Commit ee7bb07a authored by Russ Cox's avatar Russ Cox

runtime: add copy of math.sqrt for use by arm softfloat

If it's not used (such as on other systems or if softfloat
is disabled) the linker will discard it.

The alternative is to teach cmd/go that every binary
depends on math implicitly on arm. I started down that
path but it's too scary. If we're going to get dependencies
right we should get dependencies right.

Fixes #6994.

LGTM=bradfitz, dave
R=golang-codereviews, bradfitz, dave
CC=golang-codereviews
https://golang.org/cl/95290043
parent 20aa947c
......@@ -16,7 +16,7 @@
#define FLAGS_V (1U << 28)
void runtime·abort(void);
void math·sqrtC(uint64, uint64*);
void runtime·sqrtC(uint64, uint64*);
static uint32 trace = 0;
......@@ -413,7 +413,7 @@ stage3: // regd, regm are 4bit variables
break;
case 0xeeb10bc0: // D[regd] = sqrt D[regm]
math·sqrtC(getd(regm), &uval);
runtime·sqrtC(getd(regm), &uval);
putd(regd, uval);
if(trace)
......
// Copyright 2009 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
// Copy of math/sqrt.go, here for use by ARM softfloat.
package runtime
import "unsafe"
// The original C code and the long comment below are
// from FreeBSD's /usr/src/lib/msun/src/e_sqrt.c and
// came with this notice. The go code is a simplified
// version of the original C.
//
// ====================================================
// Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
//
// Developed at SunPro, a Sun Microsystems, Inc. business.
// Permission to use, copy, modify, and distribute this
// software is freely granted, provided that this notice
// is preserved.
// ====================================================
//
// __ieee754_sqrt(x)
// Return correctly rounded sqrt.
// -----------------------------------------
// | Use the hardware sqrt if you have one |
// -----------------------------------------
// Method:
// Bit by bit method using integer arithmetic. (Slow, but portable)
// 1. Normalization
// Scale x to y in [1,4) with even powers of 2:
// find an integer k such that 1 <= (y=x*2**(2k)) < 4, then
// sqrt(x) = 2**k * sqrt(y)
// 2. Bit by bit computation
// Let q = sqrt(y) truncated to i bit after binary point (q = 1),
// i 0
// i+1 2
// s = 2*q , and y = 2 * ( y - q ). (1)
// i i i i
//
// To compute q from q , one checks whether
// i+1 i
//
// -(i+1) 2
// (q + 2 ) <= y. (2)
// i
// -(i+1)
// If (2) is false, then q = q ; otherwise q = q + 2 .
// i+1 i i+1 i
//
// With some algebraic manipulation, it is not difficult to see
// that (2) is equivalent to
// -(i+1)
// s + 2 <= y (3)
// i i
//
// The advantage of (3) is that s and y can be computed by
// i i
// the following recurrence formula:
// if (3) is false
//
// s = s , y = y ; (4)
// i+1 i i+1 i
//
// otherwise,
// -i -(i+1)
// s = s + 2 , y = y - s - 2 (5)
// i+1 i i+1 i i
//
// One may easily use induction to prove (4) and (5).
// Note. Since the left hand side of (3) contain only i+2 bits,
// it does not necessary to do a full (53-bit) comparison
// in (3).
// 3. Final rounding
// After generating the 53 bits result, we compute one more bit.
// Together with the remainder, we can decide whether the
// result is exact, bigger than 1/2ulp, or less than 1/2ulp
// (it will never equal to 1/2ulp).
// The rounding mode can be detected by checking whether
// huge + tiny is equal to huge, and whether huge - tiny is
// equal to huge for some floating point number "huge" and "tiny".
//
//
// Notes: Rounding mode detection omitted.
const (
uvnan = 0x7FF8000000000001
uvinf = 0x7FF0000000000000
uvneginf = 0xFFF0000000000000
mask = 0x7FF
shift = 64 - 11 - 1
bias = 1023
maxFloat64 = 1.797693134862315708145274237317043567981e+308 // 2**1023 * (2**53 - 1) / 2**52
)
func float64bits(f float64) uint64 { return *(*uint64)(unsafe.Pointer(&f)) }
func float64frombits(b uint64) float64 { return *(*float64)(unsafe.Pointer(&b)) }
func sqrt(x float64) float64 {
// special cases
switch {
case x == 0 || x != x || x > maxFloat64:
return x
case x < 0:
return nan
}
ix := float64bits(x)
// normalize x
exp := int((ix >> shift) & mask)
if exp == 0 { // subnormal x
for ix&1<<shift == 0 {
ix <<= 1
exp--
}
exp++
}
exp -= bias // unbias exponent
ix &^= mask << shift
ix |= 1 << shift
if exp&1 == 1 { // odd exp, double x to make it even
ix <<= 1
}
exp >>= 1 // exp = exp/2, exponent of square root
// generate sqrt(x) bit by bit
ix <<= 1
var q, s uint64 // q = sqrt(x)
r := uint64(1 << (shift + 1)) // r = moving bit from MSB to LSB
for r != 0 {
t := s + r
if t <= ix {
s = t + r
ix -= t
q += r
}
ix <<= 1
r >>= 1
}
// final rounding
if ix != 0 { // remainder, result not exact
q += q & 1 // round according to extra bit
}
ix = q>>1 + uint64(exp-1+bias)<<shift // significand + biased exponent
return float64frombits(ix)
}
func sqrtC(f float64, r *float64) {
*r = sqrt(f)
}
Markdown is supported
0%
or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment