, i}
f.invalidateCFG()
}
tail := f.Blocks[n:]
for i := range tail {
......
Markdown is supported
0%
or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment